1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfo.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/ModuleSlotTracker.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/MC/MCInstrDesc.h" 36 #include "llvm/MC/MCSymbol.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetInstrInfo.h" 43 #include "llvm/Target/TargetMachine.h" 44 #include "llvm/Target/TargetRegisterInfo.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 using namespace llvm; 47 48 static cl::opt<bool> PrintWholeRegMask( 49 "print-whole-regmask", 50 cl::desc("Print the full contents of regmask operands in IR dumps"), 51 cl::init(true), cl::Hidden); 52 53 //===----------------------------------------------------------------------===// 54 // MachineOperand Implementation 55 //===----------------------------------------------------------------------===// 56 57 void MachineOperand::setReg(unsigned Reg) { 58 if (getReg() == Reg) return; // No change. 59 60 // Otherwise, we have to change the register. If this operand is embedded 61 // into a machine function, we need to update the old and new register's 62 // use/def lists. 63 if (MachineInstr *MI = getParent()) 64 if (MachineBasicBlock *MBB = MI->getParent()) 65 if (MachineFunction *MF = MBB->getParent()) { 66 MachineRegisterInfo &MRI = MF->getRegInfo(); 67 MRI.removeRegOperandFromUseList(this); 68 SmallContents.RegNo = Reg; 69 MRI.addRegOperandToUseList(this); 70 return; 71 } 72 73 // Otherwise, just change the register, no problem. :) 74 SmallContents.RegNo = Reg; 75 } 76 77 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 78 const TargetRegisterInfo &TRI) { 79 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 80 if (SubIdx && getSubReg()) 81 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 82 setReg(Reg); 83 if (SubIdx) 84 setSubReg(SubIdx); 85 } 86 87 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 88 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 89 if (getSubReg()) { 90 Reg = TRI.getSubReg(Reg, getSubReg()); 91 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 92 // That won't happen in legal code. 93 setSubReg(0); 94 } 95 setReg(Reg); 96 } 97 98 /// Change a def to a use, or a use to a def. 99 void MachineOperand::setIsDef(bool Val) { 100 assert(isReg() && "Wrong MachineOperand accessor"); 101 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 102 if (IsDef == Val) 103 return; 104 // MRI may keep uses and defs in different list positions. 105 if (MachineInstr *MI = getParent()) 106 if (MachineBasicBlock *MBB = MI->getParent()) 107 if (MachineFunction *MF = MBB->getParent()) { 108 MachineRegisterInfo &MRI = MF->getRegInfo(); 109 MRI.removeRegOperandFromUseList(this); 110 IsDef = Val; 111 MRI.addRegOperandToUseList(this); 112 return; 113 } 114 IsDef = Val; 115 } 116 117 // If this operand is currently a register operand, and if this is in a 118 // function, deregister the operand from the register's use/def list. 119 void MachineOperand::removeRegFromUses() { 120 if (!isReg() || !isOnRegUseList()) 121 return; 122 123 if (MachineInstr *MI = getParent()) { 124 if (MachineBasicBlock *MBB = MI->getParent()) { 125 if (MachineFunction *MF = MBB->getParent()) 126 MF->getRegInfo().removeRegOperandFromUseList(this); 127 } 128 } 129 } 130 131 /// ChangeToImmediate - Replace this operand with a new immediate operand of 132 /// the specified value. If an operand is known to be an immediate already, 133 /// the setImm method should be used. 134 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 135 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 136 137 removeRegFromUses(); 138 139 OpKind = MO_Immediate; 140 Contents.ImmVal = ImmVal; 141 } 142 143 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 144 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 145 146 removeRegFromUses(); 147 148 OpKind = MO_FPImmediate; 149 Contents.CFP = FPImm; 150 } 151 152 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 153 assert((!isReg() || !isTied()) && 154 "Cannot change a tied operand into an external symbol"); 155 156 removeRegFromUses(); 157 158 OpKind = MO_ExternalSymbol; 159 Contents.OffsetedInfo.Val.SymbolName = SymName; 160 setOffset(0); // Offset is always 0. 161 setTargetFlags(TargetFlags); 162 } 163 164 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 165 assert((!isReg() || !isTied()) && 166 "Cannot change a tied operand into an MCSymbol"); 167 168 removeRegFromUses(); 169 170 OpKind = MO_MCSymbol; 171 Contents.Sym = Sym; 172 } 173 174 /// ChangeToRegister - Replace this operand with a new register operand of 175 /// the specified value. If an operand is known to be an register already, 176 /// the setReg method should be used. 177 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 178 bool isKill, bool isDead, bool isUndef, 179 bool isDebug) { 180 MachineRegisterInfo *RegInfo = nullptr; 181 if (MachineInstr *MI = getParent()) 182 if (MachineBasicBlock *MBB = MI->getParent()) 183 if (MachineFunction *MF = MBB->getParent()) 184 RegInfo = &MF->getRegInfo(); 185 // If this operand is already a register operand, remove it from the 186 // register's use/def lists. 187 bool WasReg = isReg(); 188 if (RegInfo && WasReg) 189 RegInfo->removeRegOperandFromUseList(this); 190 191 // Change this to a register and set the reg#. 192 OpKind = MO_Register; 193 SmallContents.RegNo = Reg; 194 SubReg_TargetFlags = 0; 195 IsDef = isDef; 196 IsImp = isImp; 197 IsKill = isKill; 198 IsDead = isDead; 199 IsUndef = isUndef; 200 IsInternalRead = false; 201 IsEarlyClobber = false; 202 IsDebug = isDebug; 203 // Ensure isOnRegUseList() returns false. 204 Contents.Reg.Prev = nullptr; 205 // Preserve the tie when the operand was already a register. 206 if (!WasReg) 207 TiedTo = 0; 208 209 // If this operand is embedded in a function, add the operand to the 210 // register's use/def list. 211 if (RegInfo) 212 RegInfo->addRegOperandToUseList(this); 213 } 214 215 /// isIdenticalTo - Return true if this operand is identical to the specified 216 /// operand. Note that this should stay in sync with the hash_value overload 217 /// below. 218 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 219 if (getType() != Other.getType() || 220 getTargetFlags() != Other.getTargetFlags()) 221 return false; 222 223 switch (getType()) { 224 case MachineOperand::MO_Register: 225 return getReg() == Other.getReg() && isDef() == Other.isDef() && 226 getSubReg() == Other.getSubReg(); 227 case MachineOperand::MO_Immediate: 228 return getImm() == Other.getImm(); 229 case MachineOperand::MO_CImmediate: 230 return getCImm() == Other.getCImm(); 231 case MachineOperand::MO_FPImmediate: 232 return getFPImm() == Other.getFPImm(); 233 case MachineOperand::MO_MachineBasicBlock: 234 return getMBB() == Other.getMBB(); 235 case MachineOperand::MO_FrameIndex: 236 return getIndex() == Other.getIndex(); 237 case MachineOperand::MO_ConstantPoolIndex: 238 case MachineOperand::MO_TargetIndex: 239 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 240 case MachineOperand::MO_JumpTableIndex: 241 return getIndex() == Other.getIndex(); 242 case MachineOperand::MO_GlobalAddress: 243 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 244 case MachineOperand::MO_ExternalSymbol: 245 return !strcmp(getSymbolName(), Other.getSymbolName()) && 246 getOffset() == Other.getOffset(); 247 case MachineOperand::MO_BlockAddress: 248 return getBlockAddress() == Other.getBlockAddress() && 249 getOffset() == Other.getOffset(); 250 case MachineOperand::MO_RegisterMask: 251 case MachineOperand::MO_RegisterLiveOut: 252 return getRegMask() == Other.getRegMask(); 253 case MachineOperand::MO_MCSymbol: 254 return getMCSymbol() == Other.getMCSymbol(); 255 case MachineOperand::MO_CFIIndex: 256 return getCFIIndex() == Other.getCFIIndex(); 257 case MachineOperand::MO_Metadata: 258 return getMetadata() == Other.getMetadata(); 259 } 260 llvm_unreachable("Invalid machine operand type"); 261 } 262 263 // Note: this must stay exactly in sync with isIdenticalTo above. 264 hash_code llvm::hash_value(const MachineOperand &MO) { 265 switch (MO.getType()) { 266 case MachineOperand::MO_Register: 267 // Register operands don't have target flags. 268 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 269 case MachineOperand::MO_Immediate: 270 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 271 case MachineOperand::MO_CImmediate: 272 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 273 case MachineOperand::MO_FPImmediate: 274 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 275 case MachineOperand::MO_MachineBasicBlock: 276 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 277 case MachineOperand::MO_FrameIndex: 278 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 279 case MachineOperand::MO_ConstantPoolIndex: 280 case MachineOperand::MO_TargetIndex: 281 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 282 MO.getOffset()); 283 case MachineOperand::MO_JumpTableIndex: 284 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 285 case MachineOperand::MO_ExternalSymbol: 286 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 287 MO.getSymbolName()); 288 case MachineOperand::MO_GlobalAddress: 289 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 290 MO.getOffset()); 291 case MachineOperand::MO_BlockAddress: 292 return hash_combine(MO.getType(), MO.getTargetFlags(), 293 MO.getBlockAddress(), MO.getOffset()); 294 case MachineOperand::MO_RegisterMask: 295 case MachineOperand::MO_RegisterLiveOut: 296 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 297 case MachineOperand::MO_Metadata: 298 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 299 case MachineOperand::MO_MCSymbol: 300 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 301 case MachineOperand::MO_CFIIndex: 302 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 303 } 304 llvm_unreachable("Invalid machine operand type"); 305 } 306 307 void MachineOperand::print(raw_ostream &OS, 308 const TargetRegisterInfo *TRI) const { 309 ModuleSlotTracker DummyMST(nullptr); 310 print(OS, DummyMST, TRI); 311 } 312 313 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 314 const TargetRegisterInfo *TRI) const { 315 switch (getType()) { 316 case MachineOperand::MO_Register: 317 OS << PrintReg(getReg(), TRI, getSubReg()); 318 319 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 320 isInternalRead() || isEarlyClobber() || isTied()) { 321 OS << '<'; 322 bool NeedComma = false; 323 if (isDef()) { 324 if (NeedComma) OS << ','; 325 if (isEarlyClobber()) 326 OS << "earlyclobber,"; 327 if (isImplicit()) 328 OS << "imp-"; 329 OS << "def"; 330 NeedComma = true; 331 // <def,read-undef> only makes sense when getSubReg() is set. 332 // Don't clutter the output otherwise. 333 if (isUndef() && getSubReg()) 334 OS << ",read-undef"; 335 } else if (isImplicit()) { 336 OS << "imp-use"; 337 NeedComma = true; 338 } 339 340 if (isKill()) { 341 if (NeedComma) OS << ','; 342 OS << "kill"; 343 NeedComma = true; 344 } 345 if (isDead()) { 346 if (NeedComma) OS << ','; 347 OS << "dead"; 348 NeedComma = true; 349 } 350 if (isUndef() && isUse()) { 351 if (NeedComma) OS << ','; 352 OS << "undef"; 353 NeedComma = true; 354 } 355 if (isInternalRead()) { 356 if (NeedComma) OS << ','; 357 OS << "internal"; 358 NeedComma = true; 359 } 360 if (isTied()) { 361 if (NeedComma) OS << ','; 362 OS << "tied"; 363 if (TiedTo != 15) 364 OS << unsigned(TiedTo - 1); 365 } 366 OS << '>'; 367 } 368 break; 369 case MachineOperand::MO_Immediate: 370 OS << getImm(); 371 break; 372 case MachineOperand::MO_CImmediate: 373 getCImm()->getValue().print(OS, false); 374 break; 375 case MachineOperand::MO_FPImmediate: 376 if (getFPImm()->getType()->isFloatTy()) { 377 OS << getFPImm()->getValueAPF().convertToFloat(); 378 } else if (getFPImm()->getType()->isHalfTy()) { 379 APFloat APF = getFPImm()->getValueAPF(); 380 bool Unused; 381 APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused); 382 OS << "half " << APF.convertToFloat(); 383 } else { 384 OS << getFPImm()->getValueAPF().convertToDouble(); 385 } 386 break; 387 case MachineOperand::MO_MachineBasicBlock: 388 OS << "<BB#" << getMBB()->getNumber() << ">"; 389 break; 390 case MachineOperand::MO_FrameIndex: 391 OS << "<fi#" << getIndex() << '>'; 392 break; 393 case MachineOperand::MO_ConstantPoolIndex: 394 OS << "<cp#" << getIndex(); 395 if (getOffset()) OS << "+" << getOffset(); 396 OS << '>'; 397 break; 398 case MachineOperand::MO_TargetIndex: 399 OS << "<ti#" << getIndex(); 400 if (getOffset()) OS << "+" << getOffset(); 401 OS << '>'; 402 break; 403 case MachineOperand::MO_JumpTableIndex: 404 OS << "<jt#" << getIndex() << '>'; 405 break; 406 case MachineOperand::MO_GlobalAddress: 407 OS << "<ga:"; 408 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 409 if (getOffset()) OS << "+" << getOffset(); 410 OS << '>'; 411 break; 412 case MachineOperand::MO_ExternalSymbol: 413 OS << "<es:" << getSymbolName(); 414 if (getOffset()) OS << "+" << getOffset(); 415 OS << '>'; 416 break; 417 case MachineOperand::MO_BlockAddress: 418 OS << '<'; 419 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 420 if (getOffset()) OS << "+" << getOffset(); 421 OS << '>'; 422 break; 423 case MachineOperand::MO_RegisterMask: { 424 unsigned NumRegsInMask = 0; 425 unsigned NumRegsEmitted = 0; 426 OS << "<regmask"; 427 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 428 unsigned MaskWord = i / 32; 429 unsigned MaskBit = i % 32; 430 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 431 if (PrintWholeRegMask || NumRegsEmitted <= 10) { 432 OS << " " << PrintReg(i, TRI); 433 NumRegsEmitted++; 434 } 435 NumRegsInMask++; 436 } 437 } 438 if (NumRegsEmitted != NumRegsInMask) 439 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 440 OS << ">"; 441 break; 442 } 443 case MachineOperand::MO_RegisterLiveOut: 444 OS << "<regliveout>"; 445 break; 446 case MachineOperand::MO_Metadata: 447 OS << '<'; 448 getMetadata()->printAsOperand(OS, MST); 449 OS << '>'; 450 break; 451 case MachineOperand::MO_MCSymbol: 452 OS << "<MCSym=" << *getMCSymbol() << '>'; 453 break; 454 case MachineOperand::MO_CFIIndex: 455 OS << "<call frame instruction>"; 456 break; 457 } 458 459 if (unsigned TF = getTargetFlags()) 460 OS << "[TF=" << TF << ']'; 461 } 462 463 //===----------------------------------------------------------------------===// 464 // MachineMemOperand Implementation 465 //===----------------------------------------------------------------------===// 466 467 /// getAddrSpace - Return the LLVM IR address space number that this pointer 468 /// points into. 469 unsigned MachinePointerInfo::getAddrSpace() const { 470 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 471 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 472 } 473 474 /// getConstantPool - Return a MachinePointerInfo record that refers to the 475 /// constant pool. 476 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 477 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 478 } 479 480 /// getFixedStack - Return a MachinePointerInfo record that refers to the 481 /// the specified FrameIndex. 482 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 483 int FI, int64_t Offset) { 484 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 485 } 486 487 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 488 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 489 } 490 491 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 492 return MachinePointerInfo(MF.getPSVManager().getGOT()); 493 } 494 495 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 496 int64_t Offset) { 497 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); 498 } 499 500 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, 501 uint64_t s, unsigned int a, 502 const AAMDNodes &AAInfo, 503 const MDNode *Ranges) 504 : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), 505 AAInfo(AAInfo), Ranges(Ranges) { 506 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 507 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 508 "invalid pointer value"); 509 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 510 assert((isLoad() || isStore()) && "Not a load/store!"); 511 } 512 513 /// Profile - Gather unique data for the object. 514 /// 515 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 516 ID.AddInteger(getOffset()); 517 ID.AddInteger(Size); 518 ID.AddPointer(getOpaqueValue()); 519 ID.AddInteger(getFlags()); 520 ID.AddInteger(getBaseAlignment()); 521 } 522 523 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 524 // The Value and Offset may differ due to CSE. But the flags and size 525 // should be the same. 526 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 527 assert(MMO->getSize() == getSize() && "Size mismatch!"); 528 529 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 530 // Update the alignment value. 531 BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; 532 // Also update the base and offset, because the new alignment may 533 // not be applicable with the old ones. 534 PtrInfo = MMO->PtrInfo; 535 } 536 } 537 538 /// getAlignment - Return the minimum known alignment in bytes of the 539 /// actual memory reference. 540 uint64_t MachineMemOperand::getAlignment() const { 541 return MinAlign(getBaseAlignment(), getOffset()); 542 } 543 544 void MachineMemOperand::print(raw_ostream &OS) const { 545 ModuleSlotTracker DummyMST(nullptr); 546 print(OS, DummyMST); 547 } 548 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 549 assert((isLoad() || isStore()) && 550 "SV has to be a load, store or both."); 551 552 if (isVolatile()) 553 OS << "Volatile "; 554 555 if (isLoad()) 556 OS << "LD"; 557 if (isStore()) 558 OS << "ST"; 559 OS << getSize(); 560 561 // Print the address information. 562 OS << "["; 563 if (const Value *V = getValue()) 564 V->printAsOperand(OS, /*PrintType=*/false, MST); 565 else if (const PseudoSourceValue *PSV = getPseudoValue()) 566 PSV->printCustom(OS); 567 else 568 OS << "<unknown>"; 569 570 unsigned AS = getAddrSpace(); 571 if (AS != 0) 572 OS << "(addrspace=" << AS << ')'; 573 574 // If the alignment of the memory reference itself differs from the alignment 575 // of the base pointer, print the base alignment explicitly, next to the base 576 // pointer. 577 if (getBaseAlignment() != getAlignment()) 578 OS << "(align=" << getBaseAlignment() << ")"; 579 580 if (getOffset() != 0) 581 OS << "+" << getOffset(); 582 OS << "]"; 583 584 // Print the alignment of the reference. 585 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 586 OS << "(align=" << getAlignment() << ")"; 587 588 // Print TBAA info. 589 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 590 OS << "(tbaa="; 591 if (TBAAInfo->getNumOperands() > 0) 592 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 593 else 594 OS << "<unknown>"; 595 OS << ")"; 596 } 597 598 // Print AA scope info. 599 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 600 OS << "(alias.scope="; 601 if (ScopeInfo->getNumOperands() > 0) 602 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 603 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 604 if (i != ie-1) 605 OS << ","; 606 } 607 else 608 OS << "<unknown>"; 609 OS << ")"; 610 } 611 612 // Print AA noalias scope info. 613 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 614 OS << "(noalias="; 615 if (NoAliasInfo->getNumOperands() > 0) 616 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 617 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 618 if (i != ie-1) 619 OS << ","; 620 } 621 else 622 OS << "<unknown>"; 623 OS << ")"; 624 } 625 626 // Print nontemporal info. 627 if (isNonTemporal()) 628 OS << "(nontemporal)"; 629 630 if (isInvariant()) 631 OS << "(invariant)"; 632 } 633 634 //===----------------------------------------------------------------------===// 635 // MachineInstr Implementation 636 //===----------------------------------------------------------------------===// 637 638 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 639 if (MCID->ImplicitDefs) 640 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 641 ++ImpDefs) 642 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 643 if (MCID->ImplicitUses) 644 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 645 ++ImpUses) 646 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 647 } 648 649 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 650 /// implicit operands. It reserves space for the number of operands specified by 651 /// the MCInstrDesc. 652 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 653 DebugLoc dl, bool NoImp) 654 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), 655 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), 656 debugLoc(std::move(dl)) 657 #ifdef LLVM_BUILD_GLOBAL_ISEL 658 , 659 Tys(0) 660 #endif 661 { 662 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 663 664 // Reserve space for the expected number of operands. 665 if (unsigned NumOps = MCID->getNumOperands() + 666 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 667 CapOperands = OperandCapacity::get(NumOps); 668 Operands = MF.allocateOperandArray(CapOperands); 669 } 670 671 if (!NoImp) 672 addImplicitDefUseOperands(MF); 673 } 674 675 /// MachineInstr ctor - Copies MachineInstr arg exactly 676 /// 677 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 678 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 679 Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs), 680 MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) 681 #ifdef LLVM_BUILD_GLOBAL_ISEL 682 , 683 Tys(0) 684 #endif 685 { 686 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 687 688 CapOperands = OperandCapacity::get(MI.getNumOperands()); 689 Operands = MF.allocateOperandArray(CapOperands); 690 691 // Copy operands. 692 for (const MachineOperand &MO : MI.operands()) 693 addOperand(MF, MO); 694 695 // Copy all the sensible flags. 696 setFlags(MI.Flags); 697 } 698 699 /// getRegInfo - If this instruction is embedded into a MachineFunction, 700 /// return the MachineRegisterInfo object for the current function, otherwise 701 /// return null. 702 MachineRegisterInfo *MachineInstr::getRegInfo() { 703 if (MachineBasicBlock *MBB = getParent()) 704 return &MBB->getParent()->getRegInfo(); 705 return nullptr; 706 } 707 708 // Implement dummy setter and getter for type when 709 // global-isel is not built. 710 // The proper implementation is WIP and is tracked here: 711 // PR26576. 712 #ifndef LLVM_BUILD_GLOBAL_ISEL 713 unsigned MachineInstr::getNumTypes() const { return 0; } 714 715 void MachineInstr::setType(LLT Ty, unsigned Idx) {} 716 717 LLT MachineInstr::getType(unsigned Idx) const { return LLT{}; } 718 719 void MachineInstr::removeTypes() {} 720 721 #else 722 unsigned MachineInstr::getNumTypes() const { return Tys.size(); } 723 724 void MachineInstr::setType(LLT Ty, unsigned Idx) { 725 assert((!Ty.isValid() || isPreISelGenericOpcode(getOpcode())) && 726 "Non generic instructions are not supposed to be typed"); 727 if (Tys.size() < Idx + 1) 728 Tys.resize(Idx+1); 729 Tys[Idx] = Ty; 730 } 731 732 LLT MachineInstr::getType(unsigned Idx) const { return Tys[Idx]; } 733 734 void MachineInstr::removeTypes() { 735 Tys.clear(); 736 } 737 #endif // LLVM_BUILD_GLOBAL_ISEL 738 739 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 740 /// this instruction from their respective use lists. This requires that the 741 /// operands already be on their use lists. 742 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 743 for (MachineOperand &MO : operands()) 744 if (MO.isReg()) 745 MRI.removeRegOperandFromUseList(&MO); 746 } 747 748 /// AddRegOperandsToUseLists - Add all of the register operands in 749 /// this instruction from their respective use lists. This requires that the 750 /// operands not be on their use lists yet. 751 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 752 for (MachineOperand &MO : operands()) 753 if (MO.isReg()) 754 MRI.addRegOperandToUseList(&MO); 755 } 756 757 void MachineInstr::addOperand(const MachineOperand &Op) { 758 MachineBasicBlock *MBB = getParent(); 759 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 760 MachineFunction *MF = MBB->getParent(); 761 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 762 addOperand(*MF, Op); 763 } 764 765 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 766 /// ranges. If MRI is non-null also update use-def chains. 767 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 768 unsigned NumOps, MachineRegisterInfo *MRI) { 769 if (MRI) 770 return MRI->moveOperands(Dst, Src, NumOps); 771 772 // MachineOperand is a trivially copyable type so we can just use memmove. 773 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 774 } 775 776 /// addOperand - Add the specified operand to the instruction. If it is an 777 /// implicit operand, it is added to the end of the operand list. If it is 778 /// an explicit operand it is added at the end of the explicit operand list 779 /// (before the first implicit operand). 780 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 781 assert(MCID && "Cannot add operands before providing an instr descriptor"); 782 783 // Check if we're adding one of our existing operands. 784 if (&Op >= Operands && &Op < Operands + NumOperands) { 785 // This is unusual: MI->addOperand(MI->getOperand(i)). 786 // If adding Op requires reallocating or moving existing operands around, 787 // the Op reference could go stale. Support it by copying Op. 788 MachineOperand CopyOp(Op); 789 return addOperand(MF, CopyOp); 790 } 791 792 // Find the insert location for the new operand. Implicit registers go at 793 // the end, everything else goes before the implicit regs. 794 // 795 // FIXME: Allow mixed explicit and implicit operands on inline asm. 796 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 797 // implicit-defs, but they must not be moved around. See the FIXME in 798 // InstrEmitter.cpp. 799 unsigned OpNo = getNumOperands(); 800 bool isImpReg = Op.isReg() && Op.isImplicit(); 801 if (!isImpReg && !isInlineAsm()) { 802 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 803 --OpNo; 804 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 805 } 806 } 807 808 #ifndef NDEBUG 809 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 810 // OpNo now points as the desired insertion point. Unless this is a variadic 811 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 812 // RegMask operands go between the explicit and implicit operands. 813 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 814 OpNo < MCID->getNumOperands() || isMetaDataOp) && 815 "Trying to add an operand to a machine instr that is already done!"); 816 #endif 817 818 MachineRegisterInfo *MRI = getRegInfo(); 819 820 // Determine if the Operands array needs to be reallocated. 821 // Save the old capacity and operand array. 822 OperandCapacity OldCap = CapOperands; 823 MachineOperand *OldOperands = Operands; 824 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 825 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 826 Operands = MF.allocateOperandArray(CapOperands); 827 // Move the operands before the insertion point. 828 if (OpNo) 829 moveOperands(Operands, OldOperands, OpNo, MRI); 830 } 831 832 // Move the operands following the insertion point. 833 if (OpNo != NumOperands) 834 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 835 MRI); 836 ++NumOperands; 837 838 // Deallocate the old operand array. 839 if (OldOperands != Operands && OldOperands) 840 MF.deallocateOperandArray(OldCap, OldOperands); 841 842 // Copy Op into place. It still needs to be inserted into the MRI use lists. 843 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 844 NewMO->ParentMI = this; 845 846 // When adding a register operand, tell MRI about it. 847 if (NewMO->isReg()) { 848 // Ensure isOnRegUseList() returns false, regardless of Op's status. 849 NewMO->Contents.Reg.Prev = nullptr; 850 // Ignore existing ties. This is not a property that can be copied. 851 NewMO->TiedTo = 0; 852 // Add the new operand to MRI, but only for instructions in an MBB. 853 if (MRI) 854 MRI->addRegOperandToUseList(NewMO); 855 // The MCID operand information isn't accurate until we start adding 856 // explicit operands. The implicit operands are added first, then the 857 // explicits are inserted before them. 858 if (!isImpReg) { 859 // Tie uses to defs as indicated in MCInstrDesc. 860 if (NewMO->isUse()) { 861 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 862 if (DefIdx != -1) 863 tieOperands(DefIdx, OpNo); 864 } 865 // If the register operand is flagged as early, mark the operand as such. 866 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 867 NewMO->setIsEarlyClobber(true); 868 } 869 } 870 } 871 872 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 873 /// fewer operand than it started with. 874 /// 875 void MachineInstr::RemoveOperand(unsigned OpNo) { 876 assert(OpNo < getNumOperands() && "Invalid operand number"); 877 untieRegOperand(OpNo); 878 879 #ifndef NDEBUG 880 // Moving tied operands would break the ties. 881 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 882 if (Operands[i].isReg()) 883 assert(!Operands[i].isTied() && "Cannot move tied operands"); 884 #endif 885 886 MachineRegisterInfo *MRI = getRegInfo(); 887 if (MRI && Operands[OpNo].isReg()) 888 MRI->removeRegOperandFromUseList(Operands + OpNo); 889 890 // Don't call the MachineOperand destructor. A lot of this code depends on 891 // MachineOperand having a trivial destructor anyway, and adding a call here 892 // wouldn't make it 'destructor-correct'. 893 894 if (unsigned N = NumOperands - 1 - OpNo) 895 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 896 --NumOperands; 897 } 898 899 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 900 /// This function should be used only occasionally. The setMemRefs function 901 /// is the primary method for setting up a MachineInstr's MemRefs list. 902 void MachineInstr::addMemOperand(MachineFunction &MF, 903 MachineMemOperand *MO) { 904 mmo_iterator OldMemRefs = MemRefs; 905 unsigned OldNumMemRefs = NumMemRefs; 906 907 unsigned NewNum = NumMemRefs + 1; 908 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 909 910 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 911 NewMemRefs[NewNum - 1] = MO; 912 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 913 } 914 915 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 916 /// identical. 917 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 918 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 919 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 920 if ((E1 - I1) != (E2 - I2)) 921 return false; 922 for (; I1 != E1; ++I1, ++I2) { 923 if (**I1 != **I2) 924 return false; 925 } 926 return true; 927 } 928 929 std::pair<MachineInstr::mmo_iterator, unsigned> 930 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 931 932 // If either of the incoming memrefs are empty, we must be conservative and 933 // treat this as if we've exhausted our space for memrefs and dropped them. 934 if (memoperands_empty() || Other.memoperands_empty()) 935 return std::make_pair(nullptr, 0); 936 937 // If both instructions have identical memrefs, we don't need to merge them. 938 // Since many instructions have a single memref, and we tend to merge things 939 // like pairs of loads from the same location, this catches a large number of 940 // cases in practice. 941 if (hasIdenticalMMOs(*this, Other)) 942 return std::make_pair(MemRefs, NumMemRefs); 943 944 // TODO: consider uniquing elements within the operand lists to reduce 945 // space usage and fall back to conservative information less often. 946 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 947 948 // If we don't have enough room to store this many memrefs, be conservative 949 // and drop them. Otherwise, we'd fail asserts when trying to add them to 950 // the new instruction. 951 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 952 return std::make_pair(nullptr, 0); 953 954 MachineFunction *MF = getParent()->getParent(); 955 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 956 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 957 MemBegin); 958 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 959 MemEnd); 960 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 961 "missing memrefs"); 962 963 return std::make_pair(MemBegin, CombinedNumMemRefs); 964 } 965 966 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 967 assert(!isBundledWithPred() && "Must be called on bundle header"); 968 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 969 if (MII->getDesc().getFlags() & Mask) { 970 if (Type == AnyInBundle) 971 return true; 972 } else { 973 if (Type == AllInBundle && !MII->isBundle()) 974 return false; 975 } 976 // This was the last instruction in the bundle. 977 if (!MII->isBundledWithSucc()) 978 return Type == AllInBundle; 979 } 980 } 981 982 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 983 MICheckType Check) const { 984 // If opcodes or number of operands are not the same then the two 985 // instructions are obviously not identical. 986 if (Other.getOpcode() != getOpcode() || 987 Other.getNumOperands() != getNumOperands()) 988 return false; 989 990 if (isBundle()) { 991 // Both instructions are bundles, compare MIs inside the bundle. 992 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 993 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 994 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 995 MachineBasicBlock::const_instr_iterator E2 = Other.getParent()->instr_end(); 996 while (++I1 != E1 && I1->isInsideBundle()) { 997 ++I2; 998 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(*I2, Check)) 999 return false; 1000 } 1001 } 1002 1003 // Check operands to make sure they match. 1004 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1005 const MachineOperand &MO = getOperand(i); 1006 const MachineOperand &OMO = Other.getOperand(i); 1007 if (!MO.isReg()) { 1008 if (!MO.isIdenticalTo(OMO)) 1009 return false; 1010 continue; 1011 } 1012 1013 // Clients may or may not want to ignore defs when testing for equality. 1014 // For example, machine CSE pass only cares about finding common 1015 // subexpressions, so it's safe to ignore virtual register defs. 1016 if (MO.isDef()) { 1017 if (Check == IgnoreDefs) 1018 continue; 1019 else if (Check == IgnoreVRegDefs) { 1020 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1021 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 1022 if (MO.getReg() != OMO.getReg()) 1023 return false; 1024 } else { 1025 if (!MO.isIdenticalTo(OMO)) 1026 return false; 1027 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 1028 return false; 1029 } 1030 } else { 1031 if (!MO.isIdenticalTo(OMO)) 1032 return false; 1033 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1034 return false; 1035 } 1036 } 1037 // If DebugLoc does not match then two dbg.values are not identical. 1038 if (isDebugValue()) 1039 if (getDebugLoc() && Other.getDebugLoc() && 1040 getDebugLoc() != Other.getDebugLoc()) 1041 return false; 1042 return true; 1043 } 1044 1045 MachineInstr *MachineInstr::removeFromParent() { 1046 assert(getParent() && "Not embedded in a basic block!"); 1047 return getParent()->remove(this); 1048 } 1049 1050 MachineInstr *MachineInstr::removeFromBundle() { 1051 assert(getParent() && "Not embedded in a basic block!"); 1052 return getParent()->remove_instr(this); 1053 } 1054 1055 void MachineInstr::eraseFromParent() { 1056 assert(getParent() && "Not embedded in a basic block!"); 1057 getParent()->erase(this); 1058 } 1059 1060 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1061 assert(getParent() && "Not embedded in a basic block!"); 1062 MachineBasicBlock *MBB = getParent(); 1063 MachineFunction *MF = MBB->getParent(); 1064 assert(MF && "Not embedded in a function!"); 1065 1066 MachineInstr *MI = (MachineInstr *)this; 1067 MachineRegisterInfo &MRI = MF->getRegInfo(); 1068 1069 for (const MachineOperand &MO : MI->operands()) { 1070 if (!MO.isReg() || !MO.isDef()) 1071 continue; 1072 unsigned Reg = MO.getReg(); 1073 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1074 continue; 1075 MRI.markUsesInDebugValueAsUndef(Reg); 1076 } 1077 MI->eraseFromParent(); 1078 } 1079 1080 void MachineInstr::eraseFromBundle() { 1081 assert(getParent() && "Not embedded in a basic block!"); 1082 getParent()->erase_instr(this); 1083 } 1084 1085 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1086 /// 1087 unsigned MachineInstr::getNumExplicitOperands() const { 1088 unsigned NumOperands = MCID->getNumOperands(); 1089 if (!MCID->isVariadic()) 1090 return NumOperands; 1091 1092 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1093 const MachineOperand &MO = getOperand(i); 1094 if (!MO.isReg() || !MO.isImplicit()) 1095 NumOperands++; 1096 } 1097 return NumOperands; 1098 } 1099 1100 void MachineInstr::bundleWithPred() { 1101 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1102 setFlag(BundledPred); 1103 MachineBasicBlock::instr_iterator Pred = getIterator(); 1104 --Pred; 1105 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1106 Pred->setFlag(BundledSucc); 1107 } 1108 1109 void MachineInstr::bundleWithSucc() { 1110 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1111 setFlag(BundledSucc); 1112 MachineBasicBlock::instr_iterator Succ = getIterator(); 1113 ++Succ; 1114 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1115 Succ->setFlag(BundledPred); 1116 } 1117 1118 void MachineInstr::unbundleFromPred() { 1119 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1120 clearFlag(BundledPred); 1121 MachineBasicBlock::instr_iterator Pred = getIterator(); 1122 --Pred; 1123 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1124 Pred->clearFlag(BundledSucc); 1125 } 1126 1127 void MachineInstr::unbundleFromSucc() { 1128 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1129 clearFlag(BundledSucc); 1130 MachineBasicBlock::instr_iterator Succ = getIterator(); 1131 ++Succ; 1132 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1133 Succ->clearFlag(BundledPred); 1134 } 1135 1136 bool MachineInstr::isStackAligningInlineAsm() const { 1137 if (isInlineAsm()) { 1138 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1139 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1140 return true; 1141 } 1142 return false; 1143 } 1144 1145 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1146 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1147 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1148 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1149 } 1150 1151 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1152 unsigned *GroupNo) const { 1153 assert(isInlineAsm() && "Expected an inline asm instruction"); 1154 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1155 1156 // Ignore queries about the initial operands. 1157 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1158 return -1; 1159 1160 unsigned Group = 0; 1161 unsigned NumOps; 1162 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1163 i += NumOps) { 1164 const MachineOperand &FlagMO = getOperand(i); 1165 // If we reach the implicit register operands, stop looking. 1166 if (!FlagMO.isImm()) 1167 return -1; 1168 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1169 if (i + NumOps > OpIdx) { 1170 if (GroupNo) 1171 *GroupNo = Group; 1172 return i; 1173 } 1174 ++Group; 1175 } 1176 return -1; 1177 } 1178 1179 const DILocalVariable *MachineInstr::getDebugVariable() const { 1180 assert(isDebugValue() && "not a DBG_VALUE"); 1181 return cast<DILocalVariable>(getOperand(2).getMetadata()); 1182 } 1183 1184 const DIExpression *MachineInstr::getDebugExpression() const { 1185 assert(isDebugValue() && "not a DBG_VALUE"); 1186 return cast<DIExpression>(getOperand(3).getMetadata()); 1187 } 1188 1189 const TargetRegisterClass* 1190 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1191 const TargetInstrInfo *TII, 1192 const TargetRegisterInfo *TRI) const { 1193 assert(getParent() && "Can't have an MBB reference here!"); 1194 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1195 const MachineFunction &MF = *getParent()->getParent(); 1196 1197 // Most opcodes have fixed constraints in their MCInstrDesc. 1198 if (!isInlineAsm()) 1199 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1200 1201 if (!getOperand(OpIdx).isReg()) 1202 return nullptr; 1203 1204 // For tied uses on inline asm, get the constraint from the def. 1205 unsigned DefIdx; 1206 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1207 OpIdx = DefIdx; 1208 1209 // Inline asm stores register class constraints in the flag word. 1210 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1211 if (FlagIdx < 0) 1212 return nullptr; 1213 1214 unsigned Flag = getOperand(FlagIdx).getImm(); 1215 unsigned RCID; 1216 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 1217 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 1218 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 1219 InlineAsm::hasRegClassConstraint(Flag, RCID)) 1220 return TRI->getRegClass(RCID); 1221 1222 // Assume that all registers in a memory operand are pointers. 1223 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1224 return TRI->getPointerRegClass(MF); 1225 1226 return nullptr; 1227 } 1228 1229 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1230 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1231 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1232 // Check every operands inside the bundle if we have 1233 // been asked to. 1234 if (ExploreBundle) 1235 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 1236 ++OpndIt) 1237 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1238 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1239 else 1240 // Otherwise, just check the current operands. 1241 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1242 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1243 return CurRC; 1244 } 1245 1246 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1247 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1248 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1249 assert(CurRC && "Invalid initial register class"); 1250 // Check if Reg is constrained by some of its use/def from MI. 1251 const MachineOperand &MO = getOperand(OpIdx); 1252 if (!MO.isReg() || MO.getReg() != Reg) 1253 return CurRC; 1254 // If yes, accumulate the constraints through the operand. 1255 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1256 } 1257 1258 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1259 unsigned OpIdx, const TargetRegisterClass *CurRC, 1260 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1261 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1262 const MachineOperand &MO = getOperand(OpIdx); 1263 assert(MO.isReg() && 1264 "Cannot get register constraints for non-register operand"); 1265 assert(CurRC && "Invalid initial register class"); 1266 if (unsigned SubIdx = MO.getSubReg()) { 1267 if (OpRC) 1268 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1269 else 1270 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1271 } else if (OpRC) 1272 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1273 return CurRC; 1274 } 1275 1276 /// Return the number of instructions inside the MI bundle, not counting the 1277 /// header instruction. 1278 unsigned MachineInstr::getBundleSize() const { 1279 MachineBasicBlock::const_instr_iterator I = getIterator(); 1280 unsigned Size = 0; 1281 while (I->isBundledWithSucc()) { 1282 ++Size; 1283 ++I; 1284 } 1285 return Size; 1286 } 1287 1288 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1289 /// the given register (not considering sub/super-registers). 1290 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 1291 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1292 const MachineOperand &MO = getOperand(i); 1293 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1294 return true; 1295 } 1296 return false; 1297 } 1298 1299 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1300 /// the specific register or -1 if it is not found. It further tightens 1301 /// the search criteria to a use that kills the register if isKill is true. 1302 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1303 const TargetRegisterInfo *TRI) const { 1304 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1305 const MachineOperand &MO = getOperand(i); 1306 if (!MO.isReg() || !MO.isUse()) 1307 continue; 1308 unsigned MOReg = MO.getReg(); 1309 if (!MOReg) 1310 continue; 1311 if (MOReg == Reg || 1312 (TRI && 1313 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1314 TargetRegisterInfo::isPhysicalRegister(Reg) && 1315 TRI->isSubRegister(MOReg, Reg))) 1316 if (!isKill || MO.isKill()) 1317 return i; 1318 } 1319 return -1; 1320 } 1321 1322 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1323 /// indicating if this instruction reads or writes Reg. This also considers 1324 /// partial defines. 1325 std::pair<bool,bool> 1326 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1327 SmallVectorImpl<unsigned> *Ops) const { 1328 bool PartDef = false; // Partial redefine. 1329 bool FullDef = false; // Full define. 1330 bool Use = false; 1331 1332 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1333 const MachineOperand &MO = getOperand(i); 1334 if (!MO.isReg() || MO.getReg() != Reg) 1335 continue; 1336 if (Ops) 1337 Ops->push_back(i); 1338 if (MO.isUse()) 1339 Use |= !MO.isUndef(); 1340 else if (MO.getSubReg() && !MO.isUndef()) 1341 // A partial <def,undef> doesn't count as reading the register. 1342 PartDef = true; 1343 else 1344 FullDef = true; 1345 } 1346 // A partial redefine uses Reg unless there is also a full define. 1347 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1348 } 1349 1350 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1351 /// the specified register or -1 if it is not found. If isDead is true, defs 1352 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1353 /// also checks if there is a def of a super-register. 1354 int 1355 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1356 const TargetRegisterInfo *TRI) const { 1357 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1358 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1359 const MachineOperand &MO = getOperand(i); 1360 // Accept regmask operands when Overlap is set. 1361 // Ignore them when looking for a specific def operand (Overlap == false). 1362 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1363 return i; 1364 if (!MO.isReg() || !MO.isDef()) 1365 continue; 1366 unsigned MOReg = MO.getReg(); 1367 bool Found = (MOReg == Reg); 1368 if (!Found && TRI && isPhys && 1369 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1370 if (Overlap) 1371 Found = TRI->regsOverlap(MOReg, Reg); 1372 else 1373 Found = TRI->isSubRegister(MOReg, Reg); 1374 } 1375 if (Found && (!isDead || MO.isDead())) 1376 return i; 1377 } 1378 return -1; 1379 } 1380 1381 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1382 /// operand list that is used to represent the predicate. It returns -1 if 1383 /// none is found. 1384 int MachineInstr::findFirstPredOperandIdx() const { 1385 // Don't call MCID.findFirstPredOperandIdx() because this variant 1386 // is sometimes called on an instruction that's not yet complete, and 1387 // so the number of operands is less than the MCID indicates. In 1388 // particular, the PTX target does this. 1389 const MCInstrDesc &MCID = getDesc(); 1390 if (MCID.isPredicable()) { 1391 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1392 if (MCID.OpInfo[i].isPredicate()) 1393 return i; 1394 } 1395 1396 return -1; 1397 } 1398 1399 // MachineOperand::TiedTo is 4 bits wide. 1400 const unsigned TiedMax = 15; 1401 1402 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1403 /// 1404 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1405 /// field. TiedTo can have these values: 1406 /// 1407 /// 0: Operand is not tied to anything. 1408 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1409 /// TiedMax: Tied to an operand >= TiedMax-1. 1410 /// 1411 /// The tied def must be one of the first TiedMax operands on a normal 1412 /// instruction. INLINEASM instructions allow more tied defs. 1413 /// 1414 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1415 MachineOperand &DefMO = getOperand(DefIdx); 1416 MachineOperand &UseMO = getOperand(UseIdx); 1417 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1418 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1419 assert(!DefMO.isTied() && "Def is already tied to another use"); 1420 assert(!UseMO.isTied() && "Use is already tied to another def"); 1421 1422 if (DefIdx < TiedMax) 1423 UseMO.TiedTo = DefIdx + 1; 1424 else { 1425 // Inline asm can use the group descriptors to find tied operands, but on 1426 // normal instruction, the tied def must be within the first TiedMax 1427 // operands. 1428 assert(isInlineAsm() && "DefIdx out of range"); 1429 UseMO.TiedTo = TiedMax; 1430 } 1431 1432 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1433 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1434 } 1435 1436 /// Given the index of a tied register operand, find the operand it is tied to. 1437 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1438 /// which must exist. 1439 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1440 const MachineOperand &MO = getOperand(OpIdx); 1441 assert(MO.isTied() && "Operand isn't tied"); 1442 1443 // Normally TiedTo is in range. 1444 if (MO.TiedTo < TiedMax) 1445 return MO.TiedTo - 1; 1446 1447 // Uses on normal instructions can be out of range. 1448 if (!isInlineAsm()) { 1449 // Normal tied defs must be in the 0..TiedMax-1 range. 1450 if (MO.isUse()) 1451 return TiedMax - 1; 1452 // MO is a def. Search for the tied use. 1453 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1454 const MachineOperand &UseMO = getOperand(i); 1455 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1456 return i; 1457 } 1458 llvm_unreachable("Can't find tied use"); 1459 } 1460 1461 // Now deal with inline asm by parsing the operand group descriptor flags. 1462 // Find the beginning of each operand group. 1463 SmallVector<unsigned, 8> GroupIdx; 1464 unsigned OpIdxGroup = ~0u; 1465 unsigned NumOps; 1466 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1467 i += NumOps) { 1468 const MachineOperand &FlagMO = getOperand(i); 1469 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1470 unsigned CurGroup = GroupIdx.size(); 1471 GroupIdx.push_back(i); 1472 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1473 // OpIdx belongs to this operand group. 1474 if (OpIdx > i && OpIdx < i + NumOps) 1475 OpIdxGroup = CurGroup; 1476 unsigned TiedGroup; 1477 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1478 continue; 1479 // Operands in this group are tied to operands in TiedGroup which must be 1480 // earlier. Find the number of operands between the two groups. 1481 unsigned Delta = i - GroupIdx[TiedGroup]; 1482 1483 // OpIdx is a use tied to TiedGroup. 1484 if (OpIdxGroup == CurGroup) 1485 return OpIdx - Delta; 1486 1487 // OpIdx is a def tied to this use group. 1488 if (OpIdxGroup == TiedGroup) 1489 return OpIdx + Delta; 1490 } 1491 llvm_unreachable("Invalid tied operand on inline asm"); 1492 } 1493 1494 /// clearKillInfo - Clears kill flags on all operands. 1495 /// 1496 void MachineInstr::clearKillInfo() { 1497 for (MachineOperand &MO : operands()) { 1498 if (MO.isReg() && MO.isUse()) 1499 MO.setIsKill(false); 1500 } 1501 } 1502 1503 void MachineInstr::substituteRegister(unsigned FromReg, 1504 unsigned ToReg, 1505 unsigned SubIdx, 1506 const TargetRegisterInfo &RegInfo) { 1507 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1508 if (SubIdx) 1509 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1510 for (MachineOperand &MO : operands()) { 1511 if (!MO.isReg() || MO.getReg() != FromReg) 1512 continue; 1513 MO.substPhysReg(ToReg, RegInfo); 1514 } 1515 } else { 1516 for (MachineOperand &MO : operands()) { 1517 if (!MO.isReg() || MO.getReg() != FromReg) 1518 continue; 1519 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1520 } 1521 } 1522 } 1523 1524 /// isSafeToMove - Return true if it is safe to move this instruction. If 1525 /// SawStore is set to true, it means that there is a store (or call) between 1526 /// the instruction's location and its intended destination. 1527 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1528 // Ignore stuff that we obviously can't move. 1529 // 1530 // Treat volatile loads as stores. This is not strictly necessary for 1531 // volatiles, but it is required for atomic loads. It is not allowed to move 1532 // a load across an atomic load with Ordering > Monotonic. 1533 if (mayStore() || isCall() || 1534 (mayLoad() && hasOrderedMemoryRef())) { 1535 SawStore = true; 1536 return false; 1537 } 1538 1539 if (isPosition() || isDebugValue() || isTerminator() || 1540 hasUnmodeledSideEffects()) 1541 return false; 1542 1543 // See if this instruction does a load. If so, we have to guarantee that the 1544 // loaded value doesn't change between the load and the its intended 1545 // destination. The check for isInvariantLoad gives the targe the chance to 1546 // classify the load as always returning a constant, e.g. a constant pool 1547 // load. 1548 if (mayLoad() && !isInvariantLoad(AA)) 1549 // Otherwise, this is a real load. If there is a store between the load and 1550 // end of block, we can't move it. 1551 return !SawStore; 1552 1553 return true; 1554 } 1555 1556 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1557 /// or volatile memory reference, or if the information describing the memory 1558 /// reference is not available. Return false if it is known to have no ordered 1559 /// memory references. 1560 bool MachineInstr::hasOrderedMemoryRef() const { 1561 // An instruction known never to access memory won't have a volatile access. 1562 if (!mayStore() && 1563 !mayLoad() && 1564 !isCall() && 1565 !hasUnmodeledSideEffects()) 1566 return false; 1567 1568 // Otherwise, if the instruction has no memory reference information, 1569 // conservatively assume it wasn't preserved. 1570 if (memoperands_empty()) 1571 return true; 1572 1573 // Check if any of our memory operands are ordered. 1574 return any_of(memoperands(), [](const MachineMemOperand *MMO) { 1575 return !MMO->isUnordered(); 1576 }); 1577 } 1578 1579 /// isInvariantLoad - Return true if this instruction is loading from a 1580 /// location whose value is invariant across the function. For example, 1581 /// loading a value from the constant pool or from the argument area 1582 /// of a function if it does not change. This should only return true of 1583 /// *all* loads the instruction does are invariant (if it does multiple loads). 1584 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1585 // If the instruction doesn't load at all, it isn't an invariant load. 1586 if (!mayLoad()) 1587 return false; 1588 1589 // If the instruction has lost its memoperands, conservatively assume that 1590 // it may not be an invariant load. 1591 if (memoperands_empty()) 1592 return false; 1593 1594 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1595 1596 for (MachineMemOperand *MMO : memoperands()) { 1597 if (MMO->isVolatile()) return false; 1598 if (MMO->isStore()) return false; 1599 if (MMO->isInvariant()) continue; 1600 1601 // A load from a constant PseudoSourceValue is invariant. 1602 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1603 if (PSV->isConstant(&MFI)) 1604 continue; 1605 1606 if (const Value *V = MMO->getValue()) { 1607 // If we have an AliasAnalysis, ask it whether the memory is constant. 1608 if (AA && 1609 AA->pointsToConstantMemory( 1610 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1611 continue; 1612 } 1613 1614 // Otherwise assume conservatively. 1615 return false; 1616 } 1617 1618 // Everything checks out. 1619 return true; 1620 } 1621 1622 /// isConstantValuePHI - If the specified instruction is a PHI that always 1623 /// merges together the same virtual register, return the register, otherwise 1624 /// return 0. 1625 unsigned MachineInstr::isConstantValuePHI() const { 1626 if (!isPHI()) 1627 return 0; 1628 assert(getNumOperands() >= 3 && 1629 "It's illegal to have a PHI without source operands"); 1630 1631 unsigned Reg = getOperand(1).getReg(); 1632 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1633 if (getOperand(i).getReg() != Reg) 1634 return 0; 1635 return Reg; 1636 } 1637 1638 bool MachineInstr::hasUnmodeledSideEffects() const { 1639 if (hasProperty(MCID::UnmodeledSideEffects)) 1640 return true; 1641 if (isInlineAsm()) { 1642 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1643 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1644 return true; 1645 } 1646 1647 return false; 1648 } 1649 1650 bool MachineInstr::isLoadFoldBarrier() const { 1651 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1652 } 1653 1654 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1655 /// 1656 bool MachineInstr::allDefsAreDead() const { 1657 for (const MachineOperand &MO : operands()) { 1658 if (!MO.isReg() || MO.isUse()) 1659 continue; 1660 if (!MO.isDead()) 1661 return false; 1662 } 1663 return true; 1664 } 1665 1666 /// copyImplicitOps - Copy implicit register operands from specified 1667 /// instruction to this instruction. 1668 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1669 const MachineInstr &MI) { 1670 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1671 i != e; ++i) { 1672 const MachineOperand &MO = MI.getOperand(i); 1673 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1674 addOperand(MF, MO); 1675 } 1676 } 1677 1678 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1679 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1680 dbgs() << " " << *this; 1681 #endif 1682 } 1683 1684 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const { 1685 const Module *M = nullptr; 1686 if (const MachineBasicBlock *MBB = getParent()) 1687 if (const MachineFunction *MF = MBB->getParent()) 1688 M = MF->getFunction()->getParent(); 1689 1690 ModuleSlotTracker MST(M); 1691 print(OS, MST, SkipOpers); 1692 } 1693 1694 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1695 bool SkipOpers) const { 1696 // We can be a bit tidier if we know the MachineFunction. 1697 const MachineFunction *MF = nullptr; 1698 const TargetRegisterInfo *TRI = nullptr; 1699 const MachineRegisterInfo *MRI = nullptr; 1700 const TargetInstrInfo *TII = nullptr; 1701 if (const MachineBasicBlock *MBB = getParent()) { 1702 MF = MBB->getParent(); 1703 if (MF) { 1704 MRI = &MF->getRegInfo(); 1705 TRI = MF->getSubtarget().getRegisterInfo(); 1706 TII = MF->getSubtarget().getInstrInfo(); 1707 } 1708 } 1709 1710 // Save a list of virtual registers. 1711 SmallVector<unsigned, 8> VirtRegs; 1712 1713 // Print explicitly defined operands on the left of an assignment syntax. 1714 unsigned StartOp = 0, e = getNumOperands(); 1715 for (; StartOp < e && getOperand(StartOp).isReg() && 1716 getOperand(StartOp).isDef() && 1717 !getOperand(StartOp).isImplicit(); 1718 ++StartOp) { 1719 if (StartOp != 0) OS << ", "; 1720 getOperand(StartOp).print(OS, MST, TRI); 1721 unsigned Reg = getOperand(StartOp).getReg(); 1722 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1723 VirtRegs.push_back(Reg); 1724 unsigned Size; 1725 if (MRI && (Size = MRI->getSize(Reg))) 1726 OS << '(' << Size << ')'; 1727 } 1728 } 1729 1730 if (StartOp != 0) 1731 OS << " = "; 1732 1733 // Print the opcode name. 1734 if (TII) 1735 OS << TII->getName(getOpcode()); 1736 else 1737 OS << "UNKNOWN"; 1738 1739 if (getNumTypes() > 0) { 1740 OS << " { "; 1741 for (unsigned i = 0; i < getNumTypes(); ++i) { 1742 getType(i).print(OS); 1743 if (i + 1 != getNumTypes()) 1744 OS << ", "; 1745 } 1746 OS << " } "; 1747 } 1748 1749 if (SkipOpers) 1750 return; 1751 1752 // Print the rest of the operands. 1753 bool OmittedAnyCallClobbers = false; 1754 bool FirstOp = true; 1755 unsigned AsmDescOp = ~0u; 1756 unsigned AsmOpCount = 0; 1757 1758 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1759 // Print asm string. 1760 OS << " "; 1761 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1762 1763 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1764 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1765 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1766 OS << " [sideeffect]"; 1767 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1768 OS << " [mayload]"; 1769 if (ExtraInfo & InlineAsm::Extra_MayStore) 1770 OS << " [maystore]"; 1771 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1772 OS << " [isconvergent]"; 1773 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1774 OS << " [alignstack]"; 1775 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1776 OS << " [attdialect]"; 1777 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1778 OS << " [inteldialect]"; 1779 1780 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1781 FirstOp = false; 1782 } 1783 1784 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1785 const MachineOperand &MO = getOperand(i); 1786 1787 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1788 VirtRegs.push_back(MO.getReg()); 1789 1790 // Omit call-clobbered registers which aren't used anywhere. This makes 1791 // call instructions much less noisy on targets where calls clobber lots 1792 // of registers. Don't rely on MO.isDead() because we may be called before 1793 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1794 if (MRI && isCall() && 1795 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1796 unsigned Reg = MO.getReg(); 1797 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1798 if (MRI->use_empty(Reg)) { 1799 bool HasAliasLive = false; 1800 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 1801 unsigned AliasReg = *AI; 1802 if (!MRI->use_empty(AliasReg)) { 1803 HasAliasLive = true; 1804 break; 1805 } 1806 } 1807 if (!HasAliasLive) { 1808 OmittedAnyCallClobbers = true; 1809 continue; 1810 } 1811 } 1812 } 1813 } 1814 1815 if (FirstOp) FirstOp = false; else OS << ","; 1816 OS << " "; 1817 if (i < getDesc().NumOperands) { 1818 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1819 if (MCOI.isPredicate()) 1820 OS << "pred:"; 1821 if (MCOI.isOptionalDef()) 1822 OS << "opt:"; 1823 } 1824 if (isDebugValue() && MO.isMetadata()) { 1825 // Pretty print DBG_VALUE instructions. 1826 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1827 if (DIV && !DIV->getName().empty()) 1828 OS << "!\"" << DIV->getName() << '\"'; 1829 else 1830 MO.print(OS, MST, TRI); 1831 } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1832 OS << TRI->getSubRegIndexName(MO.getImm()); 1833 } else if (i == AsmDescOp && MO.isImm()) { 1834 // Pretty print the inline asm operand descriptor. 1835 OS << '$' << AsmOpCount++; 1836 unsigned Flag = MO.getImm(); 1837 switch (InlineAsm::getKind(Flag)) { 1838 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1839 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1840 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1841 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1842 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1843 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1844 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1845 } 1846 1847 unsigned RCID = 0; 1848 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1849 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1850 if (TRI) { 1851 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1852 } else 1853 OS << ":RC" << RCID; 1854 } 1855 1856 if (InlineAsm::isMemKind(Flag)) { 1857 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1858 switch (MCID) { 1859 case InlineAsm::Constraint_es: OS << ":es"; break; 1860 case InlineAsm::Constraint_i: OS << ":i"; break; 1861 case InlineAsm::Constraint_m: OS << ":m"; break; 1862 case InlineAsm::Constraint_o: OS << ":o"; break; 1863 case InlineAsm::Constraint_v: OS << ":v"; break; 1864 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1865 case InlineAsm::Constraint_R: OS << ":R"; break; 1866 case InlineAsm::Constraint_S: OS << ":S"; break; 1867 case InlineAsm::Constraint_T: OS << ":T"; break; 1868 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1869 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1870 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1871 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1872 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1873 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1874 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1875 case InlineAsm::Constraint_X: OS << ":X"; break; 1876 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1877 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1878 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1879 default: OS << ":?"; break; 1880 } 1881 } 1882 1883 unsigned TiedTo = 0; 1884 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1885 OS << " tiedto:$" << TiedTo; 1886 1887 OS << ']'; 1888 1889 // Compute the index of the next operand descriptor. 1890 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1891 } else 1892 MO.print(OS, MST, TRI); 1893 } 1894 1895 // Briefly indicate whether any call clobbers were omitted. 1896 if (OmittedAnyCallClobbers) { 1897 if (!FirstOp) OS << ","; 1898 OS << " ..."; 1899 } 1900 1901 bool HaveSemi = false; 1902 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 1903 if (Flags & PrintableFlags) { 1904 if (!HaveSemi) { 1905 OS << ";"; 1906 HaveSemi = true; 1907 } 1908 OS << " flags: "; 1909 1910 if (Flags & FrameSetup) 1911 OS << "FrameSetup"; 1912 1913 if (Flags & FrameDestroy) 1914 OS << "FrameDestroy"; 1915 } 1916 1917 if (!memoperands_empty()) { 1918 if (!HaveSemi) { 1919 OS << ";"; 1920 HaveSemi = true; 1921 } 1922 1923 OS << " mem:"; 1924 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1925 i != e; ++i) { 1926 (*i)->print(OS, MST); 1927 if (std::next(i) != e) 1928 OS << " "; 1929 } 1930 } 1931 1932 // Print the regclass of any virtual registers encountered. 1933 if (MRI && !VirtRegs.empty()) { 1934 if (!HaveSemi) { 1935 OS << ";"; 1936 HaveSemi = true; 1937 } 1938 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1939 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); 1940 if (!RC) 1941 continue; 1942 // Generic virtual registers do not have register classes. 1943 if (RC.is<const RegisterBank *>()) 1944 OS << " " << RC.get<const RegisterBank *>()->getName(); 1945 else 1946 OS << " " 1947 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); 1948 OS << ':' << PrintReg(VirtRegs[i]); 1949 for (unsigned j = i+1; j != VirtRegs.size();) { 1950 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { 1951 ++j; 1952 continue; 1953 } 1954 if (VirtRegs[i] != VirtRegs[j]) 1955 OS << "," << PrintReg(VirtRegs[j]); 1956 VirtRegs.erase(VirtRegs.begin()+j); 1957 } 1958 } 1959 } 1960 1961 // Print debug location information. 1962 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1963 if (!HaveSemi) 1964 OS << ";"; 1965 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1966 OS << " line no:" << DV->getLine(); 1967 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1968 DebugLoc InlinedAtDL(InlinedAt); 1969 if (InlinedAtDL && MF) { 1970 OS << " inlined @[ "; 1971 InlinedAtDL.print(OS); 1972 OS << " ]"; 1973 } 1974 } 1975 if (isIndirectDebugValue()) 1976 OS << " indirect"; 1977 } else if (debugLoc && MF) { 1978 if (!HaveSemi) 1979 OS << ";"; 1980 OS << " dbg:"; 1981 debugLoc.print(OS); 1982 } 1983 1984 OS << '\n'; 1985 } 1986 1987 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1988 const TargetRegisterInfo *RegInfo, 1989 bool AddIfNotFound) { 1990 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1991 bool hasAliases = isPhysReg && 1992 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1993 bool Found = false; 1994 SmallVector<unsigned,4> DeadOps; 1995 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1996 MachineOperand &MO = getOperand(i); 1997 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1998 continue; 1999 2000 // DEBUG_VALUE nodes do not contribute to code generation and should 2001 // always be ignored. Failure to do so may result in trying to modify 2002 // KILL flags on DEBUG_VALUE nodes. 2003 if (MO.isDebug()) 2004 continue; 2005 2006 unsigned Reg = MO.getReg(); 2007 if (!Reg) 2008 continue; 2009 2010 if (Reg == IncomingReg) { 2011 if (!Found) { 2012 if (MO.isKill()) 2013 // The register is already marked kill. 2014 return true; 2015 if (isPhysReg && isRegTiedToDefOperand(i)) 2016 // Two-address uses of physregs must not be marked kill. 2017 return true; 2018 MO.setIsKill(); 2019 Found = true; 2020 } 2021 } else if (hasAliases && MO.isKill() && 2022 TargetRegisterInfo::isPhysicalRegister(Reg)) { 2023 // A super-register kill already exists. 2024 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2025 return true; 2026 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2027 DeadOps.push_back(i); 2028 } 2029 } 2030 2031 // Trim unneeded kill operands. 2032 while (!DeadOps.empty()) { 2033 unsigned OpIdx = DeadOps.back(); 2034 if (getOperand(OpIdx).isImplicit()) 2035 RemoveOperand(OpIdx); 2036 else 2037 getOperand(OpIdx).setIsKill(false); 2038 DeadOps.pop_back(); 2039 } 2040 2041 // If not found, this means an alias of one of the operands is killed. Add a 2042 // new implicit operand if required. 2043 if (!Found && AddIfNotFound) { 2044 addOperand(MachineOperand::CreateReg(IncomingReg, 2045 false /*IsDef*/, 2046 true /*IsImp*/, 2047 true /*IsKill*/)); 2048 return true; 2049 } 2050 return Found; 2051 } 2052 2053 void MachineInstr::clearRegisterKills(unsigned Reg, 2054 const TargetRegisterInfo *RegInfo) { 2055 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 2056 RegInfo = nullptr; 2057 for (MachineOperand &MO : operands()) { 2058 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2059 continue; 2060 unsigned OpReg = MO.getReg(); 2061 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2062 MO.setIsKill(false); 2063 } 2064 } 2065 2066 bool MachineInstr::addRegisterDead(unsigned Reg, 2067 const TargetRegisterInfo *RegInfo, 2068 bool AddIfNotFound) { 2069 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 2070 bool hasAliases = isPhysReg && 2071 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2072 bool Found = false; 2073 SmallVector<unsigned,4> DeadOps; 2074 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2075 MachineOperand &MO = getOperand(i); 2076 if (!MO.isReg() || !MO.isDef()) 2077 continue; 2078 unsigned MOReg = MO.getReg(); 2079 if (!MOReg) 2080 continue; 2081 2082 if (MOReg == Reg) { 2083 MO.setIsDead(); 2084 Found = true; 2085 } else if (hasAliases && MO.isDead() && 2086 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 2087 // There exists a super-register that's marked dead. 2088 if (RegInfo->isSuperRegister(Reg, MOReg)) 2089 return true; 2090 if (RegInfo->isSubRegister(Reg, MOReg)) 2091 DeadOps.push_back(i); 2092 } 2093 } 2094 2095 // Trim unneeded dead operands. 2096 while (!DeadOps.empty()) { 2097 unsigned OpIdx = DeadOps.back(); 2098 if (getOperand(OpIdx).isImplicit()) 2099 RemoveOperand(OpIdx); 2100 else 2101 getOperand(OpIdx).setIsDead(false); 2102 DeadOps.pop_back(); 2103 } 2104 2105 // If not found, this means an alias of one of the operands is dead. Add a 2106 // new implicit operand if required. 2107 if (Found || !AddIfNotFound) 2108 return Found; 2109 2110 addOperand(MachineOperand::CreateReg(Reg, 2111 true /*IsDef*/, 2112 true /*IsImp*/, 2113 false /*IsKill*/, 2114 true /*IsDead*/)); 2115 return true; 2116 } 2117 2118 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2119 for (MachineOperand &MO : operands()) { 2120 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2121 continue; 2122 MO.setIsDead(false); 2123 } 2124 } 2125 2126 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2127 for (MachineOperand &MO : operands()) { 2128 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2129 continue; 2130 MO.setIsUndef(IsUndef); 2131 } 2132 } 2133 2134 void MachineInstr::addRegisterDefined(unsigned Reg, 2135 const TargetRegisterInfo *RegInfo) { 2136 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2137 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2138 if (MO) 2139 return; 2140 } else { 2141 for (const MachineOperand &MO : operands()) { 2142 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2143 MO.getSubReg() == 0) 2144 return; 2145 } 2146 } 2147 addOperand(MachineOperand::CreateReg(Reg, 2148 true /*IsDef*/, 2149 true /*IsImp*/)); 2150 } 2151 2152 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2153 const TargetRegisterInfo &TRI) { 2154 bool HasRegMask = false; 2155 for (MachineOperand &MO : operands()) { 2156 if (MO.isRegMask()) { 2157 HasRegMask = true; 2158 continue; 2159 } 2160 if (!MO.isReg() || !MO.isDef()) continue; 2161 unsigned Reg = MO.getReg(); 2162 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2163 // If there are no uses, including partial uses, the def is dead. 2164 if (std::none_of(UsedRegs.begin(), UsedRegs.end(), 2165 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2166 MO.setIsDead(); 2167 } 2168 2169 // This is a call with a register mask operand. 2170 // Mask clobbers are always dead, so add defs for the non-dead defines. 2171 if (HasRegMask) 2172 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2173 I != E; ++I) 2174 addRegisterDefined(*I, &TRI); 2175 } 2176 2177 unsigned 2178 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2179 // Build up a buffer of hash code components. 2180 SmallVector<size_t, 8> HashComponents; 2181 HashComponents.reserve(MI->getNumOperands() + 1); 2182 HashComponents.push_back(MI->getOpcode()); 2183 for (const MachineOperand &MO : MI->operands()) { 2184 if (MO.isReg() && MO.isDef() && 2185 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2186 continue; // Skip virtual register defs. 2187 2188 HashComponents.push_back(hash_value(MO)); 2189 } 2190 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2191 } 2192 2193 void MachineInstr::emitError(StringRef Msg) const { 2194 // Find the source location cookie. 2195 unsigned LocCookie = 0; 2196 const MDNode *LocMD = nullptr; 2197 for (unsigned i = getNumOperands(); i != 0; --i) { 2198 if (getOperand(i-1).isMetadata() && 2199 (LocMD = getOperand(i-1).getMetadata()) && 2200 LocMD->getNumOperands() != 0) { 2201 if (const ConstantInt *CI = 2202 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2203 LocCookie = CI->getZExtValue(); 2204 break; 2205 } 2206 } 2207 } 2208 2209 if (const MachineBasicBlock *MBB = getParent()) 2210 if (const MachineFunction *MF = MBB->getParent()) 2211 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2212 report_fatal_error(Msg); 2213 } 2214 2215 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2216 const MCInstrDesc &MCID, bool IsIndirect, 2217 unsigned Reg, unsigned Offset, 2218 const MDNode *Variable, const MDNode *Expr) { 2219 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2220 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2221 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2222 "Expected inlined-at fields to agree"); 2223 if (IsIndirect) 2224 return BuildMI(MF, DL, MCID) 2225 .addReg(Reg, RegState::Debug) 2226 .addImm(Offset) 2227 .addMetadata(Variable) 2228 .addMetadata(Expr); 2229 else { 2230 assert(Offset == 0 && "A direct address cannot have an offset."); 2231 return BuildMI(MF, DL, MCID) 2232 .addReg(Reg, RegState::Debug) 2233 .addReg(0U, RegState::Debug) 2234 .addMetadata(Variable) 2235 .addMetadata(Expr); 2236 } 2237 } 2238 2239 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2240 MachineBasicBlock::iterator I, 2241 const DebugLoc &DL, const MCInstrDesc &MCID, 2242 bool IsIndirect, unsigned Reg, 2243 unsigned Offset, const MDNode *Variable, 2244 const MDNode *Expr) { 2245 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2246 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2247 MachineFunction &MF = *BB.getParent(); 2248 MachineInstr *MI = 2249 BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr); 2250 BB.insert(I, MI); 2251 return MachineInstrBuilder(MF, MI); 2252 } 2253