1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfo.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSlotTracker.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/MC/MCInstrDesc.h" 37 #include "llvm/MC/MCSymbol.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 using namespace llvm; 49 50 static cl::opt<bool> PrintWholeRegMask( 51 "print-whole-regmask", 52 cl::desc("Print the full contents of regmask operands in IR dumps"), 53 cl::init(true), cl::Hidden); 54 55 //===----------------------------------------------------------------------===// 56 // MachineOperand Implementation 57 //===----------------------------------------------------------------------===// 58 59 void MachineOperand::setReg(unsigned Reg) { 60 if (getReg() == Reg) return; // No change. 61 62 // Otherwise, we have to change the register. If this operand is embedded 63 // into a machine function, we need to update the old and new register's 64 // use/def lists. 65 if (MachineInstr *MI = getParent()) 66 if (MachineBasicBlock *MBB = MI->getParent()) 67 if (MachineFunction *MF = MBB->getParent()) { 68 MachineRegisterInfo &MRI = MF->getRegInfo(); 69 MRI.removeRegOperandFromUseList(this); 70 SmallContents.RegNo = Reg; 71 MRI.addRegOperandToUseList(this); 72 return; 73 } 74 75 // Otherwise, just change the register, no problem. :) 76 SmallContents.RegNo = Reg; 77 } 78 79 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 80 const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 82 if (SubIdx && getSubReg()) 83 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 84 setReg(Reg); 85 if (SubIdx) 86 setSubReg(SubIdx); 87 } 88 89 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 90 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 91 if (getSubReg()) { 92 Reg = TRI.getSubReg(Reg, getSubReg()); 93 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 94 // That won't happen in legal code. 95 setSubReg(0); 96 if (isDef()) 97 setIsUndef(false); 98 } 99 setReg(Reg); 100 } 101 102 /// Change a def to a use, or a use to a def. 103 void MachineOperand::setIsDef(bool Val) { 104 assert(isReg() && "Wrong MachineOperand accessor"); 105 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 106 if (IsDef == Val) 107 return; 108 // MRI may keep uses and defs in different list positions. 109 if (MachineInstr *MI = getParent()) 110 if (MachineBasicBlock *MBB = MI->getParent()) 111 if (MachineFunction *MF = MBB->getParent()) { 112 MachineRegisterInfo &MRI = MF->getRegInfo(); 113 MRI.removeRegOperandFromUseList(this); 114 IsDef = Val; 115 MRI.addRegOperandToUseList(this); 116 return; 117 } 118 IsDef = Val; 119 } 120 121 // If this operand is currently a register operand, and if this is in a 122 // function, deregister the operand from the register's use/def list. 123 void MachineOperand::removeRegFromUses() { 124 if (!isReg() || !isOnRegUseList()) 125 return; 126 127 if (MachineInstr *MI = getParent()) { 128 if (MachineBasicBlock *MBB = MI->getParent()) { 129 if (MachineFunction *MF = MBB->getParent()) 130 MF->getRegInfo().removeRegOperandFromUseList(this); 131 } 132 } 133 } 134 135 /// ChangeToImmediate - Replace this operand with a new immediate operand of 136 /// the specified value. If an operand is known to be an immediate already, 137 /// the setImm method should be used. 138 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 139 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 140 141 removeRegFromUses(); 142 143 OpKind = MO_Immediate; 144 Contents.ImmVal = ImmVal; 145 } 146 147 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 148 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 149 150 removeRegFromUses(); 151 152 OpKind = MO_FPImmediate; 153 Contents.CFP = FPImm; 154 } 155 156 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 157 assert((!isReg() || !isTied()) && 158 "Cannot change a tied operand into an external symbol"); 159 160 removeRegFromUses(); 161 162 OpKind = MO_ExternalSymbol; 163 Contents.OffsetedInfo.Val.SymbolName = SymName; 164 setOffset(0); // Offset is always 0. 165 setTargetFlags(TargetFlags); 166 } 167 168 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 169 assert((!isReg() || !isTied()) && 170 "Cannot change a tied operand into an MCSymbol"); 171 172 removeRegFromUses(); 173 174 OpKind = MO_MCSymbol; 175 Contents.Sym = Sym; 176 } 177 178 void MachineOperand::ChangeToFrameIndex(int Idx) { 179 assert((!isReg() || !isTied()) && 180 "Cannot change a tied operand into a FrameIndex"); 181 182 removeRegFromUses(); 183 184 OpKind = MO_FrameIndex; 185 setIndex(Idx); 186 } 187 188 /// ChangeToRegister - Replace this operand with a new register operand of 189 /// the specified value. If an operand is known to be an register already, 190 /// the setReg method should be used. 191 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 192 bool isKill, bool isDead, bool isUndef, 193 bool isDebug) { 194 MachineRegisterInfo *RegInfo = nullptr; 195 if (MachineInstr *MI = getParent()) 196 if (MachineBasicBlock *MBB = MI->getParent()) 197 if (MachineFunction *MF = MBB->getParent()) 198 RegInfo = &MF->getRegInfo(); 199 // If this operand is already a register operand, remove it from the 200 // register's use/def lists. 201 bool WasReg = isReg(); 202 if (RegInfo && WasReg) 203 RegInfo->removeRegOperandFromUseList(this); 204 205 // Change this to a register and set the reg#. 206 OpKind = MO_Register; 207 SmallContents.RegNo = Reg; 208 SubReg_TargetFlags = 0; 209 IsDef = isDef; 210 IsImp = isImp; 211 IsKill = isKill; 212 IsDead = isDead; 213 IsUndef = isUndef; 214 IsInternalRead = false; 215 IsEarlyClobber = false; 216 IsDebug = isDebug; 217 // Ensure isOnRegUseList() returns false. 218 Contents.Reg.Prev = nullptr; 219 // Preserve the tie when the operand was already a register. 220 if (!WasReg) 221 TiedTo = 0; 222 223 // If this operand is embedded in a function, add the operand to the 224 // register's use/def list. 225 if (RegInfo) 226 RegInfo->addRegOperandToUseList(this); 227 } 228 229 /// isIdenticalTo - Return true if this operand is identical to the specified 230 /// operand. Note that this should stay in sync with the hash_value overload 231 /// below. 232 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 233 if (getType() != Other.getType() || 234 getTargetFlags() != Other.getTargetFlags()) 235 return false; 236 237 switch (getType()) { 238 case MachineOperand::MO_Register: 239 return getReg() == Other.getReg() && isDef() == Other.isDef() && 240 getSubReg() == Other.getSubReg(); 241 case MachineOperand::MO_Immediate: 242 return getImm() == Other.getImm(); 243 case MachineOperand::MO_CImmediate: 244 return getCImm() == Other.getCImm(); 245 case MachineOperand::MO_FPImmediate: 246 return getFPImm() == Other.getFPImm(); 247 case MachineOperand::MO_MachineBasicBlock: 248 return getMBB() == Other.getMBB(); 249 case MachineOperand::MO_FrameIndex: 250 return getIndex() == Other.getIndex(); 251 case MachineOperand::MO_ConstantPoolIndex: 252 case MachineOperand::MO_TargetIndex: 253 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 254 case MachineOperand::MO_JumpTableIndex: 255 return getIndex() == Other.getIndex(); 256 case MachineOperand::MO_GlobalAddress: 257 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 258 case MachineOperand::MO_ExternalSymbol: 259 return !strcmp(getSymbolName(), Other.getSymbolName()) && 260 getOffset() == Other.getOffset(); 261 case MachineOperand::MO_BlockAddress: 262 return getBlockAddress() == Other.getBlockAddress() && 263 getOffset() == Other.getOffset(); 264 case MachineOperand::MO_RegisterMask: 265 case MachineOperand::MO_RegisterLiveOut: 266 return getRegMask() == Other.getRegMask(); 267 case MachineOperand::MO_MCSymbol: 268 return getMCSymbol() == Other.getMCSymbol(); 269 case MachineOperand::MO_CFIIndex: 270 return getCFIIndex() == Other.getCFIIndex(); 271 case MachineOperand::MO_Metadata: 272 return getMetadata() == Other.getMetadata(); 273 case MachineOperand::MO_IntrinsicID: 274 return getIntrinsicID() == Other.getIntrinsicID(); 275 case MachineOperand::MO_Predicate: 276 return getPredicate() == Other.getPredicate(); 277 } 278 llvm_unreachable("Invalid machine operand type"); 279 } 280 281 // Note: this must stay exactly in sync with isIdenticalTo above. 282 hash_code llvm::hash_value(const MachineOperand &MO) { 283 switch (MO.getType()) { 284 case MachineOperand::MO_Register: 285 // Register operands don't have target flags. 286 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 287 case MachineOperand::MO_Immediate: 288 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 289 case MachineOperand::MO_CImmediate: 290 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 291 case MachineOperand::MO_FPImmediate: 292 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 293 case MachineOperand::MO_MachineBasicBlock: 294 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 295 case MachineOperand::MO_FrameIndex: 296 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 297 case MachineOperand::MO_ConstantPoolIndex: 298 case MachineOperand::MO_TargetIndex: 299 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 300 MO.getOffset()); 301 case MachineOperand::MO_JumpTableIndex: 302 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 303 case MachineOperand::MO_ExternalSymbol: 304 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 305 MO.getSymbolName()); 306 case MachineOperand::MO_GlobalAddress: 307 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 308 MO.getOffset()); 309 case MachineOperand::MO_BlockAddress: 310 return hash_combine(MO.getType(), MO.getTargetFlags(), 311 MO.getBlockAddress(), MO.getOffset()); 312 case MachineOperand::MO_RegisterMask: 313 case MachineOperand::MO_RegisterLiveOut: 314 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 315 case MachineOperand::MO_Metadata: 316 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 317 case MachineOperand::MO_MCSymbol: 318 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 319 case MachineOperand::MO_CFIIndex: 320 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 321 case MachineOperand::MO_IntrinsicID: 322 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID()); 323 case MachineOperand::MO_Predicate: 324 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate()); 325 } 326 llvm_unreachable("Invalid machine operand type"); 327 } 328 329 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI, 330 const TargetIntrinsicInfo *IntrinsicInfo) const { 331 ModuleSlotTracker DummyMST(nullptr); 332 print(OS, DummyMST, TRI, IntrinsicInfo); 333 } 334 335 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 336 const TargetRegisterInfo *TRI, 337 const TargetIntrinsicInfo *IntrinsicInfo) const { 338 switch (getType()) { 339 case MachineOperand::MO_Register: 340 OS << PrintReg(getReg(), TRI, getSubReg()); 341 342 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 343 isInternalRead() || isEarlyClobber() || isTied()) { 344 OS << '<'; 345 bool NeedComma = false; 346 if (isDef()) { 347 if (NeedComma) OS << ','; 348 if (isEarlyClobber()) 349 OS << "earlyclobber,"; 350 if (isImplicit()) 351 OS << "imp-"; 352 OS << "def"; 353 NeedComma = true; 354 // <def,read-undef> only makes sense when getSubReg() is set. 355 // Don't clutter the output otherwise. 356 if (isUndef() && getSubReg()) 357 OS << ",read-undef"; 358 } else if (isImplicit()) { 359 OS << "imp-use"; 360 NeedComma = true; 361 } 362 363 if (isKill()) { 364 if (NeedComma) OS << ','; 365 OS << "kill"; 366 NeedComma = true; 367 } 368 if (isDead()) { 369 if (NeedComma) OS << ','; 370 OS << "dead"; 371 NeedComma = true; 372 } 373 if (isUndef() && isUse()) { 374 if (NeedComma) OS << ','; 375 OS << "undef"; 376 NeedComma = true; 377 } 378 if (isInternalRead()) { 379 if (NeedComma) OS << ','; 380 OS << "internal"; 381 NeedComma = true; 382 } 383 if (isTied()) { 384 if (NeedComma) OS << ','; 385 OS << "tied"; 386 if (TiedTo != 15) 387 OS << unsigned(TiedTo - 1); 388 } 389 OS << '>'; 390 } 391 break; 392 case MachineOperand::MO_Immediate: 393 OS << getImm(); 394 break; 395 case MachineOperand::MO_CImmediate: 396 getCImm()->getValue().print(OS, false); 397 break; 398 case MachineOperand::MO_FPImmediate: 399 if (getFPImm()->getType()->isFloatTy()) { 400 OS << getFPImm()->getValueAPF().convertToFloat(); 401 } else if (getFPImm()->getType()->isHalfTy()) { 402 APFloat APF = getFPImm()->getValueAPF(); 403 bool Unused; 404 APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused); 405 OS << "half " << APF.convertToFloat(); 406 } else { 407 OS << getFPImm()->getValueAPF().convertToDouble(); 408 } 409 break; 410 case MachineOperand::MO_MachineBasicBlock: 411 OS << "<BB#" << getMBB()->getNumber() << ">"; 412 break; 413 case MachineOperand::MO_FrameIndex: 414 OS << "<fi#" << getIndex() << '>'; 415 break; 416 case MachineOperand::MO_ConstantPoolIndex: 417 OS << "<cp#" << getIndex(); 418 if (getOffset()) OS << "+" << getOffset(); 419 OS << '>'; 420 break; 421 case MachineOperand::MO_TargetIndex: 422 OS << "<ti#" << getIndex(); 423 if (getOffset()) OS << "+" << getOffset(); 424 OS << '>'; 425 break; 426 case MachineOperand::MO_JumpTableIndex: 427 OS << "<jt#" << getIndex() << '>'; 428 break; 429 case MachineOperand::MO_GlobalAddress: 430 OS << "<ga:"; 431 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 432 if (getOffset()) OS << "+" << getOffset(); 433 OS << '>'; 434 break; 435 case MachineOperand::MO_ExternalSymbol: 436 OS << "<es:" << getSymbolName(); 437 if (getOffset()) OS << "+" << getOffset(); 438 OS << '>'; 439 break; 440 case MachineOperand::MO_BlockAddress: 441 OS << '<'; 442 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 443 if (getOffset()) OS << "+" << getOffset(); 444 OS << '>'; 445 break; 446 case MachineOperand::MO_RegisterMask: { 447 unsigned NumRegsInMask = 0; 448 unsigned NumRegsEmitted = 0; 449 OS << "<regmask"; 450 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 451 unsigned MaskWord = i / 32; 452 unsigned MaskBit = i % 32; 453 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 454 if (PrintWholeRegMask || NumRegsEmitted <= 10) { 455 OS << " " << PrintReg(i, TRI); 456 NumRegsEmitted++; 457 } 458 NumRegsInMask++; 459 } 460 } 461 if (NumRegsEmitted != NumRegsInMask) 462 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 463 OS << ">"; 464 break; 465 } 466 case MachineOperand::MO_RegisterLiveOut: 467 OS << "<regliveout>"; 468 break; 469 case MachineOperand::MO_Metadata: 470 OS << '<'; 471 getMetadata()->printAsOperand(OS, MST); 472 OS << '>'; 473 break; 474 case MachineOperand::MO_MCSymbol: 475 OS << "<MCSym=" << *getMCSymbol() << '>'; 476 break; 477 case MachineOperand::MO_CFIIndex: 478 OS << "<call frame instruction>"; 479 break; 480 case MachineOperand::MO_IntrinsicID: { 481 Intrinsic::ID ID = getIntrinsicID(); 482 if (ID < Intrinsic::num_intrinsics) 483 OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>'; 484 else if (IntrinsicInfo) 485 OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>'; 486 else 487 OS << "<intrinsic:" << ID << '>'; 488 break; 489 } 490 case MachineOperand::MO_Predicate: { 491 auto Pred = static_cast<CmpInst::Predicate>(getPredicate()); 492 OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred") 493 << CmpInst::getPredicateName(Pred) << '>'; 494 } 495 } 496 if (unsigned TF = getTargetFlags()) 497 OS << "[TF=" << TF << ']'; 498 } 499 500 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 501 LLVM_DUMP_METHOD void MachineOperand::dump() const { 502 dbgs() << *this << '\n'; 503 } 504 #endif 505 506 //===----------------------------------------------------------------------===// 507 // MachineMemOperand Implementation 508 //===----------------------------------------------------------------------===// 509 510 /// getAddrSpace - Return the LLVM IR address space number that this pointer 511 /// points into. 512 unsigned MachinePointerInfo::getAddrSpace() const { 513 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 514 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 515 } 516 517 /// getConstantPool - Return a MachinePointerInfo record that refers to the 518 /// constant pool. 519 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 520 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 521 } 522 523 /// getFixedStack - Return a MachinePointerInfo record that refers to the 524 /// the specified FrameIndex. 525 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 526 int FI, int64_t Offset) { 527 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 528 } 529 530 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 531 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 532 } 533 534 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 535 return MachinePointerInfo(MF.getPSVManager().getGOT()); 536 } 537 538 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 539 int64_t Offset) { 540 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); 541 } 542 543 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, 544 uint64_t s, unsigned int a, 545 const AAMDNodes &AAInfo, 546 const MDNode *Ranges, 547 SynchronizationScope SynchScope, 548 AtomicOrdering Ordering, 549 AtomicOrdering FailureOrdering) 550 : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), 551 AAInfo(AAInfo), Ranges(Ranges) { 552 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 553 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 554 "invalid pointer value"); 555 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 556 assert((isLoad() || isStore()) && "Not a load/store!"); 557 558 AtomicInfo.SynchScope = static_cast<unsigned>(SynchScope); 559 assert(getSynchScope() == SynchScope && "Value truncated"); 560 AtomicInfo.Ordering = static_cast<unsigned>(Ordering); 561 assert(getOrdering() == Ordering && "Value truncated"); 562 AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering); 563 assert(getFailureOrdering() == FailureOrdering && "Value truncated"); 564 } 565 566 /// Profile - Gather unique data for the object. 567 /// 568 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 569 ID.AddInteger(getOffset()); 570 ID.AddInteger(Size); 571 ID.AddPointer(getOpaqueValue()); 572 ID.AddInteger(getFlags()); 573 ID.AddInteger(getBaseAlignment()); 574 } 575 576 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 577 // The Value and Offset may differ due to CSE. But the flags and size 578 // should be the same. 579 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 580 assert(MMO->getSize() == getSize() && "Size mismatch!"); 581 582 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 583 // Update the alignment value. 584 BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; 585 // Also update the base and offset, because the new alignment may 586 // not be applicable with the old ones. 587 PtrInfo = MMO->PtrInfo; 588 } 589 } 590 591 /// getAlignment - Return the minimum known alignment in bytes of the 592 /// actual memory reference. 593 uint64_t MachineMemOperand::getAlignment() const { 594 return MinAlign(getBaseAlignment(), getOffset()); 595 } 596 597 void MachineMemOperand::print(raw_ostream &OS) const { 598 ModuleSlotTracker DummyMST(nullptr); 599 print(OS, DummyMST); 600 } 601 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 602 assert((isLoad() || isStore()) && 603 "SV has to be a load, store or both."); 604 605 if (isVolatile()) 606 OS << "Volatile "; 607 608 if (isLoad()) 609 OS << "LD"; 610 if (isStore()) 611 OS << "ST"; 612 OS << getSize(); 613 614 // Print the address information. 615 OS << "["; 616 if (const Value *V = getValue()) 617 V->printAsOperand(OS, /*PrintType=*/false, MST); 618 else if (const PseudoSourceValue *PSV = getPseudoValue()) 619 PSV->printCustom(OS); 620 else 621 OS << "<unknown>"; 622 623 unsigned AS = getAddrSpace(); 624 if (AS != 0) 625 OS << "(addrspace=" << AS << ')'; 626 627 // If the alignment of the memory reference itself differs from the alignment 628 // of the base pointer, print the base alignment explicitly, next to the base 629 // pointer. 630 if (getBaseAlignment() != getAlignment()) 631 OS << "(align=" << getBaseAlignment() << ")"; 632 633 if (getOffset() != 0) 634 OS << "+" << getOffset(); 635 OS << "]"; 636 637 // Print the alignment of the reference. 638 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 639 OS << "(align=" << getAlignment() << ")"; 640 641 // Print TBAA info. 642 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 643 OS << "(tbaa="; 644 if (TBAAInfo->getNumOperands() > 0) 645 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 646 else 647 OS << "<unknown>"; 648 OS << ")"; 649 } 650 651 // Print AA scope info. 652 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 653 OS << "(alias.scope="; 654 if (ScopeInfo->getNumOperands() > 0) 655 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 656 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 657 if (i != ie-1) 658 OS << ","; 659 } 660 else 661 OS << "<unknown>"; 662 OS << ")"; 663 } 664 665 // Print AA noalias scope info. 666 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 667 OS << "(noalias="; 668 if (NoAliasInfo->getNumOperands() > 0) 669 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 670 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 671 if (i != ie-1) 672 OS << ","; 673 } 674 else 675 OS << "<unknown>"; 676 OS << ")"; 677 } 678 679 if (isNonTemporal()) 680 OS << "(nontemporal)"; 681 if (isDereferenceable()) 682 OS << "(dereferenceable)"; 683 if (isInvariant()) 684 OS << "(invariant)"; 685 } 686 687 //===----------------------------------------------------------------------===// 688 // MachineInstr Implementation 689 //===----------------------------------------------------------------------===// 690 691 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 692 if (MCID->ImplicitDefs) 693 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 694 ++ImpDefs) 695 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 696 if (MCID->ImplicitUses) 697 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 698 ++ImpUses) 699 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 700 } 701 702 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 703 /// implicit operands. It reserves space for the number of operands specified by 704 /// the MCInstrDesc. 705 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 706 DebugLoc dl, bool NoImp) 707 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), 708 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), 709 debugLoc(std::move(dl)) { 710 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 711 712 // Reserve space for the expected number of operands. 713 if (unsigned NumOps = MCID->getNumOperands() + 714 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 715 CapOperands = OperandCapacity::get(NumOps); 716 Operands = MF.allocateOperandArray(CapOperands); 717 } 718 719 if (!NoImp) 720 addImplicitDefUseOperands(MF); 721 } 722 723 /// MachineInstr ctor - Copies MachineInstr arg exactly 724 /// 725 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 726 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 727 Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs), 728 MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) { 729 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 730 731 CapOperands = OperandCapacity::get(MI.getNumOperands()); 732 Operands = MF.allocateOperandArray(CapOperands); 733 734 // Copy operands. 735 for (const MachineOperand &MO : MI.operands()) 736 addOperand(MF, MO); 737 738 // Copy all the sensible flags. 739 setFlags(MI.Flags); 740 } 741 742 /// getRegInfo - If this instruction is embedded into a MachineFunction, 743 /// return the MachineRegisterInfo object for the current function, otherwise 744 /// return null. 745 MachineRegisterInfo *MachineInstr::getRegInfo() { 746 if (MachineBasicBlock *MBB = getParent()) 747 return &MBB->getParent()->getRegInfo(); 748 return nullptr; 749 } 750 751 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 752 /// this instruction from their respective use lists. This requires that the 753 /// operands already be on their use lists. 754 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 755 for (MachineOperand &MO : operands()) 756 if (MO.isReg()) 757 MRI.removeRegOperandFromUseList(&MO); 758 } 759 760 /// AddRegOperandsToUseLists - Add all of the register operands in 761 /// this instruction from their respective use lists. This requires that the 762 /// operands not be on their use lists yet. 763 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 764 for (MachineOperand &MO : operands()) 765 if (MO.isReg()) 766 MRI.addRegOperandToUseList(&MO); 767 } 768 769 void MachineInstr::addOperand(const MachineOperand &Op) { 770 MachineBasicBlock *MBB = getParent(); 771 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 772 MachineFunction *MF = MBB->getParent(); 773 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 774 addOperand(*MF, Op); 775 } 776 777 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 778 /// ranges. If MRI is non-null also update use-def chains. 779 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 780 unsigned NumOps, MachineRegisterInfo *MRI) { 781 if (MRI) 782 return MRI->moveOperands(Dst, Src, NumOps); 783 784 // MachineOperand is a trivially copyable type so we can just use memmove. 785 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 786 } 787 788 /// addOperand - Add the specified operand to the instruction. If it is an 789 /// implicit operand, it is added to the end of the operand list. If it is 790 /// an explicit operand it is added at the end of the explicit operand list 791 /// (before the first implicit operand). 792 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 793 assert(MCID && "Cannot add operands before providing an instr descriptor"); 794 795 // Check if we're adding one of our existing operands. 796 if (&Op >= Operands && &Op < Operands + NumOperands) { 797 // This is unusual: MI->addOperand(MI->getOperand(i)). 798 // If adding Op requires reallocating or moving existing operands around, 799 // the Op reference could go stale. Support it by copying Op. 800 MachineOperand CopyOp(Op); 801 return addOperand(MF, CopyOp); 802 } 803 804 // Find the insert location for the new operand. Implicit registers go at 805 // the end, everything else goes before the implicit regs. 806 // 807 // FIXME: Allow mixed explicit and implicit operands on inline asm. 808 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 809 // implicit-defs, but they must not be moved around. See the FIXME in 810 // InstrEmitter.cpp. 811 unsigned OpNo = getNumOperands(); 812 bool isImpReg = Op.isReg() && Op.isImplicit(); 813 if (!isImpReg && !isInlineAsm()) { 814 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 815 --OpNo; 816 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 817 } 818 } 819 820 #ifndef NDEBUG 821 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 822 // OpNo now points as the desired insertion point. Unless this is a variadic 823 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 824 // RegMask operands go between the explicit and implicit operands. 825 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 826 OpNo < MCID->getNumOperands() || isMetaDataOp) && 827 "Trying to add an operand to a machine instr that is already done!"); 828 #endif 829 830 MachineRegisterInfo *MRI = getRegInfo(); 831 832 // Determine if the Operands array needs to be reallocated. 833 // Save the old capacity and operand array. 834 OperandCapacity OldCap = CapOperands; 835 MachineOperand *OldOperands = Operands; 836 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 837 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 838 Operands = MF.allocateOperandArray(CapOperands); 839 // Move the operands before the insertion point. 840 if (OpNo) 841 moveOperands(Operands, OldOperands, OpNo, MRI); 842 } 843 844 // Move the operands following the insertion point. 845 if (OpNo != NumOperands) 846 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 847 MRI); 848 ++NumOperands; 849 850 // Deallocate the old operand array. 851 if (OldOperands != Operands && OldOperands) 852 MF.deallocateOperandArray(OldCap, OldOperands); 853 854 // Copy Op into place. It still needs to be inserted into the MRI use lists. 855 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 856 NewMO->ParentMI = this; 857 858 // When adding a register operand, tell MRI about it. 859 if (NewMO->isReg()) { 860 // Ensure isOnRegUseList() returns false, regardless of Op's status. 861 NewMO->Contents.Reg.Prev = nullptr; 862 // Ignore existing ties. This is not a property that can be copied. 863 NewMO->TiedTo = 0; 864 // Add the new operand to MRI, but only for instructions in an MBB. 865 if (MRI) 866 MRI->addRegOperandToUseList(NewMO); 867 // The MCID operand information isn't accurate until we start adding 868 // explicit operands. The implicit operands are added first, then the 869 // explicits are inserted before them. 870 if (!isImpReg) { 871 // Tie uses to defs as indicated in MCInstrDesc. 872 if (NewMO->isUse()) { 873 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 874 if (DefIdx != -1) 875 tieOperands(DefIdx, OpNo); 876 } 877 // If the register operand is flagged as early, mark the operand as such. 878 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 879 NewMO->setIsEarlyClobber(true); 880 } 881 } 882 } 883 884 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 885 /// fewer operand than it started with. 886 /// 887 void MachineInstr::RemoveOperand(unsigned OpNo) { 888 assert(OpNo < getNumOperands() && "Invalid operand number"); 889 untieRegOperand(OpNo); 890 891 #ifndef NDEBUG 892 // Moving tied operands would break the ties. 893 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 894 if (Operands[i].isReg()) 895 assert(!Operands[i].isTied() && "Cannot move tied operands"); 896 #endif 897 898 MachineRegisterInfo *MRI = getRegInfo(); 899 if (MRI && Operands[OpNo].isReg()) 900 MRI->removeRegOperandFromUseList(Operands + OpNo); 901 902 // Don't call the MachineOperand destructor. A lot of this code depends on 903 // MachineOperand having a trivial destructor anyway, and adding a call here 904 // wouldn't make it 'destructor-correct'. 905 906 if (unsigned N = NumOperands - 1 - OpNo) 907 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 908 --NumOperands; 909 } 910 911 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 912 /// This function should be used only occasionally. The setMemRefs function 913 /// is the primary method for setting up a MachineInstr's MemRefs list. 914 void MachineInstr::addMemOperand(MachineFunction &MF, 915 MachineMemOperand *MO) { 916 mmo_iterator OldMemRefs = MemRefs; 917 unsigned OldNumMemRefs = NumMemRefs; 918 919 unsigned NewNum = NumMemRefs + 1; 920 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 921 922 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 923 NewMemRefs[NewNum - 1] = MO; 924 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 925 } 926 927 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 928 /// identical. 929 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 930 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 931 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 932 if ((E1 - I1) != (E2 - I2)) 933 return false; 934 for (; I1 != E1; ++I1, ++I2) { 935 if (**I1 != **I2) 936 return false; 937 } 938 return true; 939 } 940 941 std::pair<MachineInstr::mmo_iterator, unsigned> 942 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 943 944 // If either of the incoming memrefs are empty, we must be conservative and 945 // treat this as if we've exhausted our space for memrefs and dropped them. 946 if (memoperands_empty() || Other.memoperands_empty()) 947 return std::make_pair(nullptr, 0); 948 949 // If both instructions have identical memrefs, we don't need to merge them. 950 // Since many instructions have a single memref, and we tend to merge things 951 // like pairs of loads from the same location, this catches a large number of 952 // cases in practice. 953 if (hasIdenticalMMOs(*this, Other)) 954 return std::make_pair(MemRefs, NumMemRefs); 955 956 // TODO: consider uniquing elements within the operand lists to reduce 957 // space usage and fall back to conservative information less often. 958 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 959 960 // If we don't have enough room to store this many memrefs, be conservative 961 // and drop them. Otherwise, we'd fail asserts when trying to add them to 962 // the new instruction. 963 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 964 return std::make_pair(nullptr, 0); 965 966 MachineFunction *MF = getParent()->getParent(); 967 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 968 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 969 MemBegin); 970 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 971 MemEnd); 972 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 973 "missing memrefs"); 974 975 return std::make_pair(MemBegin, CombinedNumMemRefs); 976 } 977 978 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 979 assert(!isBundledWithPred() && "Must be called on bundle header"); 980 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 981 if (MII->getDesc().getFlags() & Mask) { 982 if (Type == AnyInBundle) 983 return true; 984 } else { 985 if (Type == AllInBundle && !MII->isBundle()) 986 return false; 987 } 988 // This was the last instruction in the bundle. 989 if (!MII->isBundledWithSucc()) 990 return Type == AllInBundle; 991 } 992 } 993 994 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 995 MICheckType Check) const { 996 // If opcodes or number of operands are not the same then the two 997 // instructions are obviously not identical. 998 if (Other.getOpcode() != getOpcode() || 999 Other.getNumOperands() != getNumOperands()) 1000 return false; 1001 1002 if (isBundle()) { 1003 // We have passed the test above that both instructions have the same 1004 // opcode, so we know that both instructions are bundles here. Let's compare 1005 // MIs inside the bundle. 1006 assert(Other.isBundle() && "Expected that both instructions are bundles."); 1007 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 1008 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 1009 // Loop until we analysed the last intruction inside at least one of the 1010 // bundles. 1011 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 1012 ++I1; 1013 ++I2; 1014 if (!I1->isIdenticalTo(*I2, Check)) 1015 return false; 1016 } 1017 // If we've reached the end of just one of the two bundles, but not both, 1018 // the instructions are not identical. 1019 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 1020 return false; 1021 } 1022 1023 // Check operands to make sure they match. 1024 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1025 const MachineOperand &MO = getOperand(i); 1026 const MachineOperand &OMO = Other.getOperand(i); 1027 if (!MO.isReg()) { 1028 if (!MO.isIdenticalTo(OMO)) 1029 return false; 1030 continue; 1031 } 1032 1033 // Clients may or may not want to ignore defs when testing for equality. 1034 // For example, machine CSE pass only cares about finding common 1035 // subexpressions, so it's safe to ignore virtual register defs. 1036 if (MO.isDef()) { 1037 if (Check == IgnoreDefs) 1038 continue; 1039 else if (Check == IgnoreVRegDefs) { 1040 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1041 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 1042 if (MO.getReg() != OMO.getReg()) 1043 return false; 1044 } else { 1045 if (!MO.isIdenticalTo(OMO)) 1046 return false; 1047 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 1048 return false; 1049 } 1050 } else { 1051 if (!MO.isIdenticalTo(OMO)) 1052 return false; 1053 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1054 return false; 1055 } 1056 } 1057 // If DebugLoc does not match then two dbg.values are not identical. 1058 if (isDebugValue()) 1059 if (getDebugLoc() && Other.getDebugLoc() && 1060 getDebugLoc() != Other.getDebugLoc()) 1061 return false; 1062 return true; 1063 } 1064 1065 MachineInstr *MachineInstr::removeFromParent() { 1066 assert(getParent() && "Not embedded in a basic block!"); 1067 return getParent()->remove(this); 1068 } 1069 1070 MachineInstr *MachineInstr::removeFromBundle() { 1071 assert(getParent() && "Not embedded in a basic block!"); 1072 return getParent()->remove_instr(this); 1073 } 1074 1075 void MachineInstr::eraseFromParent() { 1076 assert(getParent() && "Not embedded in a basic block!"); 1077 getParent()->erase(this); 1078 } 1079 1080 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1081 assert(getParent() && "Not embedded in a basic block!"); 1082 MachineBasicBlock *MBB = getParent(); 1083 MachineFunction *MF = MBB->getParent(); 1084 assert(MF && "Not embedded in a function!"); 1085 1086 MachineInstr *MI = (MachineInstr *)this; 1087 MachineRegisterInfo &MRI = MF->getRegInfo(); 1088 1089 for (const MachineOperand &MO : MI->operands()) { 1090 if (!MO.isReg() || !MO.isDef()) 1091 continue; 1092 unsigned Reg = MO.getReg(); 1093 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1094 continue; 1095 MRI.markUsesInDebugValueAsUndef(Reg); 1096 } 1097 MI->eraseFromParent(); 1098 } 1099 1100 void MachineInstr::eraseFromBundle() { 1101 assert(getParent() && "Not embedded in a basic block!"); 1102 getParent()->erase_instr(this); 1103 } 1104 1105 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1106 /// 1107 unsigned MachineInstr::getNumExplicitOperands() const { 1108 unsigned NumOperands = MCID->getNumOperands(); 1109 if (!MCID->isVariadic()) 1110 return NumOperands; 1111 1112 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1113 const MachineOperand &MO = getOperand(i); 1114 if (!MO.isReg() || !MO.isImplicit()) 1115 NumOperands++; 1116 } 1117 return NumOperands; 1118 } 1119 1120 void MachineInstr::bundleWithPred() { 1121 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1122 setFlag(BundledPred); 1123 MachineBasicBlock::instr_iterator Pred = getIterator(); 1124 --Pred; 1125 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1126 Pred->setFlag(BundledSucc); 1127 } 1128 1129 void MachineInstr::bundleWithSucc() { 1130 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1131 setFlag(BundledSucc); 1132 MachineBasicBlock::instr_iterator Succ = getIterator(); 1133 ++Succ; 1134 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1135 Succ->setFlag(BundledPred); 1136 } 1137 1138 void MachineInstr::unbundleFromPred() { 1139 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1140 clearFlag(BundledPred); 1141 MachineBasicBlock::instr_iterator Pred = getIterator(); 1142 --Pred; 1143 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1144 Pred->clearFlag(BundledSucc); 1145 } 1146 1147 void MachineInstr::unbundleFromSucc() { 1148 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1149 clearFlag(BundledSucc); 1150 MachineBasicBlock::instr_iterator Succ = getIterator(); 1151 ++Succ; 1152 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1153 Succ->clearFlag(BundledPred); 1154 } 1155 1156 bool MachineInstr::isStackAligningInlineAsm() const { 1157 if (isInlineAsm()) { 1158 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1159 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1160 return true; 1161 } 1162 return false; 1163 } 1164 1165 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1166 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1167 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1168 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1169 } 1170 1171 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1172 unsigned *GroupNo) const { 1173 assert(isInlineAsm() && "Expected an inline asm instruction"); 1174 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1175 1176 // Ignore queries about the initial operands. 1177 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1178 return -1; 1179 1180 unsigned Group = 0; 1181 unsigned NumOps; 1182 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1183 i += NumOps) { 1184 const MachineOperand &FlagMO = getOperand(i); 1185 // If we reach the implicit register operands, stop looking. 1186 if (!FlagMO.isImm()) 1187 return -1; 1188 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1189 if (i + NumOps > OpIdx) { 1190 if (GroupNo) 1191 *GroupNo = Group; 1192 return i; 1193 } 1194 ++Group; 1195 } 1196 return -1; 1197 } 1198 1199 const DILocalVariable *MachineInstr::getDebugVariable() const { 1200 assert(isDebugValue() && "not a DBG_VALUE"); 1201 return cast<DILocalVariable>(getOperand(2).getMetadata()); 1202 } 1203 1204 const DIExpression *MachineInstr::getDebugExpression() const { 1205 assert(isDebugValue() && "not a DBG_VALUE"); 1206 return cast<DIExpression>(getOperand(3).getMetadata()); 1207 } 1208 1209 const TargetRegisterClass* 1210 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1211 const TargetInstrInfo *TII, 1212 const TargetRegisterInfo *TRI) const { 1213 assert(getParent() && "Can't have an MBB reference here!"); 1214 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1215 const MachineFunction &MF = *getParent()->getParent(); 1216 1217 // Most opcodes have fixed constraints in their MCInstrDesc. 1218 if (!isInlineAsm()) 1219 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1220 1221 if (!getOperand(OpIdx).isReg()) 1222 return nullptr; 1223 1224 // For tied uses on inline asm, get the constraint from the def. 1225 unsigned DefIdx; 1226 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1227 OpIdx = DefIdx; 1228 1229 // Inline asm stores register class constraints in the flag word. 1230 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1231 if (FlagIdx < 0) 1232 return nullptr; 1233 1234 unsigned Flag = getOperand(FlagIdx).getImm(); 1235 unsigned RCID; 1236 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 1237 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 1238 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 1239 InlineAsm::hasRegClassConstraint(Flag, RCID)) 1240 return TRI->getRegClass(RCID); 1241 1242 // Assume that all registers in a memory operand are pointers. 1243 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1244 return TRI->getPointerRegClass(MF); 1245 1246 return nullptr; 1247 } 1248 1249 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1250 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1251 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1252 // Check every operands inside the bundle if we have 1253 // been asked to. 1254 if (ExploreBundle) 1255 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 1256 ++OpndIt) 1257 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1258 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1259 else 1260 // Otherwise, just check the current operands. 1261 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1262 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1263 return CurRC; 1264 } 1265 1266 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1267 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1268 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1269 assert(CurRC && "Invalid initial register class"); 1270 // Check if Reg is constrained by some of its use/def from MI. 1271 const MachineOperand &MO = getOperand(OpIdx); 1272 if (!MO.isReg() || MO.getReg() != Reg) 1273 return CurRC; 1274 // If yes, accumulate the constraints through the operand. 1275 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1276 } 1277 1278 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1279 unsigned OpIdx, const TargetRegisterClass *CurRC, 1280 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1281 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1282 const MachineOperand &MO = getOperand(OpIdx); 1283 assert(MO.isReg() && 1284 "Cannot get register constraints for non-register operand"); 1285 assert(CurRC && "Invalid initial register class"); 1286 if (unsigned SubIdx = MO.getSubReg()) { 1287 if (OpRC) 1288 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1289 else 1290 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1291 } else if (OpRC) 1292 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1293 return CurRC; 1294 } 1295 1296 /// Return the number of instructions inside the MI bundle, not counting the 1297 /// header instruction. 1298 unsigned MachineInstr::getBundleSize() const { 1299 MachineBasicBlock::const_instr_iterator I = getIterator(); 1300 unsigned Size = 0; 1301 while (I->isBundledWithSucc()) { 1302 ++Size; 1303 ++I; 1304 } 1305 return Size; 1306 } 1307 1308 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1309 /// the given register (not considering sub/super-registers). 1310 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 1311 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1312 const MachineOperand &MO = getOperand(i); 1313 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1314 return true; 1315 } 1316 return false; 1317 } 1318 1319 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1320 /// the specific register or -1 if it is not found. It further tightens 1321 /// the search criteria to a use that kills the register if isKill is true. 1322 int MachineInstr::findRegisterUseOperandIdx( 1323 unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1324 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1325 const MachineOperand &MO = getOperand(i); 1326 if (!MO.isReg() || !MO.isUse()) 1327 continue; 1328 unsigned MOReg = MO.getReg(); 1329 if (!MOReg) 1330 continue; 1331 if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && 1332 TargetRegisterInfo::isPhysicalRegister(Reg) && 1333 TRI->isSubRegister(MOReg, Reg))) 1334 if (!isKill || MO.isKill()) 1335 return i; 1336 } 1337 return -1; 1338 } 1339 1340 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1341 /// indicating if this instruction reads or writes Reg. This also considers 1342 /// partial defines. 1343 std::pair<bool,bool> 1344 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1345 SmallVectorImpl<unsigned> *Ops) const { 1346 bool PartDef = false; // Partial redefine. 1347 bool FullDef = false; // Full define. 1348 bool Use = false; 1349 1350 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1351 const MachineOperand &MO = getOperand(i); 1352 if (!MO.isReg() || MO.getReg() != Reg) 1353 continue; 1354 if (Ops) 1355 Ops->push_back(i); 1356 if (MO.isUse()) 1357 Use |= !MO.isUndef(); 1358 else if (MO.getSubReg() && !MO.isUndef()) 1359 // A partial <def,undef> doesn't count as reading the register. 1360 PartDef = true; 1361 else 1362 FullDef = true; 1363 } 1364 // A partial redefine uses Reg unless there is also a full define. 1365 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1366 } 1367 1368 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1369 /// the specified register or -1 if it is not found. If isDead is true, defs 1370 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1371 /// also checks if there is a def of a super-register. 1372 int 1373 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1374 const TargetRegisterInfo *TRI) const { 1375 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1376 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1377 const MachineOperand &MO = getOperand(i); 1378 // Accept regmask operands when Overlap is set. 1379 // Ignore them when looking for a specific def operand (Overlap == false). 1380 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1381 return i; 1382 if (!MO.isReg() || !MO.isDef()) 1383 continue; 1384 unsigned MOReg = MO.getReg(); 1385 bool Found = (MOReg == Reg); 1386 if (!Found && TRI && isPhys && 1387 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1388 if (Overlap) 1389 Found = TRI->regsOverlap(MOReg, Reg); 1390 else 1391 Found = TRI->isSubRegister(MOReg, Reg); 1392 } 1393 if (Found && (!isDead || MO.isDead())) 1394 return i; 1395 } 1396 return -1; 1397 } 1398 1399 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1400 /// operand list that is used to represent the predicate. It returns -1 if 1401 /// none is found. 1402 int MachineInstr::findFirstPredOperandIdx() const { 1403 // Don't call MCID.findFirstPredOperandIdx() because this variant 1404 // is sometimes called on an instruction that's not yet complete, and 1405 // so the number of operands is less than the MCID indicates. In 1406 // particular, the PTX target does this. 1407 const MCInstrDesc &MCID = getDesc(); 1408 if (MCID.isPredicable()) { 1409 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1410 if (MCID.OpInfo[i].isPredicate()) 1411 return i; 1412 } 1413 1414 return -1; 1415 } 1416 1417 // MachineOperand::TiedTo is 4 bits wide. 1418 const unsigned TiedMax = 15; 1419 1420 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1421 /// 1422 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1423 /// field. TiedTo can have these values: 1424 /// 1425 /// 0: Operand is not tied to anything. 1426 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1427 /// TiedMax: Tied to an operand >= TiedMax-1. 1428 /// 1429 /// The tied def must be one of the first TiedMax operands on a normal 1430 /// instruction. INLINEASM instructions allow more tied defs. 1431 /// 1432 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1433 MachineOperand &DefMO = getOperand(DefIdx); 1434 MachineOperand &UseMO = getOperand(UseIdx); 1435 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1436 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1437 assert(!DefMO.isTied() && "Def is already tied to another use"); 1438 assert(!UseMO.isTied() && "Use is already tied to another def"); 1439 1440 if (DefIdx < TiedMax) 1441 UseMO.TiedTo = DefIdx + 1; 1442 else { 1443 // Inline asm can use the group descriptors to find tied operands, but on 1444 // normal instruction, the tied def must be within the first TiedMax 1445 // operands. 1446 assert(isInlineAsm() && "DefIdx out of range"); 1447 UseMO.TiedTo = TiedMax; 1448 } 1449 1450 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1451 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1452 } 1453 1454 /// Given the index of a tied register operand, find the operand it is tied to. 1455 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1456 /// which must exist. 1457 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1458 const MachineOperand &MO = getOperand(OpIdx); 1459 assert(MO.isTied() && "Operand isn't tied"); 1460 1461 // Normally TiedTo is in range. 1462 if (MO.TiedTo < TiedMax) 1463 return MO.TiedTo - 1; 1464 1465 // Uses on normal instructions can be out of range. 1466 if (!isInlineAsm()) { 1467 // Normal tied defs must be in the 0..TiedMax-1 range. 1468 if (MO.isUse()) 1469 return TiedMax - 1; 1470 // MO is a def. Search for the tied use. 1471 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1472 const MachineOperand &UseMO = getOperand(i); 1473 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1474 return i; 1475 } 1476 llvm_unreachable("Can't find tied use"); 1477 } 1478 1479 // Now deal with inline asm by parsing the operand group descriptor flags. 1480 // Find the beginning of each operand group. 1481 SmallVector<unsigned, 8> GroupIdx; 1482 unsigned OpIdxGroup = ~0u; 1483 unsigned NumOps; 1484 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1485 i += NumOps) { 1486 const MachineOperand &FlagMO = getOperand(i); 1487 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1488 unsigned CurGroup = GroupIdx.size(); 1489 GroupIdx.push_back(i); 1490 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1491 // OpIdx belongs to this operand group. 1492 if (OpIdx > i && OpIdx < i + NumOps) 1493 OpIdxGroup = CurGroup; 1494 unsigned TiedGroup; 1495 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1496 continue; 1497 // Operands in this group are tied to operands in TiedGroup which must be 1498 // earlier. Find the number of operands between the two groups. 1499 unsigned Delta = i - GroupIdx[TiedGroup]; 1500 1501 // OpIdx is a use tied to TiedGroup. 1502 if (OpIdxGroup == CurGroup) 1503 return OpIdx - Delta; 1504 1505 // OpIdx is a def tied to this use group. 1506 if (OpIdxGroup == TiedGroup) 1507 return OpIdx + Delta; 1508 } 1509 llvm_unreachable("Invalid tied operand on inline asm"); 1510 } 1511 1512 /// clearKillInfo - Clears kill flags on all operands. 1513 /// 1514 void MachineInstr::clearKillInfo() { 1515 for (MachineOperand &MO : operands()) { 1516 if (MO.isReg() && MO.isUse()) 1517 MO.setIsKill(false); 1518 } 1519 } 1520 1521 void MachineInstr::substituteRegister(unsigned FromReg, 1522 unsigned ToReg, 1523 unsigned SubIdx, 1524 const TargetRegisterInfo &RegInfo) { 1525 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1526 if (SubIdx) 1527 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1528 for (MachineOperand &MO : operands()) { 1529 if (!MO.isReg() || MO.getReg() != FromReg) 1530 continue; 1531 MO.substPhysReg(ToReg, RegInfo); 1532 } 1533 } else { 1534 for (MachineOperand &MO : operands()) { 1535 if (!MO.isReg() || MO.getReg() != FromReg) 1536 continue; 1537 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1538 } 1539 } 1540 } 1541 1542 /// isSafeToMove - Return true if it is safe to move this instruction. If 1543 /// SawStore is set to true, it means that there is a store (or call) between 1544 /// the instruction's location and its intended destination. 1545 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1546 // Ignore stuff that we obviously can't move. 1547 // 1548 // Treat volatile loads as stores. This is not strictly necessary for 1549 // volatiles, but it is required for atomic loads. It is not allowed to move 1550 // a load across an atomic load with Ordering > Monotonic. 1551 if (mayStore() || isCall() || 1552 (mayLoad() && hasOrderedMemoryRef())) { 1553 SawStore = true; 1554 return false; 1555 } 1556 1557 if (isPosition() || isDebugValue() || isTerminator() || 1558 hasUnmodeledSideEffects()) 1559 return false; 1560 1561 // See if this instruction does a load. If so, we have to guarantee that the 1562 // loaded value doesn't change between the load and the its intended 1563 // destination. The check for isInvariantLoad gives the targe the chance to 1564 // classify the load as always returning a constant, e.g. a constant pool 1565 // load. 1566 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1567 // Otherwise, this is a real load. If there is a store between the load and 1568 // end of block, we can't move it. 1569 return !SawStore; 1570 1571 return true; 1572 } 1573 1574 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other, 1575 bool UseTBAA) { 1576 const MachineFunction *MF = getParent()->getParent(); 1577 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1578 1579 // If neither instruction stores to memory, they can't alias in any 1580 // meaningful way, even if they read from the same address. 1581 if (!mayStore() && !Other.mayStore()) 1582 return false; 1583 1584 // Let the target decide if memory accesses cannot possibly overlap. 1585 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA)) 1586 return false; 1587 1588 if (!AA) 1589 return true; 1590 1591 // FIXME: Need to handle multiple memory operands to support all targets. 1592 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1593 return true; 1594 1595 MachineMemOperand *MMOa = *memoperands_begin(); 1596 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1597 1598 if (!MMOa->getValue() || !MMOb->getValue()) 1599 return true; 1600 1601 // The following interface to AA is fashioned after DAGCombiner::isAlias 1602 // and operates with MachineMemOperand offset with some important 1603 // assumptions: 1604 // - LLVM fundamentally assumes flat address spaces. 1605 // - MachineOperand offset can *only* result from legalization and 1606 // cannot affect queries other than the trivial case of overlap 1607 // checking. 1608 // - These offsets never wrap and never step outside 1609 // of allocated objects. 1610 // - There should never be any negative offsets here. 1611 // 1612 // FIXME: Modify API to hide this math from "user" 1613 // FIXME: Even before we go to AA we can reason locally about some 1614 // memory objects. It can save compile time, and possibly catch some 1615 // corner cases not currently covered. 1616 1617 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 1618 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 1619 1620 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 1621 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 1622 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 1623 1624 AliasResult AAResult = 1625 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, 1626 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1627 MemoryLocation(MMOb->getValue(), Overlapb, 1628 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1629 1630 return (AAResult != NoAlias); 1631 } 1632 1633 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1634 /// or volatile memory reference, or if the information describing the memory 1635 /// reference is not available. Return false if it is known to have no ordered 1636 /// memory references. 1637 bool MachineInstr::hasOrderedMemoryRef() const { 1638 // An instruction known never to access memory won't have a volatile access. 1639 if (!mayStore() && 1640 !mayLoad() && 1641 !isCall() && 1642 !hasUnmodeledSideEffects()) 1643 return false; 1644 1645 // Otherwise, if the instruction has no memory reference information, 1646 // conservatively assume it wasn't preserved. 1647 if (memoperands_empty()) 1648 return true; 1649 1650 // Check if any of our memory operands are ordered. 1651 return any_of(memoperands(), [](const MachineMemOperand *MMO) { 1652 return !MMO->isUnordered(); 1653 }); 1654 } 1655 1656 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1657 /// trap and is loading from a location whose value is invariant across a run of 1658 /// this function. 1659 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { 1660 // If the instruction doesn't load at all, it isn't an invariant load. 1661 if (!mayLoad()) 1662 return false; 1663 1664 // If the instruction has lost its memoperands, conservatively assume that 1665 // it may not be an invariant load. 1666 if (memoperands_empty()) 1667 return false; 1668 1669 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1670 1671 for (MachineMemOperand *MMO : memoperands()) { 1672 if (MMO->isVolatile()) return false; 1673 if (MMO->isStore()) return false; 1674 if (MMO->isInvariant() && MMO->isDereferenceable()) 1675 continue; 1676 1677 // A load from a constant PseudoSourceValue is invariant. 1678 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1679 if (PSV->isConstant(&MFI)) 1680 continue; 1681 1682 if (const Value *V = MMO->getValue()) { 1683 // If we have an AliasAnalysis, ask it whether the memory is constant. 1684 if (AA && 1685 AA->pointsToConstantMemory( 1686 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1687 continue; 1688 } 1689 1690 // Otherwise assume conservatively. 1691 return false; 1692 } 1693 1694 // Everything checks out. 1695 return true; 1696 } 1697 1698 /// isConstantValuePHI - If the specified instruction is a PHI that always 1699 /// merges together the same virtual register, return the register, otherwise 1700 /// return 0. 1701 unsigned MachineInstr::isConstantValuePHI() const { 1702 if (!isPHI()) 1703 return 0; 1704 assert(getNumOperands() >= 3 && 1705 "It's illegal to have a PHI without source operands"); 1706 1707 unsigned Reg = getOperand(1).getReg(); 1708 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1709 if (getOperand(i).getReg() != Reg) 1710 return 0; 1711 return Reg; 1712 } 1713 1714 bool MachineInstr::hasUnmodeledSideEffects() const { 1715 if (hasProperty(MCID::UnmodeledSideEffects)) 1716 return true; 1717 if (isInlineAsm()) { 1718 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1719 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1720 return true; 1721 } 1722 1723 return false; 1724 } 1725 1726 bool MachineInstr::isLoadFoldBarrier() const { 1727 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1728 } 1729 1730 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1731 /// 1732 bool MachineInstr::allDefsAreDead() const { 1733 for (const MachineOperand &MO : operands()) { 1734 if (!MO.isReg() || MO.isUse()) 1735 continue; 1736 if (!MO.isDead()) 1737 return false; 1738 } 1739 return true; 1740 } 1741 1742 /// copyImplicitOps - Copy implicit register operands from specified 1743 /// instruction to this instruction. 1744 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1745 const MachineInstr &MI) { 1746 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1747 i != e; ++i) { 1748 const MachineOperand &MO = MI.getOperand(i); 1749 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1750 addOperand(MF, MO); 1751 } 1752 } 1753 1754 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1755 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1756 dbgs() << " "; 1757 print(dbgs()); 1758 } 1759 #endif 1760 1761 void MachineInstr::print(raw_ostream &OS, bool SkipOpers, bool SkipDebugLoc, 1762 const TargetInstrInfo *TII) const { 1763 const Module *M = nullptr; 1764 if (const MachineBasicBlock *MBB = getParent()) 1765 if (const MachineFunction *MF = MBB->getParent()) 1766 M = MF->getFunction()->getParent(); 1767 1768 ModuleSlotTracker MST(M); 1769 print(OS, MST, SkipOpers, SkipDebugLoc, TII); 1770 } 1771 1772 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1773 bool SkipOpers, bool SkipDebugLoc, 1774 const TargetInstrInfo *TII) const { 1775 // We can be a bit tidier if we know the MachineFunction. 1776 const MachineFunction *MF = nullptr; 1777 const TargetRegisterInfo *TRI = nullptr; 1778 const MachineRegisterInfo *MRI = nullptr; 1779 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1780 1781 if (const MachineBasicBlock *MBB = getParent()) { 1782 MF = MBB->getParent(); 1783 if (MF) { 1784 MRI = &MF->getRegInfo(); 1785 TRI = MF->getSubtarget().getRegisterInfo(); 1786 if (!TII) 1787 TII = MF->getSubtarget().getInstrInfo(); 1788 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 1789 } 1790 } 1791 1792 // Save a list of virtual registers. 1793 SmallVector<unsigned, 8> VirtRegs; 1794 1795 // Print explicitly defined operands on the left of an assignment syntax. 1796 unsigned StartOp = 0, e = getNumOperands(); 1797 for (; StartOp < e && getOperand(StartOp).isReg() && 1798 getOperand(StartOp).isDef() && 1799 !getOperand(StartOp).isImplicit(); 1800 ++StartOp) { 1801 if (StartOp != 0) OS << ", "; 1802 getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo); 1803 unsigned Reg = getOperand(StartOp).getReg(); 1804 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1805 VirtRegs.push_back(Reg); 1806 LLT Ty = MRI ? MRI->getType(Reg) : LLT{}; 1807 if (Ty.isValid()) 1808 OS << '(' << Ty << ')'; 1809 } 1810 } 1811 1812 if (StartOp != 0) 1813 OS << " = "; 1814 1815 // Print the opcode name. 1816 if (TII) 1817 OS << TII->getName(getOpcode()); 1818 else 1819 OS << "UNKNOWN"; 1820 1821 if (SkipOpers) 1822 return; 1823 1824 // Print the rest of the operands. 1825 bool OmittedAnyCallClobbers = false; 1826 bool FirstOp = true; 1827 unsigned AsmDescOp = ~0u; 1828 unsigned AsmOpCount = 0; 1829 1830 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1831 // Print asm string. 1832 OS << " "; 1833 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1834 1835 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1836 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1837 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1838 OS << " [sideeffect]"; 1839 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1840 OS << " [mayload]"; 1841 if (ExtraInfo & InlineAsm::Extra_MayStore) 1842 OS << " [maystore]"; 1843 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1844 OS << " [isconvergent]"; 1845 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1846 OS << " [alignstack]"; 1847 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1848 OS << " [attdialect]"; 1849 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1850 OS << " [inteldialect]"; 1851 1852 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1853 FirstOp = false; 1854 } 1855 1856 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1857 const MachineOperand &MO = getOperand(i); 1858 1859 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1860 VirtRegs.push_back(MO.getReg()); 1861 1862 // Omit call-clobbered registers which aren't used anywhere. This makes 1863 // call instructions much less noisy on targets where calls clobber lots 1864 // of registers. Don't rely on MO.isDead() because we may be called before 1865 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1866 if (MRI && isCall() && 1867 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1868 unsigned Reg = MO.getReg(); 1869 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1870 if (MRI->use_empty(Reg)) { 1871 bool HasAliasLive = false; 1872 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 1873 unsigned AliasReg = *AI; 1874 if (!MRI->use_empty(AliasReg)) { 1875 HasAliasLive = true; 1876 break; 1877 } 1878 } 1879 if (!HasAliasLive) { 1880 OmittedAnyCallClobbers = true; 1881 continue; 1882 } 1883 } 1884 } 1885 } 1886 1887 if (FirstOp) FirstOp = false; else OS << ","; 1888 OS << " "; 1889 if (i < getDesc().NumOperands) { 1890 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1891 if (MCOI.isPredicate()) 1892 OS << "pred:"; 1893 if (MCOI.isOptionalDef()) 1894 OS << "opt:"; 1895 } 1896 if (isDebugValue() && MO.isMetadata()) { 1897 // Pretty print DBG_VALUE instructions. 1898 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1899 if (DIV && !DIV->getName().empty()) 1900 OS << "!\"" << DIV->getName() << '\"'; 1901 else 1902 MO.print(OS, MST, TRI); 1903 } else if (TRI && (isInsertSubreg() || isRegSequence() || 1904 (isSubregToReg() && i == 3)) && MO.isImm()) { 1905 OS << TRI->getSubRegIndexName(MO.getImm()); 1906 } else if (i == AsmDescOp && MO.isImm()) { 1907 // Pretty print the inline asm operand descriptor. 1908 OS << '$' << AsmOpCount++; 1909 unsigned Flag = MO.getImm(); 1910 switch (InlineAsm::getKind(Flag)) { 1911 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1912 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1913 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1914 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1915 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1916 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1917 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1918 } 1919 1920 unsigned RCID = 0; 1921 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1922 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1923 if (TRI) { 1924 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1925 } else 1926 OS << ":RC" << RCID; 1927 } 1928 1929 if (InlineAsm::isMemKind(Flag)) { 1930 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1931 switch (MCID) { 1932 case InlineAsm::Constraint_es: OS << ":es"; break; 1933 case InlineAsm::Constraint_i: OS << ":i"; break; 1934 case InlineAsm::Constraint_m: OS << ":m"; break; 1935 case InlineAsm::Constraint_o: OS << ":o"; break; 1936 case InlineAsm::Constraint_v: OS << ":v"; break; 1937 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1938 case InlineAsm::Constraint_R: OS << ":R"; break; 1939 case InlineAsm::Constraint_S: OS << ":S"; break; 1940 case InlineAsm::Constraint_T: OS << ":T"; break; 1941 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1942 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1943 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1944 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1945 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1946 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1947 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1948 case InlineAsm::Constraint_X: OS << ":X"; break; 1949 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1950 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1951 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1952 default: OS << ":?"; break; 1953 } 1954 } 1955 1956 unsigned TiedTo = 0; 1957 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1958 OS << " tiedto:$" << TiedTo; 1959 1960 OS << ']'; 1961 1962 // Compute the index of the next operand descriptor. 1963 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1964 } else 1965 MO.print(OS, MST, TRI); 1966 } 1967 1968 // Briefly indicate whether any call clobbers were omitted. 1969 if (OmittedAnyCallClobbers) { 1970 if (!FirstOp) OS << ","; 1971 OS << " ..."; 1972 } 1973 1974 bool HaveSemi = false; 1975 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 1976 if (Flags & PrintableFlags) { 1977 if (!HaveSemi) { 1978 OS << ";"; 1979 HaveSemi = true; 1980 } 1981 OS << " flags: "; 1982 1983 if (Flags & FrameSetup) 1984 OS << "FrameSetup"; 1985 1986 if (Flags & FrameDestroy) 1987 OS << "FrameDestroy"; 1988 } 1989 1990 if (!memoperands_empty()) { 1991 if (!HaveSemi) { 1992 OS << ";"; 1993 HaveSemi = true; 1994 } 1995 1996 OS << " mem:"; 1997 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1998 i != e; ++i) { 1999 (*i)->print(OS, MST); 2000 if (std::next(i) != e) 2001 OS << " "; 2002 } 2003 } 2004 2005 // Print the regclass of any virtual registers encountered. 2006 if (MRI && !VirtRegs.empty()) { 2007 if (!HaveSemi) { 2008 OS << ";"; 2009 HaveSemi = true; 2010 } 2011 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 2012 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); 2013 if (!RC) 2014 continue; 2015 // Generic virtual registers do not have register classes. 2016 if (RC.is<const RegisterBank *>()) 2017 OS << " " << RC.get<const RegisterBank *>()->getName(); 2018 else 2019 OS << " " 2020 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); 2021 OS << ':' << PrintReg(VirtRegs[i]); 2022 for (unsigned j = i+1; j != VirtRegs.size();) { 2023 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { 2024 ++j; 2025 continue; 2026 } 2027 if (VirtRegs[i] != VirtRegs[j]) 2028 OS << "," << PrintReg(VirtRegs[j]); 2029 VirtRegs.erase(VirtRegs.begin()+j); 2030 } 2031 } 2032 } 2033 2034 // Print debug location information. 2035 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 2036 if (!HaveSemi) 2037 OS << ";"; 2038 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 2039 OS << " line no:" << DV->getLine(); 2040 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 2041 DebugLoc InlinedAtDL(InlinedAt); 2042 if (InlinedAtDL && MF) { 2043 OS << " inlined @[ "; 2044 InlinedAtDL.print(OS); 2045 OS << " ]"; 2046 } 2047 } 2048 if (isIndirectDebugValue()) 2049 OS << " indirect"; 2050 } else if (SkipDebugLoc) { 2051 return; 2052 } else if (debugLoc && MF) { 2053 if (!HaveSemi) 2054 OS << ";"; 2055 OS << " dbg:"; 2056 debugLoc.print(OS); 2057 } 2058 2059 OS << '\n'; 2060 } 2061 2062 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 2063 const TargetRegisterInfo *RegInfo, 2064 bool AddIfNotFound) { 2065 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 2066 bool hasAliases = isPhysReg && 2067 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 2068 bool Found = false; 2069 SmallVector<unsigned,4> DeadOps; 2070 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2071 MachineOperand &MO = getOperand(i); 2072 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2073 continue; 2074 2075 // DEBUG_VALUE nodes do not contribute to code generation and should 2076 // always be ignored. Failure to do so may result in trying to modify 2077 // KILL flags on DEBUG_VALUE nodes. 2078 if (MO.isDebug()) 2079 continue; 2080 2081 unsigned Reg = MO.getReg(); 2082 if (!Reg) 2083 continue; 2084 2085 if (Reg == IncomingReg) { 2086 if (!Found) { 2087 if (MO.isKill()) 2088 // The register is already marked kill. 2089 return true; 2090 if (isPhysReg && isRegTiedToDefOperand(i)) 2091 // Two-address uses of physregs must not be marked kill. 2092 return true; 2093 MO.setIsKill(); 2094 Found = true; 2095 } 2096 } else if (hasAliases && MO.isKill() && 2097 TargetRegisterInfo::isPhysicalRegister(Reg)) { 2098 // A super-register kill already exists. 2099 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2100 return true; 2101 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2102 DeadOps.push_back(i); 2103 } 2104 } 2105 2106 // Trim unneeded kill operands. 2107 while (!DeadOps.empty()) { 2108 unsigned OpIdx = DeadOps.back(); 2109 if (getOperand(OpIdx).isImplicit()) 2110 RemoveOperand(OpIdx); 2111 else 2112 getOperand(OpIdx).setIsKill(false); 2113 DeadOps.pop_back(); 2114 } 2115 2116 // If not found, this means an alias of one of the operands is killed. Add a 2117 // new implicit operand if required. 2118 if (!Found && AddIfNotFound) { 2119 addOperand(MachineOperand::CreateReg(IncomingReg, 2120 false /*IsDef*/, 2121 true /*IsImp*/, 2122 true /*IsKill*/)); 2123 return true; 2124 } 2125 return Found; 2126 } 2127 2128 void MachineInstr::clearRegisterKills(unsigned Reg, 2129 const TargetRegisterInfo *RegInfo) { 2130 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 2131 RegInfo = nullptr; 2132 for (MachineOperand &MO : operands()) { 2133 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2134 continue; 2135 unsigned OpReg = MO.getReg(); 2136 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2137 MO.setIsKill(false); 2138 } 2139 } 2140 2141 bool MachineInstr::addRegisterDead(unsigned Reg, 2142 const TargetRegisterInfo *RegInfo, 2143 bool AddIfNotFound) { 2144 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 2145 bool hasAliases = isPhysReg && 2146 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2147 bool Found = false; 2148 SmallVector<unsigned,4> DeadOps; 2149 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2150 MachineOperand &MO = getOperand(i); 2151 if (!MO.isReg() || !MO.isDef()) 2152 continue; 2153 unsigned MOReg = MO.getReg(); 2154 if (!MOReg) 2155 continue; 2156 2157 if (MOReg == Reg) { 2158 MO.setIsDead(); 2159 Found = true; 2160 } else if (hasAliases && MO.isDead() && 2161 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 2162 // There exists a super-register that's marked dead. 2163 if (RegInfo->isSuperRegister(Reg, MOReg)) 2164 return true; 2165 if (RegInfo->isSubRegister(Reg, MOReg)) 2166 DeadOps.push_back(i); 2167 } 2168 } 2169 2170 // Trim unneeded dead operands. 2171 while (!DeadOps.empty()) { 2172 unsigned OpIdx = DeadOps.back(); 2173 if (getOperand(OpIdx).isImplicit()) 2174 RemoveOperand(OpIdx); 2175 else 2176 getOperand(OpIdx).setIsDead(false); 2177 DeadOps.pop_back(); 2178 } 2179 2180 // If not found, this means an alias of one of the operands is dead. Add a 2181 // new implicit operand if required. 2182 if (Found || !AddIfNotFound) 2183 return Found; 2184 2185 addOperand(MachineOperand::CreateReg(Reg, 2186 true /*IsDef*/, 2187 true /*IsImp*/, 2188 false /*IsKill*/, 2189 true /*IsDead*/)); 2190 return true; 2191 } 2192 2193 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2194 for (MachineOperand &MO : operands()) { 2195 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2196 continue; 2197 MO.setIsDead(false); 2198 } 2199 } 2200 2201 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2202 for (MachineOperand &MO : operands()) { 2203 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2204 continue; 2205 MO.setIsUndef(IsUndef); 2206 } 2207 } 2208 2209 void MachineInstr::addRegisterDefined(unsigned Reg, 2210 const TargetRegisterInfo *RegInfo) { 2211 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2212 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2213 if (MO) 2214 return; 2215 } else { 2216 for (const MachineOperand &MO : operands()) { 2217 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2218 MO.getSubReg() == 0) 2219 return; 2220 } 2221 } 2222 addOperand(MachineOperand::CreateReg(Reg, 2223 true /*IsDef*/, 2224 true /*IsImp*/)); 2225 } 2226 2227 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2228 const TargetRegisterInfo &TRI) { 2229 bool HasRegMask = false; 2230 for (MachineOperand &MO : operands()) { 2231 if (MO.isRegMask()) { 2232 HasRegMask = true; 2233 continue; 2234 } 2235 if (!MO.isReg() || !MO.isDef()) continue; 2236 unsigned Reg = MO.getReg(); 2237 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2238 // If there are no uses, including partial uses, the def is dead. 2239 if (none_of(UsedRegs, 2240 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2241 MO.setIsDead(); 2242 } 2243 2244 // This is a call with a register mask operand. 2245 // Mask clobbers are always dead, so add defs for the non-dead defines. 2246 if (HasRegMask) 2247 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2248 I != E; ++I) 2249 addRegisterDefined(*I, &TRI); 2250 } 2251 2252 unsigned 2253 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2254 // Build up a buffer of hash code components. 2255 SmallVector<size_t, 8> HashComponents; 2256 HashComponents.reserve(MI->getNumOperands() + 1); 2257 HashComponents.push_back(MI->getOpcode()); 2258 for (const MachineOperand &MO : MI->operands()) { 2259 if (MO.isReg() && MO.isDef() && 2260 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2261 continue; // Skip virtual register defs. 2262 2263 HashComponents.push_back(hash_value(MO)); 2264 } 2265 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2266 } 2267 2268 void MachineInstr::emitError(StringRef Msg) const { 2269 // Find the source location cookie. 2270 unsigned LocCookie = 0; 2271 const MDNode *LocMD = nullptr; 2272 for (unsigned i = getNumOperands(); i != 0; --i) { 2273 if (getOperand(i-1).isMetadata() && 2274 (LocMD = getOperand(i-1).getMetadata()) && 2275 LocMD->getNumOperands() != 0) { 2276 if (const ConstantInt *CI = 2277 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2278 LocCookie = CI->getZExtValue(); 2279 break; 2280 } 2281 } 2282 } 2283 2284 if (const MachineBasicBlock *MBB = getParent()) 2285 if (const MachineFunction *MF = MBB->getParent()) 2286 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2287 report_fatal_error(Msg); 2288 } 2289 2290 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2291 const MCInstrDesc &MCID, bool IsIndirect, 2292 unsigned Reg, unsigned Offset, 2293 const MDNode *Variable, const MDNode *Expr) { 2294 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2295 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2296 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2297 "Expected inlined-at fields to agree"); 2298 if (IsIndirect) 2299 return BuildMI(MF, DL, MCID) 2300 .addReg(Reg, RegState::Debug) 2301 .addImm(Offset) 2302 .addMetadata(Variable) 2303 .addMetadata(Expr); 2304 else { 2305 assert(Offset == 0 && "A direct address cannot have an offset."); 2306 return BuildMI(MF, DL, MCID) 2307 .addReg(Reg, RegState::Debug) 2308 .addReg(0U, RegState::Debug) 2309 .addMetadata(Variable) 2310 .addMetadata(Expr); 2311 } 2312 } 2313 2314 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2315 MachineBasicBlock::iterator I, 2316 const DebugLoc &DL, const MCInstrDesc &MCID, 2317 bool IsIndirect, unsigned Reg, 2318 unsigned Offset, const MDNode *Variable, 2319 const MDNode *Expr) { 2320 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2321 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2322 MachineFunction &MF = *BB.getParent(); 2323 MachineInstr *MI = 2324 BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr); 2325 BB.insert(I, MI); 2326 return MachineInstrBuilder(MF, MI); 2327 } 2328