1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallBitVector.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Operator.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCInstrDesc.h" 57 #include "llvm/MC/MCRegisterInfo.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/FormattedStream.h" 65 #include "llvm/Support/LowLevelTypeImpl.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetIntrinsicInfo.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <cstring> 75 #include <iterator> 76 #include <utility> 77 78 using namespace llvm; 79 80 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 81 if (const MachineBasicBlock *MBB = MI.getParent()) 82 if (const MachineFunction *MF = MBB->getParent()) 83 return MF; 84 return nullptr; 85 } 86 87 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 88 // it. 89 static void tryToGetTargetInfo(const MachineInstr &MI, 90 const TargetRegisterInfo *&TRI, 91 const MachineRegisterInfo *&MRI, 92 const TargetIntrinsicInfo *&IntrinsicInfo, 93 const TargetInstrInfo *&TII) { 94 95 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 96 TRI = MF->getSubtarget().getRegisterInfo(); 97 MRI = &MF->getRegInfo(); 98 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 99 TII = MF->getSubtarget().getInstrInfo(); 100 } 101 } 102 103 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 104 if (MCID->ImplicitDefs) 105 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 106 ++ImpDefs) 107 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 108 if (MCID->ImplicitUses) 109 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 110 ++ImpUses) 111 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 112 } 113 114 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 115 /// implicit operands. It reserves space for the number of operands specified by 116 /// the MCInstrDesc. 117 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 118 DebugLoc dl, bool NoImp) 119 : MCID(&tid), debugLoc(std::move(dl)) { 120 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 121 122 // Reserve space for the expected number of operands. 123 if (unsigned NumOps = MCID->getNumOperands() + 124 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 125 CapOperands = OperandCapacity::get(NumOps); 126 Operands = MF.allocateOperandArray(CapOperands); 127 } 128 129 if (!NoImp) 130 addImplicitDefUseOperands(MF); 131 } 132 133 /// MachineInstr ctor - Copies MachineInstr arg exactly 134 /// 135 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 136 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) { 137 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 138 139 CapOperands = OperandCapacity::get(MI.getNumOperands()); 140 Operands = MF.allocateOperandArray(CapOperands); 141 142 // Copy operands. 143 for (const MachineOperand &MO : MI.operands()) 144 addOperand(MF, MO); 145 146 // Copy all the sensible flags. 147 setFlags(MI.Flags); 148 } 149 150 /// getRegInfo - If this instruction is embedded into a MachineFunction, 151 /// return the MachineRegisterInfo object for the current function, otherwise 152 /// return null. 153 MachineRegisterInfo *MachineInstr::getRegInfo() { 154 if (MachineBasicBlock *MBB = getParent()) 155 return &MBB->getParent()->getRegInfo(); 156 return nullptr; 157 } 158 159 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 160 /// this instruction from their respective use lists. This requires that the 161 /// operands already be on their use lists. 162 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 163 for (MachineOperand &MO : operands()) 164 if (MO.isReg()) 165 MRI.removeRegOperandFromUseList(&MO); 166 } 167 168 /// AddRegOperandsToUseLists - Add all of the register operands in 169 /// this instruction from their respective use lists. This requires that the 170 /// operands not be on their use lists yet. 171 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 172 for (MachineOperand &MO : operands()) 173 if (MO.isReg()) 174 MRI.addRegOperandToUseList(&MO); 175 } 176 177 void MachineInstr::addOperand(const MachineOperand &Op) { 178 MachineBasicBlock *MBB = getParent(); 179 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 180 MachineFunction *MF = MBB->getParent(); 181 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 182 addOperand(*MF, Op); 183 } 184 185 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 186 /// ranges. If MRI is non-null also update use-def chains. 187 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 188 unsigned NumOps, MachineRegisterInfo *MRI) { 189 if (MRI) 190 return MRI->moveOperands(Dst, Src, NumOps); 191 // MachineOperand is a trivially copyable type so we can just use memmove. 192 assert(Dst && Src && "Unknown operands"); 193 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 194 } 195 196 /// addOperand - Add the specified operand to the instruction. If it is an 197 /// implicit operand, it is added to the end of the operand list. If it is 198 /// an explicit operand it is added at the end of the explicit operand list 199 /// (before the first implicit operand). 200 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 201 assert(MCID && "Cannot add operands before providing an instr descriptor"); 202 203 // Check if we're adding one of our existing operands. 204 if (&Op >= Operands && &Op < Operands + NumOperands) { 205 // This is unusual: MI->addOperand(MI->getOperand(i)). 206 // If adding Op requires reallocating or moving existing operands around, 207 // the Op reference could go stale. Support it by copying Op. 208 MachineOperand CopyOp(Op); 209 return addOperand(MF, CopyOp); 210 } 211 212 // Find the insert location for the new operand. Implicit registers go at 213 // the end, everything else goes before the implicit regs. 214 // 215 // FIXME: Allow mixed explicit and implicit operands on inline asm. 216 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 217 // implicit-defs, but they must not be moved around. See the FIXME in 218 // InstrEmitter.cpp. 219 unsigned OpNo = getNumOperands(); 220 bool isImpReg = Op.isReg() && Op.isImplicit(); 221 if (!isImpReg && !isInlineAsm()) { 222 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 223 --OpNo; 224 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 225 } 226 } 227 228 #ifndef NDEBUG 229 bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || 230 Op.getType() == MachineOperand::MO_MCSymbol; 231 // OpNo now points as the desired insertion point. Unless this is a variadic 232 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 233 // RegMask operands go between the explicit and implicit operands. 234 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 235 OpNo < MCID->getNumOperands() || isDebugOp) && 236 "Trying to add an operand to a machine instr that is already done!"); 237 #endif 238 239 MachineRegisterInfo *MRI = getRegInfo(); 240 241 // Determine if the Operands array needs to be reallocated. 242 // Save the old capacity and operand array. 243 OperandCapacity OldCap = CapOperands; 244 MachineOperand *OldOperands = Operands; 245 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 246 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 247 Operands = MF.allocateOperandArray(CapOperands); 248 // Move the operands before the insertion point. 249 if (OpNo) 250 moveOperands(Operands, OldOperands, OpNo, MRI); 251 } 252 253 // Move the operands following the insertion point. 254 if (OpNo != NumOperands) 255 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 256 MRI); 257 ++NumOperands; 258 259 // Deallocate the old operand array. 260 if (OldOperands != Operands && OldOperands) 261 MF.deallocateOperandArray(OldCap, OldOperands); 262 263 // Copy Op into place. It still needs to be inserted into the MRI use lists. 264 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 265 NewMO->ParentMI = this; 266 267 // When adding a register operand, tell MRI about it. 268 if (NewMO->isReg()) { 269 // Ensure isOnRegUseList() returns false, regardless of Op's status. 270 NewMO->Contents.Reg.Prev = nullptr; 271 // Ignore existing ties. This is not a property that can be copied. 272 NewMO->TiedTo = 0; 273 // Add the new operand to MRI, but only for instructions in an MBB. 274 if (MRI) 275 MRI->addRegOperandToUseList(NewMO); 276 // The MCID operand information isn't accurate until we start adding 277 // explicit operands. The implicit operands are added first, then the 278 // explicits are inserted before them. 279 if (!isImpReg) { 280 // Tie uses to defs as indicated in MCInstrDesc. 281 if (NewMO->isUse()) { 282 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 283 if (DefIdx != -1) 284 tieOperands(DefIdx, OpNo); 285 } 286 // If the register operand is flagged as early, mark the operand as such. 287 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 288 NewMO->setIsEarlyClobber(true); 289 } 290 } 291 } 292 293 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 294 /// fewer operand than it started with. 295 /// 296 void MachineInstr::RemoveOperand(unsigned OpNo) { 297 assert(OpNo < getNumOperands() && "Invalid operand number"); 298 untieRegOperand(OpNo); 299 300 #ifndef NDEBUG 301 // Moving tied operands would break the ties. 302 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 303 if (Operands[i].isReg()) 304 assert(!Operands[i].isTied() && "Cannot move tied operands"); 305 #endif 306 307 MachineRegisterInfo *MRI = getRegInfo(); 308 if (MRI && Operands[OpNo].isReg()) 309 MRI->removeRegOperandFromUseList(Operands + OpNo); 310 311 // Don't call the MachineOperand destructor. A lot of this code depends on 312 // MachineOperand having a trivial destructor anyway, and adding a call here 313 // wouldn't make it 'destructor-correct'. 314 315 if (unsigned N = NumOperands - 1 - OpNo) 316 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 317 --NumOperands; 318 } 319 320 void MachineInstr::setExtraInfo(MachineFunction &MF, 321 ArrayRef<MachineMemOperand *> MMOs, 322 MCSymbol *PreInstrSymbol, 323 MCSymbol *PostInstrSymbol, 324 MDNode *HeapAllocMarker) { 325 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 326 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 327 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 328 int NumPointers = 329 MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker; 330 331 // Drop all extra info if there is none. 332 if (NumPointers <= 0) { 333 Info.clear(); 334 return; 335 } 336 337 // If more than one pointer, then store out of line. Store heap alloc markers 338 // out of line because PointerSumType cannot hold more than 4 tag types with 339 // 32-bit pointers. 340 // FIXME: Maybe we should make the symbols in the extra info mutable? 341 else if (NumPointers > 1 || HasHeapAllocMarker) { 342 Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo( 343 MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker)); 344 return; 345 } 346 347 // Otherwise store the single pointer inline. 348 if (HasPreInstrSymbol) 349 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 350 else if (HasPostInstrSymbol) 351 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 352 else 353 Info.set<EIIK_MMO>(MMOs[0]); 354 } 355 356 void MachineInstr::dropMemRefs(MachineFunction &MF) { 357 if (memoperands_empty()) 358 return; 359 360 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 361 getHeapAllocMarker()); 362 } 363 364 void MachineInstr::setMemRefs(MachineFunction &MF, 365 ArrayRef<MachineMemOperand *> MMOs) { 366 if (MMOs.empty()) { 367 dropMemRefs(MF); 368 return; 369 } 370 371 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 372 getHeapAllocMarker()); 373 } 374 375 void MachineInstr::addMemOperand(MachineFunction &MF, 376 MachineMemOperand *MO) { 377 SmallVector<MachineMemOperand *, 2> MMOs; 378 MMOs.append(memoperands_begin(), memoperands_end()); 379 MMOs.push_back(MO); 380 setMemRefs(MF, MMOs); 381 } 382 383 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 384 if (this == &MI) 385 // Nothing to do for a self-clone! 386 return; 387 388 assert(&MF == MI.getMF() && 389 "Invalid machine functions when cloning memory refrences!"); 390 // See if we can just steal the extra info already allocated for the 391 // instruction. We can do this whenever the pre- and post-instruction symbols 392 // are the same (including null). 393 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 394 getPostInstrSymbol() == MI.getPostInstrSymbol() && 395 getHeapAllocMarker() == MI.getHeapAllocMarker()) { 396 Info = MI.Info; 397 return; 398 } 399 400 // Otherwise, fall back on a copy-based clone. 401 setMemRefs(MF, MI.memoperands()); 402 } 403 404 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 405 /// identical. 406 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 407 ArrayRef<MachineMemOperand *> RHS) { 408 if (LHS.size() != RHS.size()) 409 return false; 410 411 auto LHSPointees = make_pointee_range(LHS); 412 auto RHSPointees = make_pointee_range(RHS); 413 return std::equal(LHSPointees.begin(), LHSPointees.end(), 414 RHSPointees.begin()); 415 } 416 417 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 418 ArrayRef<const MachineInstr *> MIs) { 419 // Try handling easy numbers of MIs with simpler mechanisms. 420 if (MIs.empty()) { 421 dropMemRefs(MF); 422 return; 423 } 424 if (MIs.size() == 1) { 425 cloneMemRefs(MF, *MIs[0]); 426 return; 427 } 428 // Because an empty memoperands list provides *no* information and must be 429 // handled conservatively (assuming the instruction can do anything), the only 430 // way to merge with it is to drop all other memoperands. 431 if (MIs[0]->memoperands_empty()) { 432 dropMemRefs(MF); 433 return; 434 } 435 436 // Handle the general case. 437 SmallVector<MachineMemOperand *, 2> MergedMMOs; 438 // Start with the first instruction. 439 assert(&MF == MIs[0]->getMF() && 440 "Invalid machine functions when cloning memory references!"); 441 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 442 // Now walk all the other instructions and accumulate any different MMOs. 443 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 444 assert(&MF == MI.getMF() && 445 "Invalid machine functions when cloning memory references!"); 446 447 // Skip MIs with identical operands to the first. This is a somewhat 448 // arbitrary hack but will catch common cases without being quadratic. 449 // TODO: We could fully implement merge semantics here if needed. 450 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 451 continue; 452 453 // Because an empty memoperands list provides *no* information and must be 454 // handled conservatively (assuming the instruction can do anything), the 455 // only way to merge with it is to drop all other memoperands. 456 if (MI.memoperands_empty()) { 457 dropMemRefs(MF); 458 return; 459 } 460 461 // Otherwise accumulate these into our temporary buffer of the merged state. 462 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 463 } 464 465 setMemRefs(MF, MergedMMOs); 466 } 467 468 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 469 // Do nothing if old and new symbols are the same. 470 if (Symbol == getPreInstrSymbol()) 471 return; 472 473 // If there was only one symbol and we're removing it, just clear info. 474 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 475 Info.clear(); 476 return; 477 } 478 479 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 480 getHeapAllocMarker()); 481 } 482 483 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 484 // Do nothing if old and new symbols are the same. 485 if (Symbol == getPostInstrSymbol()) 486 return; 487 488 // If there was only one symbol and we're removing it, just clear info. 489 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 490 Info.clear(); 491 return; 492 } 493 494 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 495 getHeapAllocMarker()); 496 } 497 498 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 499 // Do nothing if old and new symbols are the same. 500 if (Marker == getHeapAllocMarker()) 501 return; 502 503 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 504 Marker); 505 } 506 507 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 508 const MachineInstr &MI) { 509 if (this == &MI) 510 // Nothing to do for a self-clone! 511 return; 512 513 assert(&MF == MI.getMF() && 514 "Invalid machine functions when cloning instruction symbols!"); 515 516 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 517 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 518 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 519 } 520 521 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 522 // For now, the just return the union of the flags. If the flags get more 523 // complicated over time, we might need more logic here. 524 return getFlags() | Other.getFlags(); 525 } 526 527 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 528 uint16_t MIFlags = 0; 529 // Copy the wrapping flags. 530 if (const OverflowingBinaryOperator *OB = 531 dyn_cast<OverflowingBinaryOperator>(&I)) { 532 if (OB->hasNoSignedWrap()) 533 MIFlags |= MachineInstr::MIFlag::NoSWrap; 534 if (OB->hasNoUnsignedWrap()) 535 MIFlags |= MachineInstr::MIFlag::NoUWrap; 536 } 537 538 // Copy the exact flag. 539 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 540 if (PE->isExact()) 541 MIFlags |= MachineInstr::MIFlag::IsExact; 542 543 // Copy the fast-math flags. 544 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 545 const FastMathFlags Flags = FP->getFastMathFlags(); 546 if (Flags.noNaNs()) 547 MIFlags |= MachineInstr::MIFlag::FmNoNans; 548 if (Flags.noInfs()) 549 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 550 if (Flags.noSignedZeros()) 551 MIFlags |= MachineInstr::MIFlag::FmNsz; 552 if (Flags.allowReciprocal()) 553 MIFlags |= MachineInstr::MIFlag::FmArcp; 554 if (Flags.allowContract()) 555 MIFlags |= MachineInstr::MIFlag::FmContract; 556 if (Flags.approxFunc()) 557 MIFlags |= MachineInstr::MIFlag::FmAfn; 558 if (Flags.allowReassoc()) 559 MIFlags |= MachineInstr::MIFlag::FmReassoc; 560 } 561 562 return MIFlags; 563 } 564 565 void MachineInstr::copyIRFlags(const Instruction &I) { 566 Flags = copyFlagsFromInstruction(I); 567 } 568 569 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 570 assert(!isBundledWithPred() && "Must be called on bundle header"); 571 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 572 if (MII->getDesc().getFlags() & Mask) { 573 if (Type == AnyInBundle) 574 return true; 575 } else { 576 if (Type == AllInBundle && !MII->isBundle()) 577 return false; 578 } 579 // This was the last instruction in the bundle. 580 if (!MII->isBundledWithSucc()) 581 return Type == AllInBundle; 582 } 583 } 584 585 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 586 MICheckType Check) const { 587 // If opcodes or number of operands are not the same then the two 588 // instructions are obviously not identical. 589 if (Other.getOpcode() != getOpcode() || 590 Other.getNumOperands() != getNumOperands()) 591 return false; 592 593 if (isBundle()) { 594 // We have passed the test above that both instructions have the same 595 // opcode, so we know that both instructions are bundles here. Let's compare 596 // MIs inside the bundle. 597 assert(Other.isBundle() && "Expected that both instructions are bundles."); 598 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 599 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 600 // Loop until we analysed the last intruction inside at least one of the 601 // bundles. 602 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 603 ++I1; 604 ++I2; 605 if (!I1->isIdenticalTo(*I2, Check)) 606 return false; 607 } 608 // If we've reached the end of just one of the two bundles, but not both, 609 // the instructions are not identical. 610 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 611 return false; 612 } 613 614 // Check operands to make sure they match. 615 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 616 const MachineOperand &MO = getOperand(i); 617 const MachineOperand &OMO = Other.getOperand(i); 618 if (!MO.isReg()) { 619 if (!MO.isIdenticalTo(OMO)) 620 return false; 621 continue; 622 } 623 624 // Clients may or may not want to ignore defs when testing for equality. 625 // For example, machine CSE pass only cares about finding common 626 // subexpressions, so it's safe to ignore virtual register defs. 627 if (MO.isDef()) { 628 if (Check == IgnoreDefs) 629 continue; 630 else if (Check == IgnoreVRegDefs) { 631 if (!Register::isVirtualRegister(MO.getReg()) || 632 !Register::isVirtualRegister(OMO.getReg())) 633 if (!MO.isIdenticalTo(OMO)) 634 return false; 635 } else { 636 if (!MO.isIdenticalTo(OMO)) 637 return false; 638 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 639 return false; 640 } 641 } else { 642 if (!MO.isIdenticalTo(OMO)) 643 return false; 644 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 645 return false; 646 } 647 } 648 // If DebugLoc does not match then two debug instructions are not identical. 649 if (isDebugInstr()) 650 if (getDebugLoc() && Other.getDebugLoc() && 651 getDebugLoc() != Other.getDebugLoc()) 652 return false; 653 return true; 654 } 655 656 const MachineFunction *MachineInstr::getMF() const { 657 return getParent()->getParent(); 658 } 659 660 MachineInstr *MachineInstr::removeFromParent() { 661 assert(getParent() && "Not embedded in a basic block!"); 662 return getParent()->remove(this); 663 } 664 665 MachineInstr *MachineInstr::removeFromBundle() { 666 assert(getParent() && "Not embedded in a basic block!"); 667 return getParent()->remove_instr(this); 668 } 669 670 void MachineInstr::eraseFromParent() { 671 assert(getParent() && "Not embedded in a basic block!"); 672 getParent()->erase(this); 673 } 674 675 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 676 assert(getParent() && "Not embedded in a basic block!"); 677 MachineBasicBlock *MBB = getParent(); 678 MachineFunction *MF = MBB->getParent(); 679 assert(MF && "Not embedded in a function!"); 680 681 MachineInstr *MI = (MachineInstr *)this; 682 MachineRegisterInfo &MRI = MF->getRegInfo(); 683 684 for (const MachineOperand &MO : MI->operands()) { 685 if (!MO.isReg() || !MO.isDef()) 686 continue; 687 Register Reg = MO.getReg(); 688 if (!Reg.isVirtual()) 689 continue; 690 MRI.markUsesInDebugValueAsUndef(Reg); 691 } 692 MI->eraseFromParent(); 693 } 694 695 void MachineInstr::eraseFromBundle() { 696 assert(getParent() && "Not embedded in a basic block!"); 697 getParent()->erase_instr(this); 698 } 699 700 bool MachineInstr::isCandidateForCallSiteEntry() const { 701 if (!isCall(MachineInstr::IgnoreBundle)) 702 return false; 703 switch (getOpcode()) { 704 case TargetOpcode::PATCHABLE_EVENT_CALL: 705 case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL: 706 case TargetOpcode::PATCHPOINT: 707 case TargetOpcode::STACKMAP: 708 case TargetOpcode::STATEPOINT: 709 return false; 710 } 711 return true; 712 } 713 714 unsigned MachineInstr::getNumExplicitOperands() const { 715 unsigned NumOperands = MCID->getNumOperands(); 716 if (!MCID->isVariadic()) 717 return NumOperands; 718 719 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 720 const MachineOperand &MO = getOperand(I); 721 // The operands must always be in the following order: 722 // - explicit reg defs, 723 // - other explicit operands (reg uses, immediates, etc.), 724 // - implicit reg defs 725 // - implicit reg uses 726 if (MO.isReg() && MO.isImplicit()) 727 break; 728 ++NumOperands; 729 } 730 return NumOperands; 731 } 732 733 unsigned MachineInstr::getNumExplicitDefs() const { 734 unsigned NumDefs = MCID->getNumDefs(); 735 if (!MCID->isVariadic()) 736 return NumDefs; 737 738 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 739 const MachineOperand &MO = getOperand(I); 740 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 741 break; 742 ++NumDefs; 743 } 744 return NumDefs; 745 } 746 747 void MachineInstr::bundleWithPred() { 748 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 749 setFlag(BundledPred); 750 MachineBasicBlock::instr_iterator Pred = getIterator(); 751 --Pred; 752 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 753 Pred->setFlag(BundledSucc); 754 } 755 756 void MachineInstr::bundleWithSucc() { 757 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 758 setFlag(BundledSucc); 759 MachineBasicBlock::instr_iterator Succ = getIterator(); 760 ++Succ; 761 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 762 Succ->setFlag(BundledPred); 763 } 764 765 void MachineInstr::unbundleFromPred() { 766 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 767 clearFlag(BundledPred); 768 MachineBasicBlock::instr_iterator Pred = getIterator(); 769 --Pred; 770 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 771 Pred->clearFlag(BundledSucc); 772 } 773 774 void MachineInstr::unbundleFromSucc() { 775 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 776 clearFlag(BundledSucc); 777 MachineBasicBlock::instr_iterator Succ = getIterator(); 778 ++Succ; 779 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 780 Succ->clearFlag(BundledPred); 781 } 782 783 bool MachineInstr::isStackAligningInlineAsm() const { 784 if (isInlineAsm()) { 785 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 786 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 787 return true; 788 } 789 return false; 790 } 791 792 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 793 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 794 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 795 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 796 } 797 798 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 799 unsigned *GroupNo) const { 800 assert(isInlineAsm() && "Expected an inline asm instruction"); 801 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 802 803 // Ignore queries about the initial operands. 804 if (OpIdx < InlineAsm::MIOp_FirstOperand) 805 return -1; 806 807 unsigned Group = 0; 808 unsigned NumOps; 809 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 810 i += NumOps) { 811 const MachineOperand &FlagMO = getOperand(i); 812 // If we reach the implicit register operands, stop looking. 813 if (!FlagMO.isImm()) 814 return -1; 815 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 816 if (i + NumOps > OpIdx) { 817 if (GroupNo) 818 *GroupNo = Group; 819 return i; 820 } 821 ++Group; 822 } 823 return -1; 824 } 825 826 const DILabel *MachineInstr::getDebugLabel() const { 827 assert(isDebugLabel() && "not a DBG_LABEL"); 828 return cast<DILabel>(getOperand(0).getMetadata()); 829 } 830 831 const DILocalVariable *MachineInstr::getDebugVariable() const { 832 assert(isDebugValue() && "not a DBG_VALUE"); 833 return cast<DILocalVariable>(getOperand(2).getMetadata()); 834 } 835 836 const DIExpression *MachineInstr::getDebugExpression() const { 837 assert(isDebugValue() && "not a DBG_VALUE"); 838 return cast<DIExpression>(getOperand(3).getMetadata()); 839 } 840 841 bool MachineInstr::isDebugEntryValue() const { 842 return isDebugValue() && getDebugExpression()->isEntryValue(); 843 } 844 845 const TargetRegisterClass* 846 MachineInstr::getRegClassConstraint(unsigned OpIdx, 847 const TargetInstrInfo *TII, 848 const TargetRegisterInfo *TRI) const { 849 assert(getParent() && "Can't have an MBB reference here!"); 850 assert(getMF() && "Can't have an MF reference here!"); 851 const MachineFunction &MF = *getMF(); 852 853 // Most opcodes have fixed constraints in their MCInstrDesc. 854 if (!isInlineAsm()) 855 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 856 857 if (!getOperand(OpIdx).isReg()) 858 return nullptr; 859 860 // For tied uses on inline asm, get the constraint from the def. 861 unsigned DefIdx; 862 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 863 OpIdx = DefIdx; 864 865 // Inline asm stores register class constraints in the flag word. 866 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 867 if (FlagIdx < 0) 868 return nullptr; 869 870 unsigned Flag = getOperand(FlagIdx).getImm(); 871 unsigned RCID; 872 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 873 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 874 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 875 InlineAsm::hasRegClassConstraint(Flag, RCID)) 876 return TRI->getRegClass(RCID); 877 878 // Assume that all registers in a memory operand are pointers. 879 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 880 return TRI->getPointerRegClass(MF); 881 882 return nullptr; 883 } 884 885 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 886 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 887 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 888 // Check every operands inside the bundle if we have 889 // been asked to. 890 if (ExploreBundle) 891 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 892 ++OpndIt) 893 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 894 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 895 else 896 // Otherwise, just check the current operands. 897 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 898 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 899 return CurRC; 900 } 901 902 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 903 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 904 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 905 assert(CurRC && "Invalid initial register class"); 906 // Check if Reg is constrained by some of its use/def from MI. 907 const MachineOperand &MO = getOperand(OpIdx); 908 if (!MO.isReg() || MO.getReg() != Reg) 909 return CurRC; 910 // If yes, accumulate the constraints through the operand. 911 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 912 } 913 914 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 915 unsigned OpIdx, const TargetRegisterClass *CurRC, 916 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 917 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 918 const MachineOperand &MO = getOperand(OpIdx); 919 assert(MO.isReg() && 920 "Cannot get register constraints for non-register operand"); 921 assert(CurRC && "Invalid initial register class"); 922 if (unsigned SubIdx = MO.getSubReg()) { 923 if (OpRC) 924 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 925 else 926 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 927 } else if (OpRC) 928 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 929 return CurRC; 930 } 931 932 /// Return the number of instructions inside the MI bundle, not counting the 933 /// header instruction. 934 unsigned MachineInstr::getBundleSize() const { 935 MachineBasicBlock::const_instr_iterator I = getIterator(); 936 unsigned Size = 0; 937 while (I->isBundledWithSucc()) { 938 ++Size; 939 ++I; 940 } 941 return Size; 942 } 943 944 /// Returns true if the MachineInstr has an implicit-use operand of exactly 945 /// the given register (not considering sub/super-registers). 946 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 947 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 948 const MachineOperand &MO = getOperand(i); 949 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 950 return true; 951 } 952 return false; 953 } 954 955 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 956 /// the specific register or -1 if it is not found. It further tightens 957 /// the search criteria to a use that kills the register if isKill is true. 958 int MachineInstr::findRegisterUseOperandIdx( 959 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 960 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 961 const MachineOperand &MO = getOperand(i); 962 if (!MO.isReg() || !MO.isUse()) 963 continue; 964 Register MOReg = MO.getReg(); 965 if (!MOReg) 966 continue; 967 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 968 if (!isKill || MO.isKill()) 969 return i; 970 } 971 return -1; 972 } 973 974 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 975 /// indicating if this instruction reads or writes Reg. This also considers 976 /// partial defines. 977 std::pair<bool,bool> 978 MachineInstr::readsWritesVirtualRegister(Register Reg, 979 SmallVectorImpl<unsigned> *Ops) const { 980 bool PartDef = false; // Partial redefine. 981 bool FullDef = false; // Full define. 982 bool Use = false; 983 984 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 985 const MachineOperand &MO = getOperand(i); 986 if (!MO.isReg() || MO.getReg() != Reg) 987 continue; 988 if (Ops) 989 Ops->push_back(i); 990 if (MO.isUse()) 991 Use |= !MO.isUndef(); 992 else if (MO.getSubReg() && !MO.isUndef()) 993 // A partial def undef doesn't count as reading the register. 994 PartDef = true; 995 else 996 FullDef = true; 997 } 998 // A partial redefine uses Reg unless there is also a full define. 999 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1000 } 1001 1002 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1003 /// the specified register or -1 if it is not found. If isDead is true, defs 1004 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1005 /// also checks if there is a def of a super-register. 1006 int 1007 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1008 const TargetRegisterInfo *TRI) const { 1009 bool isPhys = Register::isPhysicalRegister(Reg); 1010 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1011 const MachineOperand &MO = getOperand(i); 1012 // Accept regmask operands when Overlap is set. 1013 // Ignore them when looking for a specific def operand (Overlap == false). 1014 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1015 return i; 1016 if (!MO.isReg() || !MO.isDef()) 1017 continue; 1018 Register MOReg = MO.getReg(); 1019 bool Found = (MOReg == Reg); 1020 if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { 1021 if (Overlap) 1022 Found = TRI->regsOverlap(MOReg, Reg); 1023 else 1024 Found = TRI->isSubRegister(MOReg, Reg); 1025 } 1026 if (Found && (!isDead || MO.isDead())) 1027 return i; 1028 } 1029 return -1; 1030 } 1031 1032 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1033 /// operand list that is used to represent the predicate. It returns -1 if 1034 /// none is found. 1035 int MachineInstr::findFirstPredOperandIdx() const { 1036 // Don't call MCID.findFirstPredOperandIdx() because this variant 1037 // is sometimes called on an instruction that's not yet complete, and 1038 // so the number of operands is less than the MCID indicates. In 1039 // particular, the PTX target does this. 1040 const MCInstrDesc &MCID = getDesc(); 1041 if (MCID.isPredicable()) { 1042 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1043 if (MCID.OpInfo[i].isPredicate()) 1044 return i; 1045 } 1046 1047 return -1; 1048 } 1049 1050 // MachineOperand::TiedTo is 4 bits wide. 1051 const unsigned TiedMax = 15; 1052 1053 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1054 /// 1055 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1056 /// field. TiedTo can have these values: 1057 /// 1058 /// 0: Operand is not tied to anything. 1059 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1060 /// TiedMax: Tied to an operand >= TiedMax-1. 1061 /// 1062 /// The tied def must be one of the first TiedMax operands on a normal 1063 /// instruction. INLINEASM instructions allow more tied defs. 1064 /// 1065 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1066 MachineOperand &DefMO = getOperand(DefIdx); 1067 MachineOperand &UseMO = getOperand(UseIdx); 1068 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1069 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1070 assert(!DefMO.isTied() && "Def is already tied to another use"); 1071 assert(!UseMO.isTied() && "Use is already tied to another def"); 1072 1073 if (DefIdx < TiedMax) 1074 UseMO.TiedTo = DefIdx + 1; 1075 else { 1076 // Inline asm can use the group descriptors to find tied operands, but on 1077 // normal instruction, the tied def must be within the first TiedMax 1078 // operands. 1079 assert(isInlineAsm() && "DefIdx out of range"); 1080 UseMO.TiedTo = TiedMax; 1081 } 1082 1083 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1084 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1085 } 1086 1087 /// Given the index of a tied register operand, find the operand it is tied to. 1088 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1089 /// which must exist. 1090 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1091 const MachineOperand &MO = getOperand(OpIdx); 1092 assert(MO.isTied() && "Operand isn't tied"); 1093 1094 // Normally TiedTo is in range. 1095 if (MO.TiedTo < TiedMax) 1096 return MO.TiedTo - 1; 1097 1098 // Uses on normal instructions can be out of range. 1099 if (!isInlineAsm()) { 1100 // Normal tied defs must be in the 0..TiedMax-1 range. 1101 if (MO.isUse()) 1102 return TiedMax - 1; 1103 // MO is a def. Search for the tied use. 1104 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1105 const MachineOperand &UseMO = getOperand(i); 1106 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1107 return i; 1108 } 1109 llvm_unreachable("Can't find tied use"); 1110 } 1111 1112 // Now deal with inline asm by parsing the operand group descriptor flags. 1113 // Find the beginning of each operand group. 1114 SmallVector<unsigned, 8> GroupIdx; 1115 unsigned OpIdxGroup = ~0u; 1116 unsigned NumOps; 1117 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1118 i += NumOps) { 1119 const MachineOperand &FlagMO = getOperand(i); 1120 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1121 unsigned CurGroup = GroupIdx.size(); 1122 GroupIdx.push_back(i); 1123 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1124 // OpIdx belongs to this operand group. 1125 if (OpIdx > i && OpIdx < i + NumOps) 1126 OpIdxGroup = CurGroup; 1127 unsigned TiedGroup; 1128 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1129 continue; 1130 // Operands in this group are tied to operands in TiedGroup which must be 1131 // earlier. Find the number of operands between the two groups. 1132 unsigned Delta = i - GroupIdx[TiedGroup]; 1133 1134 // OpIdx is a use tied to TiedGroup. 1135 if (OpIdxGroup == CurGroup) 1136 return OpIdx - Delta; 1137 1138 // OpIdx is a def tied to this use group. 1139 if (OpIdxGroup == TiedGroup) 1140 return OpIdx + Delta; 1141 } 1142 llvm_unreachable("Invalid tied operand on inline asm"); 1143 } 1144 1145 /// clearKillInfo - Clears kill flags on all operands. 1146 /// 1147 void MachineInstr::clearKillInfo() { 1148 for (MachineOperand &MO : operands()) { 1149 if (MO.isReg() && MO.isUse()) 1150 MO.setIsKill(false); 1151 } 1152 } 1153 1154 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1155 unsigned SubIdx, 1156 const TargetRegisterInfo &RegInfo) { 1157 if (Register::isPhysicalRegister(ToReg)) { 1158 if (SubIdx) 1159 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1160 for (MachineOperand &MO : operands()) { 1161 if (!MO.isReg() || MO.getReg() != FromReg) 1162 continue; 1163 MO.substPhysReg(ToReg, RegInfo); 1164 } 1165 } else { 1166 for (MachineOperand &MO : operands()) { 1167 if (!MO.isReg() || MO.getReg() != FromReg) 1168 continue; 1169 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1170 } 1171 } 1172 } 1173 1174 /// isSafeToMove - Return true if it is safe to move this instruction. If 1175 /// SawStore is set to true, it means that there is a store (or call) between 1176 /// the instruction's location and its intended destination. 1177 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1178 // Ignore stuff that we obviously can't move. 1179 // 1180 // Treat volatile loads as stores. This is not strictly necessary for 1181 // volatiles, but it is required for atomic loads. It is not allowed to move 1182 // a load across an atomic load with Ordering > Monotonic. 1183 if (mayStore() || isCall() || isPHI() || 1184 (mayLoad() && hasOrderedMemoryRef())) { 1185 SawStore = true; 1186 return false; 1187 } 1188 1189 if (isPosition() || isDebugInstr() || isTerminator() || 1190 mayRaiseFPException() || hasUnmodeledSideEffects()) 1191 return false; 1192 1193 // See if this instruction does a load. If so, we have to guarantee that the 1194 // loaded value doesn't change between the load and the its intended 1195 // destination. The check for isInvariantLoad gives the targe the chance to 1196 // classify the load as always returning a constant, e.g. a constant pool 1197 // load. 1198 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1199 // Otherwise, this is a real load. If there is a store between the load and 1200 // end of block, we can't move it. 1201 return !SawStore; 1202 1203 return true; 1204 } 1205 1206 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1207 bool UseTBAA) const { 1208 const MachineFunction *MF = getMF(); 1209 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1210 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1211 1212 // If neither instruction stores to memory, they can't alias in any 1213 // meaningful way, even if they read from the same address. 1214 if (!mayStore() && !Other.mayStore()) 1215 return false; 1216 1217 // Let the target decide if memory accesses cannot possibly overlap. 1218 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1219 return false; 1220 1221 // FIXME: Need to handle multiple memory operands to support all targets. 1222 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1223 return true; 1224 1225 MachineMemOperand *MMOa = *memoperands_begin(); 1226 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1227 1228 // The following interface to AA is fashioned after DAGCombiner::isAlias 1229 // and operates with MachineMemOperand offset with some important 1230 // assumptions: 1231 // - LLVM fundamentally assumes flat address spaces. 1232 // - MachineOperand offset can *only* result from legalization and 1233 // cannot affect queries other than the trivial case of overlap 1234 // checking. 1235 // - These offsets never wrap and never step outside 1236 // of allocated objects. 1237 // - There should never be any negative offsets here. 1238 // 1239 // FIXME: Modify API to hide this math from "user" 1240 // Even before we go to AA we can reason locally about some 1241 // memory objects. It can save compile time, and possibly catch some 1242 // corner cases not currently covered. 1243 1244 int64_t OffsetA = MMOa->getOffset(); 1245 int64_t OffsetB = MMOb->getOffset(); 1246 int64_t MinOffset = std::min(OffsetA, OffsetB); 1247 1248 uint64_t WidthA = MMOa->getSize(); 1249 uint64_t WidthB = MMOb->getSize(); 1250 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1251 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1252 1253 const Value *ValA = MMOa->getValue(); 1254 const Value *ValB = MMOb->getValue(); 1255 bool SameVal = (ValA && ValB && (ValA == ValB)); 1256 if (!SameVal) { 1257 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1258 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1259 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1260 return false; 1261 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1262 return false; 1263 if (PSVa && PSVb && (PSVa == PSVb)) 1264 SameVal = true; 1265 } 1266 1267 if (SameVal) { 1268 if (!KnownWidthA || !KnownWidthB) 1269 return true; 1270 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1271 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1272 return (MinOffset + LowWidth > MaxOffset); 1273 } 1274 1275 if (!AA) 1276 return true; 1277 1278 if (!ValA || !ValB) 1279 return true; 1280 1281 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1282 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1283 1284 int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset 1285 : MemoryLocation::UnknownSize; 1286 int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset 1287 : MemoryLocation::UnknownSize; 1288 1289 AliasResult AAResult = AA->alias( 1290 MemoryLocation(ValA, OverlapA, 1291 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1292 MemoryLocation(ValB, OverlapB, 1293 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1294 1295 return (AAResult != NoAlias); 1296 } 1297 1298 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1299 /// or volatile memory reference, or if the information describing the memory 1300 /// reference is not available. Return false if it is known to have no ordered 1301 /// memory references. 1302 bool MachineInstr::hasOrderedMemoryRef() const { 1303 // An instruction known never to access memory won't have a volatile access. 1304 if (!mayStore() && 1305 !mayLoad() && 1306 !isCall() && 1307 !hasUnmodeledSideEffects()) 1308 return false; 1309 1310 // Otherwise, if the instruction has no memory reference information, 1311 // conservatively assume it wasn't preserved. 1312 if (memoperands_empty()) 1313 return true; 1314 1315 // Check if any of our memory operands are ordered. 1316 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1317 return !MMO->isUnordered(); 1318 }); 1319 } 1320 1321 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1322 /// trap and is loading from a location whose value is invariant across a run of 1323 /// this function. 1324 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const { 1325 // If the instruction doesn't load at all, it isn't an invariant load. 1326 if (!mayLoad()) 1327 return false; 1328 1329 // If the instruction has lost its memoperands, conservatively assume that 1330 // it may not be an invariant load. 1331 if (memoperands_empty()) 1332 return false; 1333 1334 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1335 1336 for (MachineMemOperand *MMO : memoperands()) { 1337 if (!MMO->isUnordered()) 1338 // If the memory operand has ordering side effects, we can't move the 1339 // instruction. Such an instruction is technically an invariant load, 1340 // but the caller code would need updated to expect that. 1341 return false; 1342 if (MMO->isStore()) return false; 1343 if (MMO->isInvariant() && MMO->isDereferenceable()) 1344 continue; 1345 1346 // A load from a constant PseudoSourceValue is invariant. 1347 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1348 if (PSV->isConstant(&MFI)) 1349 continue; 1350 1351 if (const Value *V = MMO->getValue()) { 1352 // If we have an AliasAnalysis, ask it whether the memory is constant. 1353 if (AA && 1354 AA->pointsToConstantMemory( 1355 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1356 continue; 1357 } 1358 1359 // Otherwise assume conservatively. 1360 return false; 1361 } 1362 1363 // Everything checks out. 1364 return true; 1365 } 1366 1367 /// isConstantValuePHI - If the specified instruction is a PHI that always 1368 /// merges together the same virtual register, return the register, otherwise 1369 /// return 0. 1370 unsigned MachineInstr::isConstantValuePHI() const { 1371 if (!isPHI()) 1372 return 0; 1373 assert(getNumOperands() >= 3 && 1374 "It's illegal to have a PHI without source operands"); 1375 1376 Register Reg = getOperand(1).getReg(); 1377 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1378 if (getOperand(i).getReg() != Reg) 1379 return 0; 1380 return Reg; 1381 } 1382 1383 bool MachineInstr::hasUnmodeledSideEffects() const { 1384 if (hasProperty(MCID::UnmodeledSideEffects)) 1385 return true; 1386 if (isInlineAsm()) { 1387 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1388 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1389 return true; 1390 } 1391 1392 return false; 1393 } 1394 1395 bool MachineInstr::isLoadFoldBarrier() const { 1396 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1397 } 1398 1399 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1400 /// 1401 bool MachineInstr::allDefsAreDead() const { 1402 for (const MachineOperand &MO : operands()) { 1403 if (!MO.isReg() || MO.isUse()) 1404 continue; 1405 if (!MO.isDead()) 1406 return false; 1407 } 1408 return true; 1409 } 1410 1411 /// copyImplicitOps - Copy implicit register operands from specified 1412 /// instruction to this instruction. 1413 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1414 const MachineInstr &MI) { 1415 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1416 i != e; ++i) { 1417 const MachineOperand &MO = MI.getOperand(i); 1418 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1419 addOperand(MF, MO); 1420 } 1421 } 1422 1423 bool MachineInstr::hasComplexRegisterTies() const { 1424 const MCInstrDesc &MCID = getDesc(); 1425 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1426 const auto &Operand = getOperand(I); 1427 if (!Operand.isReg() || Operand.isDef()) 1428 // Ignore the defined registers as MCID marks only the uses as tied. 1429 continue; 1430 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1431 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1432 if (ExpectedTiedIdx != TiedIdx) 1433 return true; 1434 } 1435 return false; 1436 } 1437 1438 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1439 const MachineRegisterInfo &MRI) const { 1440 const MachineOperand &Op = getOperand(OpIdx); 1441 if (!Op.isReg()) 1442 return LLT{}; 1443 1444 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1445 return MRI.getType(Op.getReg()); 1446 1447 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1448 if (!OpInfo.isGenericType()) 1449 return MRI.getType(Op.getReg()); 1450 1451 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1452 return LLT{}; 1453 1454 LLT TypeToPrint = MRI.getType(Op.getReg()); 1455 // Don't mark the type index printed if it wasn't actually printed: maybe 1456 // another operand with the same type index has an actual type attached: 1457 if (TypeToPrint.isValid()) 1458 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1459 return TypeToPrint; 1460 } 1461 1462 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1463 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1464 dbgs() << " "; 1465 print(dbgs()); 1466 } 1467 1468 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1469 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1470 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1471 if (Depth >= MaxDepth) 1472 return; 1473 if (!AlreadySeenInstrs.insert(this).second) 1474 return; 1475 // PadToColumn always inserts at least one space. 1476 // Don't mess up the alignment if we don't want any space. 1477 if (Depth) 1478 fdbgs().PadToColumn(Depth * 2); 1479 print(fdbgs()); 1480 for (const MachineOperand &MO : operands()) { 1481 if (!MO.isReg() || MO.isDef()) 1482 continue; 1483 Register Reg = MO.getReg(); 1484 if (Reg.isPhysical()) 1485 continue; 1486 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1487 if (NewMI == nullptr) 1488 continue; 1489 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1490 } 1491 } 1492 1493 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1494 unsigned MaxDepth) const { 1495 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1496 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1497 } 1498 #endif 1499 1500 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1501 bool SkipDebugLoc, bool AddNewLine, 1502 const TargetInstrInfo *TII) const { 1503 const Module *M = nullptr; 1504 const Function *F = nullptr; 1505 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1506 F = &MF->getFunction(); 1507 M = F->getParent(); 1508 if (!TII) 1509 TII = MF->getSubtarget().getInstrInfo(); 1510 } 1511 1512 ModuleSlotTracker MST(M); 1513 if (F) 1514 MST.incorporateFunction(*F); 1515 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1516 } 1517 1518 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1519 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1520 bool AddNewLine, const TargetInstrInfo *TII) const { 1521 // We can be a bit tidier if we know the MachineFunction. 1522 const MachineFunction *MF = nullptr; 1523 const TargetRegisterInfo *TRI = nullptr; 1524 const MachineRegisterInfo *MRI = nullptr; 1525 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1526 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1527 1528 if (isCFIInstruction()) 1529 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1530 1531 SmallBitVector PrintedTypes(8); 1532 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1533 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1534 if (!ShouldPrintRegisterTies) 1535 return 0U; 1536 const MachineOperand &MO = getOperand(OpIdx); 1537 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1538 return findTiedOperandIdx(OpIdx); 1539 return 0U; 1540 }; 1541 unsigned StartOp = 0; 1542 unsigned e = getNumOperands(); 1543 1544 // Print explicitly defined operands on the left of an assignment syntax. 1545 while (StartOp < e) { 1546 const MachineOperand &MO = getOperand(StartOp); 1547 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1548 break; 1549 1550 if (StartOp != 0) 1551 OS << ", "; 1552 1553 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1554 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1555 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1556 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1557 ++StartOp; 1558 } 1559 1560 if (StartOp != 0) 1561 OS << " = "; 1562 1563 if (getFlag(MachineInstr::FrameSetup)) 1564 OS << "frame-setup "; 1565 if (getFlag(MachineInstr::FrameDestroy)) 1566 OS << "frame-destroy "; 1567 if (getFlag(MachineInstr::FmNoNans)) 1568 OS << "nnan "; 1569 if (getFlag(MachineInstr::FmNoInfs)) 1570 OS << "ninf "; 1571 if (getFlag(MachineInstr::FmNsz)) 1572 OS << "nsz "; 1573 if (getFlag(MachineInstr::FmArcp)) 1574 OS << "arcp "; 1575 if (getFlag(MachineInstr::FmContract)) 1576 OS << "contract "; 1577 if (getFlag(MachineInstr::FmAfn)) 1578 OS << "afn "; 1579 if (getFlag(MachineInstr::FmReassoc)) 1580 OS << "reassoc "; 1581 if (getFlag(MachineInstr::NoUWrap)) 1582 OS << "nuw "; 1583 if (getFlag(MachineInstr::NoSWrap)) 1584 OS << "nsw "; 1585 if (getFlag(MachineInstr::IsExact)) 1586 OS << "exact "; 1587 if (getFlag(MachineInstr::NoFPExcept)) 1588 OS << "nofpexcept "; 1589 1590 // Print the opcode name. 1591 if (TII) 1592 OS << TII->getName(getOpcode()); 1593 else 1594 OS << "UNKNOWN"; 1595 1596 if (SkipOpers) 1597 return; 1598 1599 // Print the rest of the operands. 1600 bool FirstOp = true; 1601 unsigned AsmDescOp = ~0u; 1602 unsigned AsmOpCount = 0; 1603 1604 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1605 // Print asm string. 1606 OS << " "; 1607 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1608 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1609 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1610 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1611 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1612 IntrinsicInfo); 1613 1614 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1615 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1616 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1617 OS << " [sideeffect]"; 1618 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1619 OS << " [mayload]"; 1620 if (ExtraInfo & InlineAsm::Extra_MayStore) 1621 OS << " [maystore]"; 1622 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1623 OS << " [isconvergent]"; 1624 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1625 OS << " [alignstack]"; 1626 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1627 OS << " [attdialect]"; 1628 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1629 OS << " [inteldialect]"; 1630 1631 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1632 FirstOp = false; 1633 } 1634 1635 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1636 const MachineOperand &MO = getOperand(i); 1637 1638 if (FirstOp) FirstOp = false; else OS << ","; 1639 OS << " "; 1640 1641 if (isDebugValue() && MO.isMetadata()) { 1642 // Pretty print DBG_VALUE instructions. 1643 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1644 if (DIV && !DIV->getName().empty()) 1645 OS << "!\"" << DIV->getName() << '\"'; 1646 else { 1647 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1648 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1649 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1650 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1651 } 1652 } else if (isDebugLabel() && MO.isMetadata()) { 1653 // Pretty print DBG_LABEL instructions. 1654 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1655 if (DIL && !DIL->getName().empty()) 1656 OS << "\"" << DIL->getName() << '\"'; 1657 else { 1658 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1659 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1660 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1661 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1662 } 1663 } else if (i == AsmDescOp && MO.isImm()) { 1664 // Pretty print the inline asm operand descriptor. 1665 OS << '$' << AsmOpCount++; 1666 unsigned Flag = MO.getImm(); 1667 switch (InlineAsm::getKind(Flag)) { 1668 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1669 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1670 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1671 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1672 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1673 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1674 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1675 } 1676 1677 unsigned RCID = 0; 1678 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1679 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1680 if (TRI) { 1681 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1682 } else 1683 OS << ":RC" << RCID; 1684 } 1685 1686 if (InlineAsm::isMemKind(Flag)) { 1687 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1688 switch (MCID) { 1689 case InlineAsm::Constraint_es: OS << ":es"; break; 1690 case InlineAsm::Constraint_i: OS << ":i"; break; 1691 case InlineAsm::Constraint_m: OS << ":m"; break; 1692 case InlineAsm::Constraint_o: OS << ":o"; break; 1693 case InlineAsm::Constraint_v: OS << ":v"; break; 1694 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1695 case InlineAsm::Constraint_R: OS << ":R"; break; 1696 case InlineAsm::Constraint_S: OS << ":S"; break; 1697 case InlineAsm::Constraint_T: OS << ":T"; break; 1698 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1699 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1700 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1701 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1702 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1703 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1704 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1705 case InlineAsm::Constraint_X: OS << ":X"; break; 1706 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1707 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1708 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1709 default: OS << ":?"; break; 1710 } 1711 } 1712 1713 unsigned TiedTo = 0; 1714 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1715 OS << " tiedto:$" << TiedTo; 1716 1717 OS << ']'; 1718 1719 // Compute the index of the next operand descriptor. 1720 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1721 } else { 1722 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1723 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1724 if (MO.isImm() && isOperandSubregIdx(i)) 1725 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1726 else 1727 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1728 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1729 } 1730 } 1731 1732 // Print any optional symbols attached to this instruction as-if they were 1733 // operands. 1734 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1735 if (!FirstOp) { 1736 FirstOp = false; 1737 OS << ','; 1738 } 1739 OS << " pre-instr-symbol "; 1740 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1741 } 1742 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1743 if (!FirstOp) { 1744 FirstOp = false; 1745 OS << ','; 1746 } 1747 OS << " post-instr-symbol "; 1748 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1749 } 1750 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1751 if (!FirstOp) { 1752 FirstOp = false; 1753 OS << ','; 1754 } 1755 OS << " heap-alloc-marker "; 1756 HeapAllocMarker->printAsOperand(OS, MST); 1757 } 1758 1759 if (!SkipDebugLoc) { 1760 if (const DebugLoc &DL = getDebugLoc()) { 1761 if (!FirstOp) 1762 OS << ','; 1763 OS << " debug-location "; 1764 DL->printAsOperand(OS, MST); 1765 } 1766 } 1767 1768 if (!memoperands_empty()) { 1769 SmallVector<StringRef, 0> SSNs; 1770 const LLVMContext *Context = nullptr; 1771 std::unique_ptr<LLVMContext> CtxPtr; 1772 const MachineFrameInfo *MFI = nullptr; 1773 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1774 MFI = &MF->getFrameInfo(); 1775 Context = &MF->getFunction().getContext(); 1776 } else { 1777 CtxPtr = std::make_unique<LLVMContext>(); 1778 Context = CtxPtr.get(); 1779 } 1780 1781 OS << " :: "; 1782 bool NeedComma = false; 1783 for (const MachineMemOperand *Op : memoperands()) { 1784 if (NeedComma) 1785 OS << ", "; 1786 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1787 NeedComma = true; 1788 } 1789 } 1790 1791 if (SkipDebugLoc) 1792 return; 1793 1794 bool HaveSemi = false; 1795 1796 // Print debug location information. 1797 if (const DebugLoc &DL = getDebugLoc()) { 1798 if (!HaveSemi) { 1799 OS << ';'; 1800 HaveSemi = true; 1801 } 1802 OS << ' '; 1803 DL.print(OS); 1804 } 1805 1806 // Print extra comments for DEBUG_VALUE. 1807 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1808 if (!HaveSemi) { 1809 OS << ";"; 1810 HaveSemi = true; 1811 } 1812 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1813 OS << " line no:" << DV->getLine(); 1814 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1815 DebugLoc InlinedAtDL(InlinedAt); 1816 if (InlinedAtDL && MF) { 1817 OS << " inlined @[ "; 1818 InlinedAtDL.print(OS); 1819 OS << " ]"; 1820 } 1821 } 1822 if (isIndirectDebugValue()) 1823 OS << " indirect"; 1824 } 1825 // TODO: DBG_LABEL 1826 1827 if (AddNewLine) 1828 OS << '\n'; 1829 } 1830 1831 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1832 const TargetRegisterInfo *RegInfo, 1833 bool AddIfNotFound) { 1834 bool isPhysReg = Register::isPhysicalRegister(IncomingReg); 1835 bool hasAliases = isPhysReg && 1836 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1837 bool Found = false; 1838 SmallVector<unsigned,4> DeadOps; 1839 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1840 MachineOperand &MO = getOperand(i); 1841 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1842 continue; 1843 1844 // DEBUG_VALUE nodes do not contribute to code generation and should 1845 // always be ignored. Failure to do so may result in trying to modify 1846 // KILL flags on DEBUG_VALUE nodes. 1847 if (MO.isDebug()) 1848 continue; 1849 1850 Register Reg = MO.getReg(); 1851 if (!Reg) 1852 continue; 1853 1854 if (Reg == IncomingReg) { 1855 if (!Found) { 1856 if (MO.isKill()) 1857 // The register is already marked kill. 1858 return true; 1859 if (isPhysReg && isRegTiedToDefOperand(i)) 1860 // Two-address uses of physregs must not be marked kill. 1861 return true; 1862 MO.setIsKill(); 1863 Found = true; 1864 } 1865 } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { 1866 // A super-register kill already exists. 1867 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1868 return true; 1869 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1870 DeadOps.push_back(i); 1871 } 1872 } 1873 1874 // Trim unneeded kill operands. 1875 while (!DeadOps.empty()) { 1876 unsigned OpIdx = DeadOps.back(); 1877 if (getOperand(OpIdx).isImplicit() && 1878 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1879 RemoveOperand(OpIdx); 1880 else 1881 getOperand(OpIdx).setIsKill(false); 1882 DeadOps.pop_back(); 1883 } 1884 1885 // If not found, this means an alias of one of the operands is killed. Add a 1886 // new implicit operand if required. 1887 if (!Found && AddIfNotFound) { 1888 addOperand(MachineOperand::CreateReg(IncomingReg, 1889 false /*IsDef*/, 1890 true /*IsImp*/, 1891 true /*IsKill*/)); 1892 return true; 1893 } 1894 return Found; 1895 } 1896 1897 void MachineInstr::clearRegisterKills(Register Reg, 1898 const TargetRegisterInfo *RegInfo) { 1899 if (!Register::isPhysicalRegister(Reg)) 1900 RegInfo = nullptr; 1901 for (MachineOperand &MO : operands()) { 1902 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1903 continue; 1904 Register OpReg = MO.getReg(); 1905 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1906 MO.setIsKill(false); 1907 } 1908 } 1909 1910 bool MachineInstr::addRegisterDead(Register Reg, 1911 const TargetRegisterInfo *RegInfo, 1912 bool AddIfNotFound) { 1913 bool isPhysReg = Register::isPhysicalRegister(Reg); 1914 bool hasAliases = isPhysReg && 1915 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1916 bool Found = false; 1917 SmallVector<unsigned,4> DeadOps; 1918 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1919 MachineOperand &MO = getOperand(i); 1920 if (!MO.isReg() || !MO.isDef()) 1921 continue; 1922 Register MOReg = MO.getReg(); 1923 if (!MOReg) 1924 continue; 1925 1926 if (MOReg == Reg) { 1927 MO.setIsDead(); 1928 Found = true; 1929 } else if (hasAliases && MO.isDead() && 1930 Register::isPhysicalRegister(MOReg)) { 1931 // There exists a super-register that's marked dead. 1932 if (RegInfo->isSuperRegister(Reg, MOReg)) 1933 return true; 1934 if (RegInfo->isSubRegister(Reg, MOReg)) 1935 DeadOps.push_back(i); 1936 } 1937 } 1938 1939 // Trim unneeded dead operands. 1940 while (!DeadOps.empty()) { 1941 unsigned OpIdx = DeadOps.back(); 1942 if (getOperand(OpIdx).isImplicit() && 1943 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1944 RemoveOperand(OpIdx); 1945 else 1946 getOperand(OpIdx).setIsDead(false); 1947 DeadOps.pop_back(); 1948 } 1949 1950 // If not found, this means an alias of one of the operands is dead. Add a 1951 // new implicit operand if required. 1952 if (Found || !AddIfNotFound) 1953 return Found; 1954 1955 addOperand(MachineOperand::CreateReg(Reg, 1956 true /*IsDef*/, 1957 true /*IsImp*/, 1958 false /*IsKill*/, 1959 true /*IsDead*/)); 1960 return true; 1961 } 1962 1963 void MachineInstr::clearRegisterDeads(Register Reg) { 1964 for (MachineOperand &MO : operands()) { 1965 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 1966 continue; 1967 MO.setIsDead(false); 1968 } 1969 } 1970 1971 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 1972 for (MachineOperand &MO : operands()) { 1973 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 1974 continue; 1975 MO.setIsUndef(IsUndef); 1976 } 1977 } 1978 1979 void MachineInstr::addRegisterDefined(Register Reg, 1980 const TargetRegisterInfo *RegInfo) { 1981 if (Register::isPhysicalRegister(Reg)) { 1982 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 1983 if (MO) 1984 return; 1985 } else { 1986 for (const MachineOperand &MO : operands()) { 1987 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1988 MO.getSubReg() == 0) 1989 return; 1990 } 1991 } 1992 addOperand(MachineOperand::CreateReg(Reg, 1993 true /*IsDef*/, 1994 true /*IsImp*/)); 1995 } 1996 1997 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 1998 const TargetRegisterInfo &TRI) { 1999 bool HasRegMask = false; 2000 for (MachineOperand &MO : operands()) { 2001 if (MO.isRegMask()) { 2002 HasRegMask = true; 2003 continue; 2004 } 2005 if (!MO.isReg() || !MO.isDef()) continue; 2006 Register Reg = MO.getReg(); 2007 if (!Reg.isPhysical()) 2008 continue; 2009 // If there are no uses, including partial uses, the def is dead. 2010 if (llvm::none_of(UsedRegs, 2011 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2012 MO.setIsDead(); 2013 } 2014 2015 // This is a call with a register mask operand. 2016 // Mask clobbers are always dead, so add defs for the non-dead defines. 2017 if (HasRegMask) 2018 for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2019 I != E; ++I) 2020 addRegisterDefined(*I, &TRI); 2021 } 2022 2023 unsigned 2024 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2025 // Build up a buffer of hash code components. 2026 SmallVector<size_t, 16> HashComponents; 2027 HashComponents.reserve(MI->getNumOperands() + 1); 2028 HashComponents.push_back(MI->getOpcode()); 2029 for (const MachineOperand &MO : MI->operands()) { 2030 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 2031 continue; // Skip virtual register defs. 2032 2033 HashComponents.push_back(hash_value(MO)); 2034 } 2035 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2036 } 2037 2038 void MachineInstr::emitError(StringRef Msg) const { 2039 // Find the source location cookie. 2040 unsigned LocCookie = 0; 2041 const MDNode *LocMD = nullptr; 2042 for (unsigned i = getNumOperands(); i != 0; --i) { 2043 if (getOperand(i-1).isMetadata() && 2044 (LocMD = getOperand(i-1).getMetadata()) && 2045 LocMD->getNumOperands() != 0) { 2046 if (const ConstantInt *CI = 2047 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2048 LocCookie = CI->getZExtValue(); 2049 break; 2050 } 2051 } 2052 } 2053 2054 if (const MachineBasicBlock *MBB = getParent()) 2055 if (const MachineFunction *MF = MBB->getParent()) 2056 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2057 report_fatal_error(Msg); 2058 } 2059 2060 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2061 const MCInstrDesc &MCID, bool IsIndirect, 2062 Register Reg, const MDNode *Variable, 2063 const MDNode *Expr) { 2064 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2065 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2066 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2067 "Expected inlined-at fields to agree"); 2068 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); 2069 if (IsIndirect) 2070 MIB.addImm(0U); 2071 else 2072 MIB.addReg(0U, RegState::Debug); 2073 return MIB.addMetadata(Variable).addMetadata(Expr); 2074 } 2075 2076 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2077 const MCInstrDesc &MCID, bool IsIndirect, 2078 MachineOperand &MO, const MDNode *Variable, 2079 const MDNode *Expr) { 2080 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2081 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2082 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2083 "Expected inlined-at fields to agree"); 2084 if (MO.isReg()) 2085 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); 2086 2087 auto MIB = BuildMI(MF, DL, MCID).add(MO); 2088 if (IsIndirect) 2089 MIB.addImm(0U); 2090 else 2091 MIB.addReg(0U, RegState::Debug); 2092 return MIB.addMetadata(Variable).addMetadata(Expr); 2093 } 2094 2095 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2096 MachineBasicBlock::iterator I, 2097 const DebugLoc &DL, const MCInstrDesc &MCID, 2098 bool IsIndirect, Register Reg, 2099 const MDNode *Variable, const MDNode *Expr) { 2100 MachineFunction &MF = *BB.getParent(); 2101 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2102 BB.insert(I, MI); 2103 return MachineInstrBuilder(MF, MI); 2104 } 2105 2106 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2107 MachineBasicBlock::iterator I, 2108 const DebugLoc &DL, const MCInstrDesc &MCID, 2109 bool IsIndirect, MachineOperand &MO, 2110 const MDNode *Variable, const MDNode *Expr) { 2111 MachineFunction &MF = *BB.getParent(); 2112 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); 2113 BB.insert(I, MI); 2114 return MachineInstrBuilder(MF, *MI); 2115 } 2116 2117 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2118 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2119 static const DIExpression *computeExprForSpill(const MachineInstr &MI) { 2120 assert(MI.getOperand(0).isReg() && "can't spill non-register"); 2121 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2122 "Expected inlined-at fields to agree"); 2123 2124 const DIExpression *Expr = MI.getDebugExpression(); 2125 if (MI.isIndirectDebugValue()) { 2126 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 2127 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2128 } 2129 return Expr; 2130 } 2131 2132 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2133 MachineBasicBlock::iterator I, 2134 const MachineInstr &Orig, 2135 int FrameIndex) { 2136 const DIExpression *Expr = computeExprForSpill(Orig); 2137 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) 2138 .addFrameIndex(FrameIndex) 2139 .addImm(0U) 2140 .addMetadata(Orig.getDebugVariable()) 2141 .addMetadata(Expr); 2142 } 2143 2144 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { 2145 const DIExpression *Expr = computeExprForSpill(Orig); 2146 Orig.getOperand(0).ChangeToFrameIndex(FrameIndex); 2147 Orig.getOperand(1).ChangeToImmediate(0U); 2148 Orig.getOperand(3).setMetadata(Expr); 2149 } 2150 2151 void MachineInstr::collectDebugValues( 2152 SmallVectorImpl<MachineInstr *> &DbgValues) { 2153 MachineInstr &MI = *this; 2154 if (!MI.getOperand(0).isReg()) 2155 return; 2156 2157 MachineBasicBlock::iterator DI = MI; ++DI; 2158 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2159 DI != DE; ++DI) { 2160 if (!DI->isDebugValue()) 2161 return; 2162 if (DI->getOperand(0).isReg() && 2163 DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) 2164 DbgValues.push_back(&*DI); 2165 } 2166 } 2167 2168 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2169 // Collect matching debug values. 2170 SmallVector<MachineInstr *, 2> DbgValues; 2171 2172 if (!getOperand(0).isReg()) 2173 return; 2174 2175 unsigned DefReg = getOperand(0).getReg(); 2176 auto *MRI = getRegInfo(); 2177 for (auto &MO : MRI->use_operands(DefReg)) { 2178 auto *DI = MO.getParent(); 2179 if (!DI->isDebugValue()) 2180 continue; 2181 if (DI->getOperand(0).isReg() && 2182 DI->getOperand(0).getReg() == DefReg){ 2183 DbgValues.push_back(DI); 2184 } 2185 } 2186 2187 // Propagate Reg to debug value instructions. 2188 for (auto *DBI : DbgValues) 2189 DBI->getOperand(0).setReg(Reg); 2190 } 2191 2192 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2193 2194 static unsigned getSpillSlotSize(MMOList &Accesses, 2195 const MachineFrameInfo &MFI) { 2196 unsigned Size = 0; 2197 for (auto A : Accesses) 2198 if (MFI.isSpillSlotObjectIndex( 2199 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2200 ->getFrameIndex())) 2201 Size += A->getSize(); 2202 return Size; 2203 } 2204 2205 Optional<unsigned> 2206 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2207 int FI; 2208 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2209 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2210 if (MFI.isSpillSlotObjectIndex(FI)) 2211 return (*memoperands_begin())->getSize(); 2212 } 2213 return None; 2214 } 2215 2216 Optional<unsigned> 2217 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2218 MMOList Accesses; 2219 if (TII->hasStoreToStackSlot(*this, Accesses)) 2220 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2221 return None; 2222 } 2223 2224 Optional<unsigned> 2225 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2226 int FI; 2227 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2228 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2229 if (MFI.isSpillSlotObjectIndex(FI)) 2230 return (*memoperands_begin())->getSize(); 2231 } 2232 return None; 2233 } 2234 2235 Optional<unsigned> 2236 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2237 MMOList Accesses; 2238 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2239 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2240 return None; 2241 } 2242