xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 90d856cd5f4c4bfe415105f6bfc66f05457a334d)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/MC/MCRegisterInfo.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetIntrinsicInfo.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <cstring>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 
79 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
80   if (const MachineBasicBlock *MBB = MI.getParent())
81     if (const MachineFunction *MF = MBB->getParent())
82       return MF;
83   return nullptr;
84 }
85 
86 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
87 // it.
88 static void tryToGetTargetInfo(const MachineInstr &MI,
89                                const TargetRegisterInfo *&TRI,
90                                const MachineRegisterInfo *&MRI,
91                                const TargetIntrinsicInfo *&IntrinsicInfo,
92                                const TargetInstrInfo *&TII) {
93 
94   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
95     TRI = MF->getSubtarget().getRegisterInfo();
96     MRI = &MF->getRegInfo();
97     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
98     TII = MF->getSubtarget().getInstrInfo();
99   }
100 }
101 
102 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
103   if (MCID->ImplicitDefs)
104     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
105            ++ImpDefs)
106       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
107   if (MCID->ImplicitUses)
108     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
109            ++ImpUses)
110       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
111 }
112 
113 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
114 /// implicit operands. It reserves space for the number of operands specified by
115 /// the MCInstrDesc.
116 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
117                            DebugLoc dl, bool NoImp)
118     : MCID(&tid), debugLoc(std::move(dl)) {
119   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
120 
121   // Reserve space for the expected number of operands.
122   if (unsigned NumOps = MCID->getNumOperands() +
123     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
124     CapOperands = OperandCapacity::get(NumOps);
125     Operands = MF.allocateOperandArray(CapOperands);
126   }
127 
128   if (!NoImp)
129     addImplicitDefUseOperands(MF);
130 }
131 
132 /// MachineInstr ctor - Copies MachineInstr arg exactly
133 ///
134 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
135     : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) {
136   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
137 
138   CapOperands = OperandCapacity::get(MI.getNumOperands());
139   Operands = MF.allocateOperandArray(CapOperands);
140 
141   // Copy operands.
142   for (const MachineOperand &MO : MI.operands())
143     addOperand(MF, MO);
144 
145   // Copy all the sensible flags.
146   setFlags(MI.Flags);
147 }
148 
149 /// getRegInfo - If this instruction is embedded into a MachineFunction,
150 /// return the MachineRegisterInfo object for the current function, otherwise
151 /// return null.
152 MachineRegisterInfo *MachineInstr::getRegInfo() {
153   if (MachineBasicBlock *MBB = getParent())
154     return &MBB->getParent()->getRegInfo();
155   return nullptr;
156 }
157 
158 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
159 /// this instruction from their respective use lists.  This requires that the
160 /// operands already be on their use lists.
161 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
162   for (MachineOperand &MO : operands())
163     if (MO.isReg())
164       MRI.removeRegOperandFromUseList(&MO);
165 }
166 
167 /// AddRegOperandsToUseLists - Add all of the register operands in
168 /// this instruction from their respective use lists.  This requires that the
169 /// operands not be on their use lists yet.
170 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
171   for (MachineOperand &MO : operands())
172     if (MO.isReg())
173       MRI.addRegOperandToUseList(&MO);
174 }
175 
176 void MachineInstr::addOperand(const MachineOperand &Op) {
177   MachineBasicBlock *MBB = getParent();
178   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
179   MachineFunction *MF = MBB->getParent();
180   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
181   addOperand(*MF, Op);
182 }
183 
184 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
185 /// ranges. If MRI is non-null also update use-def chains.
186 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
187                          unsigned NumOps, MachineRegisterInfo *MRI) {
188   if (MRI)
189     return MRI->moveOperands(Dst, Src, NumOps);
190 
191   // MachineOperand is a trivially copyable type so we can just use memmove.
192   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
193 }
194 
195 /// addOperand - Add the specified operand to the instruction.  If it is an
196 /// implicit operand, it is added to the end of the operand list.  If it is
197 /// an explicit operand it is added at the end of the explicit operand list
198 /// (before the first implicit operand).
199 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
200   assert(MCID && "Cannot add operands before providing an instr descriptor");
201 
202   // Check if we're adding one of our existing operands.
203   if (&Op >= Operands && &Op < Operands + NumOperands) {
204     // This is unusual: MI->addOperand(MI->getOperand(i)).
205     // If adding Op requires reallocating or moving existing operands around,
206     // the Op reference could go stale. Support it by copying Op.
207     MachineOperand CopyOp(Op);
208     return addOperand(MF, CopyOp);
209   }
210 
211   // Find the insert location for the new operand.  Implicit registers go at
212   // the end, everything else goes before the implicit regs.
213   //
214   // FIXME: Allow mixed explicit and implicit operands on inline asm.
215   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
216   // implicit-defs, but they must not be moved around.  See the FIXME in
217   // InstrEmitter.cpp.
218   unsigned OpNo = getNumOperands();
219   bool isImpReg = Op.isReg() && Op.isImplicit();
220   if (!isImpReg && !isInlineAsm()) {
221     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
222       --OpNo;
223       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
224     }
225   }
226 
227 #ifndef NDEBUG
228   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
229                    Op.getType() == MachineOperand::MO_MCSymbol;
230   // OpNo now points as the desired insertion point.  Unless this is a variadic
231   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
232   // RegMask operands go between the explicit and implicit operands.
233   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
234           OpNo < MCID->getNumOperands() || isDebugOp) &&
235          "Trying to add an operand to a machine instr that is already done!");
236 #endif
237 
238   MachineRegisterInfo *MRI = getRegInfo();
239 
240   // Determine if the Operands array needs to be reallocated.
241   // Save the old capacity and operand array.
242   OperandCapacity OldCap = CapOperands;
243   MachineOperand *OldOperands = Operands;
244   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
245     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
246     Operands = MF.allocateOperandArray(CapOperands);
247     // Move the operands before the insertion point.
248     if (OpNo)
249       moveOperands(Operands, OldOperands, OpNo, MRI);
250   }
251 
252   // Move the operands following the insertion point.
253   if (OpNo != NumOperands)
254     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
255                  MRI);
256   ++NumOperands;
257 
258   // Deallocate the old operand array.
259   if (OldOperands != Operands && OldOperands)
260     MF.deallocateOperandArray(OldCap, OldOperands);
261 
262   // Copy Op into place. It still needs to be inserted into the MRI use lists.
263   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
264   NewMO->ParentMI = this;
265 
266   // When adding a register operand, tell MRI about it.
267   if (NewMO->isReg()) {
268     // Ensure isOnRegUseList() returns false, regardless of Op's status.
269     NewMO->Contents.Reg.Prev = nullptr;
270     // Ignore existing ties. This is not a property that can be copied.
271     NewMO->TiedTo = 0;
272     // Add the new operand to MRI, but only for instructions in an MBB.
273     if (MRI)
274       MRI->addRegOperandToUseList(NewMO);
275     // The MCID operand information isn't accurate until we start adding
276     // explicit operands. The implicit operands are added first, then the
277     // explicits are inserted before them.
278     if (!isImpReg) {
279       // Tie uses to defs as indicated in MCInstrDesc.
280       if (NewMO->isUse()) {
281         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
282         if (DefIdx != -1)
283           tieOperands(DefIdx, OpNo);
284       }
285       // If the register operand is flagged as early, mark the operand as such.
286       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
287         NewMO->setIsEarlyClobber(true);
288     }
289   }
290 }
291 
292 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
293 /// fewer operand than it started with.
294 ///
295 void MachineInstr::RemoveOperand(unsigned OpNo) {
296   assert(OpNo < getNumOperands() && "Invalid operand number");
297   untieRegOperand(OpNo);
298 
299 #ifndef NDEBUG
300   // Moving tied operands would break the ties.
301   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
302     if (Operands[i].isReg())
303       assert(!Operands[i].isTied() && "Cannot move tied operands");
304 #endif
305 
306   MachineRegisterInfo *MRI = getRegInfo();
307   if (MRI && Operands[OpNo].isReg())
308     MRI->removeRegOperandFromUseList(Operands + OpNo);
309 
310   // Don't call the MachineOperand destructor. A lot of this code depends on
311   // MachineOperand having a trivial destructor anyway, and adding a call here
312   // wouldn't make it 'destructor-correct'.
313 
314   if (unsigned N = NumOperands - 1 - OpNo)
315     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
316   --NumOperands;
317 }
318 
319 void MachineInstr::dropMemRefs(MachineFunction &MF) {
320   if (memoperands_empty())
321     return;
322 
323   // See if we can just drop all of our extra info.
324   if (!getPreInstrSymbol() && !getPostInstrSymbol()) {
325     Info.clear();
326     return;
327   }
328   if (!getPostInstrSymbol()) {
329     Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol());
330     return;
331   }
332   if (!getPreInstrSymbol()) {
333     Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol());
334     return;
335   }
336 
337   // Otherwise allocate a fresh extra info with just these symbols.
338   Info.set<EIIK_OutOfLine>(
339       MF.createMIExtraInfo({}, getPreInstrSymbol(), getPostInstrSymbol()));
340 }
341 
342 void MachineInstr::setMemRefs(MachineFunction &MF,
343                               ArrayRef<MachineMemOperand *> MMOs) {
344   if (MMOs.empty()) {
345     dropMemRefs(MF);
346     return;
347   }
348 
349   // Try to store a single MMO inline.
350   if (MMOs.size() == 1 && !getPreInstrSymbol() && !getPostInstrSymbol()) {
351     Info.set<EIIK_MMO>(MMOs[0]);
352     return;
353   }
354 
355   // Otherwise create an extra info struct with all of our info.
356   Info.set<EIIK_OutOfLine>(
357       MF.createMIExtraInfo(MMOs, getPreInstrSymbol(), getPostInstrSymbol()));
358 }
359 
360 void MachineInstr::addMemOperand(MachineFunction &MF,
361                                  MachineMemOperand *MO) {
362   SmallVector<MachineMemOperand *, 2> MMOs;
363   MMOs.append(memoperands_begin(), memoperands_end());
364   MMOs.push_back(MO);
365   setMemRefs(MF, MMOs);
366 }
367 
368 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
369   if (this == &MI)
370     // Nothing to do for a self-clone!
371     return;
372 
373   assert(&MF == MI.getMF() &&
374          "Invalid machine functions when cloning memory refrences!");
375   // See if we can just steal the extra info already allocated for the
376   // instruction. We can do this whenever the pre- and post-instruction symbols
377   // are the same (including null).
378   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
379       getPostInstrSymbol() == MI.getPostInstrSymbol()) {
380     Info = MI.Info;
381     return;
382   }
383 
384   // Otherwise, fall back on a copy-based clone.
385   setMemRefs(MF, MI.memoperands());
386 }
387 
388 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
389 /// identical.
390 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
391                              ArrayRef<MachineMemOperand *> RHS) {
392   if (LHS.size() != RHS.size())
393     return false;
394 
395   auto LHSPointees = make_pointee_range(LHS);
396   auto RHSPointees = make_pointee_range(RHS);
397   return std::equal(LHSPointees.begin(), LHSPointees.end(),
398                     RHSPointees.begin());
399 }
400 
401 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
402                                       ArrayRef<const MachineInstr *> MIs) {
403   // Try handling easy numbers of MIs with simpler mechanisms.
404   if (MIs.empty()) {
405     dropMemRefs(MF);
406     return;
407   }
408   if (MIs.size() == 1) {
409     cloneMemRefs(MF, *MIs[0]);
410     return;
411   }
412   // Because an empty memoperands list provides *no* information and must be
413   // handled conservatively (assuming the instruction can do anything), the only
414   // way to merge with it is to drop all other memoperands.
415   if (MIs[0]->memoperands_empty()) {
416     dropMemRefs(MF);
417     return;
418   }
419 
420   // Handle the general case.
421   SmallVector<MachineMemOperand *, 2> MergedMMOs;
422   // Start with the first instruction.
423   assert(&MF == MIs[0]->getMF() &&
424          "Invalid machine functions when cloning memory references!");
425   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
426   // Now walk all the other instructions and accumulate any different MMOs.
427   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
428     assert(&MF == MI.getMF() &&
429            "Invalid machine functions when cloning memory references!");
430 
431     // Skip MIs with identical operands to the first. This is a somewhat
432     // arbitrary hack but will catch common cases without being quadratic.
433     // TODO: We could fully implement merge semantics here if needed.
434     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
435       continue;
436 
437     // Because an empty memoperands list provides *no* information and must be
438     // handled conservatively (assuming the instruction can do anything), the
439     // only way to merge with it is to drop all other memoperands.
440     if (MI.memoperands_empty()) {
441       dropMemRefs(MF);
442       return;
443     }
444 
445     // Otherwise accumulate these into our temporary buffer of the merged state.
446     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
447   }
448 
449   setMemRefs(MF, MergedMMOs);
450 }
451 
452 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
453   MCSymbol *OldSymbol = getPreInstrSymbol();
454   if (OldSymbol == Symbol)
455     return;
456   if (OldSymbol && !Symbol) {
457     // We're removing a symbol rather than adding one. Try to clean up any
458     // extra info carried around.
459     if (Info.is<EIIK_PreInstrSymbol>()) {
460       Info.clear();
461       return;
462     }
463 
464     if (memoperands_empty()) {
465       assert(getPostInstrSymbol() &&
466              "Should never have only a single symbol allocated out-of-line!");
467       Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol());
468       return;
469     }
470 
471     // Otherwise fallback on the generic update.
472   } else if (!Info || Info.is<EIIK_PreInstrSymbol>()) {
473     // If we don't have any other extra info, we can store this inline.
474     Info.set<EIIK_PreInstrSymbol>(Symbol);
475     return;
476   }
477 
478   // Otherwise, allocate a full new set of extra info.
479   // FIXME: Maybe we should make the symbols in the extra info mutable?
480   Info.set<EIIK_OutOfLine>(
481       MF.createMIExtraInfo(memoperands(), Symbol, getPostInstrSymbol()));
482 }
483 
484 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
485   MCSymbol *OldSymbol = getPostInstrSymbol();
486   if (OldSymbol == Symbol)
487     return;
488   if (OldSymbol && !Symbol) {
489     // We're removing a symbol rather than adding one. Try to clean up any
490     // extra info carried around.
491     if (Info.is<EIIK_PostInstrSymbol>()) {
492       Info.clear();
493       return;
494     }
495 
496     if (memoperands_empty()) {
497       assert(getPreInstrSymbol() &&
498              "Should never have only a single symbol allocated out-of-line!");
499       Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol());
500       return;
501     }
502 
503     // Otherwise fallback on the generic update.
504   } else if (!Info || Info.is<EIIK_PostInstrSymbol>()) {
505     // If we don't have any other extra info, we can store this inline.
506     Info.set<EIIK_PostInstrSymbol>(Symbol);
507     return;
508   }
509 
510   // Otherwise, allocate a full new set of extra info.
511   // FIXME: Maybe we should make the symbols in the extra info mutable?
512   Info.set<EIIK_OutOfLine>(
513       MF.createMIExtraInfo(memoperands(), getPreInstrSymbol(), Symbol));
514 }
515 
516 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
517   // For now, the just return the union of the flags. If the flags get more
518   // complicated over time, we might need more logic here.
519   return getFlags() | Other.getFlags();
520 }
521 
522 void MachineInstr::copyIRFlags(const Instruction &I) {
523   // Copy the wrapping flags.
524   if (const OverflowingBinaryOperator *OB =
525           dyn_cast<OverflowingBinaryOperator>(&I)) {
526     if (OB->hasNoSignedWrap())
527       setFlag(MachineInstr::MIFlag::NoSWrap);
528     if (OB->hasNoUnsignedWrap())
529       setFlag(MachineInstr::MIFlag::NoUWrap);
530   }
531 
532   // Copy the exact flag.
533   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
534     if (PE->isExact())
535       setFlag(MachineInstr::MIFlag::IsExact);
536 
537   // Copy the fast-math flags.
538   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
539     const FastMathFlags Flags = FP->getFastMathFlags();
540     if (Flags.noNaNs())
541       setFlag(MachineInstr::MIFlag::FmNoNans);
542     if (Flags.noInfs())
543       setFlag(MachineInstr::MIFlag::FmNoInfs);
544     if (Flags.noSignedZeros())
545       setFlag(MachineInstr::MIFlag::FmNsz);
546     if (Flags.allowReciprocal())
547       setFlag(MachineInstr::MIFlag::FmArcp);
548     if (Flags.allowContract())
549       setFlag(MachineInstr::MIFlag::FmContract);
550     if (Flags.approxFunc())
551       setFlag(MachineInstr::MIFlag::FmAfn);
552     if (Flags.allowReassoc())
553       setFlag(MachineInstr::MIFlag::FmReassoc);
554   }
555 }
556 
557 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
558   assert(!isBundledWithPred() && "Must be called on bundle header");
559   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
560     if (MII->getDesc().getFlags() & Mask) {
561       if (Type == AnyInBundle)
562         return true;
563     } else {
564       if (Type == AllInBundle && !MII->isBundle())
565         return false;
566     }
567     // This was the last instruction in the bundle.
568     if (!MII->isBundledWithSucc())
569       return Type == AllInBundle;
570   }
571 }
572 
573 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
574                                  MICheckType Check) const {
575   // If opcodes or number of operands are not the same then the two
576   // instructions are obviously not identical.
577   if (Other.getOpcode() != getOpcode() ||
578       Other.getNumOperands() != getNumOperands())
579     return false;
580 
581   if (isBundle()) {
582     // We have passed the test above that both instructions have the same
583     // opcode, so we know that both instructions are bundles here. Let's compare
584     // MIs inside the bundle.
585     assert(Other.isBundle() && "Expected that both instructions are bundles.");
586     MachineBasicBlock::const_instr_iterator I1 = getIterator();
587     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
588     // Loop until we analysed the last intruction inside at least one of the
589     // bundles.
590     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
591       ++I1;
592       ++I2;
593       if (!I1->isIdenticalTo(*I2, Check))
594         return false;
595     }
596     // If we've reached the end of just one of the two bundles, but not both,
597     // the instructions are not identical.
598     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
599       return false;
600   }
601 
602   // Check operands to make sure they match.
603   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
604     const MachineOperand &MO = getOperand(i);
605     const MachineOperand &OMO = Other.getOperand(i);
606     if (!MO.isReg()) {
607       if (!MO.isIdenticalTo(OMO))
608         return false;
609       continue;
610     }
611 
612     // Clients may or may not want to ignore defs when testing for equality.
613     // For example, machine CSE pass only cares about finding common
614     // subexpressions, so it's safe to ignore virtual register defs.
615     if (MO.isDef()) {
616       if (Check == IgnoreDefs)
617         continue;
618       else if (Check == IgnoreVRegDefs) {
619         if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) ||
620             !TargetRegisterInfo::isVirtualRegister(OMO.getReg()))
621           if (!MO.isIdenticalTo(OMO))
622             return false;
623       } else {
624         if (!MO.isIdenticalTo(OMO))
625           return false;
626         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
627           return false;
628       }
629     } else {
630       if (!MO.isIdenticalTo(OMO))
631         return false;
632       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
633         return false;
634     }
635   }
636   // If DebugLoc does not match then two debug instructions are not identical.
637   if (isDebugInstr())
638     if (getDebugLoc() && Other.getDebugLoc() &&
639         getDebugLoc() != Other.getDebugLoc())
640       return false;
641   return true;
642 }
643 
644 const MachineFunction *MachineInstr::getMF() const {
645   return getParent()->getParent();
646 }
647 
648 MachineInstr *MachineInstr::removeFromParent() {
649   assert(getParent() && "Not embedded in a basic block!");
650   return getParent()->remove(this);
651 }
652 
653 MachineInstr *MachineInstr::removeFromBundle() {
654   assert(getParent() && "Not embedded in a basic block!");
655   return getParent()->remove_instr(this);
656 }
657 
658 void MachineInstr::eraseFromParent() {
659   assert(getParent() && "Not embedded in a basic block!");
660   getParent()->erase(this);
661 }
662 
663 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
664   assert(getParent() && "Not embedded in a basic block!");
665   MachineBasicBlock *MBB = getParent();
666   MachineFunction *MF = MBB->getParent();
667   assert(MF && "Not embedded in a function!");
668 
669   MachineInstr *MI = (MachineInstr *)this;
670   MachineRegisterInfo &MRI = MF->getRegInfo();
671 
672   for (const MachineOperand &MO : MI->operands()) {
673     if (!MO.isReg() || !MO.isDef())
674       continue;
675     unsigned Reg = MO.getReg();
676     if (!TargetRegisterInfo::isVirtualRegister(Reg))
677       continue;
678     MRI.markUsesInDebugValueAsUndef(Reg);
679   }
680   MI->eraseFromParent();
681 }
682 
683 void MachineInstr::eraseFromBundle() {
684   assert(getParent() && "Not embedded in a basic block!");
685   getParent()->erase_instr(this);
686 }
687 
688 unsigned MachineInstr::getNumExplicitOperands() const {
689   unsigned NumOperands = MCID->getNumOperands();
690   if (!MCID->isVariadic())
691     return NumOperands;
692 
693   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
694     const MachineOperand &MO = getOperand(I);
695     // The operands must always be in the following order:
696     // - explicit reg defs,
697     // - other explicit operands (reg uses, immediates, etc.),
698     // - implicit reg defs
699     // - implicit reg uses
700     if (MO.isReg() && MO.isImplicit())
701       break;
702     ++NumOperands;
703   }
704   return NumOperands;
705 }
706 
707 unsigned MachineInstr::getNumExplicitDefs() const {
708   unsigned NumDefs = MCID->getNumDefs();
709   if (!MCID->isVariadic())
710     return NumDefs;
711 
712   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
713     const MachineOperand &MO = getOperand(I);
714     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
715       break;
716     ++NumDefs;
717   }
718   return NumDefs;
719 }
720 
721 void MachineInstr::bundleWithPred() {
722   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
723   setFlag(BundledPred);
724   MachineBasicBlock::instr_iterator Pred = getIterator();
725   --Pred;
726   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
727   Pred->setFlag(BundledSucc);
728 }
729 
730 void MachineInstr::bundleWithSucc() {
731   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
732   setFlag(BundledSucc);
733   MachineBasicBlock::instr_iterator Succ = getIterator();
734   ++Succ;
735   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
736   Succ->setFlag(BundledPred);
737 }
738 
739 void MachineInstr::unbundleFromPred() {
740   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
741   clearFlag(BundledPred);
742   MachineBasicBlock::instr_iterator Pred = getIterator();
743   --Pred;
744   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
745   Pred->clearFlag(BundledSucc);
746 }
747 
748 void MachineInstr::unbundleFromSucc() {
749   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
750   clearFlag(BundledSucc);
751   MachineBasicBlock::instr_iterator Succ = getIterator();
752   ++Succ;
753   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
754   Succ->clearFlag(BundledPred);
755 }
756 
757 bool MachineInstr::isStackAligningInlineAsm() const {
758   if (isInlineAsm()) {
759     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
760     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
761       return true;
762   }
763   return false;
764 }
765 
766 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
767   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
768   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
769   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
770 }
771 
772 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
773                                        unsigned *GroupNo) const {
774   assert(isInlineAsm() && "Expected an inline asm instruction");
775   assert(OpIdx < getNumOperands() && "OpIdx out of range");
776 
777   // Ignore queries about the initial operands.
778   if (OpIdx < InlineAsm::MIOp_FirstOperand)
779     return -1;
780 
781   unsigned Group = 0;
782   unsigned NumOps;
783   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
784        i += NumOps) {
785     const MachineOperand &FlagMO = getOperand(i);
786     // If we reach the implicit register operands, stop looking.
787     if (!FlagMO.isImm())
788       return -1;
789     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
790     if (i + NumOps > OpIdx) {
791       if (GroupNo)
792         *GroupNo = Group;
793       return i;
794     }
795     ++Group;
796   }
797   return -1;
798 }
799 
800 const DILabel *MachineInstr::getDebugLabel() const {
801   assert(isDebugLabel() && "not a DBG_LABEL");
802   return cast<DILabel>(getOperand(0).getMetadata());
803 }
804 
805 const DILocalVariable *MachineInstr::getDebugVariable() const {
806   assert(isDebugValue() && "not a DBG_VALUE");
807   return cast<DILocalVariable>(getOperand(2).getMetadata());
808 }
809 
810 const DIExpression *MachineInstr::getDebugExpression() const {
811   assert(isDebugValue() && "not a DBG_VALUE");
812   return cast<DIExpression>(getOperand(3).getMetadata());
813 }
814 
815 const TargetRegisterClass*
816 MachineInstr::getRegClassConstraint(unsigned OpIdx,
817                                     const TargetInstrInfo *TII,
818                                     const TargetRegisterInfo *TRI) const {
819   assert(getParent() && "Can't have an MBB reference here!");
820   assert(getMF() && "Can't have an MF reference here!");
821   const MachineFunction &MF = *getMF();
822 
823   // Most opcodes have fixed constraints in their MCInstrDesc.
824   if (!isInlineAsm())
825     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
826 
827   if (!getOperand(OpIdx).isReg())
828     return nullptr;
829 
830   // For tied uses on inline asm, get the constraint from the def.
831   unsigned DefIdx;
832   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
833     OpIdx = DefIdx;
834 
835   // Inline asm stores register class constraints in the flag word.
836   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
837   if (FlagIdx < 0)
838     return nullptr;
839 
840   unsigned Flag = getOperand(FlagIdx).getImm();
841   unsigned RCID;
842   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
843        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
844        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
845       InlineAsm::hasRegClassConstraint(Flag, RCID))
846     return TRI->getRegClass(RCID);
847 
848   // Assume that all registers in a memory operand are pointers.
849   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
850     return TRI->getPointerRegClass(MF);
851 
852   return nullptr;
853 }
854 
855 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
856     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
857     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
858   // Check every operands inside the bundle if we have
859   // been asked to.
860   if (ExploreBundle)
861     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
862          ++OpndIt)
863       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
864           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
865   else
866     // Otherwise, just check the current operands.
867     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
868       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
869   return CurRC;
870 }
871 
872 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
873     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
874     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
875   assert(CurRC && "Invalid initial register class");
876   // Check if Reg is constrained by some of its use/def from MI.
877   const MachineOperand &MO = getOperand(OpIdx);
878   if (!MO.isReg() || MO.getReg() != Reg)
879     return CurRC;
880   // If yes, accumulate the constraints through the operand.
881   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
882 }
883 
884 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
885     unsigned OpIdx, const TargetRegisterClass *CurRC,
886     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
887   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
888   const MachineOperand &MO = getOperand(OpIdx);
889   assert(MO.isReg() &&
890          "Cannot get register constraints for non-register operand");
891   assert(CurRC && "Invalid initial register class");
892   if (unsigned SubIdx = MO.getSubReg()) {
893     if (OpRC)
894       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
895     else
896       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
897   } else if (OpRC)
898     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
899   return CurRC;
900 }
901 
902 /// Return the number of instructions inside the MI bundle, not counting the
903 /// header instruction.
904 unsigned MachineInstr::getBundleSize() const {
905   MachineBasicBlock::const_instr_iterator I = getIterator();
906   unsigned Size = 0;
907   while (I->isBundledWithSucc()) {
908     ++Size;
909     ++I;
910   }
911   return Size;
912 }
913 
914 /// Returns true if the MachineInstr has an implicit-use operand of exactly
915 /// the given register (not considering sub/super-registers).
916 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
917   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
918     const MachineOperand &MO = getOperand(i);
919     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
920       return true;
921   }
922   return false;
923 }
924 
925 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
926 /// the specific register or -1 if it is not found. It further tightens
927 /// the search criteria to a use that kills the register if isKill is true.
928 int MachineInstr::findRegisterUseOperandIdx(
929     unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
930   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
931     const MachineOperand &MO = getOperand(i);
932     if (!MO.isReg() || !MO.isUse())
933       continue;
934     unsigned MOReg = MO.getReg();
935     if (!MOReg)
936       continue;
937     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
938       if (!isKill || MO.isKill())
939         return i;
940   }
941   return -1;
942 }
943 
944 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
945 /// indicating if this instruction reads or writes Reg. This also considers
946 /// partial defines.
947 std::pair<bool,bool>
948 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
949                                          SmallVectorImpl<unsigned> *Ops) const {
950   bool PartDef = false; // Partial redefine.
951   bool FullDef = false; // Full define.
952   bool Use = false;
953 
954   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
955     const MachineOperand &MO = getOperand(i);
956     if (!MO.isReg() || MO.getReg() != Reg)
957       continue;
958     if (Ops)
959       Ops->push_back(i);
960     if (MO.isUse())
961       Use |= !MO.isUndef();
962     else if (MO.getSubReg() && !MO.isUndef())
963       // A partial def undef doesn't count as reading the register.
964       PartDef = true;
965     else
966       FullDef = true;
967   }
968   // A partial redefine uses Reg unless there is also a full define.
969   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
970 }
971 
972 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
973 /// the specified register or -1 if it is not found. If isDead is true, defs
974 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
975 /// also checks if there is a def of a super-register.
976 int
977 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
978                                         const TargetRegisterInfo *TRI) const {
979   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
980   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
981     const MachineOperand &MO = getOperand(i);
982     // Accept regmask operands when Overlap is set.
983     // Ignore them when looking for a specific def operand (Overlap == false).
984     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
985       return i;
986     if (!MO.isReg() || !MO.isDef())
987       continue;
988     unsigned MOReg = MO.getReg();
989     bool Found = (MOReg == Reg);
990     if (!Found && TRI && isPhys &&
991         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
992       if (Overlap)
993         Found = TRI->regsOverlap(MOReg, Reg);
994       else
995         Found = TRI->isSubRegister(MOReg, Reg);
996     }
997     if (Found && (!isDead || MO.isDead()))
998       return i;
999   }
1000   return -1;
1001 }
1002 
1003 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1004 /// operand list that is used to represent the predicate. It returns -1 if
1005 /// none is found.
1006 int MachineInstr::findFirstPredOperandIdx() const {
1007   // Don't call MCID.findFirstPredOperandIdx() because this variant
1008   // is sometimes called on an instruction that's not yet complete, and
1009   // so the number of operands is less than the MCID indicates. In
1010   // particular, the PTX target does this.
1011   const MCInstrDesc &MCID = getDesc();
1012   if (MCID.isPredicable()) {
1013     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1014       if (MCID.OpInfo[i].isPredicate())
1015         return i;
1016   }
1017 
1018   return -1;
1019 }
1020 
1021 // MachineOperand::TiedTo is 4 bits wide.
1022 const unsigned TiedMax = 15;
1023 
1024 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1025 ///
1026 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1027 /// field. TiedTo can have these values:
1028 ///
1029 /// 0:              Operand is not tied to anything.
1030 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1031 /// TiedMax:        Tied to an operand >= TiedMax-1.
1032 ///
1033 /// The tied def must be one of the first TiedMax operands on a normal
1034 /// instruction. INLINEASM instructions allow more tied defs.
1035 ///
1036 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1037   MachineOperand &DefMO = getOperand(DefIdx);
1038   MachineOperand &UseMO = getOperand(UseIdx);
1039   assert(DefMO.isDef() && "DefIdx must be a def operand");
1040   assert(UseMO.isUse() && "UseIdx must be a use operand");
1041   assert(!DefMO.isTied() && "Def is already tied to another use");
1042   assert(!UseMO.isTied() && "Use is already tied to another def");
1043 
1044   if (DefIdx < TiedMax)
1045     UseMO.TiedTo = DefIdx + 1;
1046   else {
1047     // Inline asm can use the group descriptors to find tied operands, but on
1048     // normal instruction, the tied def must be within the first TiedMax
1049     // operands.
1050     assert(isInlineAsm() && "DefIdx out of range");
1051     UseMO.TiedTo = TiedMax;
1052   }
1053 
1054   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1055   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1056 }
1057 
1058 /// Given the index of a tied register operand, find the operand it is tied to.
1059 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1060 /// which must exist.
1061 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1062   const MachineOperand &MO = getOperand(OpIdx);
1063   assert(MO.isTied() && "Operand isn't tied");
1064 
1065   // Normally TiedTo is in range.
1066   if (MO.TiedTo < TiedMax)
1067     return MO.TiedTo - 1;
1068 
1069   // Uses on normal instructions can be out of range.
1070   if (!isInlineAsm()) {
1071     // Normal tied defs must be in the 0..TiedMax-1 range.
1072     if (MO.isUse())
1073       return TiedMax - 1;
1074     // MO is a def. Search for the tied use.
1075     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1076       const MachineOperand &UseMO = getOperand(i);
1077       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1078         return i;
1079     }
1080     llvm_unreachable("Can't find tied use");
1081   }
1082 
1083   // Now deal with inline asm by parsing the operand group descriptor flags.
1084   // Find the beginning of each operand group.
1085   SmallVector<unsigned, 8> GroupIdx;
1086   unsigned OpIdxGroup = ~0u;
1087   unsigned NumOps;
1088   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1089        i += NumOps) {
1090     const MachineOperand &FlagMO = getOperand(i);
1091     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1092     unsigned CurGroup = GroupIdx.size();
1093     GroupIdx.push_back(i);
1094     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1095     // OpIdx belongs to this operand group.
1096     if (OpIdx > i && OpIdx < i + NumOps)
1097       OpIdxGroup = CurGroup;
1098     unsigned TiedGroup;
1099     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1100       continue;
1101     // Operands in this group are tied to operands in TiedGroup which must be
1102     // earlier. Find the number of operands between the two groups.
1103     unsigned Delta = i - GroupIdx[TiedGroup];
1104 
1105     // OpIdx is a use tied to TiedGroup.
1106     if (OpIdxGroup == CurGroup)
1107       return OpIdx - Delta;
1108 
1109     // OpIdx is a def tied to this use group.
1110     if (OpIdxGroup == TiedGroup)
1111       return OpIdx + Delta;
1112   }
1113   llvm_unreachable("Invalid tied operand on inline asm");
1114 }
1115 
1116 /// clearKillInfo - Clears kill flags on all operands.
1117 ///
1118 void MachineInstr::clearKillInfo() {
1119   for (MachineOperand &MO : operands()) {
1120     if (MO.isReg() && MO.isUse())
1121       MO.setIsKill(false);
1122   }
1123 }
1124 
1125 void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg,
1126                                       unsigned SubIdx,
1127                                       const TargetRegisterInfo &RegInfo) {
1128   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1129     if (SubIdx)
1130       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1131     for (MachineOperand &MO : operands()) {
1132       if (!MO.isReg() || MO.getReg() != FromReg)
1133         continue;
1134       MO.substPhysReg(ToReg, RegInfo);
1135     }
1136   } else {
1137     for (MachineOperand &MO : operands()) {
1138       if (!MO.isReg() || MO.getReg() != FromReg)
1139         continue;
1140       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1141     }
1142   }
1143 }
1144 
1145 /// isSafeToMove - Return true if it is safe to move this instruction. If
1146 /// SawStore is set to true, it means that there is a store (or call) between
1147 /// the instruction's location and its intended destination.
1148 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1149   // Ignore stuff that we obviously can't move.
1150   //
1151   // Treat volatile loads as stores. This is not strictly necessary for
1152   // volatiles, but it is required for atomic loads. It is not allowed to move
1153   // a load across an atomic load with Ordering > Monotonic.
1154   if (mayStore() || isCall() || isPHI() ||
1155       (mayLoad() && hasOrderedMemoryRef())) {
1156     SawStore = true;
1157     return false;
1158   }
1159 
1160   if (isPosition() || isDebugInstr() || isTerminator() ||
1161       hasUnmodeledSideEffects())
1162     return false;
1163 
1164   // See if this instruction does a load.  If so, we have to guarantee that the
1165   // loaded value doesn't change between the load and the its intended
1166   // destination. The check for isInvariantLoad gives the targe the chance to
1167   // classify the load as always returning a constant, e.g. a constant pool
1168   // load.
1169   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1170     // Otherwise, this is a real load.  If there is a store between the load and
1171     // end of block, we can't move it.
1172     return !SawStore;
1173 
1174   return true;
1175 }
1176 
1177 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other,
1178                             bool UseTBAA) {
1179   const MachineFunction *MF = getMF();
1180   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1181   const MachineFrameInfo &MFI = MF->getFrameInfo();
1182 
1183   // If neither instruction stores to memory, they can't alias in any
1184   // meaningful way, even if they read from the same address.
1185   if (!mayStore() && !Other.mayStore())
1186     return false;
1187 
1188   // Let the target decide if memory accesses cannot possibly overlap.
1189   if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
1190     return false;
1191 
1192   // FIXME: Need to handle multiple memory operands to support all targets.
1193   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1194     return true;
1195 
1196   MachineMemOperand *MMOa = *memoperands_begin();
1197   MachineMemOperand *MMOb = *Other.memoperands_begin();
1198 
1199   // The following interface to AA is fashioned after DAGCombiner::isAlias
1200   // and operates with MachineMemOperand offset with some important
1201   // assumptions:
1202   //   - LLVM fundamentally assumes flat address spaces.
1203   //   - MachineOperand offset can *only* result from legalization and
1204   //     cannot affect queries other than the trivial case of overlap
1205   //     checking.
1206   //   - These offsets never wrap and never step outside
1207   //     of allocated objects.
1208   //   - There should never be any negative offsets here.
1209   //
1210   // FIXME: Modify API to hide this math from "user"
1211   // Even before we go to AA we can reason locally about some
1212   // memory objects. It can save compile time, and possibly catch some
1213   // corner cases not currently covered.
1214 
1215   int64_t OffsetA = MMOa->getOffset();
1216   int64_t OffsetB = MMOb->getOffset();
1217   int64_t MinOffset = std::min(OffsetA, OffsetB);
1218 
1219   uint64_t WidthA = MMOa->getSize();
1220   uint64_t WidthB = MMOb->getSize();
1221   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1222   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1223 
1224   const Value *ValA = MMOa->getValue();
1225   const Value *ValB = MMOb->getValue();
1226   bool SameVal = (ValA && ValB && (ValA == ValB));
1227   if (!SameVal) {
1228     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1229     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1230     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1231       return false;
1232     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1233       return false;
1234     if (PSVa && PSVb && (PSVa == PSVb))
1235       SameVal = true;
1236   }
1237 
1238   if (SameVal) {
1239     if (!KnownWidthA || !KnownWidthB)
1240       return true;
1241     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1242     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1243     return (MinOffset + LowWidth > MaxOffset);
1244   }
1245 
1246   if (!AA)
1247     return true;
1248 
1249   if (!ValA || !ValB)
1250     return true;
1251 
1252   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1253   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1254 
1255   int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1256                                  : MemoryLocation::UnknownSize;
1257   int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1258                                  : MemoryLocation::UnknownSize;
1259 
1260   AliasResult AAResult = AA->alias(
1261       MemoryLocation(ValA, OverlapA,
1262                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1263       MemoryLocation(ValB, OverlapB,
1264                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1265 
1266   return (AAResult != NoAlias);
1267 }
1268 
1269 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1270 /// or volatile memory reference, or if the information describing the memory
1271 /// reference is not available. Return false if it is known to have no ordered
1272 /// memory references.
1273 bool MachineInstr::hasOrderedMemoryRef() const {
1274   // An instruction known never to access memory won't have a volatile access.
1275   if (!mayStore() &&
1276       !mayLoad() &&
1277       !isCall() &&
1278       !hasUnmodeledSideEffects())
1279     return false;
1280 
1281   // Otherwise, if the instruction has no memory reference information,
1282   // conservatively assume it wasn't preserved.
1283   if (memoperands_empty())
1284     return true;
1285 
1286   // Check if any of our memory operands are ordered.
1287   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1288     return !MMO->isUnordered();
1289   });
1290 }
1291 
1292 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1293 /// trap and is loading from a location whose value is invariant across a run of
1294 /// this function.
1295 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1296   // If the instruction doesn't load at all, it isn't an invariant load.
1297   if (!mayLoad())
1298     return false;
1299 
1300   // If the instruction has lost its memoperands, conservatively assume that
1301   // it may not be an invariant load.
1302   if (memoperands_empty())
1303     return false;
1304 
1305   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1306 
1307   for (MachineMemOperand *MMO : memoperands()) {
1308     if (MMO->isVolatile()) return false;
1309     // TODO: Figure out whether isAtomic is really necessary (see D57601).
1310     if (MMO->isAtomic()) return false;
1311     if (MMO->isStore()) return false;
1312     if (MMO->isInvariant() && MMO->isDereferenceable())
1313       continue;
1314 
1315     // A load from a constant PseudoSourceValue is invariant.
1316     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1317       if (PSV->isConstant(&MFI))
1318         continue;
1319 
1320     if (const Value *V = MMO->getValue()) {
1321       // If we have an AliasAnalysis, ask it whether the memory is constant.
1322       if (AA &&
1323           AA->pointsToConstantMemory(
1324               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1325         continue;
1326     }
1327 
1328     // Otherwise assume conservatively.
1329     return false;
1330   }
1331 
1332   // Everything checks out.
1333   return true;
1334 }
1335 
1336 /// isConstantValuePHI - If the specified instruction is a PHI that always
1337 /// merges together the same virtual register, return the register, otherwise
1338 /// return 0.
1339 unsigned MachineInstr::isConstantValuePHI() const {
1340   if (!isPHI())
1341     return 0;
1342   assert(getNumOperands() >= 3 &&
1343          "It's illegal to have a PHI without source operands");
1344 
1345   unsigned Reg = getOperand(1).getReg();
1346   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1347     if (getOperand(i).getReg() != Reg)
1348       return 0;
1349   return Reg;
1350 }
1351 
1352 bool MachineInstr::hasUnmodeledSideEffects() const {
1353   if (hasProperty(MCID::UnmodeledSideEffects))
1354     return true;
1355   if (isInlineAsm()) {
1356     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1357     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1358       return true;
1359   }
1360 
1361   return false;
1362 }
1363 
1364 bool MachineInstr::isLoadFoldBarrier() const {
1365   return mayStore() || isCall() || hasUnmodeledSideEffects();
1366 }
1367 
1368 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1369 ///
1370 bool MachineInstr::allDefsAreDead() const {
1371   for (const MachineOperand &MO : operands()) {
1372     if (!MO.isReg() || MO.isUse())
1373       continue;
1374     if (!MO.isDead())
1375       return false;
1376   }
1377   return true;
1378 }
1379 
1380 /// copyImplicitOps - Copy implicit register operands from specified
1381 /// instruction to this instruction.
1382 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1383                                    const MachineInstr &MI) {
1384   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1385        i != e; ++i) {
1386     const MachineOperand &MO = MI.getOperand(i);
1387     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1388       addOperand(MF, MO);
1389   }
1390 }
1391 
1392 bool MachineInstr::hasComplexRegisterTies() const {
1393   const MCInstrDesc &MCID = getDesc();
1394   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1395     const auto &Operand = getOperand(I);
1396     if (!Operand.isReg() || Operand.isDef())
1397       // Ignore the defined registers as MCID marks only the uses as tied.
1398       continue;
1399     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1400     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1401     if (ExpectedTiedIdx != TiedIdx)
1402       return true;
1403   }
1404   return false;
1405 }
1406 
1407 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1408                                  const MachineRegisterInfo &MRI) const {
1409   const MachineOperand &Op = getOperand(OpIdx);
1410   if (!Op.isReg())
1411     return LLT{};
1412 
1413   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1414     return MRI.getType(Op.getReg());
1415 
1416   auto &OpInfo = getDesc().OpInfo[OpIdx];
1417   if (!OpInfo.isGenericType())
1418     return MRI.getType(Op.getReg());
1419 
1420   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1421     return LLT{};
1422 
1423   LLT TypeToPrint = MRI.getType(Op.getReg());
1424   // Don't mark the type index printed if it wasn't actually printed: maybe
1425   // another operand with the same type index has an actual type attached:
1426   if (TypeToPrint.isValid())
1427     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1428   return TypeToPrint;
1429 }
1430 
1431 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1432 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1433   dbgs() << "  ";
1434   print(dbgs());
1435 }
1436 #endif
1437 
1438 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1439                          bool SkipDebugLoc, bool AddNewLine,
1440                          const TargetInstrInfo *TII) const {
1441   const Module *M = nullptr;
1442   const Function *F = nullptr;
1443   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1444     F = &MF->getFunction();
1445     M = F->getParent();
1446     if (!TII)
1447       TII = MF->getSubtarget().getInstrInfo();
1448   }
1449 
1450   ModuleSlotTracker MST(M);
1451   if (F)
1452     MST.incorporateFunction(*F);
1453   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, TII);
1454 }
1455 
1456 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1457                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1458                          bool AddNewLine, const TargetInstrInfo *TII) const {
1459   // We can be a bit tidier if we know the MachineFunction.
1460   const MachineFunction *MF = nullptr;
1461   const TargetRegisterInfo *TRI = nullptr;
1462   const MachineRegisterInfo *MRI = nullptr;
1463   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1464   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1465 
1466   if (isCFIInstruction())
1467     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1468 
1469   SmallBitVector PrintedTypes(8);
1470   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1471   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1472     if (!ShouldPrintRegisterTies)
1473       return 0U;
1474     const MachineOperand &MO = getOperand(OpIdx);
1475     if (MO.isReg() && MO.isTied() && !MO.isDef())
1476       return findTiedOperandIdx(OpIdx);
1477     return 0U;
1478   };
1479   unsigned StartOp = 0;
1480   unsigned e = getNumOperands();
1481 
1482   // Print explicitly defined operands on the left of an assignment syntax.
1483   while (StartOp < e) {
1484     const MachineOperand &MO = getOperand(StartOp);
1485     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1486       break;
1487 
1488     if (StartOp != 0)
1489       OS << ", ";
1490 
1491     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1492     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1493     MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone,
1494              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1495     ++StartOp;
1496   }
1497 
1498   if (StartOp != 0)
1499     OS << " = ";
1500 
1501   if (getFlag(MachineInstr::FrameSetup))
1502     OS << "frame-setup ";
1503   if (getFlag(MachineInstr::FrameDestroy))
1504     OS << "frame-destroy ";
1505   if (getFlag(MachineInstr::FmNoNans))
1506     OS << "nnan ";
1507   if (getFlag(MachineInstr::FmNoInfs))
1508     OS << "ninf ";
1509   if (getFlag(MachineInstr::FmNsz))
1510     OS << "nsz ";
1511   if (getFlag(MachineInstr::FmArcp))
1512     OS << "arcp ";
1513   if (getFlag(MachineInstr::FmContract))
1514     OS << "contract ";
1515   if (getFlag(MachineInstr::FmAfn))
1516     OS << "afn ";
1517   if (getFlag(MachineInstr::FmReassoc))
1518     OS << "reassoc ";
1519   if (getFlag(MachineInstr::NoUWrap))
1520     OS << "nuw ";
1521   if (getFlag(MachineInstr::NoSWrap))
1522     OS << "nsw ";
1523   if (getFlag(MachineInstr::IsExact))
1524     OS << "exact ";
1525 
1526   // Print the opcode name.
1527   if (TII)
1528     OS << TII->getName(getOpcode());
1529   else
1530     OS << "UNKNOWN";
1531 
1532   if (SkipOpers)
1533     return;
1534 
1535   // Print the rest of the operands.
1536   bool FirstOp = true;
1537   unsigned AsmDescOp = ~0u;
1538   unsigned AsmOpCount = 0;
1539 
1540   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1541     // Print asm string.
1542     OS << " ";
1543     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1544     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1545     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1546     getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1547                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1548                             IntrinsicInfo);
1549 
1550     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1551     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1552     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1553       OS << " [sideeffect]";
1554     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1555       OS << " [mayload]";
1556     if (ExtraInfo & InlineAsm::Extra_MayStore)
1557       OS << " [maystore]";
1558     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1559       OS << " [isconvergent]";
1560     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1561       OS << " [alignstack]";
1562     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1563       OS << " [attdialect]";
1564     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1565       OS << " [inteldialect]";
1566 
1567     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1568     FirstOp = false;
1569   }
1570 
1571   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1572     const MachineOperand &MO = getOperand(i);
1573 
1574     if (FirstOp) FirstOp = false; else OS << ",";
1575     OS << " ";
1576 
1577     if (isDebugValue() && MO.isMetadata()) {
1578       // Pretty print DBG_VALUE instructions.
1579       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1580       if (DIV && !DIV->getName().empty())
1581         OS << "!\"" << DIV->getName() << '\"';
1582       else {
1583         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1584         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1585         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1586                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1587       }
1588     } else if (isDebugLabel() && MO.isMetadata()) {
1589       // Pretty print DBG_LABEL instructions.
1590       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1591       if (DIL && !DIL->getName().empty())
1592         OS << "\"" << DIL->getName() << '\"';
1593       else {
1594         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1595         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1596         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1597                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1598       }
1599     } else if (i == AsmDescOp && MO.isImm()) {
1600       // Pretty print the inline asm operand descriptor.
1601       OS << '$' << AsmOpCount++;
1602       unsigned Flag = MO.getImm();
1603       switch (InlineAsm::getKind(Flag)) {
1604       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1605       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1606       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1607       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1608       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1609       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1610       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1611       }
1612 
1613       unsigned RCID = 0;
1614       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1615           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1616         if (TRI) {
1617           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1618         } else
1619           OS << ":RC" << RCID;
1620       }
1621 
1622       if (InlineAsm::isMemKind(Flag)) {
1623         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1624         switch (MCID) {
1625         case InlineAsm::Constraint_es: OS << ":es"; break;
1626         case InlineAsm::Constraint_i:  OS << ":i"; break;
1627         case InlineAsm::Constraint_m:  OS << ":m"; break;
1628         case InlineAsm::Constraint_o:  OS << ":o"; break;
1629         case InlineAsm::Constraint_v:  OS << ":v"; break;
1630         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1631         case InlineAsm::Constraint_R:  OS << ":R"; break;
1632         case InlineAsm::Constraint_S:  OS << ":S"; break;
1633         case InlineAsm::Constraint_T:  OS << ":T"; break;
1634         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1635         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1636         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1637         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1638         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1639         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1640         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1641         case InlineAsm::Constraint_X:  OS << ":X"; break;
1642         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1643         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1644         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1645         default: OS << ":?"; break;
1646         }
1647       }
1648 
1649       unsigned TiedTo = 0;
1650       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1651         OS << " tiedto:$" << TiedTo;
1652 
1653       OS << ']';
1654 
1655       // Compute the index of the next operand descriptor.
1656       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1657     } else {
1658       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1659       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1660       if (MO.isImm() && isOperandSubregIdx(i))
1661         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1662       else
1663         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1664                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1665     }
1666   }
1667 
1668   // Print any optional symbols attached to this instruction as-if they were
1669   // operands.
1670   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1671     if (!FirstOp) {
1672       FirstOp = false;
1673       OS << ',';
1674     }
1675     OS << " pre-instr-symbol ";
1676     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1677   }
1678   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1679     if (!FirstOp) {
1680       FirstOp = false;
1681       OS << ',';
1682     }
1683     OS << " post-instr-symbol ";
1684     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1685   }
1686 
1687   if (!SkipDebugLoc) {
1688     if (const DebugLoc &DL = getDebugLoc()) {
1689       if (!FirstOp)
1690         OS << ',';
1691       OS << " debug-location ";
1692       DL->printAsOperand(OS, MST);
1693     }
1694   }
1695 
1696   if (!memoperands_empty()) {
1697     SmallVector<StringRef, 0> SSNs;
1698     const LLVMContext *Context = nullptr;
1699     std::unique_ptr<LLVMContext> CtxPtr;
1700     const MachineFrameInfo *MFI = nullptr;
1701     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1702       MFI = &MF->getFrameInfo();
1703       Context = &MF->getFunction().getContext();
1704     } else {
1705       CtxPtr = llvm::make_unique<LLVMContext>();
1706       Context = CtxPtr.get();
1707     }
1708 
1709     OS << " :: ";
1710     bool NeedComma = false;
1711     for (const MachineMemOperand *Op : memoperands()) {
1712       if (NeedComma)
1713         OS << ", ";
1714       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1715       NeedComma = true;
1716     }
1717   }
1718 
1719   if (SkipDebugLoc)
1720     return;
1721 
1722   bool HaveSemi = false;
1723 
1724   // Print debug location information.
1725   if (const DebugLoc &DL = getDebugLoc()) {
1726     if (!HaveSemi) {
1727       OS << ';';
1728       HaveSemi = true;
1729     }
1730     OS << ' ';
1731     DL.print(OS);
1732   }
1733 
1734   // Print extra comments for DEBUG_VALUE.
1735   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1736     if (!HaveSemi) {
1737       OS << ";";
1738       HaveSemi = true;
1739     }
1740     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1741     OS << " line no:" <<  DV->getLine();
1742     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1743       DebugLoc InlinedAtDL(InlinedAt);
1744       if (InlinedAtDL && MF) {
1745         OS << " inlined @[ ";
1746         InlinedAtDL.print(OS);
1747         OS << " ]";
1748       }
1749     }
1750     if (isIndirectDebugValue())
1751       OS << " indirect";
1752   }
1753   // TODO: DBG_LABEL
1754 
1755   if (AddNewLine)
1756     OS << '\n';
1757 }
1758 
1759 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1760                                      const TargetRegisterInfo *RegInfo,
1761                                      bool AddIfNotFound) {
1762   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1763   bool hasAliases = isPhysReg &&
1764     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1765   bool Found = false;
1766   SmallVector<unsigned,4> DeadOps;
1767   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1768     MachineOperand &MO = getOperand(i);
1769     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1770       continue;
1771 
1772     // DEBUG_VALUE nodes do not contribute to code generation and should
1773     // always be ignored. Failure to do so may result in trying to modify
1774     // KILL flags on DEBUG_VALUE nodes.
1775     if (MO.isDebug())
1776       continue;
1777 
1778     unsigned Reg = MO.getReg();
1779     if (!Reg)
1780       continue;
1781 
1782     if (Reg == IncomingReg) {
1783       if (!Found) {
1784         if (MO.isKill())
1785           // The register is already marked kill.
1786           return true;
1787         if (isPhysReg && isRegTiedToDefOperand(i))
1788           // Two-address uses of physregs must not be marked kill.
1789           return true;
1790         MO.setIsKill();
1791         Found = true;
1792       }
1793     } else if (hasAliases && MO.isKill() &&
1794                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1795       // A super-register kill already exists.
1796       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1797         return true;
1798       if (RegInfo->isSubRegister(IncomingReg, Reg))
1799         DeadOps.push_back(i);
1800     }
1801   }
1802 
1803   // Trim unneeded kill operands.
1804   while (!DeadOps.empty()) {
1805     unsigned OpIdx = DeadOps.back();
1806     if (getOperand(OpIdx).isImplicit() &&
1807         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1808       RemoveOperand(OpIdx);
1809     else
1810       getOperand(OpIdx).setIsKill(false);
1811     DeadOps.pop_back();
1812   }
1813 
1814   // If not found, this means an alias of one of the operands is killed. Add a
1815   // new implicit operand if required.
1816   if (!Found && AddIfNotFound) {
1817     addOperand(MachineOperand::CreateReg(IncomingReg,
1818                                          false /*IsDef*/,
1819                                          true  /*IsImp*/,
1820                                          true  /*IsKill*/));
1821     return true;
1822   }
1823   return Found;
1824 }
1825 
1826 void MachineInstr::clearRegisterKills(unsigned Reg,
1827                                       const TargetRegisterInfo *RegInfo) {
1828   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1829     RegInfo = nullptr;
1830   for (MachineOperand &MO : operands()) {
1831     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1832       continue;
1833     unsigned OpReg = MO.getReg();
1834     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1835       MO.setIsKill(false);
1836   }
1837 }
1838 
1839 bool MachineInstr::addRegisterDead(unsigned Reg,
1840                                    const TargetRegisterInfo *RegInfo,
1841                                    bool AddIfNotFound) {
1842   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1843   bool hasAliases = isPhysReg &&
1844     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1845   bool Found = false;
1846   SmallVector<unsigned,4> DeadOps;
1847   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1848     MachineOperand &MO = getOperand(i);
1849     if (!MO.isReg() || !MO.isDef())
1850       continue;
1851     unsigned MOReg = MO.getReg();
1852     if (!MOReg)
1853       continue;
1854 
1855     if (MOReg == Reg) {
1856       MO.setIsDead();
1857       Found = true;
1858     } else if (hasAliases && MO.isDead() &&
1859                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1860       // There exists a super-register that's marked dead.
1861       if (RegInfo->isSuperRegister(Reg, MOReg))
1862         return true;
1863       if (RegInfo->isSubRegister(Reg, MOReg))
1864         DeadOps.push_back(i);
1865     }
1866   }
1867 
1868   // Trim unneeded dead operands.
1869   while (!DeadOps.empty()) {
1870     unsigned OpIdx = DeadOps.back();
1871     if (getOperand(OpIdx).isImplicit() &&
1872         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1873       RemoveOperand(OpIdx);
1874     else
1875       getOperand(OpIdx).setIsDead(false);
1876     DeadOps.pop_back();
1877   }
1878 
1879   // If not found, this means an alias of one of the operands is dead. Add a
1880   // new implicit operand if required.
1881   if (Found || !AddIfNotFound)
1882     return Found;
1883 
1884   addOperand(MachineOperand::CreateReg(Reg,
1885                                        true  /*IsDef*/,
1886                                        true  /*IsImp*/,
1887                                        false /*IsKill*/,
1888                                        true  /*IsDead*/));
1889   return true;
1890 }
1891 
1892 void MachineInstr::clearRegisterDeads(unsigned Reg) {
1893   for (MachineOperand &MO : operands()) {
1894     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1895       continue;
1896     MO.setIsDead(false);
1897   }
1898 }
1899 
1900 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
1901   for (MachineOperand &MO : operands()) {
1902     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1903       continue;
1904     MO.setIsUndef(IsUndef);
1905   }
1906 }
1907 
1908 void MachineInstr::addRegisterDefined(unsigned Reg,
1909                                       const TargetRegisterInfo *RegInfo) {
1910   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1911     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
1912     if (MO)
1913       return;
1914   } else {
1915     for (const MachineOperand &MO : operands()) {
1916       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1917           MO.getSubReg() == 0)
1918         return;
1919     }
1920   }
1921   addOperand(MachineOperand::CreateReg(Reg,
1922                                        true  /*IsDef*/,
1923                                        true  /*IsImp*/));
1924 }
1925 
1926 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1927                                          const TargetRegisterInfo &TRI) {
1928   bool HasRegMask = false;
1929   for (MachineOperand &MO : operands()) {
1930     if (MO.isRegMask()) {
1931       HasRegMask = true;
1932       continue;
1933     }
1934     if (!MO.isReg() || !MO.isDef()) continue;
1935     unsigned Reg = MO.getReg();
1936     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1937     // If there are no uses, including partial uses, the def is dead.
1938     if (llvm::none_of(UsedRegs,
1939                       [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
1940       MO.setIsDead();
1941   }
1942 
1943   // This is a call with a register mask operand.
1944   // Mask clobbers are always dead, so add defs for the non-dead defines.
1945   if (HasRegMask)
1946     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1947          I != E; ++I)
1948       addRegisterDefined(*I, &TRI);
1949 }
1950 
1951 unsigned
1952 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1953   // Build up a buffer of hash code components.
1954   SmallVector<size_t, 8> HashComponents;
1955   HashComponents.reserve(MI->getNumOperands() + 1);
1956   HashComponents.push_back(MI->getOpcode());
1957   for (const MachineOperand &MO : MI->operands()) {
1958     if (MO.isReg() && MO.isDef() &&
1959         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1960       continue;  // Skip virtual register defs.
1961 
1962     HashComponents.push_back(hash_value(MO));
1963   }
1964   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1965 }
1966 
1967 void MachineInstr::emitError(StringRef Msg) const {
1968   // Find the source location cookie.
1969   unsigned LocCookie = 0;
1970   const MDNode *LocMD = nullptr;
1971   for (unsigned i = getNumOperands(); i != 0; --i) {
1972     if (getOperand(i-1).isMetadata() &&
1973         (LocMD = getOperand(i-1).getMetadata()) &&
1974         LocMD->getNumOperands() != 0) {
1975       if (const ConstantInt *CI =
1976               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
1977         LocCookie = CI->getZExtValue();
1978         break;
1979       }
1980     }
1981   }
1982 
1983   if (const MachineBasicBlock *MBB = getParent())
1984     if (const MachineFunction *MF = MBB->getParent())
1985       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1986   report_fatal_error(Msg);
1987 }
1988 
1989 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
1990                                   const MCInstrDesc &MCID, bool IsIndirect,
1991                                   unsigned Reg, const MDNode *Variable,
1992                                   const MDNode *Expr) {
1993   assert(isa<DILocalVariable>(Variable) && "not a variable");
1994   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
1995   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
1996          "Expected inlined-at fields to agree");
1997   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
1998   if (IsIndirect)
1999     MIB.addImm(0U);
2000   else
2001     MIB.addReg(0U, RegState::Debug);
2002   return MIB.addMetadata(Variable).addMetadata(Expr);
2003 }
2004 
2005 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2006                                   const MCInstrDesc &MCID, bool IsIndirect,
2007                                   MachineOperand &MO, const MDNode *Variable,
2008                                   const MDNode *Expr) {
2009   assert(isa<DILocalVariable>(Variable) && "not a variable");
2010   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2011   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2012          "Expected inlined-at fields to agree");
2013   if (MO.isReg())
2014     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2015 
2016   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2017   if (IsIndirect)
2018     MIB.addImm(0U);
2019   else
2020     MIB.addReg(0U, RegState::Debug);
2021   return MIB.addMetadata(Variable).addMetadata(Expr);
2022  }
2023 
2024 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2025                                   MachineBasicBlock::iterator I,
2026                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2027                                   bool IsIndirect, unsigned Reg,
2028                                   const MDNode *Variable, const MDNode *Expr) {
2029   MachineFunction &MF = *BB.getParent();
2030   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2031   BB.insert(I, MI);
2032   return MachineInstrBuilder(MF, MI);
2033 }
2034 
2035 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2036                                   MachineBasicBlock::iterator I,
2037                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2038                                   bool IsIndirect, MachineOperand &MO,
2039                                   const MDNode *Variable, const MDNode *Expr) {
2040   MachineFunction &MF = *BB.getParent();
2041   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2042   BB.insert(I, MI);
2043   return MachineInstrBuilder(MF, *MI);
2044 }
2045 
2046 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2047 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2048 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2049   assert(MI.getOperand(0).isReg() && "can't spill non-register");
2050   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2051          "Expected inlined-at fields to agree");
2052 
2053   const DIExpression *Expr = MI.getDebugExpression();
2054   if (MI.isIndirectDebugValue()) {
2055     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
2056     Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
2057   }
2058   return Expr;
2059 }
2060 
2061 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2062                                           MachineBasicBlock::iterator I,
2063                                           const MachineInstr &Orig,
2064                                           int FrameIndex) {
2065   const DIExpression *Expr = computeExprForSpill(Orig);
2066   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2067       .addFrameIndex(FrameIndex)
2068       .addImm(0U)
2069       .addMetadata(Orig.getDebugVariable())
2070       .addMetadata(Expr);
2071 }
2072 
2073 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2074   const DIExpression *Expr = computeExprForSpill(Orig);
2075   Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
2076   Orig.getOperand(1).ChangeToImmediate(0U);
2077   Orig.getOperand(3).setMetadata(Expr);
2078 }
2079 
2080 void MachineInstr::collectDebugValues(
2081                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2082   MachineInstr &MI = *this;
2083   if (!MI.getOperand(0).isReg())
2084     return;
2085 
2086   MachineBasicBlock::iterator DI = MI; ++DI;
2087   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2088        DI != DE; ++DI) {
2089     if (!DI->isDebugValue())
2090       return;
2091     if (DI->getOperand(0).isReg() &&
2092         DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
2093       DbgValues.push_back(&*DI);
2094   }
2095 }
2096 
2097 void MachineInstr::changeDebugValuesDefReg(unsigned Reg) {
2098   // Collect matching debug values.
2099   SmallVector<MachineInstr *, 2> DbgValues;
2100   collectDebugValues(DbgValues);
2101 
2102   // Propagate Reg to debug value instructions.
2103   for (auto *DBI : DbgValues)
2104     DBI->getOperand(0).setReg(Reg);
2105 }
2106 
2107 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2108 
2109 static unsigned getSpillSlotSize(MMOList &Accesses,
2110                                  const MachineFrameInfo &MFI) {
2111   unsigned Size = 0;
2112   for (auto A : Accesses)
2113     if (MFI.isSpillSlotObjectIndex(
2114             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2115                 ->getFrameIndex()))
2116       Size += A->getSize();
2117   return Size;
2118 }
2119 
2120 Optional<unsigned>
2121 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2122   int FI;
2123   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2124     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2125     if (MFI.isSpillSlotObjectIndex(FI))
2126       return (*memoperands_begin())->getSize();
2127   }
2128   return None;
2129 }
2130 
2131 Optional<unsigned>
2132 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2133   MMOList Accesses;
2134   if (TII->hasStoreToStackSlot(*this, Accesses))
2135     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2136   return None;
2137 }
2138 
2139 Optional<unsigned>
2140 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2141   int FI;
2142   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2143     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2144     if (MFI.isSpillSlotObjectIndex(FI))
2145       return (*memoperands_begin())->getSize();
2146   }
2147   return None;
2148 }
2149 
2150 Optional<unsigned>
2151 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2152   MMOList Accesses;
2153   if (TII->hasLoadFromStackSlot(*this, Accesses))
2154     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2155   return None;
2156 }
2157