1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineMemOperand.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/PseudoSourceValue.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/MC/MCInstrDesc.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 using namespace llvm; 43 44 //===----------------------------------------------------------------------===// 45 // MachineOperand Implementation 46 //===----------------------------------------------------------------------===// 47 48 void MachineOperand::setReg(unsigned Reg) { 49 if (getReg() == Reg) return; // No change. 50 51 // Otherwise, we have to change the register. If this operand is embedded 52 // into a machine function, we need to update the old and new register's 53 // use/def lists. 54 if (MachineInstr *MI = getParent()) 55 if (MachineBasicBlock *MBB = MI->getParent()) 56 if (MachineFunction *MF = MBB->getParent()) { 57 MachineRegisterInfo &MRI = MF->getRegInfo(); 58 MRI.removeRegOperandFromUseList(this); 59 SmallContents.RegNo = Reg; 60 MRI.addRegOperandToUseList(this); 61 return; 62 } 63 64 // Otherwise, just change the register, no problem. :) 65 SmallContents.RegNo = Reg; 66 } 67 68 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 69 const TargetRegisterInfo &TRI) { 70 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 71 if (SubIdx && getSubReg()) 72 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 73 setReg(Reg); 74 if (SubIdx) 75 setSubReg(SubIdx); 76 } 77 78 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 79 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 80 if (getSubReg()) { 81 Reg = TRI.getSubReg(Reg, getSubReg()); 82 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 83 // That won't happen in legal code. 84 setSubReg(0); 85 } 86 setReg(Reg); 87 } 88 89 /// Change a def to a use, or a use to a def. 90 void MachineOperand::setIsDef(bool Val) { 91 assert(isReg() && "Wrong MachineOperand accessor"); 92 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 93 if (IsDef == Val) 94 return; 95 // MRI may keep uses and defs in different list positions. 96 if (MachineInstr *MI = getParent()) 97 if (MachineBasicBlock *MBB = MI->getParent()) 98 if (MachineFunction *MF = MBB->getParent()) { 99 MachineRegisterInfo &MRI = MF->getRegInfo(); 100 MRI.removeRegOperandFromUseList(this); 101 IsDef = Val; 102 MRI.addRegOperandToUseList(this); 103 return; 104 } 105 IsDef = Val; 106 } 107 108 /// ChangeToImmediate - Replace this operand with a new immediate operand of 109 /// the specified value. If an operand is known to be an immediate already, 110 /// the setImm method should be used. 111 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 112 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 113 // If this operand is currently a register operand, and if this is in a 114 // function, deregister the operand from the register's use/def list. 115 if (isReg() && isOnRegUseList()) 116 if (MachineInstr *MI = getParent()) 117 if (MachineBasicBlock *MBB = MI->getParent()) 118 if (MachineFunction *MF = MBB->getParent()) 119 MF->getRegInfo().removeRegOperandFromUseList(this); 120 121 OpKind = MO_Immediate; 122 Contents.ImmVal = ImmVal; 123 } 124 125 /// ChangeToRegister - Replace this operand with a new register operand of 126 /// the specified value. If an operand is known to be an register already, 127 /// the setReg method should be used. 128 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 129 bool isKill, bool isDead, bool isUndef, 130 bool isDebug) { 131 MachineRegisterInfo *RegInfo = nullptr; 132 if (MachineInstr *MI = getParent()) 133 if (MachineBasicBlock *MBB = MI->getParent()) 134 if (MachineFunction *MF = MBB->getParent()) 135 RegInfo = &MF->getRegInfo(); 136 // If this operand is already a register operand, remove it from the 137 // register's use/def lists. 138 bool WasReg = isReg(); 139 if (RegInfo && WasReg) 140 RegInfo->removeRegOperandFromUseList(this); 141 142 // Change this to a register and set the reg#. 143 OpKind = MO_Register; 144 SmallContents.RegNo = Reg; 145 SubReg_TargetFlags = 0; 146 IsDef = isDef; 147 IsImp = isImp; 148 IsKill = isKill; 149 IsDead = isDead; 150 IsUndef = isUndef; 151 IsInternalRead = false; 152 IsEarlyClobber = false; 153 IsDebug = isDebug; 154 // Ensure isOnRegUseList() returns false. 155 Contents.Reg.Prev = nullptr; 156 // Preserve the tie when the operand was already a register. 157 if (!WasReg) 158 TiedTo = 0; 159 160 // If this operand is embedded in a function, add the operand to the 161 // register's use/def list. 162 if (RegInfo) 163 RegInfo->addRegOperandToUseList(this); 164 } 165 166 /// isIdenticalTo - Return true if this operand is identical to the specified 167 /// operand. Note that this should stay in sync with the hash_value overload 168 /// below. 169 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 170 if (getType() != Other.getType() || 171 getTargetFlags() != Other.getTargetFlags()) 172 return false; 173 174 switch (getType()) { 175 case MachineOperand::MO_Register: 176 return getReg() == Other.getReg() && isDef() == Other.isDef() && 177 getSubReg() == Other.getSubReg(); 178 case MachineOperand::MO_Immediate: 179 return getImm() == Other.getImm(); 180 case MachineOperand::MO_CImmediate: 181 return getCImm() == Other.getCImm(); 182 case MachineOperand::MO_FPImmediate: 183 return getFPImm() == Other.getFPImm(); 184 case MachineOperand::MO_MachineBasicBlock: 185 return getMBB() == Other.getMBB(); 186 case MachineOperand::MO_FrameIndex: 187 return getIndex() == Other.getIndex(); 188 case MachineOperand::MO_ConstantPoolIndex: 189 case MachineOperand::MO_TargetIndex: 190 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 191 case MachineOperand::MO_JumpTableIndex: 192 return getIndex() == Other.getIndex(); 193 case MachineOperand::MO_GlobalAddress: 194 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 195 case MachineOperand::MO_ExternalSymbol: 196 return !strcmp(getSymbolName(), Other.getSymbolName()) && 197 getOffset() == Other.getOffset(); 198 case MachineOperand::MO_BlockAddress: 199 return getBlockAddress() == Other.getBlockAddress() && 200 getOffset() == Other.getOffset(); 201 case MachineOperand::MO_RegisterMask: 202 case MachineOperand::MO_RegisterLiveOut: 203 return getRegMask() == Other.getRegMask(); 204 case MachineOperand::MO_MCSymbol: 205 return getMCSymbol() == Other.getMCSymbol(); 206 case MachineOperand::MO_CFIIndex: 207 return getCFIIndex() == Other.getCFIIndex(); 208 case MachineOperand::MO_Metadata: 209 return getMetadata() == Other.getMetadata(); 210 } 211 llvm_unreachable("Invalid machine operand type"); 212 } 213 214 // Note: this must stay exactly in sync with isIdenticalTo above. 215 hash_code llvm::hash_value(const MachineOperand &MO) { 216 switch (MO.getType()) { 217 case MachineOperand::MO_Register: 218 // Register operands don't have target flags. 219 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 220 case MachineOperand::MO_Immediate: 221 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 222 case MachineOperand::MO_CImmediate: 223 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 224 case MachineOperand::MO_FPImmediate: 225 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 226 case MachineOperand::MO_MachineBasicBlock: 227 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 228 case MachineOperand::MO_FrameIndex: 229 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 230 case MachineOperand::MO_ConstantPoolIndex: 231 case MachineOperand::MO_TargetIndex: 232 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 233 MO.getOffset()); 234 case MachineOperand::MO_JumpTableIndex: 235 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 236 case MachineOperand::MO_ExternalSymbol: 237 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 238 MO.getSymbolName()); 239 case MachineOperand::MO_GlobalAddress: 240 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 241 MO.getOffset()); 242 case MachineOperand::MO_BlockAddress: 243 return hash_combine(MO.getType(), MO.getTargetFlags(), 244 MO.getBlockAddress(), MO.getOffset()); 245 case MachineOperand::MO_RegisterMask: 246 case MachineOperand::MO_RegisterLiveOut: 247 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 248 case MachineOperand::MO_Metadata: 249 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 250 case MachineOperand::MO_MCSymbol: 251 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 252 case MachineOperand::MO_CFIIndex: 253 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 254 } 255 llvm_unreachable("Invalid machine operand type"); 256 } 257 258 /// print - Print the specified machine operand. 259 /// 260 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 261 // If the instruction is embedded into a basic block, we can find the 262 // target info for the instruction. 263 if (!TM) 264 if (const MachineInstr *MI = getParent()) 265 if (const MachineBasicBlock *MBB = MI->getParent()) 266 if (const MachineFunction *MF = MBB->getParent()) 267 TM = &MF->getTarget(); 268 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : nullptr; 269 270 switch (getType()) { 271 case MachineOperand::MO_Register: 272 OS << PrintReg(getReg(), TRI, getSubReg()); 273 274 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 275 isInternalRead() || isEarlyClobber() || isTied()) { 276 OS << '<'; 277 bool NeedComma = false; 278 if (isDef()) { 279 if (NeedComma) OS << ','; 280 if (isEarlyClobber()) 281 OS << "earlyclobber,"; 282 if (isImplicit()) 283 OS << "imp-"; 284 OS << "def"; 285 NeedComma = true; 286 // <def,read-undef> only makes sense when getSubReg() is set. 287 // Don't clutter the output otherwise. 288 if (isUndef() && getSubReg()) 289 OS << ",read-undef"; 290 } else if (isImplicit()) { 291 OS << "imp-use"; 292 NeedComma = true; 293 } 294 295 if (isKill()) { 296 if (NeedComma) OS << ','; 297 OS << "kill"; 298 NeedComma = true; 299 } 300 if (isDead()) { 301 if (NeedComma) OS << ','; 302 OS << "dead"; 303 NeedComma = true; 304 } 305 if (isUndef() && isUse()) { 306 if (NeedComma) OS << ','; 307 OS << "undef"; 308 NeedComma = true; 309 } 310 if (isInternalRead()) { 311 if (NeedComma) OS << ','; 312 OS << "internal"; 313 NeedComma = true; 314 } 315 if (isTied()) { 316 if (NeedComma) OS << ','; 317 OS << "tied"; 318 if (TiedTo != 15) 319 OS << unsigned(TiedTo - 1); 320 } 321 OS << '>'; 322 } 323 break; 324 case MachineOperand::MO_Immediate: 325 OS << getImm(); 326 break; 327 case MachineOperand::MO_CImmediate: 328 getCImm()->getValue().print(OS, false); 329 break; 330 case MachineOperand::MO_FPImmediate: 331 if (getFPImm()->getType()->isFloatTy()) 332 OS << getFPImm()->getValueAPF().convertToFloat(); 333 else 334 OS << getFPImm()->getValueAPF().convertToDouble(); 335 break; 336 case MachineOperand::MO_MachineBasicBlock: 337 OS << "<BB#" << getMBB()->getNumber() << ">"; 338 break; 339 case MachineOperand::MO_FrameIndex: 340 OS << "<fi#" << getIndex() << '>'; 341 break; 342 case MachineOperand::MO_ConstantPoolIndex: 343 OS << "<cp#" << getIndex(); 344 if (getOffset()) OS << "+" << getOffset(); 345 OS << '>'; 346 break; 347 case MachineOperand::MO_TargetIndex: 348 OS << "<ti#" << getIndex(); 349 if (getOffset()) OS << "+" << getOffset(); 350 OS << '>'; 351 break; 352 case MachineOperand::MO_JumpTableIndex: 353 OS << "<jt#" << getIndex() << '>'; 354 break; 355 case MachineOperand::MO_GlobalAddress: 356 OS << "<ga:"; 357 getGlobal()->printAsOperand(OS, /*PrintType=*/false); 358 if (getOffset()) OS << "+" << getOffset(); 359 OS << '>'; 360 break; 361 case MachineOperand::MO_ExternalSymbol: 362 OS << "<es:" << getSymbolName(); 363 if (getOffset()) OS << "+" << getOffset(); 364 OS << '>'; 365 break; 366 case MachineOperand::MO_BlockAddress: 367 OS << '<'; 368 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false); 369 if (getOffset()) OS << "+" << getOffset(); 370 OS << '>'; 371 break; 372 case MachineOperand::MO_RegisterMask: 373 OS << "<regmask>"; 374 break; 375 case MachineOperand::MO_RegisterLiveOut: 376 OS << "<regliveout>"; 377 break; 378 case MachineOperand::MO_Metadata: 379 OS << '<'; 380 getMetadata()->printAsOperand(OS, /*PrintType=*/false); 381 OS << '>'; 382 break; 383 case MachineOperand::MO_MCSymbol: 384 OS << "<MCSym=" << *getMCSymbol() << '>'; 385 break; 386 case MachineOperand::MO_CFIIndex: 387 OS << "<call frame instruction>"; 388 break; 389 } 390 391 if (unsigned TF = getTargetFlags()) 392 OS << "[TF=" << TF << ']'; 393 } 394 395 //===----------------------------------------------------------------------===// 396 // MachineMemOperand Implementation 397 //===----------------------------------------------------------------------===// 398 399 /// getAddrSpace - Return the LLVM IR address space number that this pointer 400 /// points into. 401 unsigned MachinePointerInfo::getAddrSpace() const { 402 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 403 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 404 } 405 406 /// getConstantPool - Return a MachinePointerInfo record that refers to the 407 /// constant pool. 408 MachinePointerInfo MachinePointerInfo::getConstantPool() { 409 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 410 } 411 412 /// getFixedStack - Return a MachinePointerInfo record that refers to the 413 /// the specified FrameIndex. 414 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 415 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 416 } 417 418 MachinePointerInfo MachinePointerInfo::getJumpTable() { 419 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 420 } 421 422 MachinePointerInfo MachinePointerInfo::getGOT() { 423 return MachinePointerInfo(PseudoSourceValue::getGOT()); 424 } 425 426 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 427 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 428 } 429 430 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 431 uint64_t s, unsigned int a, 432 const AAMDNodes &AAInfo, 433 const MDNode *Ranges) 434 : PtrInfo(ptrinfo), Size(s), 435 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 436 AAInfo(AAInfo), Ranges(Ranges) { 437 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 438 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 439 "invalid pointer value"); 440 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 441 assert((isLoad() || isStore()) && "Not a load/store!"); 442 } 443 444 /// Profile - Gather unique data for the object. 445 /// 446 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 447 ID.AddInteger(getOffset()); 448 ID.AddInteger(Size); 449 ID.AddPointer(getOpaqueValue()); 450 ID.AddInteger(Flags); 451 } 452 453 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 454 // The Value and Offset may differ due to CSE. But the flags and size 455 // should be the same. 456 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 457 assert(MMO->getSize() == getSize() && "Size mismatch!"); 458 459 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 460 // Update the alignment value. 461 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 462 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 463 // Also update the base and offset, because the new alignment may 464 // not be applicable with the old ones. 465 PtrInfo = MMO->PtrInfo; 466 } 467 } 468 469 /// getAlignment - Return the minimum known alignment in bytes of the 470 /// actual memory reference. 471 uint64_t MachineMemOperand::getAlignment() const { 472 return MinAlign(getBaseAlignment(), getOffset()); 473 } 474 475 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 476 assert((MMO.isLoad() || MMO.isStore()) && 477 "SV has to be a load, store or both."); 478 479 if (MMO.isVolatile()) 480 OS << "Volatile "; 481 482 if (MMO.isLoad()) 483 OS << "LD"; 484 if (MMO.isStore()) 485 OS << "ST"; 486 OS << MMO.getSize(); 487 488 // Print the address information. 489 OS << "["; 490 if (const Value *V = MMO.getValue()) 491 V->printAsOperand(OS, /*PrintType=*/false); 492 else if (const PseudoSourceValue *PSV = MMO.getPseudoValue()) 493 PSV->printCustom(OS); 494 else 495 OS << "<unknown>"; 496 497 unsigned AS = MMO.getAddrSpace(); 498 if (AS != 0) 499 OS << "(addrspace=" << AS << ')'; 500 501 // If the alignment of the memory reference itself differs from the alignment 502 // of the base pointer, print the base alignment explicitly, next to the base 503 // pointer. 504 if (MMO.getBaseAlignment() != MMO.getAlignment()) 505 OS << "(align=" << MMO.getBaseAlignment() << ")"; 506 507 if (MMO.getOffset() != 0) 508 OS << "+" << MMO.getOffset(); 509 OS << "]"; 510 511 // Print the alignment of the reference. 512 if (MMO.getBaseAlignment() != MMO.getAlignment() || 513 MMO.getBaseAlignment() != MMO.getSize()) 514 OS << "(align=" << MMO.getAlignment() << ")"; 515 516 // Print TBAA info. 517 if (const MDNode *TBAAInfo = MMO.getAAInfo().TBAA) { 518 OS << "(tbaa="; 519 if (TBAAInfo->getNumOperands() > 0) 520 TBAAInfo->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 521 else 522 OS << "<unknown>"; 523 OS << ")"; 524 } 525 526 // Print AA scope info. 527 if (const MDNode *ScopeInfo = MMO.getAAInfo().Scope) { 528 OS << "(alias.scope="; 529 if (ScopeInfo->getNumOperands() > 0) 530 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 531 ScopeInfo->getOperand(i)->printAsOperand(OS, /*PrintType=*/false); 532 if (i != ie-1) 533 OS << ","; 534 } 535 else 536 OS << "<unknown>"; 537 OS << ")"; 538 } 539 540 // Print AA noalias scope info. 541 if (const MDNode *NoAliasInfo = MMO.getAAInfo().NoAlias) { 542 OS << "(noalias="; 543 if (NoAliasInfo->getNumOperands() > 0) 544 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 545 NoAliasInfo->getOperand(i)->printAsOperand(OS, /*PrintType=*/false); 546 if (i != ie-1) 547 OS << ","; 548 } 549 else 550 OS << "<unknown>"; 551 OS << ")"; 552 } 553 554 // Print nontemporal info. 555 if (MMO.isNonTemporal()) 556 OS << "(nontemporal)"; 557 558 return OS; 559 } 560 561 //===----------------------------------------------------------------------===// 562 // MachineInstr Implementation 563 //===----------------------------------------------------------------------===// 564 565 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 566 if (MCID->ImplicitDefs) 567 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 568 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 569 if (MCID->ImplicitUses) 570 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 571 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 572 } 573 574 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 575 /// implicit operands. It reserves space for the number of operands specified by 576 /// the MCInstrDesc. 577 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 578 const DebugLoc dl, bool NoImp) 579 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), 580 Flags(0), AsmPrinterFlags(0), 581 NumMemRefs(0), MemRefs(nullptr), debugLoc(dl) { 582 // Reserve space for the expected number of operands. 583 if (unsigned NumOps = MCID->getNumOperands() + 584 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 585 CapOperands = OperandCapacity::get(NumOps); 586 Operands = MF.allocateOperandArray(CapOperands); 587 } 588 589 if (!NoImp) 590 addImplicitDefUseOperands(MF); 591 } 592 593 /// MachineInstr ctor - Copies MachineInstr arg exactly 594 /// 595 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 596 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 597 Flags(0), AsmPrinterFlags(0), 598 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 599 debugLoc(MI.getDebugLoc()) { 600 CapOperands = OperandCapacity::get(MI.getNumOperands()); 601 Operands = MF.allocateOperandArray(CapOperands); 602 603 // Copy operands. 604 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 605 addOperand(MF, MI.getOperand(i)); 606 607 // Copy all the sensible flags. 608 setFlags(MI.Flags); 609 } 610 611 /// getRegInfo - If this instruction is embedded into a MachineFunction, 612 /// return the MachineRegisterInfo object for the current function, otherwise 613 /// return null. 614 MachineRegisterInfo *MachineInstr::getRegInfo() { 615 if (MachineBasicBlock *MBB = getParent()) 616 return &MBB->getParent()->getRegInfo(); 617 return nullptr; 618 } 619 620 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 621 /// this instruction from their respective use lists. This requires that the 622 /// operands already be on their use lists. 623 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 624 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 625 if (Operands[i].isReg()) 626 MRI.removeRegOperandFromUseList(&Operands[i]); 627 } 628 629 /// AddRegOperandsToUseLists - Add all of the register operands in 630 /// this instruction from their respective use lists. This requires that the 631 /// operands not be on their use lists yet. 632 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 633 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 634 if (Operands[i].isReg()) 635 MRI.addRegOperandToUseList(&Operands[i]); 636 } 637 638 void MachineInstr::addOperand(const MachineOperand &Op) { 639 MachineBasicBlock *MBB = getParent(); 640 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 641 MachineFunction *MF = MBB->getParent(); 642 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 643 addOperand(*MF, Op); 644 } 645 646 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 647 /// ranges. If MRI is non-null also update use-def chains. 648 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 649 unsigned NumOps, MachineRegisterInfo *MRI) { 650 if (MRI) 651 return MRI->moveOperands(Dst, Src, NumOps); 652 653 // Here it would be convenient to call memmove, so that isn't allowed because 654 // MachineOperand has a constructor and so isn't a POD type. 655 if (Dst < Src) 656 for (unsigned i = 0; i != NumOps; ++i) 657 new (Dst + i) MachineOperand(Src[i]); 658 else 659 for (unsigned i = NumOps; i ; --i) 660 new (Dst + i - 1) MachineOperand(Src[i - 1]); 661 } 662 663 /// addOperand - Add the specified operand to the instruction. If it is an 664 /// implicit operand, it is added to the end of the operand list. If it is 665 /// an explicit operand it is added at the end of the explicit operand list 666 /// (before the first implicit operand). 667 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 668 assert(MCID && "Cannot add operands before providing an instr descriptor"); 669 670 // Check if we're adding one of our existing operands. 671 if (&Op >= Operands && &Op < Operands + NumOperands) { 672 // This is unusual: MI->addOperand(MI->getOperand(i)). 673 // If adding Op requires reallocating or moving existing operands around, 674 // the Op reference could go stale. Support it by copying Op. 675 MachineOperand CopyOp(Op); 676 return addOperand(MF, CopyOp); 677 } 678 679 // Find the insert location for the new operand. Implicit registers go at 680 // the end, everything else goes before the implicit regs. 681 // 682 // FIXME: Allow mixed explicit and implicit operands on inline asm. 683 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 684 // implicit-defs, but they must not be moved around. See the FIXME in 685 // InstrEmitter.cpp. 686 unsigned OpNo = getNumOperands(); 687 bool isImpReg = Op.isReg() && Op.isImplicit(); 688 if (!isImpReg && !isInlineAsm()) { 689 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 690 --OpNo; 691 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 692 } 693 } 694 695 #ifndef NDEBUG 696 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 697 // OpNo now points as the desired insertion point. Unless this is a variadic 698 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 699 // RegMask operands go between the explicit and implicit operands. 700 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 701 OpNo < MCID->getNumOperands() || isMetaDataOp) && 702 "Trying to add an operand to a machine instr that is already done!"); 703 #endif 704 705 MachineRegisterInfo *MRI = getRegInfo(); 706 707 // Determine if the Operands array needs to be reallocated. 708 // Save the old capacity and operand array. 709 OperandCapacity OldCap = CapOperands; 710 MachineOperand *OldOperands = Operands; 711 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 712 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 713 Operands = MF.allocateOperandArray(CapOperands); 714 // Move the operands before the insertion point. 715 if (OpNo) 716 moveOperands(Operands, OldOperands, OpNo, MRI); 717 } 718 719 // Move the operands following the insertion point. 720 if (OpNo != NumOperands) 721 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 722 MRI); 723 ++NumOperands; 724 725 // Deallocate the old operand array. 726 if (OldOperands != Operands && OldOperands) 727 MF.deallocateOperandArray(OldCap, OldOperands); 728 729 // Copy Op into place. It still needs to be inserted into the MRI use lists. 730 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 731 NewMO->ParentMI = this; 732 733 // When adding a register operand, tell MRI about it. 734 if (NewMO->isReg()) { 735 // Ensure isOnRegUseList() returns false, regardless of Op's status. 736 NewMO->Contents.Reg.Prev = nullptr; 737 // Ignore existing ties. This is not a property that can be copied. 738 NewMO->TiedTo = 0; 739 // Add the new operand to MRI, but only for instructions in an MBB. 740 if (MRI) 741 MRI->addRegOperandToUseList(NewMO); 742 // The MCID operand information isn't accurate until we start adding 743 // explicit operands. The implicit operands are added first, then the 744 // explicits are inserted before them. 745 if (!isImpReg) { 746 // Tie uses to defs as indicated in MCInstrDesc. 747 if (NewMO->isUse()) { 748 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 749 if (DefIdx != -1) 750 tieOperands(DefIdx, OpNo); 751 } 752 // If the register operand is flagged as early, mark the operand as such. 753 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 754 NewMO->setIsEarlyClobber(true); 755 } 756 } 757 } 758 759 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 760 /// fewer operand than it started with. 761 /// 762 void MachineInstr::RemoveOperand(unsigned OpNo) { 763 assert(OpNo < getNumOperands() && "Invalid operand number"); 764 untieRegOperand(OpNo); 765 766 #ifndef NDEBUG 767 // Moving tied operands would break the ties. 768 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 769 if (Operands[i].isReg()) 770 assert(!Operands[i].isTied() && "Cannot move tied operands"); 771 #endif 772 773 MachineRegisterInfo *MRI = getRegInfo(); 774 if (MRI && Operands[OpNo].isReg()) 775 MRI->removeRegOperandFromUseList(Operands + OpNo); 776 777 // Don't call the MachineOperand destructor. A lot of this code depends on 778 // MachineOperand having a trivial destructor anyway, and adding a call here 779 // wouldn't make it 'destructor-correct'. 780 781 if (unsigned N = NumOperands - 1 - OpNo) 782 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 783 --NumOperands; 784 } 785 786 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 787 /// This function should be used only occasionally. The setMemRefs function 788 /// is the primary method for setting up a MachineInstr's MemRefs list. 789 void MachineInstr::addMemOperand(MachineFunction &MF, 790 MachineMemOperand *MO) { 791 mmo_iterator OldMemRefs = MemRefs; 792 unsigned OldNumMemRefs = NumMemRefs; 793 794 unsigned NewNum = NumMemRefs + 1; 795 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 796 797 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 798 NewMemRefs[NewNum - 1] = MO; 799 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 800 } 801 802 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 803 assert(!isBundledWithPred() && "Must be called on bundle header"); 804 for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) { 805 if (MII->getDesc().getFlags() & Mask) { 806 if (Type == AnyInBundle) 807 return true; 808 } else { 809 if (Type == AllInBundle && !MII->isBundle()) 810 return false; 811 } 812 // This was the last instruction in the bundle. 813 if (!MII->isBundledWithSucc()) 814 return Type == AllInBundle; 815 } 816 } 817 818 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 819 MICheckType Check) const { 820 // If opcodes or number of operands are not the same then the two 821 // instructions are obviously not identical. 822 if (Other->getOpcode() != getOpcode() || 823 Other->getNumOperands() != getNumOperands()) 824 return false; 825 826 if (isBundle()) { 827 // Both instructions are bundles, compare MIs inside the bundle. 828 MachineBasicBlock::const_instr_iterator I1 = *this; 829 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 830 MachineBasicBlock::const_instr_iterator I2 = *Other; 831 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 832 while (++I1 != E1 && I1->isInsideBundle()) { 833 ++I2; 834 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 835 return false; 836 } 837 } 838 839 // Check operands to make sure they match. 840 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 841 const MachineOperand &MO = getOperand(i); 842 const MachineOperand &OMO = Other->getOperand(i); 843 if (!MO.isReg()) { 844 if (!MO.isIdenticalTo(OMO)) 845 return false; 846 continue; 847 } 848 849 // Clients may or may not want to ignore defs when testing for equality. 850 // For example, machine CSE pass only cares about finding common 851 // subexpressions, so it's safe to ignore virtual register defs. 852 if (MO.isDef()) { 853 if (Check == IgnoreDefs) 854 continue; 855 else if (Check == IgnoreVRegDefs) { 856 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 857 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 858 if (MO.getReg() != OMO.getReg()) 859 return false; 860 } else { 861 if (!MO.isIdenticalTo(OMO)) 862 return false; 863 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 864 return false; 865 } 866 } else { 867 if (!MO.isIdenticalTo(OMO)) 868 return false; 869 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 870 return false; 871 } 872 } 873 // If DebugLoc does not match then two dbg.values are not identical. 874 if (isDebugValue()) 875 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 876 && getDebugLoc() != Other->getDebugLoc()) 877 return false; 878 return true; 879 } 880 881 MachineInstr *MachineInstr::removeFromParent() { 882 assert(getParent() && "Not embedded in a basic block!"); 883 return getParent()->remove(this); 884 } 885 886 MachineInstr *MachineInstr::removeFromBundle() { 887 assert(getParent() && "Not embedded in a basic block!"); 888 return getParent()->remove_instr(this); 889 } 890 891 void MachineInstr::eraseFromParent() { 892 assert(getParent() && "Not embedded in a basic block!"); 893 getParent()->erase(this); 894 } 895 896 void MachineInstr::eraseFromBundle() { 897 assert(getParent() && "Not embedded in a basic block!"); 898 getParent()->erase_instr(this); 899 } 900 901 /// getNumExplicitOperands - Returns the number of non-implicit operands. 902 /// 903 unsigned MachineInstr::getNumExplicitOperands() const { 904 unsigned NumOperands = MCID->getNumOperands(); 905 if (!MCID->isVariadic()) 906 return NumOperands; 907 908 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 909 const MachineOperand &MO = getOperand(i); 910 if (!MO.isReg() || !MO.isImplicit()) 911 NumOperands++; 912 } 913 return NumOperands; 914 } 915 916 void MachineInstr::bundleWithPred() { 917 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 918 setFlag(BundledPred); 919 MachineBasicBlock::instr_iterator Pred = this; 920 --Pred; 921 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 922 Pred->setFlag(BundledSucc); 923 } 924 925 void MachineInstr::bundleWithSucc() { 926 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 927 setFlag(BundledSucc); 928 MachineBasicBlock::instr_iterator Succ = this; 929 ++Succ; 930 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 931 Succ->setFlag(BundledPred); 932 } 933 934 void MachineInstr::unbundleFromPred() { 935 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 936 clearFlag(BundledPred); 937 MachineBasicBlock::instr_iterator Pred = this; 938 --Pred; 939 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 940 Pred->clearFlag(BundledSucc); 941 } 942 943 void MachineInstr::unbundleFromSucc() { 944 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 945 clearFlag(BundledSucc); 946 MachineBasicBlock::instr_iterator Succ = this; 947 ++Succ; 948 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 949 Succ->clearFlag(BundledPred); 950 } 951 952 bool MachineInstr::isStackAligningInlineAsm() const { 953 if (isInlineAsm()) { 954 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 955 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 956 return true; 957 } 958 return false; 959 } 960 961 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 962 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 963 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 964 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 965 } 966 967 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 968 unsigned *GroupNo) const { 969 assert(isInlineAsm() && "Expected an inline asm instruction"); 970 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 971 972 // Ignore queries about the initial operands. 973 if (OpIdx < InlineAsm::MIOp_FirstOperand) 974 return -1; 975 976 unsigned Group = 0; 977 unsigned NumOps; 978 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 979 i += NumOps) { 980 const MachineOperand &FlagMO = getOperand(i); 981 // If we reach the implicit register operands, stop looking. 982 if (!FlagMO.isImm()) 983 return -1; 984 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 985 if (i + NumOps > OpIdx) { 986 if (GroupNo) 987 *GroupNo = Group; 988 return i; 989 } 990 ++Group; 991 } 992 return -1; 993 } 994 995 const TargetRegisterClass* 996 MachineInstr::getRegClassConstraint(unsigned OpIdx, 997 const TargetInstrInfo *TII, 998 const TargetRegisterInfo *TRI) const { 999 assert(getParent() && "Can't have an MBB reference here!"); 1000 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1001 const MachineFunction &MF = *getParent()->getParent(); 1002 1003 // Most opcodes have fixed constraints in their MCInstrDesc. 1004 if (!isInlineAsm()) 1005 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1006 1007 if (!getOperand(OpIdx).isReg()) 1008 return nullptr; 1009 1010 // For tied uses on inline asm, get the constraint from the def. 1011 unsigned DefIdx; 1012 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1013 OpIdx = DefIdx; 1014 1015 // Inline asm stores register class constraints in the flag word. 1016 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1017 if (FlagIdx < 0) 1018 return nullptr; 1019 1020 unsigned Flag = getOperand(FlagIdx).getImm(); 1021 unsigned RCID; 1022 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 1023 return TRI->getRegClass(RCID); 1024 1025 // Assume that all registers in a memory operand are pointers. 1026 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1027 return TRI->getPointerRegClass(MF); 1028 1029 return nullptr; 1030 } 1031 1032 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1033 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1034 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1035 // Check every operands inside the bundle if we have 1036 // been asked to. 1037 if (ExploreBundle) 1038 for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC; 1039 ++OpndIt) 1040 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1041 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1042 else 1043 // Otherwise, just check the current operands. 1044 for (ConstMIOperands OpndIt(this); OpndIt.isValid() && CurRC; ++OpndIt) 1045 CurRC = getRegClassConstraintEffectForVRegImpl(OpndIt.getOperandNo(), Reg, 1046 CurRC, TII, TRI); 1047 return CurRC; 1048 } 1049 1050 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1051 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1052 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1053 assert(CurRC && "Invalid initial register class"); 1054 // Check if Reg is constrained by some of its use/def from MI. 1055 const MachineOperand &MO = getOperand(OpIdx); 1056 if (!MO.isReg() || MO.getReg() != Reg) 1057 return CurRC; 1058 // If yes, accumulate the constraints through the operand. 1059 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1060 } 1061 1062 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1063 unsigned OpIdx, const TargetRegisterClass *CurRC, 1064 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1065 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1066 const MachineOperand &MO = getOperand(OpIdx); 1067 assert(MO.isReg() && 1068 "Cannot get register constraints for non-register operand"); 1069 assert(CurRC && "Invalid initial register class"); 1070 if (unsigned SubIdx = MO.getSubReg()) { 1071 if (OpRC) 1072 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1073 else 1074 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1075 } else if (OpRC) 1076 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1077 return CurRC; 1078 } 1079 1080 /// Return the number of instructions inside the MI bundle, not counting the 1081 /// header instruction. 1082 unsigned MachineInstr::getBundleSize() const { 1083 MachineBasicBlock::const_instr_iterator I = this; 1084 unsigned Size = 0; 1085 while (I->isBundledWithSucc()) 1086 ++Size, ++I; 1087 return Size; 1088 } 1089 1090 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1091 /// the specific register or -1 if it is not found. It further tightens 1092 /// the search criteria to a use that kills the register if isKill is true. 1093 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1094 const TargetRegisterInfo *TRI) const { 1095 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1096 const MachineOperand &MO = getOperand(i); 1097 if (!MO.isReg() || !MO.isUse()) 1098 continue; 1099 unsigned MOReg = MO.getReg(); 1100 if (!MOReg) 1101 continue; 1102 if (MOReg == Reg || 1103 (TRI && 1104 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1105 TargetRegisterInfo::isPhysicalRegister(Reg) && 1106 TRI->isSubRegister(MOReg, Reg))) 1107 if (!isKill || MO.isKill()) 1108 return i; 1109 } 1110 return -1; 1111 } 1112 1113 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1114 /// indicating if this instruction reads or writes Reg. This also considers 1115 /// partial defines. 1116 std::pair<bool,bool> 1117 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1118 SmallVectorImpl<unsigned> *Ops) const { 1119 bool PartDef = false; // Partial redefine. 1120 bool FullDef = false; // Full define. 1121 bool Use = false; 1122 1123 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1124 const MachineOperand &MO = getOperand(i); 1125 if (!MO.isReg() || MO.getReg() != Reg) 1126 continue; 1127 if (Ops) 1128 Ops->push_back(i); 1129 if (MO.isUse()) 1130 Use |= !MO.isUndef(); 1131 else if (MO.getSubReg() && !MO.isUndef()) 1132 // A partial <def,undef> doesn't count as reading the register. 1133 PartDef = true; 1134 else 1135 FullDef = true; 1136 } 1137 // A partial redefine uses Reg unless there is also a full define. 1138 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1139 } 1140 1141 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1142 /// the specified register or -1 if it is not found. If isDead is true, defs 1143 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1144 /// also checks if there is a def of a super-register. 1145 int 1146 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1147 const TargetRegisterInfo *TRI) const { 1148 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1149 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1150 const MachineOperand &MO = getOperand(i); 1151 // Accept regmask operands when Overlap is set. 1152 // Ignore them when looking for a specific def operand (Overlap == false). 1153 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1154 return i; 1155 if (!MO.isReg() || !MO.isDef()) 1156 continue; 1157 unsigned MOReg = MO.getReg(); 1158 bool Found = (MOReg == Reg); 1159 if (!Found && TRI && isPhys && 1160 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1161 if (Overlap) 1162 Found = TRI->regsOverlap(MOReg, Reg); 1163 else 1164 Found = TRI->isSubRegister(MOReg, Reg); 1165 } 1166 if (Found && (!isDead || MO.isDead())) 1167 return i; 1168 } 1169 return -1; 1170 } 1171 1172 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1173 /// operand list that is used to represent the predicate. It returns -1 if 1174 /// none is found. 1175 int MachineInstr::findFirstPredOperandIdx() const { 1176 // Don't call MCID.findFirstPredOperandIdx() because this variant 1177 // is sometimes called on an instruction that's not yet complete, and 1178 // so the number of operands is less than the MCID indicates. In 1179 // particular, the PTX target does this. 1180 const MCInstrDesc &MCID = getDesc(); 1181 if (MCID.isPredicable()) { 1182 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1183 if (MCID.OpInfo[i].isPredicate()) 1184 return i; 1185 } 1186 1187 return -1; 1188 } 1189 1190 // MachineOperand::TiedTo is 4 bits wide. 1191 const unsigned TiedMax = 15; 1192 1193 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1194 /// 1195 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1196 /// field. TiedTo can have these values: 1197 /// 1198 /// 0: Operand is not tied to anything. 1199 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1200 /// TiedMax: Tied to an operand >= TiedMax-1. 1201 /// 1202 /// The tied def must be one of the first TiedMax operands on a normal 1203 /// instruction. INLINEASM instructions allow more tied defs. 1204 /// 1205 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1206 MachineOperand &DefMO = getOperand(DefIdx); 1207 MachineOperand &UseMO = getOperand(UseIdx); 1208 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1209 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1210 assert(!DefMO.isTied() && "Def is already tied to another use"); 1211 assert(!UseMO.isTied() && "Use is already tied to another def"); 1212 1213 if (DefIdx < TiedMax) 1214 UseMO.TiedTo = DefIdx + 1; 1215 else { 1216 // Inline asm can use the group descriptors to find tied operands, but on 1217 // normal instruction, the tied def must be within the first TiedMax 1218 // operands. 1219 assert(isInlineAsm() && "DefIdx out of range"); 1220 UseMO.TiedTo = TiedMax; 1221 } 1222 1223 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1224 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1225 } 1226 1227 /// Given the index of a tied register operand, find the operand it is tied to. 1228 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1229 /// which must exist. 1230 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1231 const MachineOperand &MO = getOperand(OpIdx); 1232 assert(MO.isTied() && "Operand isn't tied"); 1233 1234 // Normally TiedTo is in range. 1235 if (MO.TiedTo < TiedMax) 1236 return MO.TiedTo - 1; 1237 1238 // Uses on normal instructions can be out of range. 1239 if (!isInlineAsm()) { 1240 // Normal tied defs must be in the 0..TiedMax-1 range. 1241 if (MO.isUse()) 1242 return TiedMax - 1; 1243 // MO is a def. Search for the tied use. 1244 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1245 const MachineOperand &UseMO = getOperand(i); 1246 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1247 return i; 1248 } 1249 llvm_unreachable("Can't find tied use"); 1250 } 1251 1252 // Now deal with inline asm by parsing the operand group descriptor flags. 1253 // Find the beginning of each operand group. 1254 SmallVector<unsigned, 8> GroupIdx; 1255 unsigned OpIdxGroup = ~0u; 1256 unsigned NumOps; 1257 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1258 i += NumOps) { 1259 const MachineOperand &FlagMO = getOperand(i); 1260 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1261 unsigned CurGroup = GroupIdx.size(); 1262 GroupIdx.push_back(i); 1263 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1264 // OpIdx belongs to this operand group. 1265 if (OpIdx > i && OpIdx < i + NumOps) 1266 OpIdxGroup = CurGroup; 1267 unsigned TiedGroup; 1268 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1269 continue; 1270 // Operands in this group are tied to operands in TiedGroup which must be 1271 // earlier. Find the number of operands between the two groups. 1272 unsigned Delta = i - GroupIdx[TiedGroup]; 1273 1274 // OpIdx is a use tied to TiedGroup. 1275 if (OpIdxGroup == CurGroup) 1276 return OpIdx - Delta; 1277 1278 // OpIdx is a def tied to this use group. 1279 if (OpIdxGroup == TiedGroup) 1280 return OpIdx + Delta; 1281 } 1282 llvm_unreachable("Invalid tied operand on inline asm"); 1283 } 1284 1285 /// clearKillInfo - Clears kill flags on all operands. 1286 /// 1287 void MachineInstr::clearKillInfo() { 1288 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1289 MachineOperand &MO = getOperand(i); 1290 if (MO.isReg() && MO.isUse()) 1291 MO.setIsKill(false); 1292 } 1293 } 1294 1295 void MachineInstr::substituteRegister(unsigned FromReg, 1296 unsigned ToReg, 1297 unsigned SubIdx, 1298 const TargetRegisterInfo &RegInfo) { 1299 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1300 if (SubIdx) 1301 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1302 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1303 MachineOperand &MO = getOperand(i); 1304 if (!MO.isReg() || MO.getReg() != FromReg) 1305 continue; 1306 MO.substPhysReg(ToReg, RegInfo); 1307 } 1308 } else { 1309 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1310 MachineOperand &MO = getOperand(i); 1311 if (!MO.isReg() || MO.getReg() != FromReg) 1312 continue; 1313 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1314 } 1315 } 1316 } 1317 1318 /// isSafeToMove - Return true if it is safe to move this instruction. If 1319 /// SawStore is set to true, it means that there is a store (or call) between 1320 /// the instruction's location and its intended destination. 1321 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1322 AliasAnalysis *AA, 1323 bool &SawStore) const { 1324 // Ignore stuff that we obviously can't move. 1325 // 1326 // Treat volatile loads as stores. This is not strictly necessary for 1327 // volatiles, but it is required for atomic loads. It is not allowed to move 1328 // a load across an atomic load with Ordering > Monotonic. 1329 if (mayStore() || isCall() || 1330 (mayLoad() && hasOrderedMemoryRef())) { 1331 SawStore = true; 1332 return false; 1333 } 1334 1335 if (isPosition() || isDebugValue() || isTerminator() || 1336 hasUnmodeledSideEffects()) 1337 return false; 1338 1339 // See if this instruction does a load. If so, we have to guarantee that the 1340 // loaded value doesn't change between the load and the its intended 1341 // destination. The check for isInvariantLoad gives the targe the chance to 1342 // classify the load as always returning a constant, e.g. a constant pool 1343 // load. 1344 if (mayLoad() && !isInvariantLoad(AA)) 1345 // Otherwise, this is a real load. If there is a store between the load and 1346 // end of block, we can't move it. 1347 return !SawStore; 1348 1349 return true; 1350 } 1351 1352 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1353 /// or volatile memory reference, or if the information describing the memory 1354 /// reference is not available. Return false if it is known to have no ordered 1355 /// memory references. 1356 bool MachineInstr::hasOrderedMemoryRef() const { 1357 // An instruction known never to access memory won't have a volatile access. 1358 if (!mayStore() && 1359 !mayLoad() && 1360 !isCall() && 1361 !hasUnmodeledSideEffects()) 1362 return false; 1363 1364 // Otherwise, if the instruction has no memory reference information, 1365 // conservatively assume it wasn't preserved. 1366 if (memoperands_empty()) 1367 return true; 1368 1369 // Check the memory reference information for ordered references. 1370 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1371 if (!(*I)->isUnordered()) 1372 return true; 1373 1374 return false; 1375 } 1376 1377 /// isInvariantLoad - Return true if this instruction is loading from a 1378 /// location whose value is invariant across the function. For example, 1379 /// loading a value from the constant pool or from the argument area 1380 /// of a function if it does not change. This should only return true of 1381 /// *all* loads the instruction does are invariant (if it does multiple loads). 1382 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1383 // If the instruction doesn't load at all, it isn't an invariant load. 1384 if (!mayLoad()) 1385 return false; 1386 1387 // If the instruction has lost its memoperands, conservatively assume that 1388 // it may not be an invariant load. 1389 if (memoperands_empty()) 1390 return false; 1391 1392 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1393 1394 for (mmo_iterator I = memoperands_begin(), 1395 E = memoperands_end(); I != E; ++I) { 1396 if ((*I)->isVolatile()) return false; 1397 if ((*I)->isStore()) return false; 1398 if ((*I)->isInvariant()) return true; 1399 1400 1401 // A load from a constant PseudoSourceValue is invariant. 1402 if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) 1403 if (PSV->isConstant(MFI)) 1404 continue; 1405 1406 if (const Value *V = (*I)->getValue()) { 1407 // If we have an AliasAnalysis, ask it whether the memory is constant. 1408 if (AA && AA->pointsToConstantMemory( 1409 AliasAnalysis::Location(V, (*I)->getSize(), 1410 (*I)->getAAInfo()))) 1411 continue; 1412 } 1413 1414 // Otherwise assume conservatively. 1415 return false; 1416 } 1417 1418 // Everything checks out. 1419 return true; 1420 } 1421 1422 /// isConstantValuePHI - If the specified instruction is a PHI that always 1423 /// merges together the same virtual register, return the register, otherwise 1424 /// return 0. 1425 unsigned MachineInstr::isConstantValuePHI() const { 1426 if (!isPHI()) 1427 return 0; 1428 assert(getNumOperands() >= 3 && 1429 "It's illegal to have a PHI without source operands"); 1430 1431 unsigned Reg = getOperand(1).getReg(); 1432 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1433 if (getOperand(i).getReg() != Reg) 1434 return 0; 1435 return Reg; 1436 } 1437 1438 bool MachineInstr::hasUnmodeledSideEffects() const { 1439 if (hasProperty(MCID::UnmodeledSideEffects)) 1440 return true; 1441 if (isInlineAsm()) { 1442 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1443 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1444 return true; 1445 } 1446 1447 return false; 1448 } 1449 1450 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1451 /// 1452 bool MachineInstr::allDefsAreDead() const { 1453 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1454 const MachineOperand &MO = getOperand(i); 1455 if (!MO.isReg() || MO.isUse()) 1456 continue; 1457 if (!MO.isDead()) 1458 return false; 1459 } 1460 return true; 1461 } 1462 1463 /// copyImplicitOps - Copy implicit register operands from specified 1464 /// instruction to this instruction. 1465 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1466 const MachineInstr *MI) { 1467 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1468 i != e; ++i) { 1469 const MachineOperand &MO = MI->getOperand(i); 1470 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1471 addOperand(MF, MO); 1472 } 1473 } 1474 1475 void MachineInstr::dump() const { 1476 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1477 dbgs() << " " << *this; 1478 #endif 1479 } 1480 1481 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1482 raw_ostream &CommentOS) { 1483 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1484 DL.print(Ctx, CommentOS); 1485 } 1486 1487 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM, 1488 bool SkipOpers) const { 1489 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1490 const MachineFunction *MF = nullptr; 1491 const MachineRegisterInfo *MRI = nullptr; 1492 if (const MachineBasicBlock *MBB = getParent()) { 1493 MF = MBB->getParent(); 1494 if (!TM && MF) 1495 TM = &MF->getTarget(); 1496 if (MF) 1497 MRI = &MF->getRegInfo(); 1498 } 1499 1500 // Save a list of virtual registers. 1501 SmallVector<unsigned, 8> VirtRegs; 1502 1503 // Print explicitly defined operands on the left of an assignment syntax. 1504 unsigned StartOp = 0, e = getNumOperands(); 1505 for (; StartOp < e && getOperand(StartOp).isReg() && 1506 getOperand(StartOp).isDef() && 1507 !getOperand(StartOp).isImplicit(); 1508 ++StartOp) { 1509 if (StartOp != 0) OS << ", "; 1510 getOperand(StartOp).print(OS, TM); 1511 unsigned Reg = getOperand(StartOp).getReg(); 1512 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1513 VirtRegs.push_back(Reg); 1514 } 1515 1516 if (StartOp != 0) 1517 OS << " = "; 1518 1519 // Print the opcode name. 1520 if (TM && TM->getInstrInfo()) 1521 OS << TM->getInstrInfo()->getName(getOpcode()); 1522 else 1523 OS << "UNKNOWN"; 1524 1525 if (SkipOpers) 1526 return; 1527 1528 // Print the rest of the operands. 1529 bool OmittedAnyCallClobbers = false; 1530 bool FirstOp = true; 1531 unsigned AsmDescOp = ~0u; 1532 unsigned AsmOpCount = 0; 1533 1534 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1535 // Print asm string. 1536 OS << " "; 1537 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1538 1539 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1540 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1541 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1542 OS << " [sideeffect]"; 1543 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1544 OS << " [mayload]"; 1545 if (ExtraInfo & InlineAsm::Extra_MayStore) 1546 OS << " [maystore]"; 1547 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1548 OS << " [alignstack]"; 1549 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1550 OS << " [attdialect]"; 1551 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1552 OS << " [inteldialect]"; 1553 1554 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1555 FirstOp = false; 1556 } 1557 1558 1559 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1560 const MachineOperand &MO = getOperand(i); 1561 1562 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1563 VirtRegs.push_back(MO.getReg()); 1564 1565 // Omit call-clobbered registers which aren't used anywhere. This makes 1566 // call instructions much less noisy on targets where calls clobber lots 1567 // of registers. Don't rely on MO.isDead() because we may be called before 1568 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1569 if (MF && isCall() && 1570 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1571 unsigned Reg = MO.getReg(); 1572 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1573 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1574 if (MRI.use_empty(Reg)) { 1575 bool HasAliasLive = false; 1576 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); 1577 AI.isValid(); ++AI) { 1578 unsigned AliasReg = *AI; 1579 if (!MRI.use_empty(AliasReg)) { 1580 HasAliasLive = true; 1581 break; 1582 } 1583 } 1584 if (!HasAliasLive) { 1585 OmittedAnyCallClobbers = true; 1586 continue; 1587 } 1588 } 1589 } 1590 } 1591 1592 if (FirstOp) FirstOp = false; else OS << ","; 1593 OS << " "; 1594 if (i < getDesc().NumOperands) { 1595 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1596 if (MCOI.isPredicate()) 1597 OS << "pred:"; 1598 if (MCOI.isOptionalDef()) 1599 OS << "opt:"; 1600 } 1601 if (isDebugValue() && MO.isMetadata()) { 1602 // Pretty print DBG_VALUE instructions. 1603 const MDNode *MD = MO.getMetadata(); 1604 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1605 OS << "!\"" << MDS->getString() << '\"'; 1606 else 1607 MO.print(OS, TM); 1608 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1609 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1610 } else if (i == AsmDescOp && MO.isImm()) { 1611 // Pretty print the inline asm operand descriptor. 1612 OS << '$' << AsmOpCount++; 1613 unsigned Flag = MO.getImm(); 1614 switch (InlineAsm::getKind(Flag)) { 1615 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1616 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1617 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1618 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1619 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1620 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1621 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1622 } 1623 1624 unsigned RCID = 0; 1625 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1626 if (TM) 1627 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1628 else 1629 OS << ":RC" << RCID; 1630 } 1631 1632 unsigned TiedTo = 0; 1633 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1634 OS << " tiedto:$" << TiedTo; 1635 1636 OS << ']'; 1637 1638 // Compute the index of the next operand descriptor. 1639 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1640 } else 1641 MO.print(OS, TM); 1642 } 1643 1644 // Briefly indicate whether any call clobbers were omitted. 1645 if (OmittedAnyCallClobbers) { 1646 if (!FirstOp) OS << ","; 1647 OS << " ..."; 1648 } 1649 1650 bool HaveSemi = false; 1651 const unsigned PrintableFlags = FrameSetup; 1652 if (Flags & PrintableFlags) { 1653 if (!HaveSemi) OS << ";"; HaveSemi = true; 1654 OS << " flags: "; 1655 1656 if (Flags & FrameSetup) 1657 OS << "FrameSetup"; 1658 } 1659 1660 if (!memoperands_empty()) { 1661 if (!HaveSemi) OS << ";"; HaveSemi = true; 1662 1663 OS << " mem:"; 1664 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1665 i != e; ++i) { 1666 OS << **i; 1667 if (std::next(i) != e) 1668 OS << " "; 1669 } 1670 } 1671 1672 // Print the regclass of any virtual registers encountered. 1673 if (MRI && !VirtRegs.empty()) { 1674 if (!HaveSemi) OS << ";"; HaveSemi = true; 1675 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1676 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1677 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1678 for (unsigned j = i+1; j != VirtRegs.size();) { 1679 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1680 ++j; 1681 continue; 1682 } 1683 if (VirtRegs[i] != VirtRegs[j]) 1684 OS << "," << PrintReg(VirtRegs[j]); 1685 VirtRegs.erase(VirtRegs.begin()+j); 1686 } 1687 } 1688 } 1689 1690 // Print debug location information. 1691 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1692 if (!HaveSemi) OS << ";"; 1693 DIVariable DV(getOperand(e - 1).getMetadata()); 1694 OS << " line no:" << DV.getLineNumber(); 1695 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1696 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1697 if (!InlinedAtDL.isUnknown() && MF) { 1698 OS << " inlined @[ "; 1699 printDebugLoc(InlinedAtDL, MF, OS); 1700 OS << " ]"; 1701 } 1702 } 1703 } else if (!debugLoc.isUnknown() && MF) { 1704 if (!HaveSemi) OS << ";"; 1705 OS << " dbg:"; 1706 printDebugLoc(debugLoc, MF, OS); 1707 } 1708 1709 OS << '\n'; 1710 } 1711 1712 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1713 const TargetRegisterInfo *RegInfo, 1714 bool AddIfNotFound) { 1715 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1716 bool hasAliases = isPhysReg && 1717 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1718 bool Found = false; 1719 SmallVector<unsigned,4> DeadOps; 1720 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1721 MachineOperand &MO = getOperand(i); 1722 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1723 continue; 1724 unsigned Reg = MO.getReg(); 1725 if (!Reg) 1726 continue; 1727 1728 if (Reg == IncomingReg) { 1729 if (!Found) { 1730 if (MO.isKill()) 1731 // The register is already marked kill. 1732 return true; 1733 if (isPhysReg && isRegTiedToDefOperand(i)) 1734 // Two-address uses of physregs must not be marked kill. 1735 return true; 1736 MO.setIsKill(); 1737 Found = true; 1738 } 1739 } else if (hasAliases && MO.isKill() && 1740 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1741 // A super-register kill already exists. 1742 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1743 return true; 1744 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1745 DeadOps.push_back(i); 1746 } 1747 } 1748 1749 // Trim unneeded kill operands. 1750 while (!DeadOps.empty()) { 1751 unsigned OpIdx = DeadOps.back(); 1752 if (getOperand(OpIdx).isImplicit()) 1753 RemoveOperand(OpIdx); 1754 else 1755 getOperand(OpIdx).setIsKill(false); 1756 DeadOps.pop_back(); 1757 } 1758 1759 // If not found, this means an alias of one of the operands is killed. Add a 1760 // new implicit operand if required. 1761 if (!Found && AddIfNotFound) { 1762 addOperand(MachineOperand::CreateReg(IncomingReg, 1763 false /*IsDef*/, 1764 true /*IsImp*/, 1765 true /*IsKill*/)); 1766 return true; 1767 } 1768 return Found; 1769 } 1770 1771 void MachineInstr::clearRegisterKills(unsigned Reg, 1772 const TargetRegisterInfo *RegInfo) { 1773 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1774 RegInfo = nullptr; 1775 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1776 MachineOperand &MO = getOperand(i); 1777 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1778 continue; 1779 unsigned OpReg = MO.getReg(); 1780 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1781 MO.setIsKill(false); 1782 } 1783 } 1784 1785 bool MachineInstr::addRegisterDead(unsigned Reg, 1786 const TargetRegisterInfo *RegInfo, 1787 bool AddIfNotFound) { 1788 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1789 bool hasAliases = isPhysReg && 1790 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1791 bool Found = false; 1792 SmallVector<unsigned,4> DeadOps; 1793 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1794 MachineOperand &MO = getOperand(i); 1795 if (!MO.isReg() || !MO.isDef()) 1796 continue; 1797 unsigned MOReg = MO.getReg(); 1798 if (!MOReg) 1799 continue; 1800 1801 if (MOReg == Reg) { 1802 MO.setIsDead(); 1803 Found = true; 1804 } else if (hasAliases && MO.isDead() && 1805 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1806 // There exists a super-register that's marked dead. 1807 if (RegInfo->isSuperRegister(Reg, MOReg)) 1808 return true; 1809 if (RegInfo->isSubRegister(Reg, MOReg)) 1810 DeadOps.push_back(i); 1811 } 1812 } 1813 1814 // Trim unneeded dead operands. 1815 while (!DeadOps.empty()) { 1816 unsigned OpIdx = DeadOps.back(); 1817 if (getOperand(OpIdx).isImplicit()) 1818 RemoveOperand(OpIdx); 1819 else 1820 getOperand(OpIdx).setIsDead(false); 1821 DeadOps.pop_back(); 1822 } 1823 1824 // If not found, this means an alias of one of the operands is dead. Add a 1825 // new implicit operand if required. 1826 if (Found || !AddIfNotFound) 1827 return Found; 1828 1829 addOperand(MachineOperand::CreateReg(Reg, 1830 true /*IsDef*/, 1831 true /*IsImp*/, 1832 false /*IsKill*/, 1833 true /*IsDead*/)); 1834 return true; 1835 } 1836 1837 void MachineInstr::addRegisterDefined(unsigned Reg, 1838 const TargetRegisterInfo *RegInfo) { 1839 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1840 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 1841 if (MO) 1842 return; 1843 } else { 1844 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1845 const MachineOperand &MO = getOperand(i); 1846 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1847 MO.getSubReg() == 0) 1848 return; 1849 } 1850 } 1851 addOperand(MachineOperand::CreateReg(Reg, 1852 true /*IsDef*/, 1853 true /*IsImp*/)); 1854 } 1855 1856 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1857 const TargetRegisterInfo &TRI) { 1858 bool HasRegMask = false; 1859 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1860 MachineOperand &MO = getOperand(i); 1861 if (MO.isRegMask()) { 1862 HasRegMask = true; 1863 continue; 1864 } 1865 if (!MO.isReg() || !MO.isDef()) continue; 1866 unsigned Reg = MO.getReg(); 1867 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1868 bool Dead = true; 1869 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1870 I != E; ++I) 1871 if (TRI.regsOverlap(*I, Reg)) { 1872 Dead = false; 1873 break; 1874 } 1875 // If there are no uses, including partial uses, the def is dead. 1876 if (Dead) MO.setIsDead(); 1877 } 1878 1879 // This is a call with a register mask operand. 1880 // Mask clobbers are always dead, so add defs for the non-dead defines. 1881 if (HasRegMask) 1882 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1883 I != E; ++I) 1884 addRegisterDefined(*I, &TRI); 1885 } 1886 1887 unsigned 1888 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1889 // Build up a buffer of hash code components. 1890 SmallVector<size_t, 8> HashComponents; 1891 HashComponents.reserve(MI->getNumOperands() + 1); 1892 HashComponents.push_back(MI->getOpcode()); 1893 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1894 const MachineOperand &MO = MI->getOperand(i); 1895 if (MO.isReg() && MO.isDef() && 1896 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1897 continue; // Skip virtual register defs. 1898 1899 HashComponents.push_back(hash_value(MO)); 1900 } 1901 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1902 } 1903 1904 void MachineInstr::emitError(StringRef Msg) const { 1905 // Find the source location cookie. 1906 unsigned LocCookie = 0; 1907 const MDNode *LocMD = nullptr; 1908 for (unsigned i = getNumOperands(); i != 0; --i) { 1909 if (getOperand(i-1).isMetadata() && 1910 (LocMD = getOperand(i-1).getMetadata()) && 1911 LocMD->getNumOperands() != 0) { 1912 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1913 LocCookie = CI->getZExtValue(); 1914 break; 1915 } 1916 } 1917 } 1918 1919 if (const MachineBasicBlock *MBB = getParent()) 1920 if (const MachineFunction *MF = MBB->getParent()) 1921 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1922 report_fatal_error(Msg); 1923 } 1924