xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 98a56eb7f43e220a1f7a5d4dc1f9c32bf5a353ae)
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/PseudoSourceValue.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/ModuleSlotTracker.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/MC/MCSymbol.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/Target/TargetMachine.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 using namespace llvm;
47 
48 static cl::opt<bool> PrintWholeRegMask(
49     "print-whole-regmask",
50     cl::desc("Print the full contents of regmask operands in IR dumps"),
51     cl::init(true), cl::Hidden);
52 
53 //===----------------------------------------------------------------------===//
54 // MachineOperand Implementation
55 //===----------------------------------------------------------------------===//
56 
57 void MachineOperand::setReg(unsigned Reg) {
58   if (getReg() == Reg) return; // No change.
59 
60   // Otherwise, we have to change the register.  If this operand is embedded
61   // into a machine function, we need to update the old and new register's
62   // use/def lists.
63   if (MachineInstr *MI = getParent())
64     if (MachineBasicBlock *MBB = MI->getParent())
65       if (MachineFunction *MF = MBB->getParent()) {
66         MachineRegisterInfo &MRI = MF->getRegInfo();
67         MRI.removeRegOperandFromUseList(this);
68         SmallContents.RegNo = Reg;
69         MRI.addRegOperandToUseList(this);
70         return;
71       }
72 
73   // Otherwise, just change the register, no problem.  :)
74   SmallContents.RegNo = Reg;
75 }
76 
77 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
78                                   const TargetRegisterInfo &TRI) {
79   assert(TargetRegisterInfo::isVirtualRegister(Reg));
80   if (SubIdx && getSubReg())
81     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
82   setReg(Reg);
83   if (SubIdx)
84     setSubReg(SubIdx);
85 }
86 
87 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
88   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
89   if (getSubReg()) {
90     Reg = TRI.getSubReg(Reg, getSubReg());
91     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
92     // That won't happen in legal code.
93     setSubReg(0);
94   }
95   setReg(Reg);
96 }
97 
98 /// Change a def to a use, or a use to a def.
99 void MachineOperand::setIsDef(bool Val) {
100   assert(isReg() && "Wrong MachineOperand accessor");
101   assert((!Val || !isDebug()) && "Marking a debug operation as def");
102   if (IsDef == Val)
103     return;
104   // MRI may keep uses and defs in different list positions.
105   if (MachineInstr *MI = getParent())
106     if (MachineBasicBlock *MBB = MI->getParent())
107       if (MachineFunction *MF = MBB->getParent()) {
108         MachineRegisterInfo &MRI = MF->getRegInfo();
109         MRI.removeRegOperandFromUseList(this);
110         IsDef = Val;
111         MRI.addRegOperandToUseList(this);
112         return;
113       }
114   IsDef = Val;
115 }
116 
117 // If this operand is currently a register operand, and if this is in a
118 // function, deregister the operand from the register's use/def list.
119 void MachineOperand::removeRegFromUses() {
120   if (!isReg() || !isOnRegUseList())
121     return;
122 
123   if (MachineInstr *MI = getParent()) {
124     if (MachineBasicBlock *MBB = MI->getParent()) {
125       if (MachineFunction *MF = MBB->getParent())
126         MF->getRegInfo().removeRegOperandFromUseList(this);
127     }
128   }
129 }
130 
131 /// ChangeToImmediate - Replace this operand with a new immediate operand of
132 /// the specified value.  If an operand is known to be an immediate already,
133 /// the setImm method should be used.
134 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
135   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
136 
137   removeRegFromUses();
138 
139   OpKind = MO_Immediate;
140   Contents.ImmVal = ImmVal;
141 }
142 
143 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
144   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
145 
146   removeRegFromUses();
147 
148   OpKind = MO_FPImmediate;
149   Contents.CFP = FPImm;
150 }
151 
152 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
153   assert((!isReg() || !isTied()) &&
154          "Cannot change a tied operand into an external symbol");
155 
156   removeRegFromUses();
157 
158   OpKind = MO_ExternalSymbol;
159   Contents.OffsetedInfo.Val.SymbolName = SymName;
160   setOffset(0); // Offset is always 0.
161   setTargetFlags(TargetFlags);
162 }
163 
164 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
165   assert((!isReg() || !isTied()) &&
166          "Cannot change a tied operand into an MCSymbol");
167 
168   removeRegFromUses();
169 
170   OpKind = MO_MCSymbol;
171   Contents.Sym = Sym;
172 }
173 
174 /// ChangeToRegister - Replace this operand with a new register operand of
175 /// the specified value.  If an operand is known to be an register already,
176 /// the setReg method should be used.
177 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
178                                       bool isKill, bool isDead, bool isUndef,
179                                       bool isDebug) {
180   MachineRegisterInfo *RegInfo = nullptr;
181   if (MachineInstr *MI = getParent())
182     if (MachineBasicBlock *MBB = MI->getParent())
183       if (MachineFunction *MF = MBB->getParent())
184         RegInfo = &MF->getRegInfo();
185   // If this operand is already a register operand, remove it from the
186   // register's use/def lists.
187   bool WasReg = isReg();
188   if (RegInfo && WasReg)
189     RegInfo->removeRegOperandFromUseList(this);
190 
191   // Change this to a register and set the reg#.
192   OpKind = MO_Register;
193   SmallContents.RegNo = Reg;
194   SubReg_TargetFlags = 0;
195   IsDef = isDef;
196   IsImp = isImp;
197   IsKill = isKill;
198   IsDead = isDead;
199   IsUndef = isUndef;
200   IsInternalRead = false;
201   IsEarlyClobber = false;
202   IsDebug = isDebug;
203   // Ensure isOnRegUseList() returns false.
204   Contents.Reg.Prev = nullptr;
205   // Preserve the tie when the operand was already a register.
206   if (!WasReg)
207     TiedTo = 0;
208 
209   // If this operand is embedded in a function, add the operand to the
210   // register's use/def list.
211   if (RegInfo)
212     RegInfo->addRegOperandToUseList(this);
213 }
214 
215 /// isIdenticalTo - Return true if this operand is identical to the specified
216 /// operand. Note that this should stay in sync with the hash_value overload
217 /// below.
218 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
219   if (getType() != Other.getType() ||
220       getTargetFlags() != Other.getTargetFlags())
221     return false;
222 
223   switch (getType()) {
224   case MachineOperand::MO_Register:
225     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
226            getSubReg() == Other.getSubReg();
227   case MachineOperand::MO_Immediate:
228     return getImm() == Other.getImm();
229   case MachineOperand::MO_CImmediate:
230     return getCImm() == Other.getCImm();
231   case MachineOperand::MO_FPImmediate:
232     return getFPImm() == Other.getFPImm();
233   case MachineOperand::MO_MachineBasicBlock:
234     return getMBB() == Other.getMBB();
235   case MachineOperand::MO_FrameIndex:
236     return getIndex() == Other.getIndex();
237   case MachineOperand::MO_ConstantPoolIndex:
238   case MachineOperand::MO_TargetIndex:
239     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
240   case MachineOperand::MO_JumpTableIndex:
241     return getIndex() == Other.getIndex();
242   case MachineOperand::MO_GlobalAddress:
243     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
244   case MachineOperand::MO_ExternalSymbol:
245     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
246            getOffset() == Other.getOffset();
247   case MachineOperand::MO_BlockAddress:
248     return getBlockAddress() == Other.getBlockAddress() &&
249            getOffset() == Other.getOffset();
250   case MachineOperand::MO_RegisterMask:
251   case MachineOperand::MO_RegisterLiveOut:
252     return getRegMask() == Other.getRegMask();
253   case MachineOperand::MO_MCSymbol:
254     return getMCSymbol() == Other.getMCSymbol();
255   case MachineOperand::MO_CFIIndex:
256     return getCFIIndex() == Other.getCFIIndex();
257   case MachineOperand::MO_Metadata:
258     return getMetadata() == Other.getMetadata();
259   }
260   llvm_unreachable("Invalid machine operand type");
261 }
262 
263 // Note: this must stay exactly in sync with isIdenticalTo above.
264 hash_code llvm::hash_value(const MachineOperand &MO) {
265   switch (MO.getType()) {
266   case MachineOperand::MO_Register:
267     // Register operands don't have target flags.
268     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
269   case MachineOperand::MO_Immediate:
270     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
271   case MachineOperand::MO_CImmediate:
272     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
273   case MachineOperand::MO_FPImmediate:
274     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
275   case MachineOperand::MO_MachineBasicBlock:
276     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
277   case MachineOperand::MO_FrameIndex:
278     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
279   case MachineOperand::MO_ConstantPoolIndex:
280   case MachineOperand::MO_TargetIndex:
281     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
282                         MO.getOffset());
283   case MachineOperand::MO_JumpTableIndex:
284     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
285   case MachineOperand::MO_ExternalSymbol:
286     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
287                         MO.getSymbolName());
288   case MachineOperand::MO_GlobalAddress:
289     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
290                         MO.getOffset());
291   case MachineOperand::MO_BlockAddress:
292     return hash_combine(MO.getType(), MO.getTargetFlags(),
293                         MO.getBlockAddress(), MO.getOffset());
294   case MachineOperand::MO_RegisterMask:
295   case MachineOperand::MO_RegisterLiveOut:
296     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
297   case MachineOperand::MO_Metadata:
298     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
299   case MachineOperand::MO_MCSymbol:
300     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
301   case MachineOperand::MO_CFIIndex:
302     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
303   }
304   llvm_unreachable("Invalid machine operand type");
305 }
306 
307 void MachineOperand::print(raw_ostream &OS,
308                            const TargetRegisterInfo *TRI) const {
309   ModuleSlotTracker DummyMST(nullptr);
310   print(OS, DummyMST, TRI);
311 }
312 
313 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
314                            const TargetRegisterInfo *TRI) const {
315   switch (getType()) {
316   case MachineOperand::MO_Register:
317     OS << PrintReg(getReg(), TRI, getSubReg());
318 
319     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
320         isInternalRead() || isEarlyClobber() || isTied()) {
321       OS << '<';
322       bool NeedComma = false;
323       if (isDef()) {
324         if (NeedComma) OS << ',';
325         if (isEarlyClobber())
326           OS << "earlyclobber,";
327         if (isImplicit())
328           OS << "imp-";
329         OS << "def";
330         NeedComma = true;
331         // <def,read-undef> only makes sense when getSubReg() is set.
332         // Don't clutter the output otherwise.
333         if (isUndef() && getSubReg())
334           OS << ",read-undef";
335       } else if (isImplicit()) {
336         OS << "imp-use";
337         NeedComma = true;
338       }
339 
340       if (isKill()) {
341         if (NeedComma) OS << ',';
342         OS << "kill";
343         NeedComma = true;
344       }
345       if (isDead()) {
346         if (NeedComma) OS << ',';
347         OS << "dead";
348         NeedComma = true;
349       }
350       if (isUndef() && isUse()) {
351         if (NeedComma) OS << ',';
352         OS << "undef";
353         NeedComma = true;
354       }
355       if (isInternalRead()) {
356         if (NeedComma) OS << ',';
357         OS << "internal";
358         NeedComma = true;
359       }
360       if (isTied()) {
361         if (NeedComma) OS << ',';
362         OS << "tied";
363         if (TiedTo != 15)
364           OS << unsigned(TiedTo - 1);
365       }
366       OS << '>';
367     }
368     break;
369   case MachineOperand::MO_Immediate:
370     OS << getImm();
371     break;
372   case MachineOperand::MO_CImmediate:
373     getCImm()->getValue().print(OS, false);
374     break;
375   case MachineOperand::MO_FPImmediate:
376     if (getFPImm()->getType()->isFloatTy()) {
377       OS << getFPImm()->getValueAPF().convertToFloat();
378     } else if (getFPImm()->getType()->isHalfTy()) {
379       APFloat APF = getFPImm()->getValueAPF();
380       bool Unused;
381       APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused);
382       OS << "half " << APF.convertToFloat();
383     } else {
384       OS << getFPImm()->getValueAPF().convertToDouble();
385     }
386     break;
387   case MachineOperand::MO_MachineBasicBlock:
388     OS << "<BB#" << getMBB()->getNumber() << ">";
389     break;
390   case MachineOperand::MO_FrameIndex:
391     OS << "<fi#" << getIndex() << '>';
392     break;
393   case MachineOperand::MO_ConstantPoolIndex:
394     OS << "<cp#" << getIndex();
395     if (getOffset()) OS << "+" << getOffset();
396     OS << '>';
397     break;
398   case MachineOperand::MO_TargetIndex:
399     OS << "<ti#" << getIndex();
400     if (getOffset()) OS << "+" << getOffset();
401     OS << '>';
402     break;
403   case MachineOperand::MO_JumpTableIndex:
404     OS << "<jt#" << getIndex() << '>';
405     break;
406   case MachineOperand::MO_GlobalAddress:
407     OS << "<ga:";
408     getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
409     if (getOffset()) OS << "+" << getOffset();
410     OS << '>';
411     break;
412   case MachineOperand::MO_ExternalSymbol:
413     OS << "<es:" << getSymbolName();
414     if (getOffset()) OS << "+" << getOffset();
415     OS << '>';
416     break;
417   case MachineOperand::MO_BlockAddress:
418     OS << '<';
419     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
420     if (getOffset()) OS << "+" << getOffset();
421     OS << '>';
422     break;
423   case MachineOperand::MO_RegisterMask: {
424     unsigned NumRegsInMask = 0;
425     unsigned NumRegsEmitted = 0;
426     OS << "<regmask";
427     for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
428       unsigned MaskWord = i / 32;
429       unsigned MaskBit = i % 32;
430       if (getRegMask()[MaskWord] & (1 << MaskBit)) {
431         if (PrintWholeRegMask || NumRegsEmitted <= 10) {
432           OS << " " << PrintReg(i, TRI);
433           NumRegsEmitted++;
434         }
435         NumRegsInMask++;
436       }
437     }
438     if (NumRegsEmitted != NumRegsInMask)
439       OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
440     OS << ">";
441     break;
442   }
443   case MachineOperand::MO_RegisterLiveOut:
444     OS << "<regliveout>";
445     break;
446   case MachineOperand::MO_Metadata:
447     OS << '<';
448     getMetadata()->printAsOperand(OS, MST);
449     OS << '>';
450     break;
451   case MachineOperand::MO_MCSymbol:
452     OS << "<MCSym=" << *getMCSymbol() << '>';
453     break;
454   case MachineOperand::MO_CFIIndex:
455     OS << "<call frame instruction>";
456     break;
457   }
458 
459   if (unsigned TF = getTargetFlags())
460     OS << "[TF=" << TF << ']';
461 }
462 
463 //===----------------------------------------------------------------------===//
464 // MachineMemOperand Implementation
465 //===----------------------------------------------------------------------===//
466 
467 /// getAddrSpace - Return the LLVM IR address space number that this pointer
468 /// points into.
469 unsigned MachinePointerInfo::getAddrSpace() const {
470   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
471   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
472 }
473 
474 /// getConstantPool - Return a MachinePointerInfo record that refers to the
475 /// constant pool.
476 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
477   return MachinePointerInfo(MF.getPSVManager().getConstantPool());
478 }
479 
480 /// getFixedStack - Return a MachinePointerInfo record that refers to the
481 /// the specified FrameIndex.
482 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
483                                                      int FI, int64_t Offset) {
484   return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
485 }
486 
487 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
488   return MachinePointerInfo(MF.getPSVManager().getJumpTable());
489 }
490 
491 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
492   return MachinePointerInfo(MF.getPSVManager().getGOT());
493 }
494 
495 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
496                                                 int64_t Offset) {
497   return MachinePointerInfo(MF.getPSVManager().getStack(), Offset);
498 }
499 
500 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f,
501                                      uint64_t s, unsigned int a,
502                                      const AAMDNodes &AAInfo,
503                                      const MDNode *Ranges)
504     : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1),
505       AAInfo(AAInfo), Ranges(Ranges) {
506   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
507           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
508          "invalid pointer value");
509   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
510   assert((isLoad() || isStore()) && "Not a load/store!");
511 }
512 
513 /// Profile - Gather unique data for the object.
514 ///
515 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
516   ID.AddInteger(getOffset());
517   ID.AddInteger(Size);
518   ID.AddPointer(getOpaqueValue());
519   ID.AddInteger(getFlags());
520   ID.AddInteger(getBaseAlignment());
521 }
522 
523 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
524   // The Value and Offset may differ due to CSE. But the flags and size
525   // should be the same.
526   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
527   assert(MMO->getSize() == getSize() && "Size mismatch!");
528 
529   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
530     // Update the alignment value.
531     BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1;
532     // Also update the base and offset, because the new alignment may
533     // not be applicable with the old ones.
534     PtrInfo = MMO->PtrInfo;
535   }
536 }
537 
538 /// getAlignment - Return the minimum known alignment in bytes of the
539 /// actual memory reference.
540 uint64_t MachineMemOperand::getAlignment() const {
541   return MinAlign(getBaseAlignment(), getOffset());
542 }
543 
544 void MachineMemOperand::print(raw_ostream &OS) const {
545   ModuleSlotTracker DummyMST(nullptr);
546   print(OS, DummyMST);
547 }
548 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
549   assert((isLoad() || isStore()) &&
550          "SV has to be a load, store or both.");
551 
552   if (isVolatile())
553     OS << "Volatile ";
554 
555   if (isLoad())
556     OS << "LD";
557   if (isStore())
558     OS << "ST";
559   OS << getSize();
560 
561   // Print the address information.
562   OS << "[";
563   if (const Value *V = getValue())
564     V->printAsOperand(OS, /*PrintType=*/false, MST);
565   else if (const PseudoSourceValue *PSV = getPseudoValue())
566     PSV->printCustom(OS);
567   else
568     OS << "<unknown>";
569 
570   unsigned AS = getAddrSpace();
571   if (AS != 0)
572     OS << "(addrspace=" << AS << ')';
573 
574   // If the alignment of the memory reference itself differs from the alignment
575   // of the base pointer, print the base alignment explicitly, next to the base
576   // pointer.
577   if (getBaseAlignment() != getAlignment())
578     OS << "(align=" << getBaseAlignment() << ")";
579 
580   if (getOffset() != 0)
581     OS << "+" << getOffset();
582   OS << "]";
583 
584   // Print the alignment of the reference.
585   if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
586     OS << "(align=" << getAlignment() << ")";
587 
588   // Print TBAA info.
589   if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
590     OS << "(tbaa=";
591     if (TBAAInfo->getNumOperands() > 0)
592       TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
593     else
594       OS << "<unknown>";
595     OS << ")";
596   }
597 
598   // Print AA scope info.
599   if (const MDNode *ScopeInfo = getAAInfo().Scope) {
600     OS << "(alias.scope=";
601     if (ScopeInfo->getNumOperands() > 0)
602       for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
603         ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
604         if (i != ie-1)
605           OS << ",";
606       }
607     else
608       OS << "<unknown>";
609     OS << ")";
610   }
611 
612   // Print AA noalias scope info.
613   if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
614     OS << "(noalias=";
615     if (NoAliasInfo->getNumOperands() > 0)
616       for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
617         NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
618         if (i != ie-1)
619           OS << ",";
620       }
621     else
622       OS << "<unknown>";
623     OS << ")";
624   }
625 
626   // Print nontemporal info.
627   if (isNonTemporal())
628     OS << "(nontemporal)";
629 
630   if (isInvariant())
631     OS << "(invariant)";
632 }
633 
634 //===----------------------------------------------------------------------===//
635 // MachineInstr Implementation
636 //===----------------------------------------------------------------------===//
637 
638 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
639   if (MCID->ImplicitDefs)
640     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
641            ++ImpDefs)
642       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
643   if (MCID->ImplicitUses)
644     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
645            ++ImpUses)
646       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
647 }
648 
649 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
650 /// implicit operands. It reserves space for the number of operands specified by
651 /// the MCInstrDesc.
652 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
653                            DebugLoc dl, bool NoImp)
654     : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0),
655       AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr),
656       debugLoc(std::move(dl))
657 #ifdef LLVM_BUILD_GLOBAL_ISEL
658       ,
659       Tys(0)
660 #endif
661 {
662   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
663 
664   // Reserve space for the expected number of operands.
665   if (unsigned NumOps = MCID->getNumOperands() +
666     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
667     CapOperands = OperandCapacity::get(NumOps);
668     Operands = MF.allocateOperandArray(CapOperands);
669   }
670 
671   if (!NoImp)
672     addImplicitDefUseOperands(MF);
673 }
674 
675 /// MachineInstr ctor - Copies MachineInstr arg exactly
676 ///
677 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
678     : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
679       Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs),
680       MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc())
681 #ifdef LLVM_BUILD_GLOBAL_ISEL
682       ,
683       Tys(0)
684 #endif
685 {
686   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
687 
688   CapOperands = OperandCapacity::get(MI.getNumOperands());
689   Operands = MF.allocateOperandArray(CapOperands);
690 
691   // Copy operands.
692   for (const MachineOperand &MO : MI.operands())
693     addOperand(MF, MO);
694 
695   // Copy all the sensible flags.
696   setFlags(MI.Flags);
697 }
698 
699 /// getRegInfo - If this instruction is embedded into a MachineFunction,
700 /// return the MachineRegisterInfo object for the current function, otherwise
701 /// return null.
702 MachineRegisterInfo *MachineInstr::getRegInfo() {
703   if (MachineBasicBlock *MBB = getParent())
704     return &MBB->getParent()->getRegInfo();
705   return nullptr;
706 }
707 
708 // Implement dummy setter and getter for type when
709 // global-isel is not built.
710 // The proper implementation is WIP and is tracked here:
711 // PR26576.
712 #ifndef LLVM_BUILD_GLOBAL_ISEL
713 unsigned MachineInstr::getNumTypes() const { return 0; }
714 
715 void MachineInstr::setType(LLT Ty, unsigned Idx) {}
716 
717 LLT MachineInstr::getType(unsigned Idx) const { return LLT{}; }
718 
719 #else
720 unsigned MachineInstr::getNumTypes() const { return Tys.size(); }
721 
722 void MachineInstr::setType(LLT Ty, unsigned Idx) {
723   assert((!Ty.isValid() || isPreISelGenericOpcode(getOpcode())) &&
724          "Non generic instructions are not supposed to be typed");
725   if (Tys.size() < Idx + 1)
726     Tys.resize(Idx+1);
727   Tys[Idx] = Ty;
728 }
729 
730 LLT MachineInstr::getType(unsigned Idx) const { return Tys[Idx]; }
731 #endif // LLVM_BUILD_GLOBAL_ISEL
732 
733 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
734 /// this instruction from their respective use lists.  This requires that the
735 /// operands already be on their use lists.
736 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
737   for (MachineOperand &MO : operands())
738     if (MO.isReg())
739       MRI.removeRegOperandFromUseList(&MO);
740 }
741 
742 /// AddRegOperandsToUseLists - Add all of the register operands in
743 /// this instruction from their respective use lists.  This requires that the
744 /// operands not be on their use lists yet.
745 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
746   for (MachineOperand &MO : operands())
747     if (MO.isReg())
748       MRI.addRegOperandToUseList(&MO);
749 }
750 
751 void MachineInstr::addOperand(const MachineOperand &Op) {
752   MachineBasicBlock *MBB = getParent();
753   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
754   MachineFunction *MF = MBB->getParent();
755   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
756   addOperand(*MF, Op);
757 }
758 
759 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
760 /// ranges. If MRI is non-null also update use-def chains.
761 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
762                          unsigned NumOps, MachineRegisterInfo *MRI) {
763   if (MRI)
764     return MRI->moveOperands(Dst, Src, NumOps);
765 
766   // MachineOperand is a trivially copyable type so we can just use memmove.
767   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
768 }
769 
770 /// addOperand - Add the specified operand to the instruction.  If it is an
771 /// implicit operand, it is added to the end of the operand list.  If it is
772 /// an explicit operand it is added at the end of the explicit operand list
773 /// (before the first implicit operand).
774 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
775   assert(MCID && "Cannot add operands before providing an instr descriptor");
776 
777   // Check if we're adding one of our existing operands.
778   if (&Op >= Operands && &Op < Operands + NumOperands) {
779     // This is unusual: MI->addOperand(MI->getOperand(i)).
780     // If adding Op requires reallocating or moving existing operands around,
781     // the Op reference could go stale. Support it by copying Op.
782     MachineOperand CopyOp(Op);
783     return addOperand(MF, CopyOp);
784   }
785 
786   // Find the insert location for the new operand.  Implicit registers go at
787   // the end, everything else goes before the implicit regs.
788   //
789   // FIXME: Allow mixed explicit and implicit operands on inline asm.
790   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
791   // implicit-defs, but they must not be moved around.  See the FIXME in
792   // InstrEmitter.cpp.
793   unsigned OpNo = getNumOperands();
794   bool isImpReg = Op.isReg() && Op.isImplicit();
795   if (!isImpReg && !isInlineAsm()) {
796     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
797       --OpNo;
798       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
799     }
800   }
801 
802 #ifndef NDEBUG
803   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
804   // OpNo now points as the desired insertion point.  Unless this is a variadic
805   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
806   // RegMask operands go between the explicit and implicit operands.
807   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
808           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
809          "Trying to add an operand to a machine instr that is already done!");
810 #endif
811 
812   MachineRegisterInfo *MRI = getRegInfo();
813 
814   // Determine if the Operands array needs to be reallocated.
815   // Save the old capacity and operand array.
816   OperandCapacity OldCap = CapOperands;
817   MachineOperand *OldOperands = Operands;
818   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
819     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
820     Operands = MF.allocateOperandArray(CapOperands);
821     // Move the operands before the insertion point.
822     if (OpNo)
823       moveOperands(Operands, OldOperands, OpNo, MRI);
824   }
825 
826   // Move the operands following the insertion point.
827   if (OpNo != NumOperands)
828     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
829                  MRI);
830   ++NumOperands;
831 
832   // Deallocate the old operand array.
833   if (OldOperands != Operands && OldOperands)
834     MF.deallocateOperandArray(OldCap, OldOperands);
835 
836   // Copy Op into place. It still needs to be inserted into the MRI use lists.
837   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
838   NewMO->ParentMI = this;
839 
840   // When adding a register operand, tell MRI about it.
841   if (NewMO->isReg()) {
842     // Ensure isOnRegUseList() returns false, regardless of Op's status.
843     NewMO->Contents.Reg.Prev = nullptr;
844     // Ignore existing ties. This is not a property that can be copied.
845     NewMO->TiedTo = 0;
846     // Add the new operand to MRI, but only for instructions in an MBB.
847     if (MRI)
848       MRI->addRegOperandToUseList(NewMO);
849     // The MCID operand information isn't accurate until we start adding
850     // explicit operands. The implicit operands are added first, then the
851     // explicits are inserted before them.
852     if (!isImpReg) {
853       // Tie uses to defs as indicated in MCInstrDesc.
854       if (NewMO->isUse()) {
855         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
856         if (DefIdx != -1)
857           tieOperands(DefIdx, OpNo);
858       }
859       // If the register operand is flagged as early, mark the operand as such.
860       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
861         NewMO->setIsEarlyClobber(true);
862     }
863   }
864 }
865 
866 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
867 /// fewer operand than it started with.
868 ///
869 void MachineInstr::RemoveOperand(unsigned OpNo) {
870   assert(OpNo < getNumOperands() && "Invalid operand number");
871   untieRegOperand(OpNo);
872 
873 #ifndef NDEBUG
874   // Moving tied operands would break the ties.
875   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
876     if (Operands[i].isReg())
877       assert(!Operands[i].isTied() && "Cannot move tied operands");
878 #endif
879 
880   MachineRegisterInfo *MRI = getRegInfo();
881   if (MRI && Operands[OpNo].isReg())
882     MRI->removeRegOperandFromUseList(Operands + OpNo);
883 
884   // Don't call the MachineOperand destructor. A lot of this code depends on
885   // MachineOperand having a trivial destructor anyway, and adding a call here
886   // wouldn't make it 'destructor-correct'.
887 
888   if (unsigned N = NumOperands - 1 - OpNo)
889     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
890   --NumOperands;
891 }
892 
893 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
894 /// This function should be used only occasionally. The setMemRefs function
895 /// is the primary method for setting up a MachineInstr's MemRefs list.
896 void MachineInstr::addMemOperand(MachineFunction &MF,
897                                  MachineMemOperand *MO) {
898   mmo_iterator OldMemRefs = MemRefs;
899   unsigned OldNumMemRefs = NumMemRefs;
900 
901   unsigned NewNum = NumMemRefs + 1;
902   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
903 
904   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
905   NewMemRefs[NewNum - 1] = MO;
906   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
907 }
908 
909 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
910 /// identical.
911 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
912   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
913   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
914   if ((E1 - I1) != (E2 - I2))
915     return false;
916   for (; I1 != E1; ++I1, ++I2) {
917     if (**I1 != **I2)
918       return false;
919   }
920   return true;
921 }
922 
923 std::pair<MachineInstr::mmo_iterator, unsigned>
924 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
925 
926   // If either of the incoming memrefs are empty, we must be conservative and
927   // treat this as if we've exhausted our space for memrefs and dropped them.
928   if (memoperands_empty() || Other.memoperands_empty())
929     return std::make_pair(nullptr, 0);
930 
931   // If both instructions have identical memrefs, we don't need to merge them.
932   // Since many instructions have a single memref, and we tend to merge things
933   // like pairs of loads from the same location, this catches a large number of
934   // cases in practice.
935   if (hasIdenticalMMOs(*this, Other))
936     return std::make_pair(MemRefs, NumMemRefs);
937 
938   // TODO: consider uniquing elements within the operand lists to reduce
939   // space usage and fall back to conservative information less often.
940   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
941 
942   // If we don't have enough room to store this many memrefs, be conservative
943   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
944   // the new instruction.
945   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
946     return std::make_pair(nullptr, 0);
947 
948   MachineFunction *MF = getParent()->getParent();
949   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
950   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
951                                   MemBegin);
952   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
953                      MemEnd);
954   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
955          "missing memrefs");
956 
957   return std::make_pair(MemBegin, CombinedNumMemRefs);
958 }
959 
960 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
961   assert(!isBundledWithPred() && "Must be called on bundle header");
962   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
963     if (MII->getDesc().getFlags() & Mask) {
964       if (Type == AnyInBundle)
965         return true;
966     } else {
967       if (Type == AllInBundle && !MII->isBundle())
968         return false;
969     }
970     // This was the last instruction in the bundle.
971     if (!MII->isBundledWithSucc())
972       return Type == AllInBundle;
973   }
974 }
975 
976 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
977                                  MICheckType Check) const {
978   // If opcodes or number of operands are not the same then the two
979   // instructions are obviously not identical.
980   if (Other.getOpcode() != getOpcode() ||
981       Other.getNumOperands() != getNumOperands())
982     return false;
983 
984   if (isBundle()) {
985     // Both instructions are bundles, compare MIs inside the bundle.
986     MachineBasicBlock::const_instr_iterator I1 = getIterator();
987     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
988     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
989     MachineBasicBlock::const_instr_iterator E2 = Other.getParent()->instr_end();
990     while (++I1 != E1 && I1->isInsideBundle()) {
991       ++I2;
992       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(*I2, Check))
993         return false;
994     }
995   }
996 
997   // Check operands to make sure they match.
998   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
999     const MachineOperand &MO = getOperand(i);
1000     const MachineOperand &OMO = Other.getOperand(i);
1001     if (!MO.isReg()) {
1002       if (!MO.isIdenticalTo(OMO))
1003         return false;
1004       continue;
1005     }
1006 
1007     // Clients may or may not want to ignore defs when testing for equality.
1008     // For example, machine CSE pass only cares about finding common
1009     // subexpressions, so it's safe to ignore virtual register defs.
1010     if (MO.isDef()) {
1011       if (Check == IgnoreDefs)
1012         continue;
1013       else if (Check == IgnoreVRegDefs) {
1014         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1015             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
1016           if (MO.getReg() != OMO.getReg())
1017             return false;
1018       } else {
1019         if (!MO.isIdenticalTo(OMO))
1020           return false;
1021         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
1022           return false;
1023       }
1024     } else {
1025       if (!MO.isIdenticalTo(OMO))
1026         return false;
1027       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
1028         return false;
1029     }
1030   }
1031   // If DebugLoc does not match then two dbg.values are not identical.
1032   if (isDebugValue())
1033     if (getDebugLoc() && Other.getDebugLoc() &&
1034         getDebugLoc() != Other.getDebugLoc())
1035       return false;
1036   return true;
1037 }
1038 
1039 MachineInstr *MachineInstr::removeFromParent() {
1040   assert(getParent() && "Not embedded in a basic block!");
1041   return getParent()->remove(this);
1042 }
1043 
1044 MachineInstr *MachineInstr::removeFromBundle() {
1045   assert(getParent() && "Not embedded in a basic block!");
1046   return getParent()->remove_instr(this);
1047 }
1048 
1049 void MachineInstr::eraseFromParent() {
1050   assert(getParent() && "Not embedded in a basic block!");
1051   getParent()->erase(this);
1052 }
1053 
1054 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
1055   assert(getParent() && "Not embedded in a basic block!");
1056   MachineBasicBlock *MBB = getParent();
1057   MachineFunction *MF = MBB->getParent();
1058   assert(MF && "Not embedded in a function!");
1059 
1060   MachineInstr *MI = (MachineInstr *)this;
1061   MachineRegisterInfo &MRI = MF->getRegInfo();
1062 
1063   for (const MachineOperand &MO : MI->operands()) {
1064     if (!MO.isReg() || !MO.isDef())
1065       continue;
1066     unsigned Reg = MO.getReg();
1067     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1068       continue;
1069     MRI.markUsesInDebugValueAsUndef(Reg);
1070   }
1071   MI->eraseFromParent();
1072 }
1073 
1074 void MachineInstr::eraseFromBundle() {
1075   assert(getParent() && "Not embedded in a basic block!");
1076   getParent()->erase_instr(this);
1077 }
1078 
1079 /// getNumExplicitOperands - Returns the number of non-implicit operands.
1080 ///
1081 unsigned MachineInstr::getNumExplicitOperands() const {
1082   unsigned NumOperands = MCID->getNumOperands();
1083   if (!MCID->isVariadic())
1084     return NumOperands;
1085 
1086   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
1087     const MachineOperand &MO = getOperand(i);
1088     if (!MO.isReg() || !MO.isImplicit())
1089       NumOperands++;
1090   }
1091   return NumOperands;
1092 }
1093 
1094 void MachineInstr::bundleWithPred() {
1095   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
1096   setFlag(BundledPred);
1097   MachineBasicBlock::instr_iterator Pred = getIterator();
1098   --Pred;
1099   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1100   Pred->setFlag(BundledSucc);
1101 }
1102 
1103 void MachineInstr::bundleWithSucc() {
1104   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
1105   setFlag(BundledSucc);
1106   MachineBasicBlock::instr_iterator Succ = getIterator();
1107   ++Succ;
1108   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
1109   Succ->setFlag(BundledPred);
1110 }
1111 
1112 void MachineInstr::unbundleFromPred() {
1113   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
1114   clearFlag(BundledPred);
1115   MachineBasicBlock::instr_iterator Pred = getIterator();
1116   --Pred;
1117   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1118   Pred->clearFlag(BundledSucc);
1119 }
1120 
1121 void MachineInstr::unbundleFromSucc() {
1122   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
1123   clearFlag(BundledSucc);
1124   MachineBasicBlock::instr_iterator Succ = getIterator();
1125   ++Succ;
1126   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
1127   Succ->clearFlag(BundledPred);
1128 }
1129 
1130 bool MachineInstr::isStackAligningInlineAsm() const {
1131   if (isInlineAsm()) {
1132     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1133     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1134       return true;
1135   }
1136   return false;
1137 }
1138 
1139 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
1140   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
1141   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1142   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
1143 }
1144 
1145 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
1146                                        unsigned *GroupNo) const {
1147   assert(isInlineAsm() && "Expected an inline asm instruction");
1148   assert(OpIdx < getNumOperands() && "OpIdx out of range");
1149 
1150   // Ignore queries about the initial operands.
1151   if (OpIdx < InlineAsm::MIOp_FirstOperand)
1152     return -1;
1153 
1154   unsigned Group = 0;
1155   unsigned NumOps;
1156   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1157        i += NumOps) {
1158     const MachineOperand &FlagMO = getOperand(i);
1159     // If we reach the implicit register operands, stop looking.
1160     if (!FlagMO.isImm())
1161       return -1;
1162     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1163     if (i + NumOps > OpIdx) {
1164       if (GroupNo)
1165         *GroupNo = Group;
1166       return i;
1167     }
1168     ++Group;
1169   }
1170   return -1;
1171 }
1172 
1173 const DILocalVariable *MachineInstr::getDebugVariable() const {
1174   assert(isDebugValue() && "not a DBG_VALUE");
1175   return cast<DILocalVariable>(getOperand(2).getMetadata());
1176 }
1177 
1178 const DIExpression *MachineInstr::getDebugExpression() const {
1179   assert(isDebugValue() && "not a DBG_VALUE");
1180   return cast<DIExpression>(getOperand(3).getMetadata());
1181 }
1182 
1183 const TargetRegisterClass*
1184 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1185                                     const TargetInstrInfo *TII,
1186                                     const TargetRegisterInfo *TRI) const {
1187   assert(getParent() && "Can't have an MBB reference here!");
1188   assert(getParent()->getParent() && "Can't have an MF reference here!");
1189   const MachineFunction &MF = *getParent()->getParent();
1190 
1191   // Most opcodes have fixed constraints in their MCInstrDesc.
1192   if (!isInlineAsm())
1193     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1194 
1195   if (!getOperand(OpIdx).isReg())
1196     return nullptr;
1197 
1198   // For tied uses on inline asm, get the constraint from the def.
1199   unsigned DefIdx;
1200   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1201     OpIdx = DefIdx;
1202 
1203   // Inline asm stores register class constraints in the flag word.
1204   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1205   if (FlagIdx < 0)
1206     return nullptr;
1207 
1208   unsigned Flag = getOperand(FlagIdx).getImm();
1209   unsigned RCID;
1210   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
1211        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
1212        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
1213       InlineAsm::hasRegClassConstraint(Flag, RCID))
1214     return TRI->getRegClass(RCID);
1215 
1216   // Assume that all registers in a memory operand are pointers.
1217   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1218     return TRI->getPointerRegClass(MF);
1219 
1220   return nullptr;
1221 }
1222 
1223 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1224     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1225     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1226   // Check every operands inside the bundle if we have
1227   // been asked to.
1228   if (ExploreBundle)
1229     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
1230          ++OpndIt)
1231       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1232           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1233   else
1234     // Otherwise, just check the current operands.
1235     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1236       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1237   return CurRC;
1238 }
1239 
1240 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1241     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1242     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1243   assert(CurRC && "Invalid initial register class");
1244   // Check if Reg is constrained by some of its use/def from MI.
1245   const MachineOperand &MO = getOperand(OpIdx);
1246   if (!MO.isReg() || MO.getReg() != Reg)
1247     return CurRC;
1248   // If yes, accumulate the constraints through the operand.
1249   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1250 }
1251 
1252 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1253     unsigned OpIdx, const TargetRegisterClass *CurRC,
1254     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1255   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1256   const MachineOperand &MO = getOperand(OpIdx);
1257   assert(MO.isReg() &&
1258          "Cannot get register constraints for non-register operand");
1259   assert(CurRC && "Invalid initial register class");
1260   if (unsigned SubIdx = MO.getSubReg()) {
1261     if (OpRC)
1262       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1263     else
1264       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1265   } else if (OpRC)
1266     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1267   return CurRC;
1268 }
1269 
1270 /// Return the number of instructions inside the MI bundle, not counting the
1271 /// header instruction.
1272 unsigned MachineInstr::getBundleSize() const {
1273   MachineBasicBlock::const_instr_iterator I = getIterator();
1274   unsigned Size = 0;
1275   while (I->isBundledWithSucc()) {
1276     ++Size;
1277     ++I;
1278   }
1279   return Size;
1280 }
1281 
1282 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1283 /// the given register (not considering sub/super-registers).
1284 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
1285   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1286     const MachineOperand &MO = getOperand(i);
1287     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1288       return true;
1289   }
1290   return false;
1291 }
1292 
1293 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1294 /// the specific register or -1 if it is not found. It further tightens
1295 /// the search criteria to a use that kills the register if isKill is true.
1296 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1297                                           const TargetRegisterInfo *TRI) const {
1298   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1299     const MachineOperand &MO = getOperand(i);
1300     if (!MO.isReg() || !MO.isUse())
1301       continue;
1302     unsigned MOReg = MO.getReg();
1303     if (!MOReg)
1304       continue;
1305     if (MOReg == Reg ||
1306         (TRI &&
1307          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1308          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1309          TRI->isSubRegister(MOReg, Reg)))
1310       if (!isKill || MO.isKill())
1311         return i;
1312   }
1313   return -1;
1314 }
1315 
1316 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1317 /// indicating if this instruction reads or writes Reg. This also considers
1318 /// partial defines.
1319 std::pair<bool,bool>
1320 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1321                                          SmallVectorImpl<unsigned> *Ops) const {
1322   bool PartDef = false; // Partial redefine.
1323   bool FullDef = false; // Full define.
1324   bool Use = false;
1325 
1326   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1327     const MachineOperand &MO = getOperand(i);
1328     if (!MO.isReg() || MO.getReg() != Reg)
1329       continue;
1330     if (Ops)
1331       Ops->push_back(i);
1332     if (MO.isUse())
1333       Use |= !MO.isUndef();
1334     else if (MO.getSubReg() && !MO.isUndef())
1335       // A partial <def,undef> doesn't count as reading the register.
1336       PartDef = true;
1337     else
1338       FullDef = true;
1339   }
1340   // A partial redefine uses Reg unless there is also a full define.
1341   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1342 }
1343 
1344 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1345 /// the specified register or -1 if it is not found. If isDead is true, defs
1346 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1347 /// also checks if there is a def of a super-register.
1348 int
1349 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1350                                         const TargetRegisterInfo *TRI) const {
1351   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1352   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1353     const MachineOperand &MO = getOperand(i);
1354     // Accept regmask operands when Overlap is set.
1355     // Ignore them when looking for a specific def operand (Overlap == false).
1356     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1357       return i;
1358     if (!MO.isReg() || !MO.isDef())
1359       continue;
1360     unsigned MOReg = MO.getReg();
1361     bool Found = (MOReg == Reg);
1362     if (!Found && TRI && isPhys &&
1363         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1364       if (Overlap)
1365         Found = TRI->regsOverlap(MOReg, Reg);
1366       else
1367         Found = TRI->isSubRegister(MOReg, Reg);
1368     }
1369     if (Found && (!isDead || MO.isDead()))
1370       return i;
1371   }
1372   return -1;
1373 }
1374 
1375 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1376 /// operand list that is used to represent the predicate. It returns -1 if
1377 /// none is found.
1378 int MachineInstr::findFirstPredOperandIdx() const {
1379   // Don't call MCID.findFirstPredOperandIdx() because this variant
1380   // is sometimes called on an instruction that's not yet complete, and
1381   // so the number of operands is less than the MCID indicates. In
1382   // particular, the PTX target does this.
1383   const MCInstrDesc &MCID = getDesc();
1384   if (MCID.isPredicable()) {
1385     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1386       if (MCID.OpInfo[i].isPredicate())
1387         return i;
1388   }
1389 
1390   return -1;
1391 }
1392 
1393 // MachineOperand::TiedTo is 4 bits wide.
1394 const unsigned TiedMax = 15;
1395 
1396 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1397 ///
1398 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1399 /// field. TiedTo can have these values:
1400 ///
1401 /// 0:              Operand is not tied to anything.
1402 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1403 /// TiedMax:        Tied to an operand >= TiedMax-1.
1404 ///
1405 /// The tied def must be one of the first TiedMax operands on a normal
1406 /// instruction. INLINEASM instructions allow more tied defs.
1407 ///
1408 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1409   MachineOperand &DefMO = getOperand(DefIdx);
1410   MachineOperand &UseMO = getOperand(UseIdx);
1411   assert(DefMO.isDef() && "DefIdx must be a def operand");
1412   assert(UseMO.isUse() && "UseIdx must be a use operand");
1413   assert(!DefMO.isTied() && "Def is already tied to another use");
1414   assert(!UseMO.isTied() && "Use is already tied to another def");
1415 
1416   if (DefIdx < TiedMax)
1417     UseMO.TiedTo = DefIdx + 1;
1418   else {
1419     // Inline asm can use the group descriptors to find tied operands, but on
1420     // normal instruction, the tied def must be within the first TiedMax
1421     // operands.
1422     assert(isInlineAsm() && "DefIdx out of range");
1423     UseMO.TiedTo = TiedMax;
1424   }
1425 
1426   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1427   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1428 }
1429 
1430 /// Given the index of a tied register operand, find the operand it is tied to.
1431 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1432 /// which must exist.
1433 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1434   const MachineOperand &MO = getOperand(OpIdx);
1435   assert(MO.isTied() && "Operand isn't tied");
1436 
1437   // Normally TiedTo is in range.
1438   if (MO.TiedTo < TiedMax)
1439     return MO.TiedTo - 1;
1440 
1441   // Uses on normal instructions can be out of range.
1442   if (!isInlineAsm()) {
1443     // Normal tied defs must be in the 0..TiedMax-1 range.
1444     if (MO.isUse())
1445       return TiedMax - 1;
1446     // MO is a def. Search for the tied use.
1447     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1448       const MachineOperand &UseMO = getOperand(i);
1449       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1450         return i;
1451     }
1452     llvm_unreachable("Can't find tied use");
1453   }
1454 
1455   // Now deal with inline asm by parsing the operand group descriptor flags.
1456   // Find the beginning of each operand group.
1457   SmallVector<unsigned, 8> GroupIdx;
1458   unsigned OpIdxGroup = ~0u;
1459   unsigned NumOps;
1460   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1461        i += NumOps) {
1462     const MachineOperand &FlagMO = getOperand(i);
1463     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1464     unsigned CurGroup = GroupIdx.size();
1465     GroupIdx.push_back(i);
1466     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1467     // OpIdx belongs to this operand group.
1468     if (OpIdx > i && OpIdx < i + NumOps)
1469       OpIdxGroup = CurGroup;
1470     unsigned TiedGroup;
1471     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1472       continue;
1473     // Operands in this group are tied to operands in TiedGroup which must be
1474     // earlier. Find the number of operands between the two groups.
1475     unsigned Delta = i - GroupIdx[TiedGroup];
1476 
1477     // OpIdx is a use tied to TiedGroup.
1478     if (OpIdxGroup == CurGroup)
1479       return OpIdx - Delta;
1480 
1481     // OpIdx is a def tied to this use group.
1482     if (OpIdxGroup == TiedGroup)
1483       return OpIdx + Delta;
1484   }
1485   llvm_unreachable("Invalid tied operand on inline asm");
1486 }
1487 
1488 /// clearKillInfo - Clears kill flags on all operands.
1489 ///
1490 void MachineInstr::clearKillInfo() {
1491   for (MachineOperand &MO : operands()) {
1492     if (MO.isReg() && MO.isUse())
1493       MO.setIsKill(false);
1494   }
1495 }
1496 
1497 void MachineInstr::substituteRegister(unsigned FromReg,
1498                                       unsigned ToReg,
1499                                       unsigned SubIdx,
1500                                       const TargetRegisterInfo &RegInfo) {
1501   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1502     if (SubIdx)
1503       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1504     for (MachineOperand &MO : operands()) {
1505       if (!MO.isReg() || MO.getReg() != FromReg)
1506         continue;
1507       MO.substPhysReg(ToReg, RegInfo);
1508     }
1509   } else {
1510     for (MachineOperand &MO : operands()) {
1511       if (!MO.isReg() || MO.getReg() != FromReg)
1512         continue;
1513       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1514     }
1515   }
1516 }
1517 
1518 /// isSafeToMove - Return true if it is safe to move this instruction. If
1519 /// SawStore is set to true, it means that there is a store (or call) between
1520 /// the instruction's location and its intended destination.
1521 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1522   // Ignore stuff that we obviously can't move.
1523   //
1524   // Treat volatile loads as stores. This is not strictly necessary for
1525   // volatiles, but it is required for atomic loads. It is not allowed to move
1526   // a load across an atomic load with Ordering > Monotonic.
1527   if (mayStore() || isCall() ||
1528       (mayLoad() && hasOrderedMemoryRef())) {
1529     SawStore = true;
1530     return false;
1531   }
1532 
1533   if (isPosition() || isDebugValue() || isTerminator() ||
1534       hasUnmodeledSideEffects())
1535     return false;
1536 
1537   // See if this instruction does a load.  If so, we have to guarantee that the
1538   // loaded value doesn't change between the load and the its intended
1539   // destination. The check for isInvariantLoad gives the targe the chance to
1540   // classify the load as always returning a constant, e.g. a constant pool
1541   // load.
1542   if (mayLoad() && !isInvariantLoad(AA))
1543     // Otherwise, this is a real load.  If there is a store between the load and
1544     // end of block, we can't move it.
1545     return !SawStore;
1546 
1547   return true;
1548 }
1549 
1550 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1551 /// or volatile memory reference, or if the information describing the memory
1552 /// reference is not available. Return false if it is known to have no ordered
1553 /// memory references.
1554 bool MachineInstr::hasOrderedMemoryRef() const {
1555   // An instruction known never to access memory won't have a volatile access.
1556   if (!mayStore() &&
1557       !mayLoad() &&
1558       !isCall() &&
1559       !hasUnmodeledSideEffects())
1560     return false;
1561 
1562   // Otherwise, if the instruction has no memory reference information,
1563   // conservatively assume it wasn't preserved.
1564   if (memoperands_empty())
1565     return true;
1566 
1567   // Check if any of our memory operands are ordered.
1568   return any_of(memoperands(), [](const MachineMemOperand *MMO) {
1569     return !MMO->isUnordered();
1570   });
1571 }
1572 
1573 /// isInvariantLoad - Return true if this instruction is loading from a
1574 /// location whose value is invariant across the function.  For example,
1575 /// loading a value from the constant pool or from the argument area
1576 /// of a function if it does not change.  This should only return true of
1577 /// *all* loads the instruction does are invariant (if it does multiple loads).
1578 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1579   // If the instruction doesn't load at all, it isn't an invariant load.
1580   if (!mayLoad())
1581     return false;
1582 
1583   // If the instruction has lost its memoperands, conservatively assume that
1584   // it may not be an invariant load.
1585   if (memoperands_empty())
1586     return false;
1587 
1588   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1589 
1590   for (MachineMemOperand *MMO : memoperands()) {
1591     if (MMO->isVolatile()) return false;
1592     if (MMO->isStore()) return false;
1593     if (MMO->isInvariant()) continue;
1594 
1595     // A load from a constant PseudoSourceValue is invariant.
1596     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1597       if (PSV->isConstant(MFI))
1598         continue;
1599 
1600     if (const Value *V = MMO->getValue()) {
1601       // If we have an AliasAnalysis, ask it whether the memory is constant.
1602       if (AA &&
1603           AA->pointsToConstantMemory(
1604               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1605         continue;
1606     }
1607 
1608     // Otherwise assume conservatively.
1609     return false;
1610   }
1611 
1612   // Everything checks out.
1613   return true;
1614 }
1615 
1616 /// isConstantValuePHI - If the specified instruction is a PHI that always
1617 /// merges together the same virtual register, return the register, otherwise
1618 /// return 0.
1619 unsigned MachineInstr::isConstantValuePHI() const {
1620   if (!isPHI())
1621     return 0;
1622   assert(getNumOperands() >= 3 &&
1623          "It's illegal to have a PHI without source operands");
1624 
1625   unsigned Reg = getOperand(1).getReg();
1626   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1627     if (getOperand(i).getReg() != Reg)
1628       return 0;
1629   return Reg;
1630 }
1631 
1632 bool MachineInstr::hasUnmodeledSideEffects() const {
1633   if (hasProperty(MCID::UnmodeledSideEffects))
1634     return true;
1635   if (isInlineAsm()) {
1636     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1637     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1638       return true;
1639   }
1640 
1641   return false;
1642 }
1643 
1644 bool MachineInstr::isLoadFoldBarrier() const {
1645   return mayStore() || isCall() || hasUnmodeledSideEffects();
1646 }
1647 
1648 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1649 ///
1650 bool MachineInstr::allDefsAreDead() const {
1651   for (const MachineOperand &MO : operands()) {
1652     if (!MO.isReg() || MO.isUse())
1653       continue;
1654     if (!MO.isDead())
1655       return false;
1656   }
1657   return true;
1658 }
1659 
1660 /// copyImplicitOps - Copy implicit register operands from specified
1661 /// instruction to this instruction.
1662 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1663                                    const MachineInstr &MI) {
1664   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1665        i != e; ++i) {
1666     const MachineOperand &MO = MI.getOperand(i);
1667     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1668       addOperand(MF, MO);
1669   }
1670 }
1671 
1672 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1673 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1674   dbgs() << "  " << *this;
1675 #endif
1676 }
1677 
1678 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const {
1679   const Module *M = nullptr;
1680   if (const MachineBasicBlock *MBB = getParent())
1681     if (const MachineFunction *MF = MBB->getParent())
1682       M = MF->getFunction()->getParent();
1683 
1684   ModuleSlotTracker MST(M);
1685   print(OS, MST, SkipOpers);
1686 }
1687 
1688 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1689                          bool SkipOpers) const {
1690   // We can be a bit tidier if we know the MachineFunction.
1691   const MachineFunction *MF = nullptr;
1692   const TargetRegisterInfo *TRI = nullptr;
1693   const MachineRegisterInfo *MRI = nullptr;
1694   const TargetInstrInfo *TII = nullptr;
1695   if (const MachineBasicBlock *MBB = getParent()) {
1696     MF = MBB->getParent();
1697     if (MF) {
1698       MRI = &MF->getRegInfo();
1699       TRI = MF->getSubtarget().getRegisterInfo();
1700       TII = MF->getSubtarget().getInstrInfo();
1701     }
1702   }
1703 
1704   // Save a list of virtual registers.
1705   SmallVector<unsigned, 8> VirtRegs;
1706 
1707   // Print explicitly defined operands on the left of an assignment syntax.
1708   unsigned StartOp = 0, e = getNumOperands();
1709   for (; StartOp < e && getOperand(StartOp).isReg() &&
1710          getOperand(StartOp).isDef() &&
1711          !getOperand(StartOp).isImplicit();
1712        ++StartOp) {
1713     if (StartOp != 0) OS << ", ";
1714     getOperand(StartOp).print(OS, MST, TRI);
1715     unsigned Reg = getOperand(StartOp).getReg();
1716     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1717       VirtRegs.push_back(Reg);
1718       unsigned Size;
1719       if (MRI && (Size = MRI->getSize(Reg)))
1720         OS << '(' << Size << ')';
1721     }
1722   }
1723 
1724   if (StartOp != 0)
1725     OS << " = ";
1726 
1727   // Print the opcode name.
1728   if (TII)
1729     OS << TII->getName(getOpcode());
1730   else
1731     OS << "UNKNOWN";
1732 
1733   if (getNumTypes() > 0) {
1734     OS << " { ";
1735     for (unsigned i = 0; i < getNumTypes(); ++i) {
1736       getType(i).print(OS);
1737       if (i + 1 != getNumTypes())
1738         OS << ", ";
1739     }
1740     OS << " } ";
1741   }
1742 
1743   if (SkipOpers)
1744     return;
1745 
1746   // Print the rest of the operands.
1747   bool OmittedAnyCallClobbers = false;
1748   bool FirstOp = true;
1749   unsigned AsmDescOp = ~0u;
1750   unsigned AsmOpCount = 0;
1751 
1752   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1753     // Print asm string.
1754     OS << " ";
1755     getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
1756 
1757     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1758     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1759     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1760       OS << " [sideeffect]";
1761     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1762       OS << " [mayload]";
1763     if (ExtraInfo & InlineAsm::Extra_MayStore)
1764       OS << " [maystore]";
1765     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1766       OS << " [isconvergent]";
1767     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1768       OS << " [alignstack]";
1769     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1770       OS << " [attdialect]";
1771     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1772       OS << " [inteldialect]";
1773 
1774     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1775     FirstOp = false;
1776   }
1777 
1778   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1779     const MachineOperand &MO = getOperand(i);
1780 
1781     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1782       VirtRegs.push_back(MO.getReg());
1783 
1784     // Omit call-clobbered registers which aren't used anywhere. This makes
1785     // call instructions much less noisy on targets where calls clobber lots
1786     // of registers. Don't rely on MO.isDead() because we may be called before
1787     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1788     if (MRI && isCall() &&
1789         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1790       unsigned Reg = MO.getReg();
1791       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1792         if (MRI->use_empty(Reg)) {
1793           bool HasAliasLive = false;
1794           for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
1795             unsigned AliasReg = *AI;
1796             if (!MRI->use_empty(AliasReg)) {
1797               HasAliasLive = true;
1798               break;
1799             }
1800           }
1801           if (!HasAliasLive) {
1802             OmittedAnyCallClobbers = true;
1803             continue;
1804           }
1805         }
1806       }
1807     }
1808 
1809     if (FirstOp) FirstOp = false; else OS << ",";
1810     OS << " ";
1811     if (i < getDesc().NumOperands) {
1812       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1813       if (MCOI.isPredicate())
1814         OS << "pred:";
1815       if (MCOI.isOptionalDef())
1816         OS << "opt:";
1817     }
1818     if (isDebugValue() && MO.isMetadata()) {
1819       // Pretty print DBG_VALUE instructions.
1820       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1821       if (DIV && !DIV->getName().empty())
1822         OS << "!\"" << DIV->getName() << '\"';
1823       else
1824         MO.print(OS, MST, TRI);
1825     } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1826       OS << TRI->getSubRegIndexName(MO.getImm());
1827     } else if (i == AsmDescOp && MO.isImm()) {
1828       // Pretty print the inline asm operand descriptor.
1829       OS << '$' << AsmOpCount++;
1830       unsigned Flag = MO.getImm();
1831       switch (InlineAsm::getKind(Flag)) {
1832       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1833       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1834       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1835       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1836       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1837       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1838       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1839       }
1840 
1841       unsigned RCID = 0;
1842       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1843           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1844         if (TRI) {
1845           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1846         } else
1847           OS << ":RC" << RCID;
1848       }
1849 
1850       if (InlineAsm::isMemKind(Flag)) {
1851         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1852         switch (MCID) {
1853         case InlineAsm::Constraint_es: OS << ":es"; break;
1854         case InlineAsm::Constraint_i:  OS << ":i"; break;
1855         case InlineAsm::Constraint_m:  OS << ":m"; break;
1856         case InlineAsm::Constraint_o:  OS << ":o"; break;
1857         case InlineAsm::Constraint_v:  OS << ":v"; break;
1858         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1859         case InlineAsm::Constraint_R:  OS << ":R"; break;
1860         case InlineAsm::Constraint_S:  OS << ":S"; break;
1861         case InlineAsm::Constraint_T:  OS << ":T"; break;
1862         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1863         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1864         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1865         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1866         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1867         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1868         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1869         case InlineAsm::Constraint_X:  OS << ":X"; break;
1870         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1871         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1872         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1873         default: OS << ":?"; break;
1874         }
1875       }
1876 
1877       unsigned TiedTo = 0;
1878       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1879         OS << " tiedto:$" << TiedTo;
1880 
1881       OS << ']';
1882 
1883       // Compute the index of the next operand descriptor.
1884       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1885     } else
1886       MO.print(OS, MST, TRI);
1887   }
1888 
1889   // Briefly indicate whether any call clobbers were omitted.
1890   if (OmittedAnyCallClobbers) {
1891     if (!FirstOp) OS << ",";
1892     OS << " ...";
1893   }
1894 
1895   bool HaveSemi = false;
1896   const unsigned PrintableFlags = FrameSetup | FrameDestroy;
1897   if (Flags & PrintableFlags) {
1898     if (!HaveSemi) {
1899       OS << ";";
1900       HaveSemi = true;
1901     }
1902     OS << " flags: ";
1903 
1904     if (Flags & FrameSetup)
1905       OS << "FrameSetup";
1906 
1907     if (Flags & FrameDestroy)
1908       OS << "FrameDestroy";
1909   }
1910 
1911   if (!memoperands_empty()) {
1912     if (!HaveSemi) {
1913       OS << ";";
1914       HaveSemi = true;
1915     }
1916 
1917     OS << " mem:";
1918     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1919          i != e; ++i) {
1920       (*i)->print(OS, MST);
1921       if (std::next(i) != e)
1922         OS << " ";
1923     }
1924   }
1925 
1926   // Print the regclass of any virtual registers encountered.
1927   if (MRI && !VirtRegs.empty()) {
1928     if (!HaveSemi) {
1929       OS << ";";
1930       HaveSemi = true;
1931     }
1932     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1933       const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]);
1934       if (!RC)
1935         continue;
1936       // Generic virtual registers do not have register classes.
1937       if (RC.is<const RegisterBank *>())
1938         OS << " " << RC.get<const RegisterBank *>()->getName();
1939       else
1940         OS << " "
1941            << TRI->getRegClassName(RC.get<const TargetRegisterClass *>());
1942       OS << ':' << PrintReg(VirtRegs[i]);
1943       for (unsigned j = i+1; j != VirtRegs.size();) {
1944         if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) {
1945           ++j;
1946           continue;
1947         }
1948         if (VirtRegs[i] != VirtRegs[j])
1949           OS << "," << PrintReg(VirtRegs[j]);
1950         VirtRegs.erase(VirtRegs.begin()+j);
1951       }
1952     }
1953   }
1954 
1955   // Print debug location information.
1956   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1957     if (!HaveSemi)
1958       OS << ";";
1959     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1960     OS << " line no:" <<  DV->getLine();
1961     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1962       DebugLoc InlinedAtDL(InlinedAt);
1963       if (InlinedAtDL && MF) {
1964         OS << " inlined @[ ";
1965         InlinedAtDL.print(OS);
1966         OS << " ]";
1967       }
1968     }
1969     if (isIndirectDebugValue())
1970       OS << " indirect";
1971   } else if (debugLoc && MF) {
1972     if (!HaveSemi)
1973       OS << ";";
1974     OS << " dbg:";
1975     debugLoc.print(OS);
1976   }
1977 
1978   OS << '\n';
1979 }
1980 
1981 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1982                                      const TargetRegisterInfo *RegInfo,
1983                                      bool AddIfNotFound) {
1984   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1985   bool hasAliases = isPhysReg &&
1986     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1987   bool Found = false;
1988   SmallVector<unsigned,4> DeadOps;
1989   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1990     MachineOperand &MO = getOperand(i);
1991     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1992       continue;
1993 
1994     // DEBUG_VALUE nodes do not contribute to code generation and should
1995     // always be ignored. Failure to do so may result in trying to modify
1996     // KILL flags on DEBUG_VALUE nodes.
1997     if (MO.isDebug())
1998       continue;
1999 
2000     unsigned Reg = MO.getReg();
2001     if (!Reg)
2002       continue;
2003 
2004     if (Reg == IncomingReg) {
2005       if (!Found) {
2006         if (MO.isKill())
2007           // The register is already marked kill.
2008           return true;
2009         if (isPhysReg && isRegTiedToDefOperand(i))
2010           // Two-address uses of physregs must not be marked kill.
2011           return true;
2012         MO.setIsKill();
2013         Found = true;
2014       }
2015     } else if (hasAliases && MO.isKill() &&
2016                TargetRegisterInfo::isPhysicalRegister(Reg)) {
2017       // A super-register kill already exists.
2018       if (RegInfo->isSuperRegister(IncomingReg, Reg))
2019         return true;
2020       if (RegInfo->isSubRegister(IncomingReg, Reg))
2021         DeadOps.push_back(i);
2022     }
2023   }
2024 
2025   // Trim unneeded kill operands.
2026   while (!DeadOps.empty()) {
2027     unsigned OpIdx = DeadOps.back();
2028     if (getOperand(OpIdx).isImplicit())
2029       RemoveOperand(OpIdx);
2030     else
2031       getOperand(OpIdx).setIsKill(false);
2032     DeadOps.pop_back();
2033   }
2034 
2035   // If not found, this means an alias of one of the operands is killed. Add a
2036   // new implicit operand if required.
2037   if (!Found && AddIfNotFound) {
2038     addOperand(MachineOperand::CreateReg(IncomingReg,
2039                                          false /*IsDef*/,
2040                                          true  /*IsImp*/,
2041                                          true  /*IsKill*/));
2042     return true;
2043   }
2044   return Found;
2045 }
2046 
2047 void MachineInstr::clearRegisterKills(unsigned Reg,
2048                                       const TargetRegisterInfo *RegInfo) {
2049   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
2050     RegInfo = nullptr;
2051   for (MachineOperand &MO : operands()) {
2052     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2053       continue;
2054     unsigned OpReg = MO.getReg();
2055     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
2056       MO.setIsKill(false);
2057   }
2058 }
2059 
2060 bool MachineInstr::addRegisterDead(unsigned Reg,
2061                                    const TargetRegisterInfo *RegInfo,
2062                                    bool AddIfNotFound) {
2063   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
2064   bool hasAliases = isPhysReg &&
2065     MCRegAliasIterator(Reg, RegInfo, false).isValid();
2066   bool Found = false;
2067   SmallVector<unsigned,4> DeadOps;
2068   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2069     MachineOperand &MO = getOperand(i);
2070     if (!MO.isReg() || !MO.isDef())
2071       continue;
2072     unsigned MOReg = MO.getReg();
2073     if (!MOReg)
2074       continue;
2075 
2076     if (MOReg == Reg) {
2077       MO.setIsDead();
2078       Found = true;
2079     } else if (hasAliases && MO.isDead() &&
2080                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
2081       // There exists a super-register that's marked dead.
2082       if (RegInfo->isSuperRegister(Reg, MOReg))
2083         return true;
2084       if (RegInfo->isSubRegister(Reg, MOReg))
2085         DeadOps.push_back(i);
2086     }
2087   }
2088 
2089   // Trim unneeded dead operands.
2090   while (!DeadOps.empty()) {
2091     unsigned OpIdx = DeadOps.back();
2092     if (getOperand(OpIdx).isImplicit())
2093       RemoveOperand(OpIdx);
2094     else
2095       getOperand(OpIdx).setIsDead(false);
2096     DeadOps.pop_back();
2097   }
2098 
2099   // If not found, this means an alias of one of the operands is dead. Add a
2100   // new implicit operand if required.
2101   if (Found || !AddIfNotFound)
2102     return Found;
2103 
2104   addOperand(MachineOperand::CreateReg(Reg,
2105                                        true  /*IsDef*/,
2106                                        true  /*IsImp*/,
2107                                        false /*IsKill*/,
2108                                        true  /*IsDead*/));
2109   return true;
2110 }
2111 
2112 void MachineInstr::clearRegisterDeads(unsigned Reg) {
2113   for (MachineOperand &MO : operands()) {
2114     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2115       continue;
2116     MO.setIsDead(false);
2117   }
2118 }
2119 
2120 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
2121   for (MachineOperand &MO : operands()) {
2122     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2123       continue;
2124     MO.setIsUndef(IsUndef);
2125   }
2126 }
2127 
2128 void MachineInstr::addRegisterDefined(unsigned Reg,
2129                                       const TargetRegisterInfo *RegInfo) {
2130   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
2131     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
2132     if (MO)
2133       return;
2134   } else {
2135     for (const MachineOperand &MO : operands()) {
2136       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2137           MO.getSubReg() == 0)
2138         return;
2139     }
2140   }
2141   addOperand(MachineOperand::CreateReg(Reg,
2142                                        true  /*IsDef*/,
2143                                        true  /*IsImp*/));
2144 }
2145 
2146 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
2147                                          const TargetRegisterInfo &TRI) {
2148   bool HasRegMask = false;
2149   for (MachineOperand &MO : operands()) {
2150     if (MO.isRegMask()) {
2151       HasRegMask = true;
2152       continue;
2153     }
2154     if (!MO.isReg() || !MO.isDef()) continue;
2155     unsigned Reg = MO.getReg();
2156     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
2157     // If there are no uses, including partial uses, the def is dead.
2158     if (std::none_of(UsedRegs.begin(), UsedRegs.end(),
2159                      [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
2160       MO.setIsDead();
2161   }
2162 
2163   // This is a call with a register mask operand.
2164   // Mask clobbers are always dead, so add defs for the non-dead defines.
2165   if (HasRegMask)
2166     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2167          I != E; ++I)
2168       addRegisterDefined(*I, &TRI);
2169 }
2170 
2171 unsigned
2172 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2173   // Build up a buffer of hash code components.
2174   SmallVector<size_t, 8> HashComponents;
2175   HashComponents.reserve(MI->getNumOperands() + 1);
2176   HashComponents.push_back(MI->getOpcode());
2177   for (const MachineOperand &MO : MI->operands()) {
2178     if (MO.isReg() && MO.isDef() &&
2179         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2180       continue;  // Skip virtual register defs.
2181 
2182     HashComponents.push_back(hash_value(MO));
2183   }
2184   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2185 }
2186 
2187 void MachineInstr::emitError(StringRef Msg) const {
2188   // Find the source location cookie.
2189   unsigned LocCookie = 0;
2190   const MDNode *LocMD = nullptr;
2191   for (unsigned i = getNumOperands(); i != 0; --i) {
2192     if (getOperand(i-1).isMetadata() &&
2193         (LocMD = getOperand(i-1).getMetadata()) &&
2194         LocMD->getNumOperands() != 0) {
2195       if (const ConstantInt *CI =
2196               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2197         LocCookie = CI->getZExtValue();
2198         break;
2199       }
2200     }
2201   }
2202 
2203   if (const MachineBasicBlock *MBB = getParent())
2204     if (const MachineFunction *MF = MBB->getParent())
2205       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2206   report_fatal_error(Msg);
2207 }
2208 
2209 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2210                                   const MCInstrDesc &MCID, bool IsIndirect,
2211                                   unsigned Reg, unsigned Offset,
2212                                   const MDNode *Variable, const MDNode *Expr) {
2213   assert(isa<DILocalVariable>(Variable) && "not a variable");
2214   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2215   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2216          "Expected inlined-at fields to agree");
2217   if (IsIndirect)
2218     return BuildMI(MF, DL, MCID)
2219         .addReg(Reg, RegState::Debug)
2220         .addImm(Offset)
2221         .addMetadata(Variable)
2222         .addMetadata(Expr);
2223   else {
2224     assert(Offset == 0 && "A direct address cannot have an offset.");
2225     return BuildMI(MF, DL, MCID)
2226         .addReg(Reg, RegState::Debug)
2227         .addReg(0U, RegState::Debug)
2228         .addMetadata(Variable)
2229         .addMetadata(Expr);
2230   }
2231 }
2232 
2233 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2234                                   MachineBasicBlock::iterator I,
2235                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2236                                   bool IsIndirect, unsigned Reg,
2237                                   unsigned Offset, const MDNode *Variable,
2238                                   const MDNode *Expr) {
2239   assert(isa<DILocalVariable>(Variable) && "not a variable");
2240   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2241   MachineFunction &MF = *BB.getParent();
2242   MachineInstr *MI =
2243       BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr);
2244   BB.insert(I, MI);
2245   return MachineInstrBuilder(MF, MI);
2246 }
2247