xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 9c7ca51b2c9ec648dc69f4891000f2a11ca7698e)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCInstrDesc.h"
58 #include "llvm/MC/MCRegisterInfo.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/FormattedStream.h"
66 #include "llvm/Support/LowLevelTypeImpl.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <cstring>
76 #include <iterator>
77 #include <utility>
78 
79 using namespace llvm;
80 
81 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
82   if (const MachineBasicBlock *MBB = MI.getParent())
83     if (const MachineFunction *MF = MBB->getParent())
84       return MF;
85   return nullptr;
86 }
87 
88 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
89 // it.
90 static void tryToGetTargetInfo(const MachineInstr &MI,
91                                const TargetRegisterInfo *&TRI,
92                                const MachineRegisterInfo *&MRI,
93                                const TargetIntrinsicInfo *&IntrinsicInfo,
94                                const TargetInstrInfo *&TII) {
95 
96   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
97     TRI = MF->getSubtarget().getRegisterInfo();
98     MRI = &MF->getRegInfo();
99     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
100     TII = MF->getSubtarget().getInstrInfo();
101   }
102 }
103 
104 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
105   if (MCID->ImplicitDefs)
106     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
107            ++ImpDefs)
108       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
109   if (MCID->ImplicitUses)
110     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
111            ++ImpUses)
112       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
113 }
114 
115 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
116 /// implicit operands. It reserves space for the number of operands specified by
117 /// the MCInstrDesc.
118 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
119                            DebugLoc DL, bool NoImp)
120     : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) {
121   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
122 
123   // Reserve space for the expected number of operands.
124   if (unsigned NumOps = MCID->getNumOperands() +
125     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
126     CapOperands = OperandCapacity::get(NumOps);
127     Operands = MF.allocateOperandArray(CapOperands);
128   }
129 
130   if (!NoImp)
131     addImplicitDefUseOperands(MF);
132 }
133 
134 /// MachineInstr ctor - Copies MachineInstr arg exactly.
135 /// Does not copy the number from debug instruction numbering, to preserve
136 /// uniqueness.
137 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
138     : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()),
139       DebugInstrNum(0) {
140   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
141 
142   CapOperands = OperandCapacity::get(MI.getNumOperands());
143   Operands = MF.allocateOperandArray(CapOperands);
144 
145   // Copy operands.
146   for (const MachineOperand &MO : MI.operands())
147     addOperand(MF, MO);
148 
149   // Copy all the sensible flags.
150   setFlags(MI.Flags);
151 }
152 
153 void MachineInstr::moveBefore(MachineInstr *MovePos) {
154   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
155 }
156 
157 /// getRegInfo - If this instruction is embedded into a MachineFunction,
158 /// return the MachineRegisterInfo object for the current function, otherwise
159 /// return null.
160 MachineRegisterInfo *MachineInstr::getRegInfo() {
161   if (MachineBasicBlock *MBB = getParent())
162     return &MBB->getParent()->getRegInfo();
163   return nullptr;
164 }
165 
166 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
167 /// this instruction from their respective use lists.  This requires that the
168 /// operands already be on their use lists.
169 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
170   for (MachineOperand &MO : operands())
171     if (MO.isReg())
172       MRI.removeRegOperandFromUseList(&MO);
173 }
174 
175 /// AddRegOperandsToUseLists - Add all of the register operands in
176 /// this instruction from their respective use lists.  This requires that the
177 /// operands not be on their use lists yet.
178 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
179   for (MachineOperand &MO : operands())
180     if (MO.isReg())
181       MRI.addRegOperandToUseList(&MO);
182 }
183 
184 void MachineInstr::addOperand(const MachineOperand &Op) {
185   MachineBasicBlock *MBB = getParent();
186   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
187   MachineFunction *MF = MBB->getParent();
188   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
189   addOperand(*MF, Op);
190 }
191 
192 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
193 /// ranges. If MRI is non-null also update use-def chains.
194 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
195                          unsigned NumOps, MachineRegisterInfo *MRI) {
196   if (MRI)
197     return MRI->moveOperands(Dst, Src, NumOps);
198   // MachineOperand is a trivially copyable type so we can just use memmove.
199   assert(Dst && Src && "Unknown operands");
200   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
201 }
202 
203 /// addOperand - Add the specified operand to the instruction.  If it is an
204 /// implicit operand, it is added to the end of the operand list.  If it is
205 /// an explicit operand it is added at the end of the explicit operand list
206 /// (before the first implicit operand).
207 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
208   assert(MCID && "Cannot add operands before providing an instr descriptor");
209 
210   // Check if we're adding one of our existing operands.
211   if (&Op >= Operands && &Op < Operands + NumOperands) {
212     // This is unusual: MI->addOperand(MI->getOperand(i)).
213     // If adding Op requires reallocating or moving existing operands around,
214     // the Op reference could go stale. Support it by copying Op.
215     MachineOperand CopyOp(Op);
216     return addOperand(MF, CopyOp);
217   }
218 
219   // Find the insert location for the new operand.  Implicit registers go at
220   // the end, everything else goes before the implicit regs.
221   //
222   // FIXME: Allow mixed explicit and implicit operands on inline asm.
223   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
224   // implicit-defs, but they must not be moved around.  See the FIXME in
225   // InstrEmitter.cpp.
226   unsigned OpNo = getNumOperands();
227   bool isImpReg = Op.isReg() && Op.isImplicit();
228   if (!isImpReg && !isInlineAsm()) {
229     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
230       --OpNo;
231       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
232     }
233   }
234 
235   // OpNo now points as the desired insertion point.  Unless this is a variadic
236   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
237   // RegMask operands go between the explicit and implicit operands.
238   assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() ||
239           Op.isValidExcessOperand()) &&
240          "Trying to add an operand to a machine instr that is already done!");
241 
242   MachineRegisterInfo *MRI = getRegInfo();
243 
244   // Determine if the Operands array needs to be reallocated.
245   // Save the old capacity and operand array.
246   OperandCapacity OldCap = CapOperands;
247   MachineOperand *OldOperands = Operands;
248   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
249     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
250     Operands = MF.allocateOperandArray(CapOperands);
251     // Move the operands before the insertion point.
252     if (OpNo)
253       moveOperands(Operands, OldOperands, OpNo, MRI);
254   }
255 
256   // Move the operands following the insertion point.
257   if (OpNo != NumOperands)
258     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
259                  MRI);
260   ++NumOperands;
261 
262   // Deallocate the old operand array.
263   if (OldOperands != Operands && OldOperands)
264     MF.deallocateOperandArray(OldCap, OldOperands);
265 
266   // Copy Op into place. It still needs to be inserted into the MRI use lists.
267   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
268   NewMO->ParentMI = this;
269 
270   // When adding a register operand, tell MRI about it.
271   if (NewMO->isReg()) {
272     // Ensure isOnRegUseList() returns false, regardless of Op's status.
273     NewMO->Contents.Reg.Prev = nullptr;
274     // Ignore existing ties. This is not a property that can be copied.
275     NewMO->TiedTo = 0;
276     // Add the new operand to MRI, but only for instructions in an MBB.
277     if (MRI)
278       MRI->addRegOperandToUseList(NewMO);
279     // The MCID operand information isn't accurate until we start adding
280     // explicit operands. The implicit operands are added first, then the
281     // explicits are inserted before them.
282     if (!isImpReg) {
283       // Tie uses to defs as indicated in MCInstrDesc.
284       if (NewMO->isUse()) {
285         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
286         if (DefIdx != -1)
287           tieOperands(DefIdx, OpNo);
288       }
289       // If the register operand is flagged as early, mark the operand as such.
290       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
291         NewMO->setIsEarlyClobber(true);
292     }
293     // Ensure debug instructions set debug flag on register uses.
294     if (NewMO->isUse() && isDebugInstr())
295       NewMO->setIsDebug();
296   }
297 }
298 
299 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
300 /// fewer operand than it started with.
301 ///
302 void MachineInstr::RemoveOperand(unsigned OpNo) {
303   assert(OpNo < getNumOperands() && "Invalid operand number");
304   untieRegOperand(OpNo);
305 
306 #ifndef NDEBUG
307   // Moving tied operands would break the ties.
308   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
309     if (Operands[i].isReg())
310       assert(!Operands[i].isTied() && "Cannot move tied operands");
311 #endif
312 
313   MachineRegisterInfo *MRI = getRegInfo();
314   if (MRI && Operands[OpNo].isReg())
315     MRI->removeRegOperandFromUseList(Operands + OpNo);
316 
317   // Don't call the MachineOperand destructor. A lot of this code depends on
318   // MachineOperand having a trivial destructor anyway, and adding a call here
319   // wouldn't make it 'destructor-correct'.
320 
321   if (unsigned N = NumOperands - 1 - OpNo)
322     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
323   --NumOperands;
324 }
325 
326 void MachineInstr::setExtraInfo(MachineFunction &MF,
327                                 ArrayRef<MachineMemOperand *> MMOs,
328                                 MCSymbol *PreInstrSymbol,
329                                 MCSymbol *PostInstrSymbol,
330                                 MDNode *HeapAllocMarker) {
331   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
332   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
333   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
334   int NumPointers =
335       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
336 
337   // Drop all extra info if there is none.
338   if (NumPointers <= 0) {
339     Info.clear();
340     return;
341   }
342 
343   // If more than one pointer, then store out of line. Store heap alloc markers
344   // out of line because PointerSumType cannot hold more than 4 tag types with
345   // 32-bit pointers.
346   // FIXME: Maybe we should make the symbols in the extra info mutable?
347   else if (NumPointers > 1 || HasHeapAllocMarker) {
348     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
349         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
350     return;
351   }
352 
353   // Otherwise store the single pointer inline.
354   if (HasPreInstrSymbol)
355     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
356   else if (HasPostInstrSymbol)
357     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
358   else
359     Info.set<EIIK_MMO>(MMOs[0]);
360 }
361 
362 void MachineInstr::dropMemRefs(MachineFunction &MF) {
363   if (memoperands_empty())
364     return;
365 
366   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
367                getHeapAllocMarker());
368 }
369 
370 void MachineInstr::setMemRefs(MachineFunction &MF,
371                               ArrayRef<MachineMemOperand *> MMOs) {
372   if (MMOs.empty()) {
373     dropMemRefs(MF);
374     return;
375   }
376 
377   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
378                getHeapAllocMarker());
379 }
380 
381 void MachineInstr::addMemOperand(MachineFunction &MF,
382                                  MachineMemOperand *MO) {
383   SmallVector<MachineMemOperand *, 2> MMOs;
384   MMOs.append(memoperands_begin(), memoperands_end());
385   MMOs.push_back(MO);
386   setMemRefs(MF, MMOs);
387 }
388 
389 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
390   if (this == &MI)
391     // Nothing to do for a self-clone!
392     return;
393 
394   assert(&MF == MI.getMF() &&
395          "Invalid machine functions when cloning memory refrences!");
396   // See if we can just steal the extra info already allocated for the
397   // instruction. We can do this whenever the pre- and post-instruction symbols
398   // are the same (including null).
399   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
400       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
401       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
402     Info = MI.Info;
403     return;
404   }
405 
406   // Otherwise, fall back on a copy-based clone.
407   setMemRefs(MF, MI.memoperands());
408 }
409 
410 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
411 /// identical.
412 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
413                              ArrayRef<MachineMemOperand *> RHS) {
414   if (LHS.size() != RHS.size())
415     return false;
416 
417   auto LHSPointees = make_pointee_range(LHS);
418   auto RHSPointees = make_pointee_range(RHS);
419   return std::equal(LHSPointees.begin(), LHSPointees.end(),
420                     RHSPointees.begin());
421 }
422 
423 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
424                                       ArrayRef<const MachineInstr *> MIs) {
425   // Try handling easy numbers of MIs with simpler mechanisms.
426   if (MIs.empty()) {
427     dropMemRefs(MF);
428     return;
429   }
430   if (MIs.size() == 1) {
431     cloneMemRefs(MF, *MIs[0]);
432     return;
433   }
434   // Because an empty memoperands list provides *no* information and must be
435   // handled conservatively (assuming the instruction can do anything), the only
436   // way to merge with it is to drop all other memoperands.
437   if (MIs[0]->memoperands_empty()) {
438     dropMemRefs(MF);
439     return;
440   }
441 
442   // Handle the general case.
443   SmallVector<MachineMemOperand *, 2> MergedMMOs;
444   // Start with the first instruction.
445   assert(&MF == MIs[0]->getMF() &&
446          "Invalid machine functions when cloning memory references!");
447   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
448   // Now walk all the other instructions and accumulate any different MMOs.
449   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
450     assert(&MF == MI.getMF() &&
451            "Invalid machine functions when cloning memory references!");
452 
453     // Skip MIs with identical operands to the first. This is a somewhat
454     // arbitrary hack but will catch common cases without being quadratic.
455     // TODO: We could fully implement merge semantics here if needed.
456     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
457       continue;
458 
459     // Because an empty memoperands list provides *no* information and must be
460     // handled conservatively (assuming the instruction can do anything), the
461     // only way to merge with it is to drop all other memoperands.
462     if (MI.memoperands_empty()) {
463       dropMemRefs(MF);
464       return;
465     }
466 
467     // Otherwise accumulate these into our temporary buffer of the merged state.
468     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
469   }
470 
471   setMemRefs(MF, MergedMMOs);
472 }
473 
474 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
475   // Do nothing if old and new symbols are the same.
476   if (Symbol == getPreInstrSymbol())
477     return;
478 
479   // If there was only one symbol and we're removing it, just clear info.
480   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
481     Info.clear();
482     return;
483   }
484 
485   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
486                getHeapAllocMarker());
487 }
488 
489 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
490   // Do nothing if old and new symbols are the same.
491   if (Symbol == getPostInstrSymbol())
492     return;
493 
494   // If there was only one symbol and we're removing it, just clear info.
495   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
496     Info.clear();
497     return;
498   }
499 
500   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
501                getHeapAllocMarker());
502 }
503 
504 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
505   // Do nothing if old and new symbols are the same.
506   if (Marker == getHeapAllocMarker())
507     return;
508 
509   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
510                Marker);
511 }
512 
513 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
514                                      const MachineInstr &MI) {
515   if (this == &MI)
516     // Nothing to do for a self-clone!
517     return;
518 
519   assert(&MF == MI.getMF() &&
520          "Invalid machine functions when cloning instruction symbols!");
521 
522   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
523   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
524   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
525 }
526 
527 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
528   // For now, the just return the union of the flags. If the flags get more
529   // complicated over time, we might need more logic here.
530   return getFlags() | Other.getFlags();
531 }
532 
533 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
534   uint16_t MIFlags = 0;
535   // Copy the wrapping flags.
536   if (const OverflowingBinaryOperator *OB =
537           dyn_cast<OverflowingBinaryOperator>(&I)) {
538     if (OB->hasNoSignedWrap())
539       MIFlags |= MachineInstr::MIFlag::NoSWrap;
540     if (OB->hasNoUnsignedWrap())
541       MIFlags |= MachineInstr::MIFlag::NoUWrap;
542   }
543 
544   // Copy the exact flag.
545   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
546     if (PE->isExact())
547       MIFlags |= MachineInstr::MIFlag::IsExact;
548 
549   // Copy the fast-math flags.
550   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
551     const FastMathFlags Flags = FP->getFastMathFlags();
552     if (Flags.noNaNs())
553       MIFlags |= MachineInstr::MIFlag::FmNoNans;
554     if (Flags.noInfs())
555       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
556     if (Flags.noSignedZeros())
557       MIFlags |= MachineInstr::MIFlag::FmNsz;
558     if (Flags.allowReciprocal())
559       MIFlags |= MachineInstr::MIFlag::FmArcp;
560     if (Flags.allowContract())
561       MIFlags |= MachineInstr::MIFlag::FmContract;
562     if (Flags.approxFunc())
563       MIFlags |= MachineInstr::MIFlag::FmAfn;
564     if (Flags.allowReassoc())
565       MIFlags |= MachineInstr::MIFlag::FmReassoc;
566   }
567 
568   return MIFlags;
569 }
570 
571 void MachineInstr::copyIRFlags(const Instruction &I) {
572   Flags = copyFlagsFromInstruction(I);
573 }
574 
575 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
576   assert(!isBundledWithPred() && "Must be called on bundle header");
577   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
578     if (MII->getDesc().getFlags() & Mask) {
579       if (Type == AnyInBundle)
580         return true;
581     } else {
582       if (Type == AllInBundle && !MII->isBundle())
583         return false;
584     }
585     // This was the last instruction in the bundle.
586     if (!MII->isBundledWithSucc())
587       return Type == AllInBundle;
588   }
589 }
590 
591 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
592                                  MICheckType Check) const {
593   // If opcodes or number of operands are not the same then the two
594   // instructions are obviously not identical.
595   if (Other.getOpcode() != getOpcode() ||
596       Other.getNumOperands() != getNumOperands())
597     return false;
598 
599   if (isBundle()) {
600     // We have passed the test above that both instructions have the same
601     // opcode, so we know that both instructions are bundles here. Let's compare
602     // MIs inside the bundle.
603     assert(Other.isBundle() && "Expected that both instructions are bundles.");
604     MachineBasicBlock::const_instr_iterator I1 = getIterator();
605     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
606     // Loop until we analysed the last intruction inside at least one of the
607     // bundles.
608     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
609       ++I1;
610       ++I2;
611       if (!I1->isIdenticalTo(*I2, Check))
612         return false;
613     }
614     // If we've reached the end of just one of the two bundles, but not both,
615     // the instructions are not identical.
616     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
617       return false;
618   }
619 
620   // Check operands to make sure they match.
621   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
622     const MachineOperand &MO = getOperand(i);
623     const MachineOperand &OMO = Other.getOperand(i);
624     if (!MO.isReg()) {
625       if (!MO.isIdenticalTo(OMO))
626         return false;
627       continue;
628     }
629 
630     // Clients may or may not want to ignore defs when testing for equality.
631     // For example, machine CSE pass only cares about finding common
632     // subexpressions, so it's safe to ignore virtual register defs.
633     if (MO.isDef()) {
634       if (Check == IgnoreDefs)
635         continue;
636       else if (Check == IgnoreVRegDefs) {
637         if (!Register::isVirtualRegister(MO.getReg()) ||
638             !Register::isVirtualRegister(OMO.getReg()))
639           if (!MO.isIdenticalTo(OMO))
640             return false;
641       } else {
642         if (!MO.isIdenticalTo(OMO))
643           return false;
644         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
645           return false;
646       }
647     } else {
648       if (!MO.isIdenticalTo(OMO))
649         return false;
650       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
651         return false;
652     }
653   }
654   // If DebugLoc does not match then two debug instructions are not identical.
655   if (isDebugInstr())
656     if (getDebugLoc() && Other.getDebugLoc() &&
657         getDebugLoc() != Other.getDebugLoc())
658       return false;
659   return true;
660 }
661 
662 const MachineFunction *MachineInstr::getMF() const {
663   return getParent()->getParent();
664 }
665 
666 MachineInstr *MachineInstr::removeFromParent() {
667   assert(getParent() && "Not embedded in a basic block!");
668   return getParent()->remove(this);
669 }
670 
671 MachineInstr *MachineInstr::removeFromBundle() {
672   assert(getParent() && "Not embedded in a basic block!");
673   return getParent()->remove_instr(this);
674 }
675 
676 void MachineInstr::eraseFromParent() {
677   assert(getParent() && "Not embedded in a basic block!");
678   getParent()->erase(this);
679 }
680 
681 void MachineInstr::eraseFromBundle() {
682   assert(getParent() && "Not embedded in a basic block!");
683   getParent()->erase_instr(this);
684 }
685 
686 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
687   if (!isCall(Type))
688     return false;
689   switch (getOpcode()) {
690   case TargetOpcode::PATCHPOINT:
691   case TargetOpcode::STACKMAP:
692   case TargetOpcode::STATEPOINT:
693   case TargetOpcode::FENTRY_CALL:
694     return false;
695   }
696   return true;
697 }
698 
699 bool MachineInstr::shouldUpdateCallSiteInfo() const {
700   if (isBundle())
701     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
702   return isCandidateForCallSiteEntry();
703 }
704 
705 unsigned MachineInstr::getNumExplicitOperands() const {
706   unsigned NumOperands = MCID->getNumOperands();
707   if (!MCID->isVariadic())
708     return NumOperands;
709 
710   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
711     const MachineOperand &MO = getOperand(I);
712     // The operands must always be in the following order:
713     // - explicit reg defs,
714     // - other explicit operands (reg uses, immediates, etc.),
715     // - implicit reg defs
716     // - implicit reg uses
717     if (MO.isReg() && MO.isImplicit())
718       break;
719     ++NumOperands;
720   }
721   return NumOperands;
722 }
723 
724 unsigned MachineInstr::getNumExplicitDefs() const {
725   unsigned NumDefs = MCID->getNumDefs();
726   if (!MCID->isVariadic())
727     return NumDefs;
728 
729   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
730     const MachineOperand &MO = getOperand(I);
731     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
732       break;
733     ++NumDefs;
734   }
735   return NumDefs;
736 }
737 
738 void MachineInstr::bundleWithPred() {
739   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
740   setFlag(BundledPred);
741   MachineBasicBlock::instr_iterator Pred = getIterator();
742   --Pred;
743   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
744   Pred->setFlag(BundledSucc);
745 }
746 
747 void MachineInstr::bundleWithSucc() {
748   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
749   setFlag(BundledSucc);
750   MachineBasicBlock::instr_iterator Succ = getIterator();
751   ++Succ;
752   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
753   Succ->setFlag(BundledPred);
754 }
755 
756 void MachineInstr::unbundleFromPred() {
757   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
758   clearFlag(BundledPred);
759   MachineBasicBlock::instr_iterator Pred = getIterator();
760   --Pred;
761   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
762   Pred->clearFlag(BundledSucc);
763 }
764 
765 void MachineInstr::unbundleFromSucc() {
766   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
767   clearFlag(BundledSucc);
768   MachineBasicBlock::instr_iterator Succ = getIterator();
769   ++Succ;
770   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
771   Succ->clearFlag(BundledPred);
772 }
773 
774 bool MachineInstr::isStackAligningInlineAsm() const {
775   if (isInlineAsm()) {
776     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
777     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
778       return true;
779   }
780   return false;
781 }
782 
783 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
784   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
785   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
786   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
787 }
788 
789 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
790                                        unsigned *GroupNo) const {
791   assert(isInlineAsm() && "Expected an inline asm instruction");
792   assert(OpIdx < getNumOperands() && "OpIdx out of range");
793 
794   // Ignore queries about the initial operands.
795   if (OpIdx < InlineAsm::MIOp_FirstOperand)
796     return -1;
797 
798   unsigned Group = 0;
799   unsigned NumOps;
800   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
801        i += NumOps) {
802     const MachineOperand &FlagMO = getOperand(i);
803     // If we reach the implicit register operands, stop looking.
804     if (!FlagMO.isImm())
805       return -1;
806     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
807     if (i + NumOps > OpIdx) {
808       if (GroupNo)
809         *GroupNo = Group;
810       return i;
811     }
812     ++Group;
813   }
814   return -1;
815 }
816 
817 const DILabel *MachineInstr::getDebugLabel() const {
818   assert(isDebugLabel() && "not a DBG_LABEL");
819   return cast<DILabel>(getOperand(0).getMetadata());
820 }
821 
822 const MachineOperand &MachineInstr::getDebugVariableOp() const {
823   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
824   unsigned VariableOp = isDebugValueList() ? 0 : 2;
825   return getOperand(VariableOp);
826 }
827 
828 MachineOperand &MachineInstr::getDebugVariableOp() {
829   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
830   unsigned VariableOp = isDebugValueList() ? 0 : 2;
831   return getOperand(VariableOp);
832 }
833 
834 const DILocalVariable *MachineInstr::getDebugVariable() const {
835   return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
836 }
837 
838 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
839   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
840   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
841   return getOperand(ExpressionOp);
842 }
843 
844 MachineOperand &MachineInstr::getDebugExpressionOp() {
845   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
846   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
847   return getOperand(ExpressionOp);
848 }
849 
850 const DIExpression *MachineInstr::getDebugExpression() const {
851   return cast<DIExpression>(getDebugExpressionOp().getMetadata());
852 }
853 
854 bool MachineInstr::isDebugEntryValue() const {
855   return isDebugValue() && getDebugExpression()->isEntryValue();
856 }
857 
858 const TargetRegisterClass*
859 MachineInstr::getRegClassConstraint(unsigned OpIdx,
860                                     const TargetInstrInfo *TII,
861                                     const TargetRegisterInfo *TRI) const {
862   assert(getParent() && "Can't have an MBB reference here!");
863   assert(getMF() && "Can't have an MF reference here!");
864   const MachineFunction &MF = *getMF();
865 
866   // Most opcodes have fixed constraints in their MCInstrDesc.
867   if (!isInlineAsm())
868     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
869 
870   if (!getOperand(OpIdx).isReg())
871     return nullptr;
872 
873   // For tied uses on inline asm, get the constraint from the def.
874   unsigned DefIdx;
875   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
876     OpIdx = DefIdx;
877 
878   // Inline asm stores register class constraints in the flag word.
879   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
880   if (FlagIdx < 0)
881     return nullptr;
882 
883   unsigned Flag = getOperand(FlagIdx).getImm();
884   unsigned RCID;
885   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
886        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
887        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
888       InlineAsm::hasRegClassConstraint(Flag, RCID))
889     return TRI->getRegClass(RCID);
890 
891   // Assume that all registers in a memory operand are pointers.
892   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
893     return TRI->getPointerRegClass(MF);
894 
895   return nullptr;
896 }
897 
898 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
899     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
900     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
901   // Check every operands inside the bundle if we have
902   // been asked to.
903   if (ExploreBundle)
904     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
905          ++OpndIt)
906       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
907           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
908   else
909     // Otherwise, just check the current operands.
910     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
911       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
912   return CurRC;
913 }
914 
915 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
916     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
917     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
918   assert(CurRC && "Invalid initial register class");
919   // Check if Reg is constrained by some of its use/def from MI.
920   const MachineOperand &MO = getOperand(OpIdx);
921   if (!MO.isReg() || MO.getReg() != Reg)
922     return CurRC;
923   // If yes, accumulate the constraints through the operand.
924   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
925 }
926 
927 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
928     unsigned OpIdx, const TargetRegisterClass *CurRC,
929     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
930   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
931   const MachineOperand &MO = getOperand(OpIdx);
932   assert(MO.isReg() &&
933          "Cannot get register constraints for non-register operand");
934   assert(CurRC && "Invalid initial register class");
935   if (unsigned SubIdx = MO.getSubReg()) {
936     if (OpRC)
937       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
938     else
939       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
940   } else if (OpRC)
941     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
942   return CurRC;
943 }
944 
945 /// Return the number of instructions inside the MI bundle, not counting the
946 /// header instruction.
947 unsigned MachineInstr::getBundleSize() const {
948   MachineBasicBlock::const_instr_iterator I = getIterator();
949   unsigned Size = 0;
950   while (I->isBundledWithSucc()) {
951     ++Size;
952     ++I;
953   }
954   return Size;
955 }
956 
957 /// Returns true if the MachineInstr has an implicit-use operand of exactly
958 /// the given register (not considering sub/super-registers).
959 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
960   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
961     const MachineOperand &MO = getOperand(i);
962     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
963       return true;
964   }
965   return false;
966 }
967 
968 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
969 /// the specific register or -1 if it is not found. It further tightens
970 /// the search criteria to a use that kills the register if isKill is true.
971 int MachineInstr::findRegisterUseOperandIdx(
972     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
973   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
974     const MachineOperand &MO = getOperand(i);
975     if (!MO.isReg() || !MO.isUse())
976       continue;
977     Register MOReg = MO.getReg();
978     if (!MOReg)
979       continue;
980     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
981       if (!isKill || MO.isKill())
982         return i;
983   }
984   return -1;
985 }
986 
987 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
988 /// indicating if this instruction reads or writes Reg. This also considers
989 /// partial defines.
990 std::pair<bool,bool>
991 MachineInstr::readsWritesVirtualRegister(Register Reg,
992                                          SmallVectorImpl<unsigned> *Ops) const {
993   bool PartDef = false; // Partial redefine.
994   bool FullDef = false; // Full define.
995   bool Use = false;
996 
997   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
998     const MachineOperand &MO = getOperand(i);
999     if (!MO.isReg() || MO.getReg() != Reg)
1000       continue;
1001     if (Ops)
1002       Ops->push_back(i);
1003     if (MO.isUse())
1004       Use |= !MO.isUndef();
1005     else if (MO.getSubReg() && !MO.isUndef())
1006       // A partial def undef doesn't count as reading the register.
1007       PartDef = true;
1008     else
1009       FullDef = true;
1010   }
1011   // A partial redefine uses Reg unless there is also a full define.
1012   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1013 }
1014 
1015 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1016 /// the specified register or -1 if it is not found. If isDead is true, defs
1017 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1018 /// also checks if there is a def of a super-register.
1019 int
1020 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1021                                         const TargetRegisterInfo *TRI) const {
1022   bool isPhys = Register::isPhysicalRegister(Reg);
1023   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1024     const MachineOperand &MO = getOperand(i);
1025     // Accept regmask operands when Overlap is set.
1026     // Ignore them when looking for a specific def operand (Overlap == false).
1027     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1028       return i;
1029     if (!MO.isReg() || !MO.isDef())
1030       continue;
1031     Register MOReg = MO.getReg();
1032     bool Found = (MOReg == Reg);
1033     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1034       if (Overlap)
1035         Found = TRI->regsOverlap(MOReg, Reg);
1036       else
1037         Found = TRI->isSubRegister(MOReg, Reg);
1038     }
1039     if (Found && (!isDead || MO.isDead()))
1040       return i;
1041   }
1042   return -1;
1043 }
1044 
1045 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1046 /// operand list that is used to represent the predicate. It returns -1 if
1047 /// none is found.
1048 int MachineInstr::findFirstPredOperandIdx() const {
1049   // Don't call MCID.findFirstPredOperandIdx() because this variant
1050   // is sometimes called on an instruction that's not yet complete, and
1051   // so the number of operands is less than the MCID indicates. In
1052   // particular, the PTX target does this.
1053   const MCInstrDesc &MCID = getDesc();
1054   if (MCID.isPredicable()) {
1055     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1056       if (MCID.OpInfo[i].isPredicate())
1057         return i;
1058   }
1059 
1060   return -1;
1061 }
1062 
1063 // MachineOperand::TiedTo is 4 bits wide.
1064 const unsigned TiedMax = 15;
1065 
1066 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1067 ///
1068 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1069 /// field. TiedTo can have these values:
1070 ///
1071 /// 0:              Operand is not tied to anything.
1072 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1073 /// TiedMax:        Tied to an operand >= TiedMax-1.
1074 ///
1075 /// The tied def must be one of the first TiedMax operands on a normal
1076 /// instruction. INLINEASM instructions allow more tied defs.
1077 ///
1078 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1079   MachineOperand &DefMO = getOperand(DefIdx);
1080   MachineOperand &UseMO = getOperand(UseIdx);
1081   assert(DefMO.isDef() && "DefIdx must be a def operand");
1082   assert(UseMO.isUse() && "UseIdx must be a use operand");
1083   assert(!DefMO.isTied() && "Def is already tied to another use");
1084   assert(!UseMO.isTied() && "Use is already tied to another def");
1085 
1086   if (DefIdx < TiedMax)
1087     UseMO.TiedTo = DefIdx + 1;
1088   else {
1089     // Inline asm can use the group descriptors to find tied operands,
1090     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1091     // but on normal instruction, the tied def must be within the first TiedMax
1092     // operands.
1093     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1094            "DefIdx out of range");
1095     UseMO.TiedTo = TiedMax;
1096   }
1097 
1098   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1099   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1100 }
1101 
1102 /// Given the index of a tied register operand, find the operand it is tied to.
1103 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1104 /// which must exist.
1105 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1106   const MachineOperand &MO = getOperand(OpIdx);
1107   assert(MO.isTied() && "Operand isn't tied");
1108 
1109   // Normally TiedTo is in range.
1110   if (MO.TiedTo < TiedMax)
1111     return MO.TiedTo - 1;
1112 
1113   // Uses on normal instructions can be out of range.
1114   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1115     // Normal tied defs must be in the 0..TiedMax-1 range.
1116     if (MO.isUse())
1117       return TiedMax - 1;
1118     // MO is a def. Search for the tied use.
1119     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1120       const MachineOperand &UseMO = getOperand(i);
1121       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1122         return i;
1123     }
1124     llvm_unreachable("Can't find tied use");
1125   }
1126 
1127   if (getOpcode() == TargetOpcode::STATEPOINT) {
1128     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1129     // on registers.
1130     StatepointOpers SO(this);
1131     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1132     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1133     unsigned NumDefs = getNumDefs();
1134     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1135       while (!getOperand(CurUseIdx).isReg())
1136         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1137       if (OpIdx == CurDefIdx)
1138         return CurUseIdx;
1139       if (OpIdx == CurUseIdx)
1140         return CurDefIdx;
1141       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1142     }
1143     llvm_unreachable("Can't find tied use");
1144   }
1145 
1146   // Now deal with inline asm by parsing the operand group descriptor flags.
1147   // Find the beginning of each operand group.
1148   SmallVector<unsigned, 8> GroupIdx;
1149   unsigned OpIdxGroup = ~0u;
1150   unsigned NumOps;
1151   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1152        i += NumOps) {
1153     const MachineOperand &FlagMO = getOperand(i);
1154     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1155     unsigned CurGroup = GroupIdx.size();
1156     GroupIdx.push_back(i);
1157     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1158     // OpIdx belongs to this operand group.
1159     if (OpIdx > i && OpIdx < i + NumOps)
1160       OpIdxGroup = CurGroup;
1161     unsigned TiedGroup;
1162     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1163       continue;
1164     // Operands in this group are tied to operands in TiedGroup which must be
1165     // earlier. Find the number of operands between the two groups.
1166     unsigned Delta = i - GroupIdx[TiedGroup];
1167 
1168     // OpIdx is a use tied to TiedGroup.
1169     if (OpIdxGroup == CurGroup)
1170       return OpIdx - Delta;
1171 
1172     // OpIdx is a def tied to this use group.
1173     if (OpIdxGroup == TiedGroup)
1174       return OpIdx + Delta;
1175   }
1176   llvm_unreachable("Invalid tied operand on inline asm");
1177 }
1178 
1179 /// clearKillInfo - Clears kill flags on all operands.
1180 ///
1181 void MachineInstr::clearKillInfo() {
1182   for (MachineOperand &MO : operands()) {
1183     if (MO.isReg() && MO.isUse())
1184       MO.setIsKill(false);
1185   }
1186 }
1187 
1188 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1189                                       unsigned SubIdx,
1190                                       const TargetRegisterInfo &RegInfo) {
1191   if (Register::isPhysicalRegister(ToReg)) {
1192     if (SubIdx)
1193       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1194     for (MachineOperand &MO : operands()) {
1195       if (!MO.isReg() || MO.getReg() != FromReg)
1196         continue;
1197       MO.substPhysReg(ToReg, RegInfo);
1198     }
1199   } else {
1200     for (MachineOperand &MO : operands()) {
1201       if (!MO.isReg() || MO.getReg() != FromReg)
1202         continue;
1203       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1204     }
1205   }
1206 }
1207 
1208 /// isSafeToMove - Return true if it is safe to move this instruction. If
1209 /// SawStore is set to true, it means that there is a store (or call) between
1210 /// the instruction's location and its intended destination.
1211 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1212   // Ignore stuff that we obviously can't move.
1213   //
1214   // Treat volatile loads as stores. This is not strictly necessary for
1215   // volatiles, but it is required for atomic loads. It is not allowed to move
1216   // a load across an atomic load with Ordering > Monotonic.
1217   if (mayStore() || isCall() || isPHI() ||
1218       (mayLoad() && hasOrderedMemoryRef())) {
1219     SawStore = true;
1220     return false;
1221   }
1222 
1223   if (isPosition() || isDebugInstr() || isTerminator() ||
1224       mayRaiseFPException() || hasUnmodeledSideEffects())
1225     return false;
1226 
1227   // See if this instruction does a load.  If so, we have to guarantee that the
1228   // loaded value doesn't change between the load and the its intended
1229   // destination. The check for isInvariantLoad gives the target the chance to
1230   // classify the load as always returning a constant, e.g. a constant pool
1231   // load.
1232   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1233     // Otherwise, this is a real load.  If there is a store between the load and
1234     // end of block, we can't move it.
1235     return !SawStore;
1236 
1237   return true;
1238 }
1239 
1240 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1241                                  bool UseTBAA, const MachineMemOperand *MMOa,
1242                                  const MachineMemOperand *MMOb) {
1243   // The following interface to AA is fashioned after DAGCombiner::isAlias and
1244   // operates with MachineMemOperand offset with some important assumptions:
1245   //   - LLVM fundamentally assumes flat address spaces.
1246   //   - MachineOperand offset can *only* result from legalization and cannot
1247   //     affect queries other than the trivial case of overlap checking.
1248   //   - These offsets never wrap and never step outside of allocated objects.
1249   //   - There should never be any negative offsets here.
1250   //
1251   // FIXME: Modify API to hide this math from "user"
1252   // Even before we go to AA we can reason locally about some memory objects. It
1253   // can save compile time, and possibly catch some corner cases not currently
1254   // covered.
1255 
1256   int64_t OffsetA = MMOa->getOffset();
1257   int64_t OffsetB = MMOb->getOffset();
1258   int64_t MinOffset = std::min(OffsetA, OffsetB);
1259 
1260   uint64_t WidthA = MMOa->getSize();
1261   uint64_t WidthB = MMOb->getSize();
1262   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1263   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1264 
1265   const Value *ValA = MMOa->getValue();
1266   const Value *ValB = MMOb->getValue();
1267   bool SameVal = (ValA && ValB && (ValA == ValB));
1268   if (!SameVal) {
1269     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1270     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1271     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1272       return false;
1273     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1274       return false;
1275     if (PSVa && PSVb && (PSVa == PSVb))
1276       SameVal = true;
1277   }
1278 
1279   if (SameVal) {
1280     if (!KnownWidthA || !KnownWidthB)
1281       return true;
1282     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1283     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1284     return (MinOffset + LowWidth > MaxOffset);
1285   }
1286 
1287   if (!AA)
1288     return true;
1289 
1290   if (!ValA || !ValB)
1291     return true;
1292 
1293   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1294   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1295 
1296   int64_t OverlapA =
1297       KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1298   int64_t OverlapB =
1299       KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1300 
1301   return !AA->isNoAlias(
1302       MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1303       MemoryLocation(ValB, OverlapB,
1304                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1305 }
1306 
1307 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1308                             bool UseTBAA) const {
1309   const MachineFunction *MF = getMF();
1310   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1311   const MachineFrameInfo &MFI = MF->getFrameInfo();
1312 
1313   // Exclude call instruction which may alter the memory but can not be handled
1314   // by this function.
1315   if (isCall() || Other.isCall())
1316     return true;
1317 
1318   // If neither instruction stores to memory, they can't alias in any
1319   // meaningful way, even if they read from the same address.
1320   if (!mayStore() && !Other.mayStore())
1321     return false;
1322 
1323   // Both instructions must be memory operations to be able to alias.
1324   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1325     return false;
1326 
1327   // Let the target decide if memory accesses cannot possibly overlap.
1328   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1329     return false;
1330 
1331   // Memory operations without memory operands may access anything. Be
1332   // conservative and assume `MayAlias`.
1333   if (memoperands_empty() || Other.memoperands_empty())
1334     return true;
1335 
1336   // Skip if there are too many memory operands.
1337   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1338   if (NumChecks > TII->getMemOperandAACheckLimit())
1339     return true;
1340 
1341   // Check each pair of memory operands from both instructions, which can't
1342   // alias only if all pairs won't alias.
1343   for (auto *MMOa : memoperands())
1344     for (auto *MMOb : Other.memoperands())
1345       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1346         return true;
1347 
1348   return false;
1349 }
1350 
1351 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1352 /// or volatile memory reference, or if the information describing the memory
1353 /// reference is not available. Return false if it is known to have no ordered
1354 /// memory references.
1355 bool MachineInstr::hasOrderedMemoryRef() const {
1356   // An instruction known never to access memory won't have a volatile access.
1357   if (!mayStore() &&
1358       !mayLoad() &&
1359       !isCall() &&
1360       !hasUnmodeledSideEffects())
1361     return false;
1362 
1363   // Otherwise, if the instruction has no memory reference information,
1364   // conservatively assume it wasn't preserved.
1365   if (memoperands_empty())
1366     return true;
1367 
1368   // Check if any of our memory operands are ordered.
1369   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1370     return !MMO->isUnordered();
1371   });
1372 }
1373 
1374 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1375 /// trap and is loading from a location whose value is invariant across a run of
1376 /// this function.
1377 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1378   // If the instruction doesn't load at all, it isn't an invariant load.
1379   if (!mayLoad())
1380     return false;
1381 
1382   // If the instruction has lost its memoperands, conservatively assume that
1383   // it may not be an invariant load.
1384   if (memoperands_empty())
1385     return false;
1386 
1387   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1388 
1389   for (MachineMemOperand *MMO : memoperands()) {
1390     if (!MMO->isUnordered())
1391       // If the memory operand has ordering side effects, we can't move the
1392       // instruction.  Such an instruction is technically an invariant load,
1393       // but the caller code would need updated to expect that.
1394       return false;
1395     if (MMO->isStore()) return false;
1396     if (MMO->isInvariant() && MMO->isDereferenceable())
1397       continue;
1398 
1399     // A load from a constant PseudoSourceValue is invariant.
1400     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1401       if (PSV->isConstant(&MFI))
1402         continue;
1403 
1404     if (const Value *V = MMO->getValue()) {
1405       // If we have an AliasAnalysis, ask it whether the memory is constant.
1406       if (AA &&
1407           AA->pointsToConstantMemory(
1408               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1409         continue;
1410     }
1411 
1412     // Otherwise assume conservatively.
1413     return false;
1414   }
1415 
1416   // Everything checks out.
1417   return true;
1418 }
1419 
1420 /// isConstantValuePHI - If the specified instruction is a PHI that always
1421 /// merges together the same virtual register, return the register, otherwise
1422 /// return 0.
1423 unsigned MachineInstr::isConstantValuePHI() const {
1424   if (!isPHI())
1425     return 0;
1426   assert(getNumOperands() >= 3 &&
1427          "It's illegal to have a PHI without source operands");
1428 
1429   Register Reg = getOperand(1).getReg();
1430   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1431     if (getOperand(i).getReg() != Reg)
1432       return 0;
1433   return Reg;
1434 }
1435 
1436 bool MachineInstr::hasUnmodeledSideEffects() const {
1437   if (hasProperty(MCID::UnmodeledSideEffects))
1438     return true;
1439   if (isInlineAsm()) {
1440     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1441     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1442       return true;
1443   }
1444 
1445   return false;
1446 }
1447 
1448 bool MachineInstr::isLoadFoldBarrier() const {
1449   return mayStore() || isCall() ||
1450          (hasUnmodeledSideEffects() && !isPseudoProbe());
1451 }
1452 
1453 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1454 ///
1455 bool MachineInstr::allDefsAreDead() const {
1456   for (const MachineOperand &MO : operands()) {
1457     if (!MO.isReg() || MO.isUse())
1458       continue;
1459     if (!MO.isDead())
1460       return false;
1461   }
1462   return true;
1463 }
1464 
1465 /// copyImplicitOps - Copy implicit register operands from specified
1466 /// instruction to this instruction.
1467 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1468                                    const MachineInstr &MI) {
1469   for (const MachineOperand &MO :
1470        llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1471     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1472       addOperand(MF, MO);
1473 }
1474 
1475 bool MachineInstr::hasComplexRegisterTies() const {
1476   const MCInstrDesc &MCID = getDesc();
1477   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1478     return true;
1479   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1480     const auto &Operand = getOperand(I);
1481     if (!Operand.isReg() || Operand.isDef())
1482       // Ignore the defined registers as MCID marks only the uses as tied.
1483       continue;
1484     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1485     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1486     if (ExpectedTiedIdx != TiedIdx)
1487       return true;
1488   }
1489   return false;
1490 }
1491 
1492 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1493                                  const MachineRegisterInfo &MRI) const {
1494   const MachineOperand &Op = getOperand(OpIdx);
1495   if (!Op.isReg())
1496     return LLT{};
1497 
1498   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1499     return MRI.getType(Op.getReg());
1500 
1501   auto &OpInfo = getDesc().OpInfo[OpIdx];
1502   if (!OpInfo.isGenericType())
1503     return MRI.getType(Op.getReg());
1504 
1505   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1506     return LLT{};
1507 
1508   LLT TypeToPrint = MRI.getType(Op.getReg());
1509   // Don't mark the type index printed if it wasn't actually printed: maybe
1510   // another operand with the same type index has an actual type attached:
1511   if (TypeToPrint.isValid())
1512     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1513   return TypeToPrint;
1514 }
1515 
1516 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1517 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1518   dbgs() << "  ";
1519   print(dbgs());
1520 }
1521 
1522 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1523     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1524     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1525   if (Depth >= MaxDepth)
1526     return;
1527   if (!AlreadySeenInstrs.insert(this).second)
1528     return;
1529   // PadToColumn always inserts at least one space.
1530   // Don't mess up the alignment if we don't want any space.
1531   if (Depth)
1532     fdbgs().PadToColumn(Depth * 2);
1533   print(fdbgs());
1534   for (const MachineOperand &MO : operands()) {
1535     if (!MO.isReg() || MO.isDef())
1536       continue;
1537     Register Reg = MO.getReg();
1538     if (Reg.isPhysical())
1539       continue;
1540     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1541     if (NewMI == nullptr)
1542       continue;
1543     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1544   }
1545 }
1546 
1547 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1548                                           unsigned MaxDepth) const {
1549   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1550   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1551 }
1552 #endif
1553 
1554 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1555                          bool SkipDebugLoc, bool AddNewLine,
1556                          const TargetInstrInfo *TII) const {
1557   const Module *M = nullptr;
1558   const Function *F = nullptr;
1559   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1560     F = &MF->getFunction();
1561     M = F->getParent();
1562     if (!TII)
1563       TII = MF->getSubtarget().getInstrInfo();
1564   }
1565 
1566   ModuleSlotTracker MST(M);
1567   if (F)
1568     MST.incorporateFunction(*F);
1569   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1570 }
1571 
1572 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1573                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1574                          bool AddNewLine, const TargetInstrInfo *TII) const {
1575   // We can be a bit tidier if we know the MachineFunction.
1576   const TargetRegisterInfo *TRI = nullptr;
1577   const MachineRegisterInfo *MRI = nullptr;
1578   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1579   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1580 
1581   if (isCFIInstruction())
1582     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1583 
1584   SmallBitVector PrintedTypes(8);
1585   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1586   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1587     if (!ShouldPrintRegisterTies)
1588       return 0U;
1589     const MachineOperand &MO = getOperand(OpIdx);
1590     if (MO.isReg() && MO.isTied() && !MO.isDef())
1591       return findTiedOperandIdx(OpIdx);
1592     return 0U;
1593   };
1594   unsigned StartOp = 0;
1595   unsigned e = getNumOperands();
1596 
1597   // Print explicitly defined operands on the left of an assignment syntax.
1598   while (StartOp < e) {
1599     const MachineOperand &MO = getOperand(StartOp);
1600     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1601       break;
1602 
1603     if (StartOp != 0)
1604       OS << ", ";
1605 
1606     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1607     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1608     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1609              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1610     ++StartOp;
1611   }
1612 
1613   if (StartOp != 0)
1614     OS << " = ";
1615 
1616   if (getFlag(MachineInstr::FrameSetup))
1617     OS << "frame-setup ";
1618   if (getFlag(MachineInstr::FrameDestroy))
1619     OS << "frame-destroy ";
1620   if (getFlag(MachineInstr::FmNoNans))
1621     OS << "nnan ";
1622   if (getFlag(MachineInstr::FmNoInfs))
1623     OS << "ninf ";
1624   if (getFlag(MachineInstr::FmNsz))
1625     OS << "nsz ";
1626   if (getFlag(MachineInstr::FmArcp))
1627     OS << "arcp ";
1628   if (getFlag(MachineInstr::FmContract))
1629     OS << "contract ";
1630   if (getFlag(MachineInstr::FmAfn))
1631     OS << "afn ";
1632   if (getFlag(MachineInstr::FmReassoc))
1633     OS << "reassoc ";
1634   if (getFlag(MachineInstr::NoUWrap))
1635     OS << "nuw ";
1636   if (getFlag(MachineInstr::NoSWrap))
1637     OS << "nsw ";
1638   if (getFlag(MachineInstr::IsExact))
1639     OS << "exact ";
1640   if (getFlag(MachineInstr::NoFPExcept))
1641     OS << "nofpexcept ";
1642   if (getFlag(MachineInstr::NoMerge))
1643     OS << "nomerge ";
1644 
1645   // Print the opcode name.
1646   if (TII)
1647     OS << TII->getName(getOpcode());
1648   else
1649     OS << "UNKNOWN";
1650 
1651   if (SkipOpers)
1652     return;
1653 
1654   // Print the rest of the operands.
1655   bool FirstOp = true;
1656   unsigned AsmDescOp = ~0u;
1657   unsigned AsmOpCount = 0;
1658 
1659   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1660     // Print asm string.
1661     OS << " ";
1662     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1663     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1664     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1665     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1666                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1667                             IntrinsicInfo);
1668 
1669     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1670     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1671     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1672       OS << " [sideeffect]";
1673     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1674       OS << " [mayload]";
1675     if (ExtraInfo & InlineAsm::Extra_MayStore)
1676       OS << " [maystore]";
1677     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1678       OS << " [isconvergent]";
1679     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1680       OS << " [alignstack]";
1681     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1682       OS << " [attdialect]";
1683     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1684       OS << " [inteldialect]";
1685 
1686     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1687     FirstOp = false;
1688   }
1689 
1690   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1691     const MachineOperand &MO = getOperand(i);
1692 
1693     if (FirstOp) FirstOp = false; else OS << ",";
1694     OS << " ";
1695 
1696     if (isDebugValue() && MO.isMetadata()) {
1697       // Pretty print DBG_VALUE* instructions.
1698       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1699       if (DIV && !DIV->getName().empty())
1700         OS << "!\"" << DIV->getName() << '\"';
1701       else {
1702         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1703         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1704         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1705                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1706       }
1707     } else if (isDebugLabel() && MO.isMetadata()) {
1708       // Pretty print DBG_LABEL instructions.
1709       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1710       if (DIL && !DIL->getName().empty())
1711         OS << "\"" << DIL->getName() << '\"';
1712       else {
1713         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1714         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1715         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1716                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1717       }
1718     } else if (i == AsmDescOp && MO.isImm()) {
1719       // Pretty print the inline asm operand descriptor.
1720       OS << '$' << AsmOpCount++;
1721       unsigned Flag = MO.getImm();
1722       OS << ":[";
1723       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1724 
1725       unsigned RCID = 0;
1726       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1727           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1728         if (TRI) {
1729           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1730         } else
1731           OS << ":RC" << RCID;
1732       }
1733 
1734       if (InlineAsm::isMemKind(Flag)) {
1735         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1736         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1737       }
1738 
1739       unsigned TiedTo = 0;
1740       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1741         OS << " tiedto:$" << TiedTo;
1742 
1743       OS << ']';
1744 
1745       // Compute the index of the next operand descriptor.
1746       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1747     } else {
1748       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1749       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1750       if (MO.isImm() && isOperandSubregIdx(i))
1751         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1752       else
1753         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1754                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1755     }
1756   }
1757 
1758   // Print any optional symbols attached to this instruction as-if they were
1759   // operands.
1760   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1761     if (!FirstOp) {
1762       FirstOp = false;
1763       OS << ',';
1764     }
1765     OS << " pre-instr-symbol ";
1766     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1767   }
1768   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1769     if (!FirstOp) {
1770       FirstOp = false;
1771       OS << ',';
1772     }
1773     OS << " post-instr-symbol ";
1774     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1775   }
1776   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1777     if (!FirstOp) {
1778       FirstOp = false;
1779       OS << ',';
1780     }
1781     OS << " heap-alloc-marker ";
1782     HeapAllocMarker->printAsOperand(OS, MST);
1783   }
1784 
1785   if (DebugInstrNum) {
1786     if (!FirstOp)
1787       OS << ",";
1788     OS << " debug-instr-number " << DebugInstrNum;
1789   }
1790 
1791   if (!SkipDebugLoc) {
1792     if (const DebugLoc &DL = getDebugLoc()) {
1793       if (!FirstOp)
1794         OS << ',';
1795       OS << " debug-location ";
1796       DL->printAsOperand(OS, MST);
1797     }
1798   }
1799 
1800   if (!memoperands_empty()) {
1801     SmallVector<StringRef, 0> SSNs;
1802     const LLVMContext *Context = nullptr;
1803     std::unique_ptr<LLVMContext> CtxPtr;
1804     const MachineFrameInfo *MFI = nullptr;
1805     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1806       MFI = &MF->getFrameInfo();
1807       Context = &MF->getFunction().getContext();
1808     } else {
1809       CtxPtr = std::make_unique<LLVMContext>();
1810       Context = CtxPtr.get();
1811     }
1812 
1813     OS << " :: ";
1814     bool NeedComma = false;
1815     for (const MachineMemOperand *Op : memoperands()) {
1816       if (NeedComma)
1817         OS << ", ";
1818       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1819       NeedComma = true;
1820     }
1821   }
1822 
1823   if (SkipDebugLoc)
1824     return;
1825 
1826   bool HaveSemi = false;
1827 
1828   // Print debug location information.
1829   if (const DebugLoc &DL = getDebugLoc()) {
1830     if (!HaveSemi) {
1831       OS << ';';
1832       HaveSemi = true;
1833     }
1834     OS << ' ';
1835     DL.print(OS);
1836   }
1837 
1838   // Print extra comments for DEBUG_VALUE.
1839   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1840     if (!HaveSemi) {
1841       OS << ";";
1842       HaveSemi = true;
1843     }
1844     auto *DV = getDebugVariable();
1845     OS << " line no:" <<  DV->getLine();
1846     if (isIndirectDebugValue())
1847       OS << " indirect";
1848   }
1849   // TODO: DBG_LABEL
1850 
1851   if (AddNewLine)
1852     OS << '\n';
1853 }
1854 
1855 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1856                                      const TargetRegisterInfo *RegInfo,
1857                                      bool AddIfNotFound) {
1858   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1859   bool hasAliases = isPhysReg &&
1860     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1861   bool Found = false;
1862   SmallVector<unsigned,4> DeadOps;
1863   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1864     MachineOperand &MO = getOperand(i);
1865     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1866       continue;
1867 
1868     // DEBUG_VALUE nodes do not contribute to code generation and should
1869     // always be ignored. Failure to do so may result in trying to modify
1870     // KILL flags on DEBUG_VALUE nodes.
1871     if (MO.isDebug())
1872       continue;
1873 
1874     Register Reg = MO.getReg();
1875     if (!Reg)
1876       continue;
1877 
1878     if (Reg == IncomingReg) {
1879       if (!Found) {
1880         if (MO.isKill())
1881           // The register is already marked kill.
1882           return true;
1883         if (isPhysReg && isRegTiedToDefOperand(i))
1884           // Two-address uses of physregs must not be marked kill.
1885           return true;
1886         MO.setIsKill();
1887         Found = true;
1888       }
1889     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1890       // A super-register kill already exists.
1891       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1892         return true;
1893       if (RegInfo->isSubRegister(IncomingReg, Reg))
1894         DeadOps.push_back(i);
1895     }
1896   }
1897 
1898   // Trim unneeded kill operands.
1899   while (!DeadOps.empty()) {
1900     unsigned OpIdx = DeadOps.back();
1901     if (getOperand(OpIdx).isImplicit() &&
1902         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1903       RemoveOperand(OpIdx);
1904     else
1905       getOperand(OpIdx).setIsKill(false);
1906     DeadOps.pop_back();
1907   }
1908 
1909   // If not found, this means an alias of one of the operands is killed. Add a
1910   // new implicit operand if required.
1911   if (!Found && AddIfNotFound) {
1912     addOperand(MachineOperand::CreateReg(IncomingReg,
1913                                          false /*IsDef*/,
1914                                          true  /*IsImp*/,
1915                                          true  /*IsKill*/));
1916     return true;
1917   }
1918   return Found;
1919 }
1920 
1921 void MachineInstr::clearRegisterKills(Register Reg,
1922                                       const TargetRegisterInfo *RegInfo) {
1923   if (!Register::isPhysicalRegister(Reg))
1924     RegInfo = nullptr;
1925   for (MachineOperand &MO : operands()) {
1926     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1927       continue;
1928     Register OpReg = MO.getReg();
1929     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1930       MO.setIsKill(false);
1931   }
1932 }
1933 
1934 bool MachineInstr::addRegisterDead(Register Reg,
1935                                    const TargetRegisterInfo *RegInfo,
1936                                    bool AddIfNotFound) {
1937   bool isPhysReg = Register::isPhysicalRegister(Reg);
1938   bool hasAliases = isPhysReg &&
1939     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1940   bool Found = false;
1941   SmallVector<unsigned,4> DeadOps;
1942   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1943     MachineOperand &MO = getOperand(i);
1944     if (!MO.isReg() || !MO.isDef())
1945       continue;
1946     Register MOReg = MO.getReg();
1947     if (!MOReg)
1948       continue;
1949 
1950     if (MOReg == Reg) {
1951       MO.setIsDead();
1952       Found = true;
1953     } else if (hasAliases && MO.isDead() &&
1954                Register::isPhysicalRegister(MOReg)) {
1955       // There exists a super-register that's marked dead.
1956       if (RegInfo->isSuperRegister(Reg, MOReg))
1957         return true;
1958       if (RegInfo->isSubRegister(Reg, MOReg))
1959         DeadOps.push_back(i);
1960     }
1961   }
1962 
1963   // Trim unneeded dead operands.
1964   while (!DeadOps.empty()) {
1965     unsigned OpIdx = DeadOps.back();
1966     if (getOperand(OpIdx).isImplicit() &&
1967         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1968       RemoveOperand(OpIdx);
1969     else
1970       getOperand(OpIdx).setIsDead(false);
1971     DeadOps.pop_back();
1972   }
1973 
1974   // If not found, this means an alias of one of the operands is dead. Add a
1975   // new implicit operand if required.
1976   if (Found || !AddIfNotFound)
1977     return Found;
1978 
1979   addOperand(MachineOperand::CreateReg(Reg,
1980                                        true  /*IsDef*/,
1981                                        true  /*IsImp*/,
1982                                        false /*IsKill*/,
1983                                        true  /*IsDead*/));
1984   return true;
1985 }
1986 
1987 void MachineInstr::clearRegisterDeads(Register Reg) {
1988   for (MachineOperand &MO : operands()) {
1989     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1990       continue;
1991     MO.setIsDead(false);
1992   }
1993 }
1994 
1995 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
1996   for (MachineOperand &MO : operands()) {
1997     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1998       continue;
1999     MO.setIsUndef(IsUndef);
2000   }
2001 }
2002 
2003 void MachineInstr::addRegisterDefined(Register Reg,
2004                                       const TargetRegisterInfo *RegInfo) {
2005   if (Register::isPhysicalRegister(Reg)) {
2006     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2007     if (MO)
2008       return;
2009   } else {
2010     for (const MachineOperand &MO : operands()) {
2011       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2012           MO.getSubReg() == 0)
2013         return;
2014     }
2015   }
2016   addOperand(MachineOperand::CreateReg(Reg,
2017                                        true  /*IsDef*/,
2018                                        true  /*IsImp*/));
2019 }
2020 
2021 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2022                                          const TargetRegisterInfo &TRI) {
2023   bool HasRegMask = false;
2024   for (MachineOperand &MO : operands()) {
2025     if (MO.isRegMask()) {
2026       HasRegMask = true;
2027       continue;
2028     }
2029     if (!MO.isReg() || !MO.isDef()) continue;
2030     Register Reg = MO.getReg();
2031     if (!Reg.isPhysical())
2032       continue;
2033     // If there are no uses, including partial uses, the def is dead.
2034     if (llvm::none_of(UsedRegs,
2035                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2036       MO.setIsDead();
2037   }
2038 
2039   // This is a call with a register mask operand.
2040   // Mask clobbers are always dead, so add defs for the non-dead defines.
2041   if (HasRegMask)
2042     for (const Register &UsedReg : UsedRegs)
2043       addRegisterDefined(UsedReg, &TRI);
2044 }
2045 
2046 unsigned
2047 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2048   // Build up a buffer of hash code components.
2049   SmallVector<size_t, 16> HashComponents;
2050   HashComponents.reserve(MI->getNumOperands() + 1);
2051   HashComponents.push_back(MI->getOpcode());
2052   for (const MachineOperand &MO : MI->operands()) {
2053     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2054       continue;  // Skip virtual register defs.
2055 
2056     HashComponents.push_back(hash_value(MO));
2057   }
2058   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2059 }
2060 
2061 void MachineInstr::emitError(StringRef Msg) const {
2062   // Find the source location cookie.
2063   uint64_t LocCookie = 0;
2064   const MDNode *LocMD = nullptr;
2065   for (unsigned i = getNumOperands(); i != 0; --i) {
2066     if (getOperand(i-1).isMetadata() &&
2067         (LocMD = getOperand(i-1).getMetadata()) &&
2068         LocMD->getNumOperands() != 0) {
2069       if (const ConstantInt *CI =
2070               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2071         LocCookie = CI->getZExtValue();
2072         break;
2073       }
2074     }
2075   }
2076 
2077   if (const MachineBasicBlock *MBB = getParent())
2078     if (const MachineFunction *MF = MBB->getParent())
2079       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2080   report_fatal_error(Msg);
2081 }
2082 
2083 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2084                                   const MCInstrDesc &MCID, bool IsIndirect,
2085                                   Register Reg, const MDNode *Variable,
2086                                   const MDNode *Expr) {
2087   assert(isa<DILocalVariable>(Variable) && "not a variable");
2088   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2089   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2090          "Expected inlined-at fields to agree");
2091   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2092   if (IsIndirect)
2093     MIB.addImm(0U);
2094   else
2095     MIB.addReg(0U);
2096   return MIB.addMetadata(Variable).addMetadata(Expr);
2097 }
2098 
2099 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2100                                   const MCInstrDesc &MCID, bool IsIndirect,
2101                                   const MachineOperand &MO,
2102                                   const MDNode *Variable, const MDNode *Expr) {
2103   assert(isa<DILocalVariable>(Variable) && "not a variable");
2104   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2105   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2106          "Expected inlined-at fields to agree");
2107   if (MO.isReg())
2108     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2109 
2110   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2111   if (IsIndirect)
2112     MIB.addImm(0U);
2113   else
2114     MIB.addReg(0U);
2115   return MIB.addMetadata(Variable).addMetadata(Expr);
2116 }
2117 
2118 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2119                                   const MCInstrDesc &MCID, bool IsIndirect,
2120                                   ArrayRef<MachineOperand> MOs,
2121                                   const MDNode *Variable, const MDNode *Expr) {
2122   assert(isa<DILocalVariable>(Variable) && "not a variable");
2123   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2124   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2125          "Expected inlined-at fields to agree");
2126   if (MCID.Opcode == TargetOpcode::DBG_VALUE)
2127     return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr);
2128 
2129   auto MIB = BuildMI(MF, DL, MCID);
2130   MIB.addMetadata(Variable).addMetadata(Expr);
2131   for (const MachineOperand &MO : MOs)
2132     if (MO.isReg())
2133       MIB.addReg(MO.getReg());
2134     else
2135       MIB.add(MO);
2136   return MIB;
2137 }
2138 
2139 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2140                                   MachineBasicBlock::iterator I,
2141                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2142                                   bool IsIndirect, Register Reg,
2143                                   const MDNode *Variable, const MDNode *Expr) {
2144   MachineFunction &MF = *BB.getParent();
2145   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2146   BB.insert(I, MI);
2147   return MachineInstrBuilder(MF, MI);
2148 }
2149 
2150 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2151                                   MachineBasicBlock::iterator I,
2152                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2153                                   bool IsIndirect, MachineOperand &MO,
2154                                   const MDNode *Variable, const MDNode *Expr) {
2155   MachineFunction &MF = *BB.getParent();
2156   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2157   BB.insert(I, MI);
2158   return MachineInstrBuilder(MF, *MI);
2159 }
2160 
2161 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2162                                   MachineBasicBlock::iterator I,
2163                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2164                                   bool IsIndirect, ArrayRef<MachineOperand> MOs,
2165                                   const MDNode *Variable, const MDNode *Expr) {
2166   MachineFunction &MF = *BB.getParent();
2167   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr);
2168   BB.insert(I, MI);
2169   return MachineInstrBuilder(MF, *MI);
2170 }
2171 
2172 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2173 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2174 static const DIExpression *
2175 computeExprForSpill(const MachineInstr &MI,
2176                     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2177   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2178          "Expected inlined-at fields to agree");
2179 
2180   const DIExpression *Expr = MI.getDebugExpression();
2181   if (MI.isIndirectDebugValue()) {
2182     assert(MI.getDebugOffset().getImm() == 0 &&
2183            "DBG_VALUE with nonzero offset");
2184     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2185   } else if (MI.isDebugValueList()) {
2186     // We will replace the spilled register with a frame index, so
2187     // immediately deref all references to the spilled register.
2188     std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2189     for (const MachineOperand *Op : SpilledOperands) {
2190       unsigned OpIdx = MI.getDebugOperandIndex(Op);
2191       Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2192     }
2193   }
2194   return Expr;
2195 }
2196 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2197                                                Register SpillReg) {
2198   assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2199   SmallVector<const MachineOperand *> SpillOperands;
2200   for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2201     SpillOperands.push_back(&Op);
2202   return computeExprForSpill(MI, SpillOperands);
2203 }
2204 
2205 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2206                                           MachineBasicBlock::iterator I,
2207                                           const MachineInstr &Orig,
2208                                           int FrameIndex, Register SpillReg) {
2209   const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2210   MachineInstrBuilder NewMI =
2211       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2212   // Non-Variadic Operands: Location, Offset, Variable, Expression
2213   // Variadic Operands:     Variable, Expression, Locations...
2214   if (Orig.isNonListDebugValue())
2215     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2216   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2217   if (Orig.isDebugValueList()) {
2218     for (const MachineOperand &Op : Orig.debug_operands())
2219       if (Op.isReg() && Op.getReg() == SpillReg)
2220         NewMI.addFrameIndex(FrameIndex);
2221       else
2222         NewMI.add(MachineOperand(Op));
2223   }
2224   return NewMI;
2225 }
2226 MachineInstr *llvm::buildDbgValueForSpill(
2227     MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2228     const MachineInstr &Orig, int FrameIndex,
2229     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2230   const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2231   MachineInstrBuilder NewMI =
2232       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2233   // Non-Variadic Operands: Location, Offset, Variable, Expression
2234   // Variadic Operands:     Variable, Expression, Locations...
2235   if (Orig.isNonListDebugValue())
2236     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2237   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2238   if (Orig.isDebugValueList()) {
2239     for (const MachineOperand &Op : Orig.debug_operands())
2240       if (is_contained(SpilledOperands, &Op))
2241         NewMI.addFrameIndex(FrameIndex);
2242       else
2243         NewMI.add(MachineOperand(Op));
2244   }
2245   return NewMI;
2246 }
2247 
2248 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2249                                   Register Reg) {
2250   const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2251   if (Orig.isNonListDebugValue())
2252     Orig.getDebugOffset().ChangeToImmediate(0U);
2253   for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2254     Op.ChangeToFrameIndex(FrameIndex);
2255   Orig.getDebugExpressionOp().setMetadata(Expr);
2256 }
2257 
2258 void MachineInstr::collectDebugValues(
2259                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2260   MachineInstr &MI = *this;
2261   if (!MI.getOperand(0).isReg())
2262     return;
2263 
2264   MachineBasicBlock::iterator DI = MI; ++DI;
2265   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2266        DI != DE; ++DI) {
2267     if (!DI->isDebugValue())
2268       return;
2269     if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2270       DbgValues.push_back(&*DI);
2271   }
2272 }
2273 
2274 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2275   // Collect matching debug values.
2276   SmallVector<MachineInstr *, 2> DbgValues;
2277 
2278   if (!getOperand(0).isReg())
2279     return;
2280 
2281   Register DefReg = getOperand(0).getReg();
2282   auto *MRI = getRegInfo();
2283   for (auto &MO : MRI->use_operands(DefReg)) {
2284     auto *DI = MO.getParent();
2285     if (!DI->isDebugValue())
2286       continue;
2287     if (DI->hasDebugOperandForReg(DefReg)) {
2288       DbgValues.push_back(DI);
2289     }
2290   }
2291 
2292   // Propagate Reg to debug value instructions.
2293   for (auto *DBI : DbgValues)
2294     for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2295       Op.setReg(Reg);
2296 }
2297 
2298 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2299 
2300 static unsigned getSpillSlotSize(const MMOList &Accesses,
2301                                  const MachineFrameInfo &MFI) {
2302   unsigned Size = 0;
2303   for (auto A : Accesses)
2304     if (MFI.isSpillSlotObjectIndex(
2305             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2306                 ->getFrameIndex()))
2307       Size += A->getSize();
2308   return Size;
2309 }
2310 
2311 Optional<unsigned>
2312 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2313   int FI;
2314   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2315     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2316     if (MFI.isSpillSlotObjectIndex(FI))
2317       return (*memoperands_begin())->getSize();
2318   }
2319   return None;
2320 }
2321 
2322 Optional<unsigned>
2323 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2324   MMOList Accesses;
2325   if (TII->hasStoreToStackSlot(*this, Accesses))
2326     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2327   return None;
2328 }
2329 
2330 Optional<unsigned>
2331 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2332   int FI;
2333   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2334     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2335     if (MFI.isSpillSlotObjectIndex(FI))
2336       return (*memoperands_begin())->getSize();
2337   }
2338   return None;
2339 }
2340 
2341 Optional<unsigned>
2342 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2343   MMOList Accesses;
2344   if (TII->hasLoadFromStackSlot(*this, Accesses))
2345     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2346   return None;
2347 }
2348 
2349 unsigned MachineInstr::getDebugInstrNum() {
2350   if (DebugInstrNum == 0)
2351     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2352   return DebugInstrNum;
2353 }
2354 
2355 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2356   if (DebugInstrNum == 0)
2357     DebugInstrNum = MF.getNewDebugInstrNum();
2358   return DebugInstrNum;
2359 }
2360