xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision a3b786a8c1ce5e1ed1f5a30f5482d3eb247bbf8b)
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/PseudoSourceValue.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/ModuleSlotTracker.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/MC/MCSymbol.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/Target/TargetMachine.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 using namespace llvm;
47 
48 static cl::opt<bool> PrintWholeRegMask(
49     "print-whole-regmask",
50     cl::desc("Print the full contents of regmask operands in IR dumps"),
51     cl::init(true), cl::Hidden);
52 
53 //===----------------------------------------------------------------------===//
54 // MachineOperand Implementation
55 //===----------------------------------------------------------------------===//
56 
57 void MachineOperand::setReg(unsigned Reg) {
58   if (getReg() == Reg) return; // No change.
59 
60   // Otherwise, we have to change the register.  If this operand is embedded
61   // into a machine function, we need to update the old and new register's
62   // use/def lists.
63   if (MachineInstr *MI = getParent())
64     if (MachineBasicBlock *MBB = MI->getParent())
65       if (MachineFunction *MF = MBB->getParent()) {
66         MachineRegisterInfo &MRI = MF->getRegInfo();
67         MRI.removeRegOperandFromUseList(this);
68         SmallContents.RegNo = Reg;
69         MRI.addRegOperandToUseList(this);
70         return;
71       }
72 
73   // Otherwise, just change the register, no problem.  :)
74   SmallContents.RegNo = Reg;
75 }
76 
77 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
78                                   const TargetRegisterInfo &TRI) {
79   assert(TargetRegisterInfo::isVirtualRegister(Reg));
80   if (SubIdx && getSubReg())
81     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
82   setReg(Reg);
83   if (SubIdx)
84     setSubReg(SubIdx);
85 }
86 
87 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
88   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
89   if (getSubReg()) {
90     Reg = TRI.getSubReg(Reg, getSubReg());
91     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
92     // That won't happen in legal code.
93     setSubReg(0);
94   }
95   setReg(Reg);
96 }
97 
98 /// Change a def to a use, or a use to a def.
99 void MachineOperand::setIsDef(bool Val) {
100   assert(isReg() && "Wrong MachineOperand accessor");
101   assert((!Val || !isDebug()) && "Marking a debug operation as def");
102   if (IsDef == Val)
103     return;
104   // MRI may keep uses and defs in different list positions.
105   if (MachineInstr *MI = getParent())
106     if (MachineBasicBlock *MBB = MI->getParent())
107       if (MachineFunction *MF = MBB->getParent()) {
108         MachineRegisterInfo &MRI = MF->getRegInfo();
109         MRI.removeRegOperandFromUseList(this);
110         IsDef = Val;
111         MRI.addRegOperandToUseList(this);
112         return;
113       }
114   IsDef = Val;
115 }
116 
117 // If this operand is currently a register operand, and if this is in a
118 // function, deregister the operand from the register's use/def list.
119 void MachineOperand::removeRegFromUses() {
120   if (!isReg() || !isOnRegUseList())
121     return;
122 
123   if (MachineInstr *MI = getParent()) {
124     if (MachineBasicBlock *MBB = MI->getParent()) {
125       if (MachineFunction *MF = MBB->getParent())
126         MF->getRegInfo().removeRegOperandFromUseList(this);
127     }
128   }
129 }
130 
131 /// ChangeToImmediate - Replace this operand with a new immediate operand of
132 /// the specified value.  If an operand is known to be an immediate already,
133 /// the setImm method should be used.
134 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
135   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
136 
137   removeRegFromUses();
138 
139   OpKind = MO_Immediate;
140   Contents.ImmVal = ImmVal;
141 }
142 
143 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
144   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
145 
146   removeRegFromUses();
147 
148   OpKind = MO_FPImmediate;
149   Contents.CFP = FPImm;
150 }
151 
152 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
153   assert((!isReg() || !isTied()) &&
154          "Cannot change a tied operand into an external symbol");
155 
156   removeRegFromUses();
157 
158   OpKind = MO_ExternalSymbol;
159   Contents.OffsetedInfo.Val.SymbolName = SymName;
160   setOffset(0); // Offset is always 0.
161   setTargetFlags(TargetFlags);
162 }
163 
164 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
165   assert((!isReg() || !isTied()) &&
166          "Cannot change a tied operand into an MCSymbol");
167 
168   removeRegFromUses();
169 
170   OpKind = MO_MCSymbol;
171   Contents.Sym = Sym;
172 }
173 
174 /// ChangeToRegister - Replace this operand with a new register operand of
175 /// the specified value.  If an operand is known to be an register already,
176 /// the setReg method should be used.
177 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
178                                       bool isKill, bool isDead, bool isUndef,
179                                       bool isDebug) {
180   MachineRegisterInfo *RegInfo = nullptr;
181   if (MachineInstr *MI = getParent())
182     if (MachineBasicBlock *MBB = MI->getParent())
183       if (MachineFunction *MF = MBB->getParent())
184         RegInfo = &MF->getRegInfo();
185   // If this operand is already a register operand, remove it from the
186   // register's use/def lists.
187   bool WasReg = isReg();
188   if (RegInfo && WasReg)
189     RegInfo->removeRegOperandFromUseList(this);
190 
191   // Change this to a register and set the reg#.
192   OpKind = MO_Register;
193   SmallContents.RegNo = Reg;
194   SubReg_TargetFlags = 0;
195   IsDef = isDef;
196   IsImp = isImp;
197   IsKill = isKill;
198   IsDead = isDead;
199   IsUndef = isUndef;
200   IsInternalRead = false;
201   IsEarlyClobber = false;
202   IsDebug = isDebug;
203   // Ensure isOnRegUseList() returns false.
204   Contents.Reg.Prev = nullptr;
205   // Preserve the tie when the operand was already a register.
206   if (!WasReg)
207     TiedTo = 0;
208 
209   // If this operand is embedded in a function, add the operand to the
210   // register's use/def list.
211   if (RegInfo)
212     RegInfo->addRegOperandToUseList(this);
213 }
214 
215 /// isIdenticalTo - Return true if this operand is identical to the specified
216 /// operand. Note that this should stay in sync with the hash_value overload
217 /// below.
218 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
219   if (getType() != Other.getType() ||
220       getTargetFlags() != Other.getTargetFlags())
221     return false;
222 
223   switch (getType()) {
224   case MachineOperand::MO_Register:
225     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
226            getSubReg() == Other.getSubReg();
227   case MachineOperand::MO_Immediate:
228     return getImm() == Other.getImm();
229   case MachineOperand::MO_CImmediate:
230     return getCImm() == Other.getCImm();
231   case MachineOperand::MO_FPImmediate:
232     return getFPImm() == Other.getFPImm();
233   case MachineOperand::MO_MachineBasicBlock:
234     return getMBB() == Other.getMBB();
235   case MachineOperand::MO_FrameIndex:
236     return getIndex() == Other.getIndex();
237   case MachineOperand::MO_ConstantPoolIndex:
238   case MachineOperand::MO_TargetIndex:
239     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
240   case MachineOperand::MO_JumpTableIndex:
241     return getIndex() == Other.getIndex();
242   case MachineOperand::MO_GlobalAddress:
243     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
244   case MachineOperand::MO_ExternalSymbol:
245     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
246            getOffset() == Other.getOffset();
247   case MachineOperand::MO_BlockAddress:
248     return getBlockAddress() == Other.getBlockAddress() &&
249            getOffset() == Other.getOffset();
250   case MachineOperand::MO_RegisterMask:
251   case MachineOperand::MO_RegisterLiveOut:
252     return getRegMask() == Other.getRegMask();
253   case MachineOperand::MO_MCSymbol:
254     return getMCSymbol() == Other.getMCSymbol();
255   case MachineOperand::MO_CFIIndex:
256     return getCFIIndex() == Other.getCFIIndex();
257   case MachineOperand::MO_Metadata:
258     return getMetadata() == Other.getMetadata();
259   }
260   llvm_unreachable("Invalid machine operand type");
261 }
262 
263 // Note: this must stay exactly in sync with isIdenticalTo above.
264 hash_code llvm::hash_value(const MachineOperand &MO) {
265   switch (MO.getType()) {
266   case MachineOperand::MO_Register:
267     // Register operands don't have target flags.
268     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
269   case MachineOperand::MO_Immediate:
270     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
271   case MachineOperand::MO_CImmediate:
272     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
273   case MachineOperand::MO_FPImmediate:
274     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
275   case MachineOperand::MO_MachineBasicBlock:
276     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
277   case MachineOperand::MO_FrameIndex:
278     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
279   case MachineOperand::MO_ConstantPoolIndex:
280   case MachineOperand::MO_TargetIndex:
281     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
282                         MO.getOffset());
283   case MachineOperand::MO_JumpTableIndex:
284     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
285   case MachineOperand::MO_ExternalSymbol:
286     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
287                         MO.getSymbolName());
288   case MachineOperand::MO_GlobalAddress:
289     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
290                         MO.getOffset());
291   case MachineOperand::MO_BlockAddress:
292     return hash_combine(MO.getType(), MO.getTargetFlags(),
293                         MO.getBlockAddress(), MO.getOffset());
294   case MachineOperand::MO_RegisterMask:
295   case MachineOperand::MO_RegisterLiveOut:
296     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
297   case MachineOperand::MO_Metadata:
298     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
299   case MachineOperand::MO_MCSymbol:
300     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
301   case MachineOperand::MO_CFIIndex:
302     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
303   }
304   llvm_unreachable("Invalid machine operand type");
305 }
306 
307 void MachineOperand::print(raw_ostream &OS,
308                            const TargetRegisterInfo *TRI) const {
309   ModuleSlotTracker DummyMST(nullptr);
310   print(OS, DummyMST, TRI);
311 }
312 
313 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
314                            const TargetRegisterInfo *TRI) const {
315   switch (getType()) {
316   case MachineOperand::MO_Register:
317     OS << PrintReg(getReg(), TRI, getSubReg());
318 
319     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
320         isInternalRead() || isEarlyClobber() || isTied()) {
321       OS << '<';
322       bool NeedComma = false;
323       if (isDef()) {
324         if (NeedComma) OS << ',';
325         if (isEarlyClobber())
326           OS << "earlyclobber,";
327         if (isImplicit())
328           OS << "imp-";
329         OS << "def";
330         NeedComma = true;
331         // <def,read-undef> only makes sense when getSubReg() is set.
332         // Don't clutter the output otherwise.
333         if (isUndef() && getSubReg())
334           OS << ",read-undef";
335       } else if (isImplicit()) {
336         OS << "imp-use";
337         NeedComma = true;
338       }
339 
340       if (isKill()) {
341         if (NeedComma) OS << ',';
342         OS << "kill";
343         NeedComma = true;
344       }
345       if (isDead()) {
346         if (NeedComma) OS << ',';
347         OS << "dead";
348         NeedComma = true;
349       }
350       if (isUndef() && isUse()) {
351         if (NeedComma) OS << ',';
352         OS << "undef";
353         NeedComma = true;
354       }
355       if (isInternalRead()) {
356         if (NeedComma) OS << ',';
357         OS << "internal";
358         NeedComma = true;
359       }
360       if (isTied()) {
361         if (NeedComma) OS << ',';
362         OS << "tied";
363         if (TiedTo != 15)
364           OS << unsigned(TiedTo - 1);
365       }
366       OS << '>';
367     }
368     break;
369   case MachineOperand::MO_Immediate:
370     OS << getImm();
371     break;
372   case MachineOperand::MO_CImmediate:
373     getCImm()->getValue().print(OS, false);
374     break;
375   case MachineOperand::MO_FPImmediate:
376     if (getFPImm()->getType()->isFloatTy()) {
377       OS << getFPImm()->getValueAPF().convertToFloat();
378     } else if (getFPImm()->getType()->isHalfTy()) {
379       APFloat APF = getFPImm()->getValueAPF();
380       bool Unused;
381       APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused);
382       OS << "half " << APF.convertToFloat();
383     } else {
384       OS << getFPImm()->getValueAPF().convertToDouble();
385     }
386     break;
387   case MachineOperand::MO_MachineBasicBlock:
388     OS << "<BB#" << getMBB()->getNumber() << ">";
389     break;
390   case MachineOperand::MO_FrameIndex:
391     OS << "<fi#" << getIndex() << '>';
392     break;
393   case MachineOperand::MO_ConstantPoolIndex:
394     OS << "<cp#" << getIndex();
395     if (getOffset()) OS << "+" << getOffset();
396     OS << '>';
397     break;
398   case MachineOperand::MO_TargetIndex:
399     OS << "<ti#" << getIndex();
400     if (getOffset()) OS << "+" << getOffset();
401     OS << '>';
402     break;
403   case MachineOperand::MO_JumpTableIndex:
404     OS << "<jt#" << getIndex() << '>';
405     break;
406   case MachineOperand::MO_GlobalAddress:
407     OS << "<ga:";
408     getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
409     if (getOffset()) OS << "+" << getOffset();
410     OS << '>';
411     break;
412   case MachineOperand::MO_ExternalSymbol:
413     OS << "<es:" << getSymbolName();
414     if (getOffset()) OS << "+" << getOffset();
415     OS << '>';
416     break;
417   case MachineOperand::MO_BlockAddress:
418     OS << '<';
419     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
420     if (getOffset()) OS << "+" << getOffset();
421     OS << '>';
422     break;
423   case MachineOperand::MO_RegisterMask: {
424     unsigned NumRegsInMask = 0;
425     unsigned NumRegsEmitted = 0;
426     OS << "<regmask";
427     for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
428       unsigned MaskWord = i / 32;
429       unsigned MaskBit = i % 32;
430       if (getRegMask()[MaskWord] & (1 << MaskBit)) {
431         if (PrintWholeRegMask || NumRegsEmitted <= 10) {
432           OS << " " << PrintReg(i, TRI);
433           NumRegsEmitted++;
434         }
435         NumRegsInMask++;
436       }
437     }
438     if (NumRegsEmitted != NumRegsInMask)
439       OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
440     OS << ">";
441     break;
442   }
443   case MachineOperand::MO_RegisterLiveOut:
444     OS << "<regliveout>";
445     break;
446   case MachineOperand::MO_Metadata:
447     OS << '<';
448     getMetadata()->printAsOperand(OS, MST);
449     OS << '>';
450     break;
451   case MachineOperand::MO_MCSymbol:
452     OS << "<MCSym=" << *getMCSymbol() << '>';
453     break;
454   case MachineOperand::MO_CFIIndex:
455     OS << "<call frame instruction>";
456     break;
457   }
458 
459   if (unsigned TF = getTargetFlags())
460     OS << "[TF=" << TF << ']';
461 }
462 
463 //===----------------------------------------------------------------------===//
464 // MachineMemOperand Implementation
465 //===----------------------------------------------------------------------===//
466 
467 /// getAddrSpace - Return the LLVM IR address space number that this pointer
468 /// points into.
469 unsigned MachinePointerInfo::getAddrSpace() const {
470   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
471   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
472 }
473 
474 /// getConstantPool - Return a MachinePointerInfo record that refers to the
475 /// constant pool.
476 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
477   return MachinePointerInfo(MF.getPSVManager().getConstantPool());
478 }
479 
480 /// getFixedStack - Return a MachinePointerInfo record that refers to the
481 /// the specified FrameIndex.
482 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
483                                                      int FI, int64_t Offset) {
484   return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
485 }
486 
487 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
488   return MachinePointerInfo(MF.getPSVManager().getJumpTable());
489 }
490 
491 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
492   return MachinePointerInfo(MF.getPSVManager().getGOT());
493 }
494 
495 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
496                                                 int64_t Offset) {
497   return MachinePointerInfo(MF.getPSVManager().getStack(), Offset);
498 }
499 
500 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f,
501                                      uint64_t s, unsigned int a,
502                                      const AAMDNodes &AAInfo,
503                                      const MDNode *Ranges)
504     : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1),
505       AAInfo(AAInfo), Ranges(Ranges) {
506   assert(MOMaxFlag == (1 << MOMaxBits) - 1 &&
507          "MOMaxFlag and MOMaxBits have fallen out of sync.");
508   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
509           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
510          "invalid pointer value");
511   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
512   assert((isLoad() || isStore()) && "Not a load/store!");
513 }
514 
515 /// Profile - Gather unique data for the object.
516 ///
517 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
518   ID.AddInteger(getOffset());
519   ID.AddInteger(Size);
520   ID.AddPointer(getOpaqueValue());
521   ID.AddInteger(getFlags());
522   ID.AddInteger(getBaseAlignment());
523 }
524 
525 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
526   // The Value and Offset may differ due to CSE. But the flags and size
527   // should be the same.
528   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
529   assert(MMO->getSize() == getSize() && "Size mismatch!");
530 
531   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
532     // Update the alignment value.
533     BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1;
534     // Also update the base and offset, because the new alignment may
535     // not be applicable with the old ones.
536     PtrInfo = MMO->PtrInfo;
537   }
538 }
539 
540 /// getAlignment - Return the minimum known alignment in bytes of the
541 /// actual memory reference.
542 uint64_t MachineMemOperand::getAlignment() const {
543   return MinAlign(getBaseAlignment(), getOffset());
544 }
545 
546 void MachineMemOperand::print(raw_ostream &OS) const {
547   ModuleSlotTracker DummyMST(nullptr);
548   print(OS, DummyMST);
549 }
550 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
551   assert((isLoad() || isStore()) &&
552          "SV has to be a load, store or both.");
553 
554   if (isVolatile())
555     OS << "Volatile ";
556 
557   if (isLoad())
558     OS << "LD";
559   if (isStore())
560     OS << "ST";
561   OS << getSize();
562 
563   // Print the address information.
564   OS << "[";
565   if (const Value *V = getValue())
566     V->printAsOperand(OS, /*PrintType=*/false, MST);
567   else if (const PseudoSourceValue *PSV = getPseudoValue())
568     PSV->printCustom(OS);
569   else
570     OS << "<unknown>";
571 
572   unsigned AS = getAddrSpace();
573   if (AS != 0)
574     OS << "(addrspace=" << AS << ')';
575 
576   // If the alignment of the memory reference itself differs from the alignment
577   // of the base pointer, print the base alignment explicitly, next to the base
578   // pointer.
579   if (getBaseAlignment() != getAlignment())
580     OS << "(align=" << getBaseAlignment() << ")";
581 
582   if (getOffset() != 0)
583     OS << "+" << getOffset();
584   OS << "]";
585 
586   // Print the alignment of the reference.
587   if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
588     OS << "(align=" << getAlignment() << ")";
589 
590   // Print TBAA info.
591   if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
592     OS << "(tbaa=";
593     if (TBAAInfo->getNumOperands() > 0)
594       TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
595     else
596       OS << "<unknown>";
597     OS << ")";
598   }
599 
600   // Print AA scope info.
601   if (const MDNode *ScopeInfo = getAAInfo().Scope) {
602     OS << "(alias.scope=";
603     if (ScopeInfo->getNumOperands() > 0)
604       for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
605         ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
606         if (i != ie-1)
607           OS << ",";
608       }
609     else
610       OS << "<unknown>";
611     OS << ")";
612   }
613 
614   // Print AA noalias scope info.
615   if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
616     OS << "(noalias=";
617     if (NoAliasInfo->getNumOperands() > 0)
618       for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
619         NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
620         if (i != ie-1)
621           OS << ",";
622       }
623     else
624       OS << "<unknown>";
625     OS << ")";
626   }
627 
628   // Print nontemporal info.
629   if (isNonTemporal())
630     OS << "(nontemporal)";
631 
632   if (isInvariant())
633     OS << "(invariant)";
634 }
635 
636 //===----------------------------------------------------------------------===//
637 // MachineInstr Implementation
638 //===----------------------------------------------------------------------===//
639 
640 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
641   if (MCID->ImplicitDefs)
642     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
643            ++ImpDefs)
644       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
645   if (MCID->ImplicitUses)
646     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
647            ++ImpUses)
648       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
649 }
650 
651 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
652 /// implicit operands. It reserves space for the number of operands specified by
653 /// the MCInstrDesc.
654 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
655                            DebugLoc dl, bool NoImp)
656     : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0),
657       AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr),
658       debugLoc(std::move(dl))
659 #ifdef LLVM_BUILD_GLOBAL_ISEL
660       ,
661       Ty(nullptr)
662 #endif
663 {
664   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
665 
666   // Reserve space for the expected number of operands.
667   if (unsigned NumOps = MCID->getNumOperands() +
668     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
669     CapOperands = OperandCapacity::get(NumOps);
670     Operands = MF.allocateOperandArray(CapOperands);
671   }
672 
673   if (!NoImp)
674     addImplicitDefUseOperands(MF);
675 }
676 
677 /// MachineInstr ctor - Copies MachineInstr arg exactly
678 ///
679 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
680     : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
681       Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs),
682       MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc())
683 #ifdef LLVM_BUILD_GLOBAL_ISEL
684       ,
685       Ty(nullptr)
686 #endif
687 {
688   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
689 
690   CapOperands = OperandCapacity::get(MI.getNumOperands());
691   Operands = MF.allocateOperandArray(CapOperands);
692 
693   // Copy operands.
694   for (const MachineOperand &MO : MI.operands())
695     addOperand(MF, MO);
696 
697   // Copy all the sensible flags.
698   setFlags(MI.Flags);
699 }
700 
701 /// getRegInfo - If this instruction is embedded into a MachineFunction,
702 /// return the MachineRegisterInfo object for the current function, otherwise
703 /// return null.
704 MachineRegisterInfo *MachineInstr::getRegInfo() {
705   if (MachineBasicBlock *MBB = getParent())
706     return &MBB->getParent()->getRegInfo();
707   return nullptr;
708 }
709 
710 // Implement dummy setter and getter for type when
711 // global-isel is not built.
712 // The proper implementation is WIP and is tracked here:
713 // PR26576.
714 #ifndef LLVM_BUILD_GLOBAL_ISEL
715 void MachineInstr::setType(Type *Ty) {}
716 
717 Type *MachineInstr::getType() const { return nullptr; }
718 
719 #else
720 void MachineInstr::setType(Type *Ty) {
721   assert((!Ty || isPreISelGenericOpcode(getOpcode())) &&
722          "Non generic instructions are not supposed to be typed");
723   this->Ty = Ty;
724 }
725 
726 Type *MachineInstr::getType() const { return Ty; }
727 #endif // LLVM_BUILD_GLOBAL_ISEL
728 
729 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
730 /// this instruction from their respective use lists.  This requires that the
731 /// operands already be on their use lists.
732 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
733   for (MachineOperand &MO : operands())
734     if (MO.isReg())
735       MRI.removeRegOperandFromUseList(&MO);
736 }
737 
738 /// AddRegOperandsToUseLists - Add all of the register operands in
739 /// this instruction from their respective use lists.  This requires that the
740 /// operands not be on their use lists yet.
741 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
742   for (MachineOperand &MO : operands())
743     if (MO.isReg())
744       MRI.addRegOperandToUseList(&MO);
745 }
746 
747 void MachineInstr::addOperand(const MachineOperand &Op) {
748   MachineBasicBlock *MBB = getParent();
749   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
750   MachineFunction *MF = MBB->getParent();
751   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
752   addOperand(*MF, Op);
753 }
754 
755 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
756 /// ranges. If MRI is non-null also update use-def chains.
757 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
758                          unsigned NumOps, MachineRegisterInfo *MRI) {
759   if (MRI)
760     return MRI->moveOperands(Dst, Src, NumOps);
761 
762   // MachineOperand is a trivially copyable type so we can just use memmove.
763   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
764 }
765 
766 /// addOperand - Add the specified operand to the instruction.  If it is an
767 /// implicit operand, it is added to the end of the operand list.  If it is
768 /// an explicit operand it is added at the end of the explicit operand list
769 /// (before the first implicit operand).
770 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
771   assert(MCID && "Cannot add operands before providing an instr descriptor");
772 
773   // Check if we're adding one of our existing operands.
774   if (&Op >= Operands && &Op < Operands + NumOperands) {
775     // This is unusual: MI->addOperand(MI->getOperand(i)).
776     // If adding Op requires reallocating or moving existing operands around,
777     // the Op reference could go stale. Support it by copying Op.
778     MachineOperand CopyOp(Op);
779     return addOperand(MF, CopyOp);
780   }
781 
782   // Find the insert location for the new operand.  Implicit registers go at
783   // the end, everything else goes before the implicit regs.
784   //
785   // FIXME: Allow mixed explicit and implicit operands on inline asm.
786   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
787   // implicit-defs, but they must not be moved around.  See the FIXME in
788   // InstrEmitter.cpp.
789   unsigned OpNo = getNumOperands();
790   bool isImpReg = Op.isReg() && Op.isImplicit();
791   if (!isImpReg && !isInlineAsm()) {
792     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
793       --OpNo;
794       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
795     }
796   }
797 
798 #ifndef NDEBUG
799   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
800   // OpNo now points as the desired insertion point.  Unless this is a variadic
801   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
802   // RegMask operands go between the explicit and implicit operands.
803   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
804           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
805          "Trying to add an operand to a machine instr that is already done!");
806 #endif
807 
808   MachineRegisterInfo *MRI = getRegInfo();
809 
810   // Determine if the Operands array needs to be reallocated.
811   // Save the old capacity and operand array.
812   OperandCapacity OldCap = CapOperands;
813   MachineOperand *OldOperands = Operands;
814   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
815     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
816     Operands = MF.allocateOperandArray(CapOperands);
817     // Move the operands before the insertion point.
818     if (OpNo)
819       moveOperands(Operands, OldOperands, OpNo, MRI);
820   }
821 
822   // Move the operands following the insertion point.
823   if (OpNo != NumOperands)
824     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
825                  MRI);
826   ++NumOperands;
827 
828   // Deallocate the old operand array.
829   if (OldOperands != Operands && OldOperands)
830     MF.deallocateOperandArray(OldCap, OldOperands);
831 
832   // Copy Op into place. It still needs to be inserted into the MRI use lists.
833   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
834   NewMO->ParentMI = this;
835 
836   // When adding a register operand, tell MRI about it.
837   if (NewMO->isReg()) {
838     // Ensure isOnRegUseList() returns false, regardless of Op's status.
839     NewMO->Contents.Reg.Prev = nullptr;
840     // Ignore existing ties. This is not a property that can be copied.
841     NewMO->TiedTo = 0;
842     // Add the new operand to MRI, but only for instructions in an MBB.
843     if (MRI)
844       MRI->addRegOperandToUseList(NewMO);
845     // The MCID operand information isn't accurate until we start adding
846     // explicit operands. The implicit operands are added first, then the
847     // explicits are inserted before them.
848     if (!isImpReg) {
849       // Tie uses to defs as indicated in MCInstrDesc.
850       if (NewMO->isUse()) {
851         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
852         if (DefIdx != -1)
853           tieOperands(DefIdx, OpNo);
854       }
855       // If the register operand is flagged as early, mark the operand as such.
856       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
857         NewMO->setIsEarlyClobber(true);
858     }
859   }
860 }
861 
862 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
863 /// fewer operand than it started with.
864 ///
865 void MachineInstr::RemoveOperand(unsigned OpNo) {
866   assert(OpNo < getNumOperands() && "Invalid operand number");
867   untieRegOperand(OpNo);
868 
869 #ifndef NDEBUG
870   // Moving tied operands would break the ties.
871   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
872     if (Operands[i].isReg())
873       assert(!Operands[i].isTied() && "Cannot move tied operands");
874 #endif
875 
876   MachineRegisterInfo *MRI = getRegInfo();
877   if (MRI && Operands[OpNo].isReg())
878     MRI->removeRegOperandFromUseList(Operands + OpNo);
879 
880   // Don't call the MachineOperand destructor. A lot of this code depends on
881   // MachineOperand having a trivial destructor anyway, and adding a call here
882   // wouldn't make it 'destructor-correct'.
883 
884   if (unsigned N = NumOperands - 1 - OpNo)
885     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
886   --NumOperands;
887 }
888 
889 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
890 /// This function should be used only occasionally. The setMemRefs function
891 /// is the primary method for setting up a MachineInstr's MemRefs list.
892 void MachineInstr::addMemOperand(MachineFunction &MF,
893                                  MachineMemOperand *MO) {
894   mmo_iterator OldMemRefs = MemRefs;
895   unsigned OldNumMemRefs = NumMemRefs;
896 
897   unsigned NewNum = NumMemRefs + 1;
898   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
899 
900   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
901   NewMemRefs[NewNum - 1] = MO;
902   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
903 }
904 
905 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
906 /// identical.
907 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
908   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
909   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
910   if ((E1 - I1) != (E2 - I2))
911     return false;
912   for (; I1 != E1; ++I1, ++I2) {
913     if (**I1 != **I2)
914       return false;
915   }
916   return true;
917 }
918 
919 std::pair<MachineInstr::mmo_iterator, unsigned>
920 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
921 
922   // If either of the incoming memrefs are empty, we must be conservative and
923   // treat this as if we've exhausted our space for memrefs and dropped them.
924   if (memoperands_empty() || Other.memoperands_empty())
925     return std::make_pair(nullptr, 0);
926 
927   // If both instructions have identical memrefs, we don't need to merge them.
928   // Since many instructions have a single memref, and we tend to merge things
929   // like pairs of loads from the same location, this catches a large number of
930   // cases in practice.
931   if (hasIdenticalMMOs(*this, Other))
932     return std::make_pair(MemRefs, NumMemRefs);
933 
934   // TODO: consider uniquing elements within the operand lists to reduce
935   // space usage and fall back to conservative information less often.
936   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
937 
938   // If we don't have enough room to store this many memrefs, be conservative
939   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
940   // the new instruction.
941   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
942     return std::make_pair(nullptr, 0);
943 
944   MachineFunction *MF = getParent()->getParent();
945   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
946   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
947                                   MemBegin);
948   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
949                      MemEnd);
950   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
951          "missing memrefs");
952 
953   return std::make_pair(MemBegin, CombinedNumMemRefs);
954 }
955 
956 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
957   assert(!isBundledWithPred() && "Must be called on bundle header");
958   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
959     if (MII->getDesc().getFlags() & Mask) {
960       if (Type == AnyInBundle)
961         return true;
962     } else {
963       if (Type == AllInBundle && !MII->isBundle())
964         return false;
965     }
966     // This was the last instruction in the bundle.
967     if (!MII->isBundledWithSucc())
968       return Type == AllInBundle;
969   }
970 }
971 
972 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
973                                  MICheckType Check) const {
974   // If opcodes or number of operands are not the same then the two
975   // instructions are obviously not identical.
976   if (Other.getOpcode() != getOpcode() ||
977       Other.getNumOperands() != getNumOperands())
978     return false;
979 
980   if (isBundle()) {
981     // Both instructions are bundles, compare MIs inside the bundle.
982     MachineBasicBlock::const_instr_iterator I1 = getIterator();
983     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
984     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
985     MachineBasicBlock::const_instr_iterator E2 = Other.getParent()->instr_end();
986     while (++I1 != E1 && I1->isInsideBundle()) {
987       ++I2;
988       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(*I2, Check))
989         return false;
990     }
991   }
992 
993   // Check operands to make sure they match.
994   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
995     const MachineOperand &MO = getOperand(i);
996     const MachineOperand &OMO = Other.getOperand(i);
997     if (!MO.isReg()) {
998       if (!MO.isIdenticalTo(OMO))
999         return false;
1000       continue;
1001     }
1002 
1003     // Clients may or may not want to ignore defs when testing for equality.
1004     // For example, machine CSE pass only cares about finding common
1005     // subexpressions, so it's safe to ignore virtual register defs.
1006     if (MO.isDef()) {
1007       if (Check == IgnoreDefs)
1008         continue;
1009       else if (Check == IgnoreVRegDefs) {
1010         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1011             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
1012           if (MO.getReg() != OMO.getReg())
1013             return false;
1014       } else {
1015         if (!MO.isIdenticalTo(OMO))
1016           return false;
1017         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
1018           return false;
1019       }
1020     } else {
1021       if (!MO.isIdenticalTo(OMO))
1022         return false;
1023       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
1024         return false;
1025     }
1026   }
1027   // If DebugLoc does not match then two dbg.values are not identical.
1028   if (isDebugValue())
1029     if (getDebugLoc() && Other.getDebugLoc() &&
1030         getDebugLoc() != Other.getDebugLoc())
1031       return false;
1032   return true;
1033 }
1034 
1035 MachineInstr *MachineInstr::removeFromParent() {
1036   assert(getParent() && "Not embedded in a basic block!");
1037   return getParent()->remove(this);
1038 }
1039 
1040 MachineInstr *MachineInstr::removeFromBundle() {
1041   assert(getParent() && "Not embedded in a basic block!");
1042   return getParent()->remove_instr(this);
1043 }
1044 
1045 void MachineInstr::eraseFromParent() {
1046   assert(getParent() && "Not embedded in a basic block!");
1047   getParent()->erase(this);
1048 }
1049 
1050 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
1051   assert(getParent() && "Not embedded in a basic block!");
1052   MachineBasicBlock *MBB = getParent();
1053   MachineFunction *MF = MBB->getParent();
1054   assert(MF && "Not embedded in a function!");
1055 
1056   MachineInstr *MI = (MachineInstr *)this;
1057   MachineRegisterInfo &MRI = MF->getRegInfo();
1058 
1059   for (const MachineOperand &MO : MI->operands()) {
1060     if (!MO.isReg() || !MO.isDef())
1061       continue;
1062     unsigned Reg = MO.getReg();
1063     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1064       continue;
1065     MRI.markUsesInDebugValueAsUndef(Reg);
1066   }
1067   MI->eraseFromParent();
1068 }
1069 
1070 void MachineInstr::eraseFromBundle() {
1071   assert(getParent() && "Not embedded in a basic block!");
1072   getParent()->erase_instr(this);
1073 }
1074 
1075 /// getNumExplicitOperands - Returns the number of non-implicit operands.
1076 ///
1077 unsigned MachineInstr::getNumExplicitOperands() const {
1078   unsigned NumOperands = MCID->getNumOperands();
1079   if (!MCID->isVariadic())
1080     return NumOperands;
1081 
1082   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
1083     const MachineOperand &MO = getOperand(i);
1084     if (!MO.isReg() || !MO.isImplicit())
1085       NumOperands++;
1086   }
1087   return NumOperands;
1088 }
1089 
1090 void MachineInstr::bundleWithPred() {
1091   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
1092   setFlag(BundledPred);
1093   MachineBasicBlock::instr_iterator Pred = getIterator();
1094   --Pred;
1095   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1096   Pred->setFlag(BundledSucc);
1097 }
1098 
1099 void MachineInstr::bundleWithSucc() {
1100   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
1101   setFlag(BundledSucc);
1102   MachineBasicBlock::instr_iterator Succ = getIterator();
1103   ++Succ;
1104   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
1105   Succ->setFlag(BundledPred);
1106 }
1107 
1108 void MachineInstr::unbundleFromPred() {
1109   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
1110   clearFlag(BundledPred);
1111   MachineBasicBlock::instr_iterator Pred = getIterator();
1112   --Pred;
1113   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1114   Pred->clearFlag(BundledSucc);
1115 }
1116 
1117 void MachineInstr::unbundleFromSucc() {
1118   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
1119   clearFlag(BundledSucc);
1120   MachineBasicBlock::instr_iterator Succ = getIterator();
1121   ++Succ;
1122   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
1123   Succ->clearFlag(BundledPred);
1124 }
1125 
1126 bool MachineInstr::isStackAligningInlineAsm() const {
1127   if (isInlineAsm()) {
1128     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1129     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1130       return true;
1131   }
1132   return false;
1133 }
1134 
1135 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
1136   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
1137   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1138   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
1139 }
1140 
1141 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
1142                                        unsigned *GroupNo) const {
1143   assert(isInlineAsm() && "Expected an inline asm instruction");
1144   assert(OpIdx < getNumOperands() && "OpIdx out of range");
1145 
1146   // Ignore queries about the initial operands.
1147   if (OpIdx < InlineAsm::MIOp_FirstOperand)
1148     return -1;
1149 
1150   unsigned Group = 0;
1151   unsigned NumOps;
1152   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1153        i += NumOps) {
1154     const MachineOperand &FlagMO = getOperand(i);
1155     // If we reach the implicit register operands, stop looking.
1156     if (!FlagMO.isImm())
1157       return -1;
1158     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1159     if (i + NumOps > OpIdx) {
1160       if (GroupNo)
1161         *GroupNo = Group;
1162       return i;
1163     }
1164     ++Group;
1165   }
1166   return -1;
1167 }
1168 
1169 const DILocalVariable *MachineInstr::getDebugVariable() const {
1170   assert(isDebugValue() && "not a DBG_VALUE");
1171   return cast<DILocalVariable>(getOperand(2).getMetadata());
1172 }
1173 
1174 const DIExpression *MachineInstr::getDebugExpression() const {
1175   assert(isDebugValue() && "not a DBG_VALUE");
1176   return cast<DIExpression>(getOperand(3).getMetadata());
1177 }
1178 
1179 const TargetRegisterClass*
1180 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1181                                     const TargetInstrInfo *TII,
1182                                     const TargetRegisterInfo *TRI) const {
1183   assert(getParent() && "Can't have an MBB reference here!");
1184   assert(getParent()->getParent() && "Can't have an MF reference here!");
1185   const MachineFunction &MF = *getParent()->getParent();
1186 
1187   // Most opcodes have fixed constraints in their MCInstrDesc.
1188   if (!isInlineAsm())
1189     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1190 
1191   if (!getOperand(OpIdx).isReg())
1192     return nullptr;
1193 
1194   // For tied uses on inline asm, get the constraint from the def.
1195   unsigned DefIdx;
1196   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1197     OpIdx = DefIdx;
1198 
1199   // Inline asm stores register class constraints in the flag word.
1200   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1201   if (FlagIdx < 0)
1202     return nullptr;
1203 
1204   unsigned Flag = getOperand(FlagIdx).getImm();
1205   unsigned RCID;
1206   if (InlineAsm::hasRegClassConstraint(Flag, RCID))
1207     return TRI->getRegClass(RCID);
1208 
1209   // Assume that all registers in a memory operand are pointers.
1210   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1211     return TRI->getPointerRegClass(MF);
1212 
1213   return nullptr;
1214 }
1215 
1216 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1217     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1218     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1219   // Check every operands inside the bundle if we have
1220   // been asked to.
1221   if (ExploreBundle)
1222     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
1223          ++OpndIt)
1224       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1225           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1226   else
1227     // Otherwise, just check the current operands.
1228     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1229       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1230   return CurRC;
1231 }
1232 
1233 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1234     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1235     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1236   assert(CurRC && "Invalid initial register class");
1237   // Check if Reg is constrained by some of its use/def from MI.
1238   const MachineOperand &MO = getOperand(OpIdx);
1239   if (!MO.isReg() || MO.getReg() != Reg)
1240     return CurRC;
1241   // If yes, accumulate the constraints through the operand.
1242   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1243 }
1244 
1245 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1246     unsigned OpIdx, const TargetRegisterClass *CurRC,
1247     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1248   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1249   const MachineOperand &MO = getOperand(OpIdx);
1250   assert(MO.isReg() &&
1251          "Cannot get register constraints for non-register operand");
1252   assert(CurRC && "Invalid initial register class");
1253   if (unsigned SubIdx = MO.getSubReg()) {
1254     if (OpRC)
1255       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1256     else
1257       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1258   } else if (OpRC)
1259     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1260   return CurRC;
1261 }
1262 
1263 /// Return the number of instructions inside the MI bundle, not counting the
1264 /// header instruction.
1265 unsigned MachineInstr::getBundleSize() const {
1266   MachineBasicBlock::const_instr_iterator I = getIterator();
1267   unsigned Size = 0;
1268   while (I->isBundledWithSucc()) {
1269     ++Size;
1270     ++I;
1271   }
1272   return Size;
1273 }
1274 
1275 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1276 /// the given register (not considering sub/super-registers).
1277 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
1278   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1279     const MachineOperand &MO = getOperand(i);
1280     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1281       return true;
1282   }
1283   return false;
1284 }
1285 
1286 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1287 /// the specific register or -1 if it is not found. It further tightens
1288 /// the search criteria to a use that kills the register if isKill is true.
1289 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1290                                           const TargetRegisterInfo *TRI) const {
1291   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1292     const MachineOperand &MO = getOperand(i);
1293     if (!MO.isReg() || !MO.isUse())
1294       continue;
1295     unsigned MOReg = MO.getReg();
1296     if (!MOReg)
1297       continue;
1298     if (MOReg == Reg ||
1299         (TRI &&
1300          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1301          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1302          TRI->isSubRegister(MOReg, Reg)))
1303       if (!isKill || MO.isKill())
1304         return i;
1305   }
1306   return -1;
1307 }
1308 
1309 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1310 /// indicating if this instruction reads or writes Reg. This also considers
1311 /// partial defines.
1312 std::pair<bool,bool>
1313 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1314                                          SmallVectorImpl<unsigned> *Ops) const {
1315   bool PartDef = false; // Partial redefine.
1316   bool FullDef = false; // Full define.
1317   bool Use = false;
1318 
1319   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1320     const MachineOperand &MO = getOperand(i);
1321     if (!MO.isReg() || MO.getReg() != Reg)
1322       continue;
1323     if (Ops)
1324       Ops->push_back(i);
1325     if (MO.isUse())
1326       Use |= !MO.isUndef();
1327     else if (MO.getSubReg() && !MO.isUndef())
1328       // A partial <def,undef> doesn't count as reading the register.
1329       PartDef = true;
1330     else
1331       FullDef = true;
1332   }
1333   // A partial redefine uses Reg unless there is also a full define.
1334   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1335 }
1336 
1337 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1338 /// the specified register or -1 if it is not found. If isDead is true, defs
1339 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1340 /// also checks if there is a def of a super-register.
1341 int
1342 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1343                                         const TargetRegisterInfo *TRI) const {
1344   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1345   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1346     const MachineOperand &MO = getOperand(i);
1347     // Accept regmask operands when Overlap is set.
1348     // Ignore them when looking for a specific def operand (Overlap == false).
1349     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1350       return i;
1351     if (!MO.isReg() || !MO.isDef())
1352       continue;
1353     unsigned MOReg = MO.getReg();
1354     bool Found = (MOReg == Reg);
1355     if (!Found && TRI && isPhys &&
1356         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1357       if (Overlap)
1358         Found = TRI->regsOverlap(MOReg, Reg);
1359       else
1360         Found = TRI->isSubRegister(MOReg, Reg);
1361     }
1362     if (Found && (!isDead || MO.isDead()))
1363       return i;
1364   }
1365   return -1;
1366 }
1367 
1368 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1369 /// operand list that is used to represent the predicate. It returns -1 if
1370 /// none is found.
1371 int MachineInstr::findFirstPredOperandIdx() const {
1372   // Don't call MCID.findFirstPredOperandIdx() because this variant
1373   // is sometimes called on an instruction that's not yet complete, and
1374   // so the number of operands is less than the MCID indicates. In
1375   // particular, the PTX target does this.
1376   const MCInstrDesc &MCID = getDesc();
1377   if (MCID.isPredicable()) {
1378     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1379       if (MCID.OpInfo[i].isPredicate())
1380         return i;
1381   }
1382 
1383   return -1;
1384 }
1385 
1386 // MachineOperand::TiedTo is 4 bits wide.
1387 const unsigned TiedMax = 15;
1388 
1389 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1390 ///
1391 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1392 /// field. TiedTo can have these values:
1393 ///
1394 /// 0:              Operand is not tied to anything.
1395 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1396 /// TiedMax:        Tied to an operand >= TiedMax-1.
1397 ///
1398 /// The tied def must be one of the first TiedMax operands on a normal
1399 /// instruction. INLINEASM instructions allow more tied defs.
1400 ///
1401 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1402   MachineOperand &DefMO = getOperand(DefIdx);
1403   MachineOperand &UseMO = getOperand(UseIdx);
1404   assert(DefMO.isDef() && "DefIdx must be a def operand");
1405   assert(UseMO.isUse() && "UseIdx must be a use operand");
1406   assert(!DefMO.isTied() && "Def is already tied to another use");
1407   assert(!UseMO.isTied() && "Use is already tied to another def");
1408 
1409   if (DefIdx < TiedMax)
1410     UseMO.TiedTo = DefIdx + 1;
1411   else {
1412     // Inline asm can use the group descriptors to find tied operands, but on
1413     // normal instruction, the tied def must be within the first TiedMax
1414     // operands.
1415     assert(isInlineAsm() && "DefIdx out of range");
1416     UseMO.TiedTo = TiedMax;
1417   }
1418 
1419   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1420   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1421 }
1422 
1423 /// Given the index of a tied register operand, find the operand it is tied to.
1424 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1425 /// which must exist.
1426 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1427   const MachineOperand &MO = getOperand(OpIdx);
1428   assert(MO.isTied() && "Operand isn't tied");
1429 
1430   // Normally TiedTo is in range.
1431   if (MO.TiedTo < TiedMax)
1432     return MO.TiedTo - 1;
1433 
1434   // Uses on normal instructions can be out of range.
1435   if (!isInlineAsm()) {
1436     // Normal tied defs must be in the 0..TiedMax-1 range.
1437     if (MO.isUse())
1438       return TiedMax - 1;
1439     // MO is a def. Search for the tied use.
1440     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1441       const MachineOperand &UseMO = getOperand(i);
1442       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1443         return i;
1444     }
1445     llvm_unreachable("Can't find tied use");
1446   }
1447 
1448   // Now deal with inline asm by parsing the operand group descriptor flags.
1449   // Find the beginning of each operand group.
1450   SmallVector<unsigned, 8> GroupIdx;
1451   unsigned OpIdxGroup = ~0u;
1452   unsigned NumOps;
1453   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1454        i += NumOps) {
1455     const MachineOperand &FlagMO = getOperand(i);
1456     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1457     unsigned CurGroup = GroupIdx.size();
1458     GroupIdx.push_back(i);
1459     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1460     // OpIdx belongs to this operand group.
1461     if (OpIdx > i && OpIdx < i + NumOps)
1462       OpIdxGroup = CurGroup;
1463     unsigned TiedGroup;
1464     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1465       continue;
1466     // Operands in this group are tied to operands in TiedGroup which must be
1467     // earlier. Find the number of operands between the two groups.
1468     unsigned Delta = i - GroupIdx[TiedGroup];
1469 
1470     // OpIdx is a use tied to TiedGroup.
1471     if (OpIdxGroup == CurGroup)
1472       return OpIdx - Delta;
1473 
1474     // OpIdx is a def tied to this use group.
1475     if (OpIdxGroup == TiedGroup)
1476       return OpIdx + Delta;
1477   }
1478   llvm_unreachable("Invalid tied operand on inline asm");
1479 }
1480 
1481 /// clearKillInfo - Clears kill flags on all operands.
1482 ///
1483 void MachineInstr::clearKillInfo() {
1484   for (MachineOperand &MO : operands()) {
1485     if (MO.isReg() && MO.isUse())
1486       MO.setIsKill(false);
1487   }
1488 }
1489 
1490 void MachineInstr::substituteRegister(unsigned FromReg,
1491                                       unsigned ToReg,
1492                                       unsigned SubIdx,
1493                                       const TargetRegisterInfo &RegInfo) {
1494   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1495     if (SubIdx)
1496       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1497     for (MachineOperand &MO : operands()) {
1498       if (!MO.isReg() || MO.getReg() != FromReg)
1499         continue;
1500       MO.substPhysReg(ToReg, RegInfo);
1501     }
1502   } else {
1503     for (MachineOperand &MO : operands()) {
1504       if (!MO.isReg() || MO.getReg() != FromReg)
1505         continue;
1506       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1507     }
1508   }
1509 }
1510 
1511 /// isSafeToMove - Return true if it is safe to move this instruction. If
1512 /// SawStore is set to true, it means that there is a store (or call) between
1513 /// the instruction's location and its intended destination.
1514 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1515   // Ignore stuff that we obviously can't move.
1516   //
1517   // Treat volatile loads as stores. This is not strictly necessary for
1518   // volatiles, but it is required for atomic loads. It is not allowed to move
1519   // a load across an atomic load with Ordering > Monotonic.
1520   if (mayStore() || isCall() ||
1521       (mayLoad() && hasOrderedMemoryRef())) {
1522     SawStore = true;
1523     return false;
1524   }
1525 
1526   if (isPosition() || isDebugValue() || isTerminator() ||
1527       hasUnmodeledSideEffects())
1528     return false;
1529 
1530   // See if this instruction does a load.  If so, we have to guarantee that the
1531   // loaded value doesn't change between the load and the its intended
1532   // destination. The check for isInvariantLoad gives the targe the chance to
1533   // classify the load as always returning a constant, e.g. a constant pool
1534   // load.
1535   if (mayLoad() && !isInvariantLoad(AA))
1536     // Otherwise, this is a real load.  If there is a store between the load and
1537     // end of block, we can't move it.
1538     return !SawStore;
1539 
1540   return true;
1541 }
1542 
1543 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1544 /// or volatile memory reference, or if the information describing the memory
1545 /// reference is not available. Return false if it is known to have no ordered
1546 /// memory references.
1547 bool MachineInstr::hasOrderedMemoryRef() const {
1548   // An instruction known never to access memory won't have a volatile access.
1549   if (!mayStore() &&
1550       !mayLoad() &&
1551       !isCall() &&
1552       !hasUnmodeledSideEffects())
1553     return false;
1554 
1555   // Otherwise, if the instruction has no memory reference information,
1556   // conservatively assume it wasn't preserved.
1557   if (memoperands_empty())
1558     return true;
1559 
1560   // Check if any of our memory operands are ordered.
1561   return any_of(memoperands(), [](const MachineMemOperand *MMO) {
1562     return !MMO->isUnordered();
1563   });
1564 }
1565 
1566 /// isInvariantLoad - Return true if this instruction is loading from a
1567 /// location whose value is invariant across the function.  For example,
1568 /// loading a value from the constant pool or from the argument area
1569 /// of a function if it does not change.  This should only return true of
1570 /// *all* loads the instruction does are invariant (if it does multiple loads).
1571 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1572   // If the instruction doesn't load at all, it isn't an invariant load.
1573   if (!mayLoad())
1574     return false;
1575 
1576   // If the instruction has lost its memoperands, conservatively assume that
1577   // it may not be an invariant load.
1578   if (memoperands_empty())
1579     return false;
1580 
1581   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1582 
1583   for (MachineMemOperand *MMO : memoperands()) {
1584     if (MMO->isVolatile()) return false;
1585     if (MMO->isStore()) return false;
1586     if (MMO->isInvariant()) continue;
1587 
1588     // A load from a constant PseudoSourceValue is invariant.
1589     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1590       if (PSV->isConstant(MFI))
1591         continue;
1592 
1593     if (const Value *V = MMO->getValue()) {
1594       // If we have an AliasAnalysis, ask it whether the memory is constant.
1595       if (AA &&
1596           AA->pointsToConstantMemory(
1597               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1598         continue;
1599     }
1600 
1601     // Otherwise assume conservatively.
1602     return false;
1603   }
1604 
1605   // Everything checks out.
1606   return true;
1607 }
1608 
1609 /// isConstantValuePHI - If the specified instruction is a PHI that always
1610 /// merges together the same virtual register, return the register, otherwise
1611 /// return 0.
1612 unsigned MachineInstr::isConstantValuePHI() const {
1613   if (!isPHI())
1614     return 0;
1615   assert(getNumOperands() >= 3 &&
1616          "It's illegal to have a PHI without source operands");
1617 
1618   unsigned Reg = getOperand(1).getReg();
1619   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1620     if (getOperand(i).getReg() != Reg)
1621       return 0;
1622   return Reg;
1623 }
1624 
1625 bool MachineInstr::hasUnmodeledSideEffects() const {
1626   if (hasProperty(MCID::UnmodeledSideEffects))
1627     return true;
1628   if (isInlineAsm()) {
1629     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1630     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1631       return true;
1632   }
1633 
1634   return false;
1635 }
1636 
1637 bool MachineInstr::isLoadFoldBarrier() const {
1638   return mayStore() || isCall() || hasUnmodeledSideEffects();
1639 }
1640 
1641 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1642 ///
1643 bool MachineInstr::allDefsAreDead() const {
1644   for (const MachineOperand &MO : operands()) {
1645     if (!MO.isReg() || MO.isUse())
1646       continue;
1647     if (!MO.isDead())
1648       return false;
1649   }
1650   return true;
1651 }
1652 
1653 /// copyImplicitOps - Copy implicit register operands from specified
1654 /// instruction to this instruction.
1655 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1656                                    const MachineInstr &MI) {
1657   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1658        i != e; ++i) {
1659     const MachineOperand &MO = MI.getOperand(i);
1660     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1661       addOperand(MF, MO);
1662   }
1663 }
1664 
1665 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1666 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1667   dbgs() << "  " << *this;
1668 #endif
1669 }
1670 
1671 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const {
1672   const Module *M = nullptr;
1673   if (const MachineBasicBlock *MBB = getParent())
1674     if (const MachineFunction *MF = MBB->getParent())
1675       M = MF->getFunction()->getParent();
1676 
1677   ModuleSlotTracker MST(M);
1678   print(OS, MST, SkipOpers);
1679 }
1680 
1681 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1682                          bool SkipOpers) const {
1683   // We can be a bit tidier if we know the MachineFunction.
1684   const MachineFunction *MF = nullptr;
1685   const TargetRegisterInfo *TRI = nullptr;
1686   const MachineRegisterInfo *MRI = nullptr;
1687   const TargetInstrInfo *TII = nullptr;
1688   if (const MachineBasicBlock *MBB = getParent()) {
1689     MF = MBB->getParent();
1690     if (MF) {
1691       MRI = &MF->getRegInfo();
1692       TRI = MF->getSubtarget().getRegisterInfo();
1693       TII = MF->getSubtarget().getInstrInfo();
1694     }
1695   }
1696 
1697   // Save a list of virtual registers.
1698   SmallVector<unsigned, 8> VirtRegs;
1699 
1700   // Print explicitly defined operands on the left of an assignment syntax.
1701   unsigned StartOp = 0, e = getNumOperands();
1702   for (; StartOp < e && getOperand(StartOp).isReg() &&
1703          getOperand(StartOp).isDef() &&
1704          !getOperand(StartOp).isImplicit();
1705        ++StartOp) {
1706     if (StartOp != 0) OS << ", ";
1707     getOperand(StartOp).print(OS, MST, TRI);
1708     unsigned Reg = getOperand(StartOp).getReg();
1709     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1710       VirtRegs.push_back(Reg);
1711       unsigned Size;
1712       if (MRI && (Size = MRI->getSize(Reg)))
1713         OS << '(' << Size << ')';
1714     }
1715   }
1716 
1717   if (StartOp != 0)
1718     OS << " = ";
1719 
1720   // Print the opcode name.
1721   if (TII)
1722     OS << TII->getName(getOpcode());
1723   else
1724     OS << "UNKNOWN";
1725 
1726   if (getType()) {
1727     OS << ' ';
1728     getType()->print(OS, /*IsForDebug*/ false, /*NoDetails*/ true);
1729     OS << ' ';
1730   }
1731 
1732   if (SkipOpers)
1733     return;
1734 
1735   // Print the rest of the operands.
1736   bool OmittedAnyCallClobbers = false;
1737   bool FirstOp = true;
1738   unsigned AsmDescOp = ~0u;
1739   unsigned AsmOpCount = 0;
1740 
1741   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1742     // Print asm string.
1743     OS << " ";
1744     getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
1745 
1746     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1747     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1748     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1749       OS << " [sideeffect]";
1750     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1751       OS << " [mayload]";
1752     if (ExtraInfo & InlineAsm::Extra_MayStore)
1753       OS << " [maystore]";
1754     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1755       OS << " [isconvergent]";
1756     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1757       OS << " [alignstack]";
1758     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1759       OS << " [attdialect]";
1760     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1761       OS << " [inteldialect]";
1762 
1763     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1764     FirstOp = false;
1765   }
1766 
1767   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1768     const MachineOperand &MO = getOperand(i);
1769 
1770     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1771       VirtRegs.push_back(MO.getReg());
1772 
1773     // Omit call-clobbered registers which aren't used anywhere. This makes
1774     // call instructions much less noisy on targets where calls clobber lots
1775     // of registers. Don't rely on MO.isDead() because we may be called before
1776     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1777     if (MRI && isCall() &&
1778         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1779       unsigned Reg = MO.getReg();
1780       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1781         if (MRI->use_empty(Reg)) {
1782           bool HasAliasLive = false;
1783           for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
1784             unsigned AliasReg = *AI;
1785             if (!MRI->use_empty(AliasReg)) {
1786               HasAliasLive = true;
1787               break;
1788             }
1789           }
1790           if (!HasAliasLive) {
1791             OmittedAnyCallClobbers = true;
1792             continue;
1793           }
1794         }
1795       }
1796     }
1797 
1798     if (FirstOp) FirstOp = false; else OS << ",";
1799     OS << " ";
1800     if (i < getDesc().NumOperands) {
1801       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1802       if (MCOI.isPredicate())
1803         OS << "pred:";
1804       if (MCOI.isOptionalDef())
1805         OS << "opt:";
1806     }
1807     if (isDebugValue() && MO.isMetadata()) {
1808       // Pretty print DBG_VALUE instructions.
1809       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1810       if (DIV && !DIV->getName().empty())
1811         OS << "!\"" << DIV->getName() << '\"';
1812       else
1813         MO.print(OS, MST, TRI);
1814     } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1815       OS << TRI->getSubRegIndexName(MO.getImm());
1816     } else if (i == AsmDescOp && MO.isImm()) {
1817       // Pretty print the inline asm operand descriptor.
1818       OS << '$' << AsmOpCount++;
1819       unsigned Flag = MO.getImm();
1820       switch (InlineAsm::getKind(Flag)) {
1821       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1822       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1823       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1824       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1825       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1826       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1827       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1828       }
1829 
1830       unsigned RCID = 0;
1831       if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1832         if (TRI) {
1833           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1834         } else
1835           OS << ":RC" << RCID;
1836       }
1837 
1838       unsigned TiedTo = 0;
1839       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1840         OS << " tiedto:$" << TiedTo;
1841 
1842       OS << ']';
1843 
1844       // Compute the index of the next operand descriptor.
1845       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1846     } else
1847       MO.print(OS, MST, TRI);
1848   }
1849 
1850   // Briefly indicate whether any call clobbers were omitted.
1851   if (OmittedAnyCallClobbers) {
1852     if (!FirstOp) OS << ",";
1853     OS << " ...";
1854   }
1855 
1856   bool HaveSemi = false;
1857   const unsigned PrintableFlags = FrameSetup | FrameDestroy;
1858   if (Flags & PrintableFlags) {
1859     if (!HaveSemi) {
1860       OS << ";";
1861       HaveSemi = true;
1862     }
1863     OS << " flags: ";
1864 
1865     if (Flags & FrameSetup)
1866       OS << "FrameSetup";
1867 
1868     if (Flags & FrameDestroy)
1869       OS << "FrameDestroy";
1870   }
1871 
1872   if (!memoperands_empty()) {
1873     if (!HaveSemi) {
1874       OS << ";";
1875       HaveSemi = true;
1876     }
1877 
1878     OS << " mem:";
1879     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1880          i != e; ++i) {
1881       (*i)->print(OS, MST);
1882       if (std::next(i) != e)
1883         OS << " ";
1884     }
1885   }
1886 
1887   // Print the regclass of any virtual registers encountered.
1888   if (MRI && !VirtRegs.empty()) {
1889     if (!HaveSemi) {
1890       OS << ";";
1891       HaveSemi = true;
1892     }
1893     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1894       const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]);
1895       if (!RC)
1896         continue;
1897       // Generic virtual registers do not have register classes.
1898       if (RC.is<const RegisterBank *>())
1899         OS << " " << RC.get<const RegisterBank *>()->getName();
1900       else
1901         OS << " "
1902            << TRI->getRegClassName(RC.get<const TargetRegisterClass *>());
1903       OS << ':' << PrintReg(VirtRegs[i]);
1904       for (unsigned j = i+1; j != VirtRegs.size();) {
1905         if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) {
1906           ++j;
1907           continue;
1908         }
1909         if (VirtRegs[i] != VirtRegs[j])
1910           OS << "," << PrintReg(VirtRegs[j]);
1911         VirtRegs.erase(VirtRegs.begin()+j);
1912       }
1913     }
1914   }
1915 
1916   // Print debug location information.
1917   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1918     if (!HaveSemi)
1919       OS << ";";
1920     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1921     OS << " line no:" <<  DV->getLine();
1922     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1923       DebugLoc InlinedAtDL(InlinedAt);
1924       if (InlinedAtDL && MF) {
1925         OS << " inlined @[ ";
1926         InlinedAtDL.print(OS);
1927         OS << " ]";
1928       }
1929     }
1930     if (isIndirectDebugValue())
1931       OS << " indirect";
1932   } else if (debugLoc && MF) {
1933     if (!HaveSemi)
1934       OS << ";";
1935     OS << " dbg:";
1936     debugLoc.print(OS);
1937   }
1938 
1939   OS << '\n';
1940 }
1941 
1942 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1943                                      const TargetRegisterInfo *RegInfo,
1944                                      bool AddIfNotFound) {
1945   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1946   bool hasAliases = isPhysReg &&
1947     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1948   bool Found = false;
1949   SmallVector<unsigned,4> DeadOps;
1950   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1951     MachineOperand &MO = getOperand(i);
1952     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1953       continue;
1954 
1955     // DEBUG_VALUE nodes do not contribute to code generation and should
1956     // always be ignored. Failure to do so may result in trying to modify
1957     // KILL flags on DEBUG_VALUE nodes.
1958     if (MO.isDebug())
1959       continue;
1960 
1961     unsigned Reg = MO.getReg();
1962     if (!Reg)
1963       continue;
1964 
1965     if (Reg == IncomingReg) {
1966       if (!Found) {
1967         if (MO.isKill())
1968           // The register is already marked kill.
1969           return true;
1970         if (isPhysReg && isRegTiedToDefOperand(i))
1971           // Two-address uses of physregs must not be marked kill.
1972           return true;
1973         MO.setIsKill();
1974         Found = true;
1975       }
1976     } else if (hasAliases && MO.isKill() &&
1977                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1978       // A super-register kill already exists.
1979       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1980         return true;
1981       if (RegInfo->isSubRegister(IncomingReg, Reg))
1982         DeadOps.push_back(i);
1983     }
1984   }
1985 
1986   // Trim unneeded kill operands.
1987   while (!DeadOps.empty()) {
1988     unsigned OpIdx = DeadOps.back();
1989     if (getOperand(OpIdx).isImplicit())
1990       RemoveOperand(OpIdx);
1991     else
1992       getOperand(OpIdx).setIsKill(false);
1993     DeadOps.pop_back();
1994   }
1995 
1996   // If not found, this means an alias of one of the operands is killed. Add a
1997   // new implicit operand if required.
1998   if (!Found && AddIfNotFound) {
1999     addOperand(MachineOperand::CreateReg(IncomingReg,
2000                                          false /*IsDef*/,
2001                                          true  /*IsImp*/,
2002                                          true  /*IsKill*/));
2003     return true;
2004   }
2005   return Found;
2006 }
2007 
2008 void MachineInstr::clearRegisterKills(unsigned Reg,
2009                                       const TargetRegisterInfo *RegInfo) {
2010   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
2011     RegInfo = nullptr;
2012   for (MachineOperand &MO : operands()) {
2013     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2014       continue;
2015     unsigned OpReg = MO.getReg();
2016     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
2017       MO.setIsKill(false);
2018   }
2019 }
2020 
2021 bool MachineInstr::addRegisterDead(unsigned Reg,
2022                                    const TargetRegisterInfo *RegInfo,
2023                                    bool AddIfNotFound) {
2024   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
2025   bool hasAliases = isPhysReg &&
2026     MCRegAliasIterator(Reg, RegInfo, false).isValid();
2027   bool Found = false;
2028   SmallVector<unsigned,4> DeadOps;
2029   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2030     MachineOperand &MO = getOperand(i);
2031     if (!MO.isReg() || !MO.isDef())
2032       continue;
2033     unsigned MOReg = MO.getReg();
2034     if (!MOReg)
2035       continue;
2036 
2037     if (MOReg == Reg) {
2038       MO.setIsDead();
2039       Found = true;
2040     } else if (hasAliases && MO.isDead() &&
2041                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
2042       // There exists a super-register that's marked dead.
2043       if (RegInfo->isSuperRegister(Reg, MOReg))
2044         return true;
2045       if (RegInfo->isSubRegister(Reg, MOReg))
2046         DeadOps.push_back(i);
2047     }
2048   }
2049 
2050   // Trim unneeded dead operands.
2051   while (!DeadOps.empty()) {
2052     unsigned OpIdx = DeadOps.back();
2053     if (getOperand(OpIdx).isImplicit())
2054       RemoveOperand(OpIdx);
2055     else
2056       getOperand(OpIdx).setIsDead(false);
2057     DeadOps.pop_back();
2058   }
2059 
2060   // If not found, this means an alias of one of the operands is dead. Add a
2061   // new implicit operand if required.
2062   if (Found || !AddIfNotFound)
2063     return Found;
2064 
2065   addOperand(MachineOperand::CreateReg(Reg,
2066                                        true  /*IsDef*/,
2067                                        true  /*IsImp*/,
2068                                        false /*IsKill*/,
2069                                        true  /*IsDead*/));
2070   return true;
2071 }
2072 
2073 void MachineInstr::clearRegisterDeads(unsigned Reg) {
2074   for (MachineOperand &MO : operands()) {
2075     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2076       continue;
2077     MO.setIsDead(false);
2078   }
2079 }
2080 
2081 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
2082   for (MachineOperand &MO : operands()) {
2083     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2084       continue;
2085     MO.setIsUndef(IsUndef);
2086   }
2087 }
2088 
2089 void MachineInstr::addRegisterDefined(unsigned Reg,
2090                                       const TargetRegisterInfo *RegInfo) {
2091   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
2092     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
2093     if (MO)
2094       return;
2095   } else {
2096     for (const MachineOperand &MO : operands()) {
2097       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2098           MO.getSubReg() == 0)
2099         return;
2100     }
2101   }
2102   addOperand(MachineOperand::CreateReg(Reg,
2103                                        true  /*IsDef*/,
2104                                        true  /*IsImp*/));
2105 }
2106 
2107 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
2108                                          const TargetRegisterInfo &TRI) {
2109   bool HasRegMask = false;
2110   for (MachineOperand &MO : operands()) {
2111     if (MO.isRegMask()) {
2112       HasRegMask = true;
2113       continue;
2114     }
2115     if (!MO.isReg() || !MO.isDef()) continue;
2116     unsigned Reg = MO.getReg();
2117     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
2118     // If there are no uses, including partial uses, the def is dead.
2119     if (std::none_of(UsedRegs.begin(), UsedRegs.end(),
2120                      [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
2121       MO.setIsDead();
2122   }
2123 
2124   // This is a call with a register mask operand.
2125   // Mask clobbers are always dead, so add defs for the non-dead defines.
2126   if (HasRegMask)
2127     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2128          I != E; ++I)
2129       addRegisterDefined(*I, &TRI);
2130 }
2131 
2132 unsigned
2133 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2134   // Build up a buffer of hash code components.
2135   SmallVector<size_t, 8> HashComponents;
2136   HashComponents.reserve(MI->getNumOperands() + 1);
2137   HashComponents.push_back(MI->getOpcode());
2138   for (const MachineOperand &MO : MI->operands()) {
2139     if (MO.isReg() && MO.isDef() &&
2140         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2141       continue;  // Skip virtual register defs.
2142 
2143     HashComponents.push_back(hash_value(MO));
2144   }
2145   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2146 }
2147 
2148 void MachineInstr::emitError(StringRef Msg) const {
2149   // Find the source location cookie.
2150   unsigned LocCookie = 0;
2151   const MDNode *LocMD = nullptr;
2152   for (unsigned i = getNumOperands(); i != 0; --i) {
2153     if (getOperand(i-1).isMetadata() &&
2154         (LocMD = getOperand(i-1).getMetadata()) &&
2155         LocMD->getNumOperands() != 0) {
2156       if (const ConstantInt *CI =
2157               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2158         LocCookie = CI->getZExtValue();
2159         break;
2160       }
2161     }
2162   }
2163 
2164   if (const MachineBasicBlock *MBB = getParent())
2165     if (const MachineFunction *MF = MBB->getParent())
2166       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2167   report_fatal_error(Msg);
2168 }
2169 
2170 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2171                                   const MCInstrDesc &MCID, bool IsIndirect,
2172                                   unsigned Reg, unsigned Offset,
2173                                   const MDNode *Variable, const MDNode *Expr) {
2174   assert(isa<DILocalVariable>(Variable) && "not a variable");
2175   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2176   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2177          "Expected inlined-at fields to agree");
2178   if (IsIndirect)
2179     return BuildMI(MF, DL, MCID)
2180         .addReg(Reg, RegState::Debug)
2181         .addImm(Offset)
2182         .addMetadata(Variable)
2183         .addMetadata(Expr);
2184   else {
2185     assert(Offset == 0 && "A direct address cannot have an offset.");
2186     return BuildMI(MF, DL, MCID)
2187         .addReg(Reg, RegState::Debug)
2188         .addReg(0U, RegState::Debug)
2189         .addMetadata(Variable)
2190         .addMetadata(Expr);
2191   }
2192 }
2193 
2194 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2195                                   MachineBasicBlock::iterator I,
2196                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2197                                   bool IsIndirect, unsigned Reg,
2198                                   unsigned Offset, const MDNode *Variable,
2199                                   const MDNode *Expr) {
2200   assert(isa<DILocalVariable>(Variable) && "not a variable");
2201   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2202   MachineFunction &MF = *BB.getParent();
2203   MachineInstr *MI =
2204       BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr);
2205   BB.insert(I, MI);
2206   return MachineInstrBuilder(MF, MI);
2207 }
2208