1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Assembly/Writer.h" 19 #include "llvm/CodeGen/MachineConstantPool.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/DebugInfo.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/MC/MCInstrDesc.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/LeakDetector.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetInstrInfo.h" 42 #include "llvm/Target/TargetMachine.h" 43 #include "llvm/Target/TargetRegisterInfo.h" 44 using namespace llvm; 45 46 //===----------------------------------------------------------------------===// 47 // MachineOperand Implementation 48 //===----------------------------------------------------------------------===// 49 50 void MachineOperand::setReg(unsigned Reg) { 51 if (getReg() == Reg) return; // No change. 52 53 // Otherwise, we have to change the register. If this operand is embedded 54 // into a machine function, we need to update the old and new register's 55 // use/def lists. 56 if (MachineInstr *MI = getParent()) 57 if (MachineBasicBlock *MBB = MI->getParent()) 58 if (MachineFunction *MF = MBB->getParent()) { 59 MachineRegisterInfo &MRI = MF->getRegInfo(); 60 MRI.removeRegOperandFromUseList(this); 61 SmallContents.RegNo = Reg; 62 MRI.addRegOperandToUseList(this); 63 return; 64 } 65 66 // Otherwise, just change the register, no problem. :) 67 SmallContents.RegNo = Reg; 68 } 69 70 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 71 const TargetRegisterInfo &TRI) { 72 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 73 if (SubIdx && getSubReg()) 74 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 75 setReg(Reg); 76 if (SubIdx) 77 setSubReg(SubIdx); 78 } 79 80 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 82 if (getSubReg()) { 83 Reg = TRI.getSubReg(Reg, getSubReg()); 84 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 85 // That won't happen in legal code. 86 setSubReg(0); 87 } 88 setReg(Reg); 89 } 90 91 /// Change a def to a use, or a use to a def. 92 void MachineOperand::setIsDef(bool Val) { 93 assert(isReg() && "Wrong MachineOperand accessor"); 94 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 95 if (IsDef == Val) 96 return; 97 // MRI may keep uses and defs in different list positions. 98 if (MachineInstr *MI = getParent()) 99 if (MachineBasicBlock *MBB = MI->getParent()) 100 if (MachineFunction *MF = MBB->getParent()) { 101 MachineRegisterInfo &MRI = MF->getRegInfo(); 102 MRI.removeRegOperandFromUseList(this); 103 IsDef = Val; 104 MRI.addRegOperandToUseList(this); 105 return; 106 } 107 IsDef = Val; 108 } 109 110 /// ChangeToImmediate - Replace this operand with a new immediate operand of 111 /// the specified value. If an operand is known to be an immediate already, 112 /// the setImm method should be used. 113 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 114 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 115 // If this operand is currently a register operand, and if this is in a 116 // function, deregister the operand from the register's use/def list. 117 if (isReg() && isOnRegUseList()) 118 if (MachineInstr *MI = getParent()) 119 if (MachineBasicBlock *MBB = MI->getParent()) 120 if (MachineFunction *MF = MBB->getParent()) 121 MF->getRegInfo().removeRegOperandFromUseList(this); 122 123 OpKind = MO_Immediate; 124 Contents.ImmVal = ImmVal; 125 } 126 127 /// ChangeToRegister - Replace this operand with a new register operand of 128 /// the specified value. If an operand is known to be an register already, 129 /// the setReg method should be used. 130 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 131 bool isKill, bool isDead, bool isUndef, 132 bool isDebug) { 133 MachineRegisterInfo *RegInfo = 0; 134 if (MachineInstr *MI = getParent()) 135 if (MachineBasicBlock *MBB = MI->getParent()) 136 if (MachineFunction *MF = MBB->getParent()) 137 RegInfo = &MF->getRegInfo(); 138 // If this operand is already a register operand, remove it from the 139 // register's use/def lists. 140 bool WasReg = isReg(); 141 if (RegInfo && WasReg) 142 RegInfo->removeRegOperandFromUseList(this); 143 144 // Change this to a register and set the reg#. 145 OpKind = MO_Register; 146 SmallContents.RegNo = Reg; 147 SubReg = 0; 148 IsDef = isDef; 149 IsImp = isImp; 150 IsKill = isKill; 151 IsDead = isDead; 152 IsUndef = isUndef; 153 IsInternalRead = false; 154 IsEarlyClobber = false; 155 IsDebug = isDebug; 156 // Ensure isOnRegUseList() returns false. 157 Contents.Reg.Prev = 0; 158 // Preserve the tie when the operand was already a register. 159 if (!WasReg) 160 TiedTo = 0; 161 162 // If this operand is embedded in a function, add the operand to the 163 // register's use/def list. 164 if (RegInfo) 165 RegInfo->addRegOperandToUseList(this); 166 } 167 168 /// isIdenticalTo - Return true if this operand is identical to the specified 169 /// operand. Note that this should stay in sync with the hash_value overload 170 /// below. 171 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 172 if (getType() != Other.getType() || 173 getTargetFlags() != Other.getTargetFlags()) 174 return false; 175 176 switch (getType()) { 177 case MachineOperand::MO_Register: 178 return getReg() == Other.getReg() && isDef() == Other.isDef() && 179 getSubReg() == Other.getSubReg(); 180 case MachineOperand::MO_Immediate: 181 return getImm() == Other.getImm(); 182 case MachineOperand::MO_CImmediate: 183 return getCImm() == Other.getCImm(); 184 case MachineOperand::MO_FPImmediate: 185 return getFPImm() == Other.getFPImm(); 186 case MachineOperand::MO_MachineBasicBlock: 187 return getMBB() == Other.getMBB(); 188 case MachineOperand::MO_FrameIndex: 189 return getIndex() == Other.getIndex(); 190 case MachineOperand::MO_ConstantPoolIndex: 191 case MachineOperand::MO_TargetIndex: 192 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 193 case MachineOperand::MO_JumpTableIndex: 194 return getIndex() == Other.getIndex(); 195 case MachineOperand::MO_GlobalAddress: 196 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 197 case MachineOperand::MO_ExternalSymbol: 198 return !strcmp(getSymbolName(), Other.getSymbolName()) && 199 getOffset() == Other.getOffset(); 200 case MachineOperand::MO_BlockAddress: 201 return getBlockAddress() == Other.getBlockAddress() && 202 getOffset() == Other.getOffset(); 203 case MO_RegisterMask: 204 return getRegMask() == Other.getRegMask(); 205 case MachineOperand::MO_MCSymbol: 206 return getMCSymbol() == Other.getMCSymbol(); 207 case MachineOperand::MO_Metadata: 208 return getMetadata() == Other.getMetadata(); 209 } 210 llvm_unreachable("Invalid machine operand type"); 211 } 212 213 // Note: this must stay exactly in sync with isIdenticalTo above. 214 hash_code llvm::hash_value(const MachineOperand &MO) { 215 switch (MO.getType()) { 216 case MachineOperand::MO_Register: 217 // Register operands don't have target flags. 218 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 219 case MachineOperand::MO_Immediate: 220 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 221 case MachineOperand::MO_CImmediate: 222 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 223 case MachineOperand::MO_FPImmediate: 224 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 225 case MachineOperand::MO_MachineBasicBlock: 226 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 227 case MachineOperand::MO_FrameIndex: 228 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 229 case MachineOperand::MO_ConstantPoolIndex: 230 case MachineOperand::MO_TargetIndex: 231 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 232 MO.getOffset()); 233 case MachineOperand::MO_JumpTableIndex: 234 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 235 case MachineOperand::MO_ExternalSymbol: 236 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 237 MO.getSymbolName()); 238 case MachineOperand::MO_GlobalAddress: 239 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 240 MO.getOffset()); 241 case MachineOperand::MO_BlockAddress: 242 return hash_combine(MO.getType(), MO.getTargetFlags(), 243 MO.getBlockAddress(), MO.getOffset()); 244 case MachineOperand::MO_RegisterMask: 245 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 246 case MachineOperand::MO_Metadata: 247 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 248 case MachineOperand::MO_MCSymbol: 249 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 250 } 251 llvm_unreachable("Invalid machine operand type"); 252 } 253 254 /// print - Print the specified machine operand. 255 /// 256 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 257 // If the instruction is embedded into a basic block, we can find the 258 // target info for the instruction. 259 if (!TM) 260 if (const MachineInstr *MI = getParent()) 261 if (const MachineBasicBlock *MBB = MI->getParent()) 262 if (const MachineFunction *MF = MBB->getParent()) 263 TM = &MF->getTarget(); 264 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 265 266 switch (getType()) { 267 case MachineOperand::MO_Register: 268 OS << PrintReg(getReg(), TRI, getSubReg()); 269 270 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 271 isInternalRead() || isEarlyClobber() || isTied()) { 272 OS << '<'; 273 bool NeedComma = false; 274 if (isDef()) { 275 if (NeedComma) OS << ','; 276 if (isEarlyClobber()) 277 OS << "earlyclobber,"; 278 if (isImplicit()) 279 OS << "imp-"; 280 OS << "def"; 281 NeedComma = true; 282 // <def,read-undef> only makes sense when getSubReg() is set. 283 // Don't clutter the output otherwise. 284 if (isUndef() && getSubReg()) 285 OS << ",read-undef"; 286 } else if (isImplicit()) { 287 OS << "imp-use"; 288 NeedComma = true; 289 } 290 291 if (isKill()) { 292 if (NeedComma) OS << ','; 293 OS << "kill"; 294 NeedComma = true; 295 } 296 if (isDead()) { 297 if (NeedComma) OS << ','; 298 OS << "dead"; 299 NeedComma = true; 300 } 301 if (isUndef() && isUse()) { 302 if (NeedComma) OS << ','; 303 OS << "undef"; 304 NeedComma = true; 305 } 306 if (isInternalRead()) { 307 if (NeedComma) OS << ','; 308 OS << "internal"; 309 NeedComma = true; 310 } 311 if (isTied()) { 312 if (NeedComma) OS << ','; 313 OS << "tied"; 314 if (TiedTo != 15) 315 OS << unsigned(TiedTo - 1); 316 NeedComma = true; 317 } 318 OS << '>'; 319 } 320 break; 321 case MachineOperand::MO_Immediate: 322 OS << getImm(); 323 break; 324 case MachineOperand::MO_CImmediate: 325 getCImm()->getValue().print(OS, false); 326 break; 327 case MachineOperand::MO_FPImmediate: 328 if (getFPImm()->getType()->isFloatTy()) 329 OS << getFPImm()->getValueAPF().convertToFloat(); 330 else 331 OS << getFPImm()->getValueAPF().convertToDouble(); 332 break; 333 case MachineOperand::MO_MachineBasicBlock: 334 OS << "<BB#" << getMBB()->getNumber() << ">"; 335 break; 336 case MachineOperand::MO_FrameIndex: 337 OS << "<fi#" << getIndex() << '>'; 338 break; 339 case MachineOperand::MO_ConstantPoolIndex: 340 OS << "<cp#" << getIndex(); 341 if (getOffset()) OS << "+" << getOffset(); 342 OS << '>'; 343 break; 344 case MachineOperand::MO_TargetIndex: 345 OS << "<ti#" << getIndex(); 346 if (getOffset()) OS << "+" << getOffset(); 347 OS << '>'; 348 break; 349 case MachineOperand::MO_JumpTableIndex: 350 OS << "<jt#" << getIndex() << '>'; 351 break; 352 case MachineOperand::MO_GlobalAddress: 353 OS << "<ga:"; 354 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 355 if (getOffset()) OS << "+" << getOffset(); 356 OS << '>'; 357 break; 358 case MachineOperand::MO_ExternalSymbol: 359 OS << "<es:" << getSymbolName(); 360 if (getOffset()) OS << "+" << getOffset(); 361 OS << '>'; 362 break; 363 case MachineOperand::MO_BlockAddress: 364 OS << '<'; 365 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 366 if (getOffset()) OS << "+" << getOffset(); 367 OS << '>'; 368 break; 369 case MachineOperand::MO_RegisterMask: 370 OS << "<regmask>"; 371 break; 372 case MachineOperand::MO_Metadata: 373 OS << '<'; 374 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 375 OS << '>'; 376 break; 377 case MachineOperand::MO_MCSymbol: 378 OS << "<MCSym=" << *getMCSymbol() << '>'; 379 break; 380 } 381 382 if (unsigned TF = getTargetFlags()) 383 OS << "[TF=" << TF << ']'; 384 } 385 386 //===----------------------------------------------------------------------===// 387 // MachineMemOperand Implementation 388 //===----------------------------------------------------------------------===// 389 390 /// getAddrSpace - Return the LLVM IR address space number that this pointer 391 /// points into. 392 unsigned MachinePointerInfo::getAddrSpace() const { 393 if (V == 0) return 0; 394 return cast<PointerType>(V->getType())->getAddressSpace(); 395 } 396 397 /// getConstantPool - Return a MachinePointerInfo record that refers to the 398 /// constant pool. 399 MachinePointerInfo MachinePointerInfo::getConstantPool() { 400 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 401 } 402 403 /// getFixedStack - Return a MachinePointerInfo record that refers to the 404 /// the specified FrameIndex. 405 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 406 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 407 } 408 409 MachinePointerInfo MachinePointerInfo::getJumpTable() { 410 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 411 } 412 413 MachinePointerInfo MachinePointerInfo::getGOT() { 414 return MachinePointerInfo(PseudoSourceValue::getGOT()); 415 } 416 417 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 418 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 419 } 420 421 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 422 uint64_t s, unsigned int a, 423 const MDNode *TBAAInfo, 424 const MDNode *Ranges) 425 : PtrInfo(ptrinfo), Size(s), 426 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 427 TBAAInfo(TBAAInfo), Ranges(Ranges) { 428 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 429 "invalid pointer value"); 430 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 431 assert((isLoad() || isStore()) && "Not a load/store!"); 432 } 433 434 /// Profile - Gather unique data for the object. 435 /// 436 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 437 ID.AddInteger(getOffset()); 438 ID.AddInteger(Size); 439 ID.AddPointer(getValue()); 440 ID.AddInteger(Flags); 441 } 442 443 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 444 // The Value and Offset may differ due to CSE. But the flags and size 445 // should be the same. 446 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 447 assert(MMO->getSize() == getSize() && "Size mismatch!"); 448 449 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 450 // Update the alignment value. 451 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 452 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 453 // Also update the base and offset, because the new alignment may 454 // not be applicable with the old ones. 455 PtrInfo = MMO->PtrInfo; 456 } 457 } 458 459 /// getAlignment - Return the minimum known alignment in bytes of the 460 /// actual memory reference. 461 uint64_t MachineMemOperand::getAlignment() const { 462 return MinAlign(getBaseAlignment(), getOffset()); 463 } 464 465 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 466 assert((MMO.isLoad() || MMO.isStore()) && 467 "SV has to be a load, store or both."); 468 469 if (MMO.isVolatile()) 470 OS << "Volatile "; 471 472 if (MMO.isLoad()) 473 OS << "LD"; 474 if (MMO.isStore()) 475 OS << "ST"; 476 OS << MMO.getSize(); 477 478 // Print the address information. 479 OS << "["; 480 if (!MMO.getValue()) 481 OS << "<unknown>"; 482 else 483 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 484 485 // If the alignment of the memory reference itself differs from the alignment 486 // of the base pointer, print the base alignment explicitly, next to the base 487 // pointer. 488 if (MMO.getBaseAlignment() != MMO.getAlignment()) 489 OS << "(align=" << MMO.getBaseAlignment() << ")"; 490 491 if (MMO.getOffset() != 0) 492 OS << "+" << MMO.getOffset(); 493 OS << "]"; 494 495 // Print the alignment of the reference. 496 if (MMO.getBaseAlignment() != MMO.getAlignment() || 497 MMO.getBaseAlignment() != MMO.getSize()) 498 OS << "(align=" << MMO.getAlignment() << ")"; 499 500 // Print TBAA info. 501 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 502 OS << "(tbaa="; 503 if (TBAAInfo->getNumOperands() > 0) 504 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 505 else 506 OS << "<unknown>"; 507 OS << ")"; 508 } 509 510 // Print nontemporal info. 511 if (MMO.isNonTemporal()) 512 OS << "(nontemporal)"; 513 514 return OS; 515 } 516 517 //===----------------------------------------------------------------------===// 518 // MachineInstr Implementation 519 //===----------------------------------------------------------------------===// 520 521 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 522 if (MCID->ImplicitDefs) 523 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 524 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 525 if (MCID->ImplicitUses) 526 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 527 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 528 } 529 530 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 531 /// implicit operands. It reserves space for the number of operands specified by 532 /// the MCInstrDesc. 533 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 534 const DebugLoc dl, bool NoImp) 535 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 536 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { 537 unsigned NumImplicitOps = 0; 538 if (!NoImp) 539 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 540 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 541 if (!NoImp) 542 addImplicitDefUseOperands(MF); 543 // Make sure that we get added to a machine basicblock 544 LeakDetector::addGarbageObject(this); 545 } 546 547 /// MachineInstr ctor - Copies MachineInstr arg exactly 548 /// 549 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 550 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0), 551 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 552 Parent(0), debugLoc(MI.getDebugLoc()) { 553 Operands.reserve(MI.getNumOperands()); 554 555 // Add operands 556 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 557 addOperand(MF, MI.getOperand(i)); 558 559 // Copy all the sensible flags. 560 setFlags(MI.Flags); 561 562 // Set parent to null. 563 Parent = 0; 564 565 LeakDetector::addGarbageObject(this); 566 } 567 568 MachineInstr::~MachineInstr() { 569 LeakDetector::removeGarbageObject(this); 570 #ifndef NDEBUG 571 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 572 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 573 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 574 "Reg operand def/use list corrupted"); 575 } 576 #endif 577 } 578 579 /// getRegInfo - If this instruction is embedded into a MachineFunction, 580 /// return the MachineRegisterInfo object for the current function, otherwise 581 /// return null. 582 MachineRegisterInfo *MachineInstr::getRegInfo() { 583 if (MachineBasicBlock *MBB = getParent()) 584 return &MBB->getParent()->getRegInfo(); 585 return 0; 586 } 587 588 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 589 /// this instruction from their respective use lists. This requires that the 590 /// operands already be on their use lists. 591 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 592 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 593 if (Operands[i].isReg()) 594 MRI.removeRegOperandFromUseList(&Operands[i]); 595 } 596 597 /// AddRegOperandsToUseLists - Add all of the register operands in 598 /// this instruction from their respective use lists. This requires that the 599 /// operands not be on their use lists yet. 600 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 601 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 602 if (Operands[i].isReg()) 603 MRI.addRegOperandToUseList(&Operands[i]); 604 } 605 606 void MachineInstr::addOperand(const MachineOperand &Op) { 607 MachineBasicBlock *MBB = getParent(); 608 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 609 MachineFunction *MF = MBB->getParent(); 610 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 611 addOperand(*MF, Op); 612 } 613 614 /// addOperand - Add the specified operand to the instruction. If it is an 615 /// implicit operand, it is added to the end of the operand list. If it is 616 /// an explicit operand it is added at the end of the explicit operand list 617 /// (before the first implicit operand). 618 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 619 assert(MCID && "Cannot add operands before providing an instr descriptor"); 620 bool isImpReg = Op.isReg() && Op.isImplicit(); 621 MachineRegisterInfo *RegInfo = getRegInfo(); 622 623 // If the Operands backing store is reallocated, all register operands must 624 // be removed and re-added to RegInfo. It is storing pointers to operands. 625 bool Reallocate = RegInfo && 626 !Operands.empty() && getNumOperands() == Operands.capacity(); 627 628 // Find the insert location for the new operand. Implicit registers go at 629 // the end, everything goes before the implicit regs. 630 unsigned OpNo = getNumOperands(); 631 632 // Remove all the implicit operands from RegInfo if they need to be shifted. 633 // FIXME: Allow mixed explicit and implicit operands on inline asm. 634 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 635 // implicit-defs, but they must not be moved around. See the FIXME in 636 // InstrEmitter.cpp. 637 if (!isImpReg && !isInlineAsm()) { 638 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 639 --OpNo; 640 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 641 if (RegInfo) 642 RegInfo->removeRegOperandFromUseList(&Operands[OpNo]); 643 } 644 } 645 646 // OpNo now points as the desired insertion point. Unless this is a variadic 647 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 648 // RegMask operands go between the explicit and implicit operands. 649 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 650 OpNo < MCID->getNumOperands()) && 651 "Trying to add an operand to a machine instr that is already done!"); 652 653 // All operands from OpNo have been removed from RegInfo. If the Operands 654 // backing store needs to be reallocated, we also need to remove any other 655 // register operands. 656 if (Reallocate) 657 for (unsigned i = 0; i != OpNo; ++i) 658 if (Operands[i].isReg()) 659 RegInfo->removeRegOperandFromUseList(&Operands[i]); 660 661 // Insert the new operand at OpNo. 662 Operands.insert(Operands.begin() + OpNo, Op); 663 Operands[OpNo].ParentMI = this; 664 665 // The Operands backing store has now been reallocated, so we can re-add the 666 // operands before OpNo. 667 if (Reallocate) 668 for (unsigned i = 0; i != OpNo; ++i) 669 if (Operands[i].isReg()) 670 RegInfo->addRegOperandToUseList(&Operands[i]); 671 672 // When adding a register operand, tell RegInfo about it. 673 if (Operands[OpNo].isReg()) { 674 // Ensure isOnRegUseList() returns false, regardless of Op's status. 675 Operands[OpNo].Contents.Reg.Prev = 0; 676 // Ignore existing ties. This is not a property that can be copied. 677 Operands[OpNo].TiedTo = 0; 678 // Add the new operand to RegInfo. 679 if (RegInfo) 680 RegInfo->addRegOperandToUseList(&Operands[OpNo]); 681 // The MCID operand information isn't accurate until we start adding 682 // explicit operands. The implicit operands are added first, then the 683 // explicits are inserted before them. 684 if (!isImpReg) { 685 // Tie uses to defs as indicated in MCInstrDesc. 686 if (Operands[OpNo].isUse()) { 687 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 688 if (DefIdx != -1) 689 tieOperands(DefIdx, OpNo); 690 } 691 // If the register operand is flagged as early, mark the operand as such. 692 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 693 Operands[OpNo].setIsEarlyClobber(true); 694 } 695 } 696 697 // Re-add all the implicit ops. 698 if (RegInfo) { 699 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) { 700 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 701 RegInfo->addRegOperandToUseList(&Operands[i]); 702 } 703 } 704 } 705 706 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 707 /// fewer operand than it started with. 708 /// 709 void MachineInstr::RemoveOperand(unsigned OpNo) { 710 assert(OpNo < getNumOperands() && "Invalid operand number"); 711 untieRegOperand(OpNo); 712 MachineRegisterInfo *RegInfo = getRegInfo(); 713 714 // If we have reginfo to update, remove all operands that will be shifted 715 // down from their reg lists, move everything down, then re-add them. 716 if (RegInfo) { 717 for (unsigned i = OpNo, e = getNumOperands(); i != e; ++i) { 718 if (Operands[i].isReg()) 719 RegInfo->removeRegOperandFromUseList(&Operands[i]); 720 } 721 } 722 723 #ifndef NDEBUG 724 // Moving tied operands would break the ties. 725 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 726 if (Operands[i].isReg()) 727 assert(!Operands[i].isTied() && "Cannot move tied operands"); 728 #endif 729 730 Operands.erase(Operands.begin()+OpNo); 731 732 if (RegInfo) { 733 for (unsigned i = OpNo, e = getNumOperands(); i != e; ++i) { 734 if (Operands[i].isReg()) 735 RegInfo->addRegOperandToUseList(&Operands[i]); 736 } 737 } 738 } 739 740 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 741 /// This function should be used only occasionally. The setMemRefs function 742 /// is the primary method for setting up a MachineInstr's MemRefs list. 743 void MachineInstr::addMemOperand(MachineFunction &MF, 744 MachineMemOperand *MO) { 745 mmo_iterator OldMemRefs = MemRefs; 746 uint16_t OldNumMemRefs = NumMemRefs; 747 748 uint16_t NewNum = NumMemRefs + 1; 749 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 750 751 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 752 NewMemRefs[NewNum - 1] = MO; 753 754 MemRefs = NewMemRefs; 755 NumMemRefs = NewNum; 756 } 757 758 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 759 const MachineBasicBlock *MBB = getParent(); 760 MachineBasicBlock::const_instr_iterator MII = *this; ++MII; 761 while (MII != MBB->end() && MII->isInsideBundle()) { 762 if (MII->getDesc().getFlags() & Mask) { 763 if (Type == AnyInBundle) 764 return true; 765 } else { 766 if (Type == AllInBundle) 767 return false; 768 } 769 ++MII; 770 } 771 772 return Type == AllInBundle; 773 } 774 775 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 776 MICheckType Check) const { 777 // If opcodes or number of operands are not the same then the two 778 // instructions are obviously not identical. 779 if (Other->getOpcode() != getOpcode() || 780 Other->getNumOperands() != getNumOperands()) 781 return false; 782 783 if (isBundle()) { 784 // Both instructions are bundles, compare MIs inside the bundle. 785 MachineBasicBlock::const_instr_iterator I1 = *this; 786 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 787 MachineBasicBlock::const_instr_iterator I2 = *Other; 788 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 789 while (++I1 != E1 && I1->isInsideBundle()) { 790 ++I2; 791 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 792 return false; 793 } 794 } 795 796 // Check operands to make sure they match. 797 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 798 const MachineOperand &MO = getOperand(i); 799 const MachineOperand &OMO = Other->getOperand(i); 800 if (!MO.isReg()) { 801 if (!MO.isIdenticalTo(OMO)) 802 return false; 803 continue; 804 } 805 806 // Clients may or may not want to ignore defs when testing for equality. 807 // For example, machine CSE pass only cares about finding common 808 // subexpressions, so it's safe to ignore virtual register defs. 809 if (MO.isDef()) { 810 if (Check == IgnoreDefs) 811 continue; 812 else if (Check == IgnoreVRegDefs) { 813 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 814 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 815 if (MO.getReg() != OMO.getReg()) 816 return false; 817 } else { 818 if (!MO.isIdenticalTo(OMO)) 819 return false; 820 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 821 return false; 822 } 823 } else { 824 if (!MO.isIdenticalTo(OMO)) 825 return false; 826 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 827 return false; 828 } 829 } 830 // If DebugLoc does not match then two dbg.values are not identical. 831 if (isDebugValue()) 832 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 833 && getDebugLoc() != Other->getDebugLoc()) 834 return false; 835 return true; 836 } 837 838 MachineInstr *MachineInstr::removeFromParent() { 839 assert(getParent() && "Not embedded in a basic block!"); 840 return getParent()->remove(this); 841 } 842 843 MachineInstr *MachineInstr::removeFromBundle() { 844 assert(getParent() && "Not embedded in a basic block!"); 845 return getParent()->remove_instr(this); 846 } 847 848 void MachineInstr::eraseFromParent() { 849 assert(getParent() && "Not embedded in a basic block!"); 850 getParent()->erase(this); 851 } 852 853 void MachineInstr::eraseFromBundle() { 854 assert(getParent() && "Not embedded in a basic block!"); 855 getParent()->erase_instr(this); 856 } 857 858 /// getNumExplicitOperands - Returns the number of non-implicit operands. 859 /// 860 unsigned MachineInstr::getNumExplicitOperands() const { 861 unsigned NumOperands = MCID->getNumOperands(); 862 if (!MCID->isVariadic()) 863 return NumOperands; 864 865 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 866 const MachineOperand &MO = getOperand(i); 867 if (!MO.isReg() || !MO.isImplicit()) 868 NumOperands++; 869 } 870 return NumOperands; 871 } 872 873 void MachineInstr::bundleWithPred() { 874 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 875 setFlag(BundledPred); 876 MachineBasicBlock::instr_iterator Pred = this; 877 --Pred; 878 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 879 Pred->setFlag(BundledSucc); 880 } 881 882 void MachineInstr::bundleWithSucc() { 883 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 884 setFlag(BundledSucc); 885 MachineBasicBlock::instr_iterator Succ = this; 886 ++Succ; 887 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 888 Succ->setFlag(BundledPred); 889 } 890 891 void MachineInstr::unbundleFromPred() { 892 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 893 clearFlag(BundledPred); 894 MachineBasicBlock::instr_iterator Pred = this; 895 --Pred; 896 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 897 Pred->clearFlag(BundledSucc); 898 } 899 900 void MachineInstr::unbundleFromSucc() { 901 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 902 clearFlag(BundledSucc); 903 MachineBasicBlock::instr_iterator Succ = this; 904 --Succ; 905 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 906 Succ->clearFlag(BundledPred); 907 } 908 909 bool MachineInstr::isStackAligningInlineAsm() const { 910 if (isInlineAsm()) { 911 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 912 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 913 return true; 914 } 915 return false; 916 } 917 918 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 919 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 920 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 921 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 922 } 923 924 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 925 unsigned *GroupNo) const { 926 assert(isInlineAsm() && "Expected an inline asm instruction"); 927 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 928 929 // Ignore queries about the initial operands. 930 if (OpIdx < InlineAsm::MIOp_FirstOperand) 931 return -1; 932 933 unsigned Group = 0; 934 unsigned NumOps; 935 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 936 i += NumOps) { 937 const MachineOperand &FlagMO = getOperand(i); 938 // If we reach the implicit register operands, stop looking. 939 if (!FlagMO.isImm()) 940 return -1; 941 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 942 if (i + NumOps > OpIdx) { 943 if (GroupNo) 944 *GroupNo = Group; 945 return i; 946 } 947 ++Group; 948 } 949 return -1; 950 } 951 952 const TargetRegisterClass* 953 MachineInstr::getRegClassConstraint(unsigned OpIdx, 954 const TargetInstrInfo *TII, 955 const TargetRegisterInfo *TRI) const { 956 assert(getParent() && "Can't have an MBB reference here!"); 957 assert(getParent()->getParent() && "Can't have an MF reference here!"); 958 const MachineFunction &MF = *getParent()->getParent(); 959 960 // Most opcodes have fixed constraints in their MCInstrDesc. 961 if (!isInlineAsm()) 962 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 963 964 if (!getOperand(OpIdx).isReg()) 965 return NULL; 966 967 // For tied uses on inline asm, get the constraint from the def. 968 unsigned DefIdx; 969 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 970 OpIdx = DefIdx; 971 972 // Inline asm stores register class constraints in the flag word. 973 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 974 if (FlagIdx < 0) 975 return NULL; 976 977 unsigned Flag = getOperand(FlagIdx).getImm(); 978 unsigned RCID; 979 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 980 return TRI->getRegClass(RCID); 981 982 // Assume that all registers in a memory operand are pointers. 983 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 984 return TRI->getPointerRegClass(MF); 985 986 return NULL; 987 } 988 989 /// getBundleSize - Return the number of instructions inside the MI bundle. 990 unsigned MachineInstr::getBundleSize() const { 991 assert(isBundle() && "Expecting a bundle"); 992 993 const MachineBasicBlock *MBB = getParent(); 994 MachineBasicBlock::const_instr_iterator I = *this, E = MBB->instr_end(); 995 unsigned Size = 0; 996 while ((++I != E) && I->isInsideBundle()) { 997 ++Size; 998 } 999 assert(Size > 1 && "Malformed bundle"); 1000 1001 return Size; 1002 } 1003 1004 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1005 /// the specific register or -1 if it is not found. It further tightens 1006 /// the search criteria to a use that kills the register if isKill is true. 1007 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1008 const TargetRegisterInfo *TRI) const { 1009 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1010 const MachineOperand &MO = getOperand(i); 1011 if (!MO.isReg() || !MO.isUse()) 1012 continue; 1013 unsigned MOReg = MO.getReg(); 1014 if (!MOReg) 1015 continue; 1016 if (MOReg == Reg || 1017 (TRI && 1018 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1019 TargetRegisterInfo::isPhysicalRegister(Reg) && 1020 TRI->isSubRegister(MOReg, Reg))) 1021 if (!isKill || MO.isKill()) 1022 return i; 1023 } 1024 return -1; 1025 } 1026 1027 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1028 /// indicating if this instruction reads or writes Reg. This also considers 1029 /// partial defines. 1030 std::pair<bool,bool> 1031 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1032 SmallVectorImpl<unsigned> *Ops) const { 1033 bool PartDef = false; // Partial redefine. 1034 bool FullDef = false; // Full define. 1035 bool Use = false; 1036 1037 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1038 const MachineOperand &MO = getOperand(i); 1039 if (!MO.isReg() || MO.getReg() != Reg) 1040 continue; 1041 if (Ops) 1042 Ops->push_back(i); 1043 if (MO.isUse()) 1044 Use |= !MO.isUndef(); 1045 else if (MO.getSubReg() && !MO.isUndef()) 1046 // A partial <def,undef> doesn't count as reading the register. 1047 PartDef = true; 1048 else 1049 FullDef = true; 1050 } 1051 // A partial redefine uses Reg unless there is also a full define. 1052 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1053 } 1054 1055 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1056 /// the specified register or -1 if it is not found. If isDead is true, defs 1057 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1058 /// also checks if there is a def of a super-register. 1059 int 1060 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1061 const TargetRegisterInfo *TRI) const { 1062 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1063 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1064 const MachineOperand &MO = getOperand(i); 1065 // Accept regmask operands when Overlap is set. 1066 // Ignore them when looking for a specific def operand (Overlap == false). 1067 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1068 return i; 1069 if (!MO.isReg() || !MO.isDef()) 1070 continue; 1071 unsigned MOReg = MO.getReg(); 1072 bool Found = (MOReg == Reg); 1073 if (!Found && TRI && isPhys && 1074 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1075 if (Overlap) 1076 Found = TRI->regsOverlap(MOReg, Reg); 1077 else 1078 Found = TRI->isSubRegister(MOReg, Reg); 1079 } 1080 if (Found && (!isDead || MO.isDead())) 1081 return i; 1082 } 1083 return -1; 1084 } 1085 1086 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1087 /// operand list that is used to represent the predicate. It returns -1 if 1088 /// none is found. 1089 int MachineInstr::findFirstPredOperandIdx() const { 1090 // Don't call MCID.findFirstPredOperandIdx() because this variant 1091 // is sometimes called on an instruction that's not yet complete, and 1092 // so the number of operands is less than the MCID indicates. In 1093 // particular, the PTX target does this. 1094 const MCInstrDesc &MCID = getDesc(); 1095 if (MCID.isPredicable()) { 1096 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1097 if (MCID.OpInfo[i].isPredicate()) 1098 return i; 1099 } 1100 1101 return -1; 1102 } 1103 1104 // MachineOperand::TiedTo is 4 bits wide. 1105 const unsigned TiedMax = 15; 1106 1107 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1108 /// 1109 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1110 /// field. TiedTo can have these values: 1111 /// 1112 /// 0: Operand is not tied to anything. 1113 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1114 /// TiedMax: Tied to an operand >= TiedMax-1. 1115 /// 1116 /// The tied def must be one of the first TiedMax operands on a normal 1117 /// instruction. INLINEASM instructions allow more tied defs. 1118 /// 1119 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1120 MachineOperand &DefMO = getOperand(DefIdx); 1121 MachineOperand &UseMO = getOperand(UseIdx); 1122 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1123 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1124 assert(!DefMO.isTied() && "Def is already tied to another use"); 1125 assert(!UseMO.isTied() && "Use is already tied to another def"); 1126 1127 if (DefIdx < TiedMax) 1128 UseMO.TiedTo = DefIdx + 1; 1129 else { 1130 // Inline asm can use the group descriptors to find tied operands, but on 1131 // normal instruction, the tied def must be within the first TiedMax 1132 // operands. 1133 assert(isInlineAsm() && "DefIdx out of range"); 1134 UseMO.TiedTo = TiedMax; 1135 } 1136 1137 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1138 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1139 } 1140 1141 /// Given the index of a tied register operand, find the operand it is tied to. 1142 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1143 /// which must exist. 1144 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1145 const MachineOperand &MO = getOperand(OpIdx); 1146 assert(MO.isTied() && "Operand isn't tied"); 1147 1148 // Normally TiedTo is in range. 1149 if (MO.TiedTo < TiedMax) 1150 return MO.TiedTo - 1; 1151 1152 // Uses on normal instructions can be out of range. 1153 if (!isInlineAsm()) { 1154 // Normal tied defs must be in the 0..TiedMax-1 range. 1155 if (MO.isUse()) 1156 return TiedMax - 1; 1157 // MO is a def. Search for the tied use. 1158 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1159 const MachineOperand &UseMO = getOperand(i); 1160 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1161 return i; 1162 } 1163 llvm_unreachable("Can't find tied use"); 1164 } 1165 1166 // Now deal with inline asm by parsing the operand group descriptor flags. 1167 // Find the beginning of each operand group. 1168 SmallVector<unsigned, 8> GroupIdx; 1169 unsigned OpIdxGroup = ~0u; 1170 unsigned NumOps; 1171 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1172 i += NumOps) { 1173 const MachineOperand &FlagMO = getOperand(i); 1174 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1175 unsigned CurGroup = GroupIdx.size(); 1176 GroupIdx.push_back(i); 1177 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1178 // OpIdx belongs to this operand group. 1179 if (OpIdx > i && OpIdx < i + NumOps) 1180 OpIdxGroup = CurGroup; 1181 unsigned TiedGroup; 1182 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1183 continue; 1184 // Operands in this group are tied to operands in TiedGroup which must be 1185 // earlier. Find the number of operands between the two groups. 1186 unsigned Delta = i - GroupIdx[TiedGroup]; 1187 1188 // OpIdx is a use tied to TiedGroup. 1189 if (OpIdxGroup == CurGroup) 1190 return OpIdx - Delta; 1191 1192 // OpIdx is a def tied to this use group. 1193 if (OpIdxGroup == TiedGroup) 1194 return OpIdx + Delta; 1195 } 1196 llvm_unreachable("Invalid tied operand on inline asm"); 1197 } 1198 1199 /// clearKillInfo - Clears kill flags on all operands. 1200 /// 1201 void MachineInstr::clearKillInfo() { 1202 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1203 MachineOperand &MO = getOperand(i); 1204 if (MO.isReg() && MO.isUse()) 1205 MO.setIsKill(false); 1206 } 1207 } 1208 1209 void MachineInstr::substituteRegister(unsigned FromReg, 1210 unsigned ToReg, 1211 unsigned SubIdx, 1212 const TargetRegisterInfo &RegInfo) { 1213 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1214 if (SubIdx) 1215 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1216 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1217 MachineOperand &MO = getOperand(i); 1218 if (!MO.isReg() || MO.getReg() != FromReg) 1219 continue; 1220 MO.substPhysReg(ToReg, RegInfo); 1221 } 1222 } else { 1223 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1224 MachineOperand &MO = getOperand(i); 1225 if (!MO.isReg() || MO.getReg() != FromReg) 1226 continue; 1227 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1228 } 1229 } 1230 } 1231 1232 /// isSafeToMove - Return true if it is safe to move this instruction. If 1233 /// SawStore is set to true, it means that there is a store (or call) between 1234 /// the instruction's location and its intended destination. 1235 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1236 AliasAnalysis *AA, 1237 bool &SawStore) const { 1238 // Ignore stuff that we obviously can't move. 1239 // 1240 // Treat volatile loads as stores. This is not strictly necessary for 1241 // volatiles, but it is required for atomic loads. It is not allowed to move 1242 // a load across an atomic load with Ordering > Monotonic. 1243 if (mayStore() || isCall() || 1244 (mayLoad() && hasOrderedMemoryRef())) { 1245 SawStore = true; 1246 return false; 1247 } 1248 1249 if (isLabel() || isDebugValue() || 1250 isTerminator() || hasUnmodeledSideEffects()) 1251 return false; 1252 1253 // See if this instruction does a load. If so, we have to guarantee that the 1254 // loaded value doesn't change between the load and the its intended 1255 // destination. The check for isInvariantLoad gives the targe the chance to 1256 // classify the load as always returning a constant, e.g. a constant pool 1257 // load. 1258 if (mayLoad() && !isInvariantLoad(AA)) 1259 // Otherwise, this is a real load. If there is a store between the load and 1260 // end of block, we can't move it. 1261 return !SawStore; 1262 1263 return true; 1264 } 1265 1266 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1267 /// instruction which defined the specified register instead of copying it. 1268 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1269 AliasAnalysis *AA, 1270 unsigned DstReg) const { 1271 bool SawStore = false; 1272 if (!TII->isTriviallyReMaterializable(this, AA) || 1273 !isSafeToMove(TII, AA, SawStore)) 1274 return false; 1275 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1276 const MachineOperand &MO = getOperand(i); 1277 if (!MO.isReg()) 1278 continue; 1279 // FIXME: For now, do not remat any instruction with register operands. 1280 // Later on, we can loosen the restriction is the register operands have 1281 // not been modified between the def and use. Note, this is different from 1282 // MachineSink because the code is no longer in two-address form (at least 1283 // partially). 1284 if (MO.isUse()) 1285 return false; 1286 else if (!MO.isDead() && MO.getReg() != DstReg) 1287 return false; 1288 } 1289 return true; 1290 } 1291 1292 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1293 /// or volatile memory reference, or if the information describing the memory 1294 /// reference is not available. Return false if it is known to have no ordered 1295 /// memory references. 1296 bool MachineInstr::hasOrderedMemoryRef() const { 1297 // An instruction known never to access memory won't have a volatile access. 1298 if (!mayStore() && 1299 !mayLoad() && 1300 !isCall() && 1301 !hasUnmodeledSideEffects()) 1302 return false; 1303 1304 // Otherwise, if the instruction has no memory reference information, 1305 // conservatively assume it wasn't preserved. 1306 if (memoperands_empty()) 1307 return true; 1308 1309 // Check the memory reference information for ordered references. 1310 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1311 if (!(*I)->isUnordered()) 1312 return true; 1313 1314 return false; 1315 } 1316 1317 /// isInvariantLoad - Return true if this instruction is loading from a 1318 /// location whose value is invariant across the function. For example, 1319 /// loading a value from the constant pool or from the argument area 1320 /// of a function if it does not change. This should only return true of 1321 /// *all* loads the instruction does are invariant (if it does multiple loads). 1322 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1323 // If the instruction doesn't load at all, it isn't an invariant load. 1324 if (!mayLoad()) 1325 return false; 1326 1327 // If the instruction has lost its memoperands, conservatively assume that 1328 // it may not be an invariant load. 1329 if (memoperands_empty()) 1330 return false; 1331 1332 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1333 1334 for (mmo_iterator I = memoperands_begin(), 1335 E = memoperands_end(); I != E; ++I) { 1336 if ((*I)->isVolatile()) return false; 1337 if ((*I)->isStore()) return false; 1338 if ((*I)->isInvariant()) return true; 1339 1340 if (const Value *V = (*I)->getValue()) { 1341 // A load from a constant PseudoSourceValue is invariant. 1342 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1343 if (PSV->isConstant(MFI)) 1344 continue; 1345 // If we have an AliasAnalysis, ask it whether the memory is constant. 1346 if (AA && AA->pointsToConstantMemory( 1347 AliasAnalysis::Location(V, (*I)->getSize(), 1348 (*I)->getTBAAInfo()))) 1349 continue; 1350 } 1351 1352 // Otherwise assume conservatively. 1353 return false; 1354 } 1355 1356 // Everything checks out. 1357 return true; 1358 } 1359 1360 /// isConstantValuePHI - If the specified instruction is a PHI that always 1361 /// merges together the same virtual register, return the register, otherwise 1362 /// return 0. 1363 unsigned MachineInstr::isConstantValuePHI() const { 1364 if (!isPHI()) 1365 return 0; 1366 assert(getNumOperands() >= 3 && 1367 "It's illegal to have a PHI without source operands"); 1368 1369 unsigned Reg = getOperand(1).getReg(); 1370 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1371 if (getOperand(i).getReg() != Reg) 1372 return 0; 1373 return Reg; 1374 } 1375 1376 bool MachineInstr::hasUnmodeledSideEffects() const { 1377 if (hasProperty(MCID::UnmodeledSideEffects)) 1378 return true; 1379 if (isInlineAsm()) { 1380 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1381 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1382 return true; 1383 } 1384 1385 return false; 1386 } 1387 1388 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1389 /// 1390 bool MachineInstr::allDefsAreDead() const { 1391 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1392 const MachineOperand &MO = getOperand(i); 1393 if (!MO.isReg() || MO.isUse()) 1394 continue; 1395 if (!MO.isDead()) 1396 return false; 1397 } 1398 return true; 1399 } 1400 1401 /// copyImplicitOps - Copy implicit register operands from specified 1402 /// instruction to this instruction. 1403 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1404 const MachineInstr *MI) { 1405 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1406 i != e; ++i) { 1407 const MachineOperand &MO = MI->getOperand(i); 1408 if (MO.isReg() && MO.isImplicit()) 1409 addOperand(MF, MO); 1410 } 1411 } 1412 1413 void MachineInstr::dump() const { 1414 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1415 dbgs() << " " << *this; 1416 #endif 1417 } 1418 1419 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1420 raw_ostream &CommentOS) { 1421 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1422 if (!DL.isUnknown()) { // Print source line info. 1423 DIScope Scope(DL.getScope(Ctx)); 1424 // Omit the directory, because it's likely to be long and uninteresting. 1425 if (Scope.Verify()) 1426 CommentOS << Scope.getFilename(); 1427 else 1428 CommentOS << "<unknown>"; 1429 CommentOS << ':' << DL.getLine(); 1430 if (DL.getCol() != 0) 1431 CommentOS << ':' << DL.getCol(); 1432 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1433 if (!InlinedAtDL.isUnknown()) { 1434 CommentOS << " @[ "; 1435 printDebugLoc(InlinedAtDL, MF, CommentOS); 1436 CommentOS << " ]"; 1437 } 1438 } 1439 } 1440 1441 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1442 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1443 const MachineFunction *MF = 0; 1444 const MachineRegisterInfo *MRI = 0; 1445 if (const MachineBasicBlock *MBB = getParent()) { 1446 MF = MBB->getParent(); 1447 if (!TM && MF) 1448 TM = &MF->getTarget(); 1449 if (MF) 1450 MRI = &MF->getRegInfo(); 1451 } 1452 1453 // Save a list of virtual registers. 1454 SmallVector<unsigned, 8> VirtRegs; 1455 1456 // Print explicitly defined operands on the left of an assignment syntax. 1457 unsigned StartOp = 0, e = getNumOperands(); 1458 for (; StartOp < e && getOperand(StartOp).isReg() && 1459 getOperand(StartOp).isDef() && 1460 !getOperand(StartOp).isImplicit(); 1461 ++StartOp) { 1462 if (StartOp != 0) OS << ", "; 1463 getOperand(StartOp).print(OS, TM); 1464 unsigned Reg = getOperand(StartOp).getReg(); 1465 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1466 VirtRegs.push_back(Reg); 1467 } 1468 1469 if (StartOp != 0) 1470 OS << " = "; 1471 1472 // Print the opcode name. 1473 if (TM && TM->getInstrInfo()) 1474 OS << TM->getInstrInfo()->getName(getOpcode()); 1475 else 1476 OS << "UNKNOWN"; 1477 1478 // Print the rest of the operands. 1479 bool OmittedAnyCallClobbers = false; 1480 bool FirstOp = true; 1481 unsigned AsmDescOp = ~0u; 1482 unsigned AsmOpCount = 0; 1483 1484 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1485 // Print asm string. 1486 OS << " "; 1487 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1488 1489 // Print HasSideEffects, IsAlignStack 1490 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1491 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1492 OS << " [sideeffect]"; 1493 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1494 OS << " [alignstack]"; 1495 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1496 OS << " [attdialect]"; 1497 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1498 OS << " [inteldialect]"; 1499 1500 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1501 FirstOp = false; 1502 } 1503 1504 1505 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1506 const MachineOperand &MO = getOperand(i); 1507 1508 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1509 VirtRegs.push_back(MO.getReg()); 1510 1511 // Omit call-clobbered registers which aren't used anywhere. This makes 1512 // call instructions much less noisy on targets where calls clobber lots 1513 // of registers. Don't rely on MO.isDead() because we may be called before 1514 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1515 if (MF && isCall() && 1516 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1517 unsigned Reg = MO.getReg(); 1518 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1519 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1520 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1521 bool HasAliasLive = false; 1522 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); 1523 AI.isValid(); ++AI) { 1524 unsigned AliasReg = *AI; 1525 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1526 HasAliasLive = true; 1527 break; 1528 } 1529 } 1530 if (!HasAliasLive) { 1531 OmittedAnyCallClobbers = true; 1532 continue; 1533 } 1534 } 1535 } 1536 } 1537 1538 if (FirstOp) FirstOp = false; else OS << ","; 1539 OS << " "; 1540 if (i < getDesc().NumOperands) { 1541 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1542 if (MCOI.isPredicate()) 1543 OS << "pred:"; 1544 if (MCOI.isOptionalDef()) 1545 OS << "opt:"; 1546 } 1547 if (isDebugValue() && MO.isMetadata()) { 1548 // Pretty print DBG_VALUE instructions. 1549 const MDNode *MD = MO.getMetadata(); 1550 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1551 OS << "!\"" << MDS->getString() << '\"'; 1552 else 1553 MO.print(OS, TM); 1554 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1555 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1556 } else if (i == AsmDescOp && MO.isImm()) { 1557 // Pretty print the inline asm operand descriptor. 1558 OS << '$' << AsmOpCount++; 1559 unsigned Flag = MO.getImm(); 1560 switch (InlineAsm::getKind(Flag)) { 1561 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1562 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1563 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1564 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1565 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1566 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1567 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1568 } 1569 1570 unsigned RCID = 0; 1571 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1572 if (TM) 1573 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1574 else 1575 OS << ":RC" << RCID; 1576 } 1577 1578 unsigned TiedTo = 0; 1579 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1580 OS << " tiedto:$" << TiedTo; 1581 1582 OS << ']'; 1583 1584 // Compute the index of the next operand descriptor. 1585 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1586 } else 1587 MO.print(OS, TM); 1588 } 1589 1590 // Briefly indicate whether any call clobbers were omitted. 1591 if (OmittedAnyCallClobbers) { 1592 if (!FirstOp) OS << ","; 1593 OS << " ..."; 1594 } 1595 1596 bool HaveSemi = false; 1597 if (Flags) { 1598 if (!HaveSemi) OS << ";"; HaveSemi = true; 1599 OS << " flags: "; 1600 1601 if (Flags & FrameSetup) 1602 OS << "FrameSetup"; 1603 } 1604 1605 if (!memoperands_empty()) { 1606 if (!HaveSemi) OS << ";"; HaveSemi = true; 1607 1608 OS << " mem:"; 1609 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1610 i != e; ++i) { 1611 OS << **i; 1612 if (llvm::next(i) != e) 1613 OS << " "; 1614 } 1615 } 1616 1617 // Print the regclass of any virtual registers encountered. 1618 if (MRI && !VirtRegs.empty()) { 1619 if (!HaveSemi) OS << ";"; HaveSemi = true; 1620 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1621 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1622 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1623 for (unsigned j = i+1; j != VirtRegs.size();) { 1624 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1625 ++j; 1626 continue; 1627 } 1628 if (VirtRegs[i] != VirtRegs[j]) 1629 OS << "," << PrintReg(VirtRegs[j]); 1630 VirtRegs.erase(VirtRegs.begin()+j); 1631 } 1632 } 1633 } 1634 1635 // Print debug location information. 1636 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1637 if (!HaveSemi) OS << ";"; HaveSemi = true; 1638 DIVariable DV(getOperand(e - 1).getMetadata()); 1639 OS << " line no:" << DV.getLineNumber(); 1640 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1641 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1642 if (!InlinedAtDL.isUnknown()) { 1643 OS << " inlined @[ "; 1644 printDebugLoc(InlinedAtDL, MF, OS); 1645 OS << " ]"; 1646 } 1647 } 1648 } else if (!debugLoc.isUnknown() && MF) { 1649 if (!HaveSemi) OS << ";"; HaveSemi = true; 1650 OS << " dbg:"; 1651 printDebugLoc(debugLoc, MF, OS); 1652 } 1653 1654 OS << '\n'; 1655 } 1656 1657 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1658 const TargetRegisterInfo *RegInfo, 1659 bool AddIfNotFound) { 1660 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1661 bool hasAliases = isPhysReg && 1662 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1663 bool Found = false; 1664 SmallVector<unsigned,4> DeadOps; 1665 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1666 MachineOperand &MO = getOperand(i); 1667 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1668 continue; 1669 unsigned Reg = MO.getReg(); 1670 if (!Reg) 1671 continue; 1672 1673 if (Reg == IncomingReg) { 1674 if (!Found) { 1675 if (MO.isKill()) 1676 // The register is already marked kill. 1677 return true; 1678 if (isPhysReg && isRegTiedToDefOperand(i)) 1679 // Two-address uses of physregs must not be marked kill. 1680 return true; 1681 MO.setIsKill(); 1682 Found = true; 1683 } 1684 } else if (hasAliases && MO.isKill() && 1685 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1686 // A super-register kill already exists. 1687 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1688 return true; 1689 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1690 DeadOps.push_back(i); 1691 } 1692 } 1693 1694 // Trim unneeded kill operands. 1695 while (!DeadOps.empty()) { 1696 unsigned OpIdx = DeadOps.back(); 1697 if (getOperand(OpIdx).isImplicit()) 1698 RemoveOperand(OpIdx); 1699 else 1700 getOperand(OpIdx).setIsKill(false); 1701 DeadOps.pop_back(); 1702 } 1703 1704 // If not found, this means an alias of one of the operands is killed. Add a 1705 // new implicit operand if required. 1706 if (!Found && AddIfNotFound) { 1707 addOperand(MachineOperand::CreateReg(IncomingReg, 1708 false /*IsDef*/, 1709 true /*IsImp*/, 1710 true /*IsKill*/)); 1711 return true; 1712 } 1713 return Found; 1714 } 1715 1716 void MachineInstr::clearRegisterKills(unsigned Reg, 1717 const TargetRegisterInfo *RegInfo) { 1718 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1719 RegInfo = 0; 1720 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1721 MachineOperand &MO = getOperand(i); 1722 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1723 continue; 1724 unsigned OpReg = MO.getReg(); 1725 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1726 MO.setIsKill(false); 1727 } 1728 } 1729 1730 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1731 const TargetRegisterInfo *RegInfo, 1732 bool AddIfNotFound) { 1733 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1734 bool hasAliases = isPhysReg && 1735 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1736 bool Found = false; 1737 SmallVector<unsigned,4> DeadOps; 1738 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1739 MachineOperand &MO = getOperand(i); 1740 if (!MO.isReg() || !MO.isDef()) 1741 continue; 1742 unsigned Reg = MO.getReg(); 1743 if (!Reg) 1744 continue; 1745 1746 if (Reg == IncomingReg) { 1747 MO.setIsDead(); 1748 Found = true; 1749 } else if (hasAliases && MO.isDead() && 1750 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1751 // There exists a super-register that's marked dead. 1752 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1753 return true; 1754 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1755 DeadOps.push_back(i); 1756 } 1757 } 1758 1759 // Trim unneeded dead operands. 1760 while (!DeadOps.empty()) { 1761 unsigned OpIdx = DeadOps.back(); 1762 if (getOperand(OpIdx).isImplicit()) 1763 RemoveOperand(OpIdx); 1764 else 1765 getOperand(OpIdx).setIsDead(false); 1766 DeadOps.pop_back(); 1767 } 1768 1769 // If not found, this means an alias of one of the operands is dead. Add a 1770 // new implicit operand if required. 1771 if (Found || !AddIfNotFound) 1772 return Found; 1773 1774 addOperand(MachineOperand::CreateReg(IncomingReg, 1775 true /*IsDef*/, 1776 true /*IsImp*/, 1777 false /*IsKill*/, 1778 true /*IsDead*/)); 1779 return true; 1780 } 1781 1782 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1783 const TargetRegisterInfo *RegInfo) { 1784 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1785 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1786 if (MO) 1787 return; 1788 } else { 1789 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1790 const MachineOperand &MO = getOperand(i); 1791 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1792 MO.getSubReg() == 0) 1793 return; 1794 } 1795 } 1796 addOperand(MachineOperand::CreateReg(IncomingReg, 1797 true /*IsDef*/, 1798 true /*IsImp*/)); 1799 } 1800 1801 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1802 const TargetRegisterInfo &TRI) { 1803 bool HasRegMask = false; 1804 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1805 MachineOperand &MO = getOperand(i); 1806 if (MO.isRegMask()) { 1807 HasRegMask = true; 1808 continue; 1809 } 1810 if (!MO.isReg() || !MO.isDef()) continue; 1811 unsigned Reg = MO.getReg(); 1812 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1813 bool Dead = true; 1814 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1815 I != E; ++I) 1816 if (TRI.regsOverlap(*I, Reg)) { 1817 Dead = false; 1818 break; 1819 } 1820 // If there are no uses, including partial uses, the def is dead. 1821 if (Dead) MO.setIsDead(); 1822 } 1823 1824 // This is a call with a register mask operand. 1825 // Mask clobbers are always dead, so add defs for the non-dead defines. 1826 if (HasRegMask) 1827 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1828 I != E; ++I) 1829 addRegisterDefined(*I, &TRI); 1830 } 1831 1832 unsigned 1833 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1834 // Build up a buffer of hash code components. 1835 SmallVector<size_t, 8> HashComponents; 1836 HashComponents.reserve(MI->getNumOperands() + 1); 1837 HashComponents.push_back(MI->getOpcode()); 1838 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1839 const MachineOperand &MO = MI->getOperand(i); 1840 if (MO.isReg() && MO.isDef() && 1841 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1842 continue; // Skip virtual register defs. 1843 1844 HashComponents.push_back(hash_value(MO)); 1845 } 1846 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1847 } 1848 1849 void MachineInstr::emitError(StringRef Msg) const { 1850 // Find the source location cookie. 1851 unsigned LocCookie = 0; 1852 const MDNode *LocMD = 0; 1853 for (unsigned i = getNumOperands(); i != 0; --i) { 1854 if (getOperand(i-1).isMetadata() && 1855 (LocMD = getOperand(i-1).getMetadata()) && 1856 LocMD->getNumOperands() != 0) { 1857 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1858 LocCookie = CI->getZExtValue(); 1859 break; 1860 } 1861 } 1862 } 1863 1864 if (const MachineBasicBlock *MBB = getParent()) 1865 if (const MachineFunction *MF = MBB->getParent()) 1866 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1867 report_fatal_error(Msg); 1868 } 1869