xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 8f18cf77e79e1f1534d97220a14d684095f7b92a)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallBitVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/MemoryLocation.h"
21 #include "llvm/CodeGen/LowLevelType.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/CodeGen/Register.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/ModuleSlotTracker.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/FormattedStream.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstdint>
59 #include <cstring>
60 #include <utility>
61 
62 using namespace llvm;
63 
64 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
65   if (const MachineBasicBlock *MBB = MI.getParent())
66     if (const MachineFunction *MF = MBB->getParent())
67       return MF;
68   return nullptr;
69 }
70 
71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
72 // it.
73 static void tryToGetTargetInfo(const MachineInstr &MI,
74                                const TargetRegisterInfo *&TRI,
75                                const MachineRegisterInfo *&MRI,
76                                const TargetIntrinsicInfo *&IntrinsicInfo,
77                                const TargetInstrInfo *&TII) {
78 
79   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
80     TRI = MF->getSubtarget().getRegisterInfo();
81     MRI = &MF->getRegInfo();
82     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
83     TII = MF->getSubtarget().getInstrInfo();
84   }
85 }
86 
87 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
88   for (MCPhysReg ImpDef : MCID->implicit_defs())
89     addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true));
90   for (MCPhysReg ImpUse : MCID->implicit_uses())
91     addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true));
92 }
93 
94 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
95 /// implicit operands. It reserves space for the number of operands specified by
96 /// the MCInstrDesc.
97 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
98                            DebugLoc DL, bool NoImp)
99     : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0),
100       DbgLoc(std::move(DL)), DebugInstrNum(0) {
101   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
102 
103   // Reserve space for the expected number of operands.
104   if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() +
105                         MCID->implicit_uses().size()) {
106     CapOperands = OperandCapacity::get(NumOps);
107     Operands = MF.allocateOperandArray(CapOperands);
108   }
109 
110   if (!NoImp)
111     addImplicitDefUseOperands(MF);
112 }
113 
114 /// MachineInstr ctor - Copies MachineInstr arg exactly.
115 /// Does not copy the number from debug instruction numbering, to preserve
116 /// uniqueness.
117 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
118     : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0),
119       Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0) {
120   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
121 
122   CapOperands = OperandCapacity::get(MI.getNumOperands());
123   Operands = MF.allocateOperandArray(CapOperands);
124 
125   // Copy operands.
126   for (const MachineOperand &MO : MI.operands())
127     addOperand(MF, MO);
128 
129   // Replicate ties between the operands, which addOperand was not
130   // able to do reliably.
131   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
132     MachineOperand &NewMO = getOperand(i);
133     const MachineOperand &OrigMO = MI.getOperand(i);
134     NewMO.TiedTo = OrigMO.TiedTo;
135   }
136 
137   // Copy all the sensible flags.
138   setFlags(MI.Flags);
139 }
140 
141 void MachineInstr::moveBefore(MachineInstr *MovePos) {
142   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
143 }
144 
145 /// getRegInfo - If this instruction is embedded into a MachineFunction,
146 /// return the MachineRegisterInfo object for the current function, otherwise
147 /// return null.
148 MachineRegisterInfo *MachineInstr::getRegInfo() {
149   if (MachineBasicBlock *MBB = getParent())
150     return &MBB->getParent()->getRegInfo();
151   return nullptr;
152 }
153 
154 const MachineRegisterInfo *MachineInstr::getRegInfo() const {
155   if (const MachineBasicBlock *MBB = getParent())
156     return &MBB->getParent()->getRegInfo();
157   return nullptr;
158 }
159 
160 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
161   for (MachineOperand &MO : operands())
162     if (MO.isReg())
163       MRI.removeRegOperandFromUseList(&MO);
164 }
165 
166 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
167   for (MachineOperand &MO : operands())
168     if (MO.isReg())
169       MRI.addRegOperandToUseList(&MO);
170 }
171 
172 void MachineInstr::addOperand(const MachineOperand &Op) {
173   MachineBasicBlock *MBB = getParent();
174   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
175   MachineFunction *MF = MBB->getParent();
176   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
177   addOperand(*MF, Op);
178 }
179 
180 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
181 /// ranges. If MRI is non-null also update use-def chains.
182 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
183                          unsigned NumOps, MachineRegisterInfo *MRI) {
184   if (MRI)
185     return MRI->moveOperands(Dst, Src, NumOps);
186   // MachineOperand is a trivially copyable type so we can just use memmove.
187   assert(Dst && Src && "Unknown operands");
188   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
189 }
190 
191 /// addOperand - Add the specified operand to the instruction.  If it is an
192 /// implicit operand, it is added to the end of the operand list.  If it is
193 /// an explicit operand it is added at the end of the explicit operand list
194 /// (before the first implicit operand).
195 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
196   assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) &&
197          "Cannot add more operands.");
198   assert(MCID && "Cannot add operands before providing an instr descriptor");
199 
200   // Check if we're adding one of our existing operands.
201   if (&Op >= Operands && &Op < Operands + NumOperands) {
202     // This is unusual: MI->addOperand(MI->getOperand(i)).
203     // If adding Op requires reallocating or moving existing operands around,
204     // the Op reference could go stale. Support it by copying Op.
205     MachineOperand CopyOp(Op);
206     return addOperand(MF, CopyOp);
207   }
208 
209   // Find the insert location for the new operand.  Implicit registers go at
210   // the end, everything else goes before the implicit regs.
211   //
212   // FIXME: Allow mixed explicit and implicit operands on inline asm.
213   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
214   // implicit-defs, but they must not be moved around.  See the FIXME in
215   // InstrEmitter.cpp.
216   unsigned OpNo = getNumOperands();
217   bool isImpReg = Op.isReg() && Op.isImplicit();
218   if (!isImpReg && !isInlineAsm()) {
219     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
220       --OpNo;
221       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
222     }
223   }
224 
225   // OpNo now points as the desired insertion point.  Unless this is a variadic
226   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
227   // RegMask operands go between the explicit and implicit operands.
228   assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() ||
229           Op.isValidExcessOperand()) &&
230          "Trying to add an operand to a machine instr that is already done!");
231 
232   MachineRegisterInfo *MRI = getRegInfo();
233 
234   // Determine if the Operands array needs to be reallocated.
235   // Save the old capacity and operand array.
236   OperandCapacity OldCap = CapOperands;
237   MachineOperand *OldOperands = Operands;
238   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
239     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
240     Operands = MF.allocateOperandArray(CapOperands);
241     // Move the operands before the insertion point.
242     if (OpNo)
243       moveOperands(Operands, OldOperands, OpNo, MRI);
244   }
245 
246   // Move the operands following the insertion point.
247   if (OpNo != NumOperands)
248     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
249                  MRI);
250   ++NumOperands;
251 
252   // Deallocate the old operand array.
253   if (OldOperands != Operands && OldOperands)
254     MF.deallocateOperandArray(OldCap, OldOperands);
255 
256   // Copy Op into place. It still needs to be inserted into the MRI use lists.
257   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
258   NewMO->ParentMI = this;
259 
260   // When adding a register operand, tell MRI about it.
261   if (NewMO->isReg()) {
262     // Ensure isOnRegUseList() returns false, regardless of Op's status.
263     NewMO->Contents.Reg.Prev = nullptr;
264     // Ignore existing ties. This is not a property that can be copied.
265     NewMO->TiedTo = 0;
266     // Add the new operand to MRI, but only for instructions in an MBB.
267     if (MRI)
268       MRI->addRegOperandToUseList(NewMO);
269     // The MCID operand information isn't accurate until we start adding
270     // explicit operands. The implicit operands are added first, then the
271     // explicits are inserted before them.
272     if (!isImpReg) {
273       // Tie uses to defs as indicated in MCInstrDesc.
274       if (NewMO->isUse()) {
275         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
276         if (DefIdx != -1)
277           tieOperands(DefIdx, OpNo);
278       }
279       // If the register operand is flagged as early, mark the operand as such.
280       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
281         NewMO->setIsEarlyClobber(true);
282     }
283     // Ensure debug instructions set debug flag on register uses.
284     if (NewMO->isUse() && isDebugInstr())
285       NewMO->setIsDebug();
286   }
287 }
288 
289 void MachineInstr::removeOperand(unsigned OpNo) {
290   assert(OpNo < getNumOperands() && "Invalid operand number");
291   untieRegOperand(OpNo);
292 
293 #ifndef NDEBUG
294   // Moving tied operands would break the ties.
295   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
296     if (Operands[i].isReg())
297       assert(!Operands[i].isTied() && "Cannot move tied operands");
298 #endif
299 
300   MachineRegisterInfo *MRI = getRegInfo();
301   if (MRI && Operands[OpNo].isReg())
302     MRI->removeRegOperandFromUseList(Operands + OpNo);
303 
304   // Don't call the MachineOperand destructor. A lot of this code depends on
305   // MachineOperand having a trivial destructor anyway, and adding a call here
306   // wouldn't make it 'destructor-correct'.
307 
308   if (unsigned N = NumOperands - 1 - OpNo)
309     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
310   --NumOperands;
311 }
312 
313 void MachineInstr::setExtraInfo(MachineFunction &MF,
314                                 ArrayRef<MachineMemOperand *> MMOs,
315                                 MCSymbol *PreInstrSymbol,
316                                 MCSymbol *PostInstrSymbol,
317                                 MDNode *HeapAllocMarker, MDNode *PCSections,
318                                 uint32_t CFIType) {
319   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
320   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
321   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
322   bool HasPCSections = PCSections != nullptr;
323   bool HasCFIType = CFIType != 0;
324   int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol +
325                     HasHeapAllocMarker + HasPCSections + HasCFIType;
326 
327   // Drop all extra info if there is none.
328   if (NumPointers <= 0) {
329     Info.clear();
330     return;
331   }
332 
333   // If more than one pointer, then store out of line. Store heap alloc markers
334   // out of line because PointerSumType cannot hold more than 4 tag types with
335   // 32-bit pointers.
336   // FIXME: Maybe we should make the symbols in the extra info mutable?
337   else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections ||
338            HasCFIType) {
339     Info.set<EIIK_OutOfLine>(
340         MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol,
341                              HeapAllocMarker, PCSections, CFIType));
342     return;
343   }
344 
345   // Otherwise store the single pointer inline.
346   if (HasPreInstrSymbol)
347     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
348   else if (HasPostInstrSymbol)
349     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
350   else
351     Info.set<EIIK_MMO>(MMOs[0]);
352 }
353 
354 void MachineInstr::dropMemRefs(MachineFunction &MF) {
355   if (memoperands_empty())
356     return;
357 
358   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
359                getHeapAllocMarker(), getPCSections(), getCFIType());
360 }
361 
362 void MachineInstr::setMemRefs(MachineFunction &MF,
363                               ArrayRef<MachineMemOperand *> MMOs) {
364   if (MMOs.empty()) {
365     dropMemRefs(MF);
366     return;
367   }
368 
369   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
370                getHeapAllocMarker(), getPCSections(), getCFIType());
371 }
372 
373 void MachineInstr::addMemOperand(MachineFunction &MF,
374                                  MachineMemOperand *MO) {
375   SmallVector<MachineMemOperand *, 2> MMOs;
376   MMOs.append(memoperands_begin(), memoperands_end());
377   MMOs.push_back(MO);
378   setMemRefs(MF, MMOs);
379 }
380 
381 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
382   if (this == &MI)
383     // Nothing to do for a self-clone!
384     return;
385 
386   assert(&MF == MI.getMF() &&
387          "Invalid machine functions when cloning memory refrences!");
388   // See if we can just steal the extra info already allocated for the
389   // instruction. We can do this whenever the pre- and post-instruction symbols
390   // are the same (including null).
391   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
392       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
393       getHeapAllocMarker() == MI.getHeapAllocMarker() &&
394       getPCSections() == MI.getPCSections()) {
395     Info = MI.Info;
396     return;
397   }
398 
399   // Otherwise, fall back on a copy-based clone.
400   setMemRefs(MF, MI.memoperands());
401 }
402 
403 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
404 /// identical.
405 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
406                              ArrayRef<MachineMemOperand *> RHS) {
407   if (LHS.size() != RHS.size())
408     return false;
409 
410   auto LHSPointees = make_pointee_range(LHS);
411   auto RHSPointees = make_pointee_range(RHS);
412   return std::equal(LHSPointees.begin(), LHSPointees.end(),
413                     RHSPointees.begin());
414 }
415 
416 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
417                                       ArrayRef<const MachineInstr *> MIs) {
418   // Try handling easy numbers of MIs with simpler mechanisms.
419   if (MIs.empty()) {
420     dropMemRefs(MF);
421     return;
422   }
423   if (MIs.size() == 1) {
424     cloneMemRefs(MF, *MIs[0]);
425     return;
426   }
427   // Because an empty memoperands list provides *no* information and must be
428   // handled conservatively (assuming the instruction can do anything), the only
429   // way to merge with it is to drop all other memoperands.
430   if (MIs[0]->memoperands_empty()) {
431     dropMemRefs(MF);
432     return;
433   }
434 
435   // Handle the general case.
436   SmallVector<MachineMemOperand *, 2> MergedMMOs;
437   // Start with the first instruction.
438   assert(&MF == MIs[0]->getMF() &&
439          "Invalid machine functions when cloning memory references!");
440   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
441   // Now walk all the other instructions and accumulate any different MMOs.
442   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
443     assert(&MF == MI.getMF() &&
444            "Invalid machine functions when cloning memory references!");
445 
446     // Skip MIs with identical operands to the first. This is a somewhat
447     // arbitrary hack but will catch common cases without being quadratic.
448     // TODO: We could fully implement merge semantics here if needed.
449     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
450       continue;
451 
452     // Because an empty memoperands list provides *no* information and must be
453     // handled conservatively (assuming the instruction can do anything), the
454     // only way to merge with it is to drop all other memoperands.
455     if (MI.memoperands_empty()) {
456       dropMemRefs(MF);
457       return;
458     }
459 
460     // Otherwise accumulate these into our temporary buffer of the merged state.
461     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
462   }
463 
464   setMemRefs(MF, MergedMMOs);
465 }
466 
467 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
468   // Do nothing if old and new symbols are the same.
469   if (Symbol == getPreInstrSymbol())
470     return;
471 
472   // If there was only one symbol and we're removing it, just clear info.
473   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
474     Info.clear();
475     return;
476   }
477 
478   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
479                getHeapAllocMarker(), getPCSections(), getCFIType());
480 }
481 
482 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
483   // Do nothing if old and new symbols are the same.
484   if (Symbol == getPostInstrSymbol())
485     return;
486 
487   // If there was only one symbol and we're removing it, just clear info.
488   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
489     Info.clear();
490     return;
491   }
492 
493   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
494                getHeapAllocMarker(), getPCSections(), getCFIType());
495 }
496 
497 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
498   // Do nothing if old and new symbols are the same.
499   if (Marker == getHeapAllocMarker())
500     return;
501 
502   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
503                Marker, getPCSections(), getCFIType());
504 }
505 
506 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) {
507   // Do nothing if old and new symbols are the same.
508   if (PCSections == getPCSections())
509     return;
510 
511   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
512                getHeapAllocMarker(), PCSections, getCFIType());
513 }
514 
515 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) {
516   // Do nothing if old and new types are the same.
517   if (Type == getCFIType())
518     return;
519 
520   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
521                getHeapAllocMarker(), getPCSections(), Type);
522 }
523 
524 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
525                                      const MachineInstr &MI) {
526   if (this == &MI)
527     // Nothing to do for a self-clone!
528     return;
529 
530   assert(&MF == MI.getMF() &&
531          "Invalid machine functions when cloning instruction symbols!");
532 
533   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
534   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
535   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
536   setPCSections(MF, MI.getPCSections());
537 }
538 
539 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
540   // For now, the just return the union of the flags. If the flags get more
541   // complicated over time, we might need more logic here.
542   return getFlags() | Other.getFlags();
543 }
544 
545 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
546   uint32_t MIFlags = 0;
547   // Copy the wrapping flags.
548   if (const OverflowingBinaryOperator *OB =
549           dyn_cast<OverflowingBinaryOperator>(&I)) {
550     if (OB->hasNoSignedWrap())
551       MIFlags |= MachineInstr::MIFlag::NoSWrap;
552     if (OB->hasNoUnsignedWrap())
553       MIFlags |= MachineInstr::MIFlag::NoUWrap;
554   }
555 
556   // Copy the exact flag.
557   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
558     if (PE->isExact())
559       MIFlags |= MachineInstr::MIFlag::IsExact;
560 
561   // Copy the fast-math flags.
562   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
563     const FastMathFlags Flags = FP->getFastMathFlags();
564     if (Flags.noNaNs())
565       MIFlags |= MachineInstr::MIFlag::FmNoNans;
566     if (Flags.noInfs())
567       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
568     if (Flags.noSignedZeros())
569       MIFlags |= MachineInstr::MIFlag::FmNsz;
570     if (Flags.allowReciprocal())
571       MIFlags |= MachineInstr::MIFlag::FmArcp;
572     if (Flags.allowContract())
573       MIFlags |= MachineInstr::MIFlag::FmContract;
574     if (Flags.approxFunc())
575       MIFlags |= MachineInstr::MIFlag::FmAfn;
576     if (Flags.allowReassoc())
577       MIFlags |= MachineInstr::MIFlag::FmReassoc;
578   }
579 
580   if (I.getMetadata(LLVMContext::MD_unpredictable))
581     MIFlags |= MachineInstr::MIFlag::Unpredictable;
582 
583   return MIFlags;
584 }
585 
586 void MachineInstr::copyIRFlags(const Instruction &I) {
587   Flags = copyFlagsFromInstruction(I);
588 }
589 
590 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
591   assert(!isBundledWithPred() && "Must be called on bundle header");
592   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
593     if (MII->getDesc().getFlags() & Mask) {
594       if (Type == AnyInBundle)
595         return true;
596     } else {
597       if (Type == AllInBundle && !MII->isBundle())
598         return false;
599     }
600     // This was the last instruction in the bundle.
601     if (!MII->isBundledWithSucc())
602       return Type == AllInBundle;
603   }
604 }
605 
606 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
607                                  MICheckType Check) const {
608   // If opcodes or number of operands are not the same then the two
609   // instructions are obviously not identical.
610   if (Other.getOpcode() != getOpcode() ||
611       Other.getNumOperands() != getNumOperands())
612     return false;
613 
614   if (isBundle()) {
615     // We have passed the test above that both instructions have the same
616     // opcode, so we know that both instructions are bundles here. Let's compare
617     // MIs inside the bundle.
618     assert(Other.isBundle() && "Expected that both instructions are bundles.");
619     MachineBasicBlock::const_instr_iterator I1 = getIterator();
620     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
621     // Loop until we analysed the last intruction inside at least one of the
622     // bundles.
623     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
624       ++I1;
625       ++I2;
626       if (!I1->isIdenticalTo(*I2, Check))
627         return false;
628     }
629     // If we've reached the end of just one of the two bundles, but not both,
630     // the instructions are not identical.
631     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
632       return false;
633   }
634 
635   // Check operands to make sure they match.
636   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
637     const MachineOperand &MO = getOperand(i);
638     const MachineOperand &OMO = Other.getOperand(i);
639     if (!MO.isReg()) {
640       if (!MO.isIdenticalTo(OMO))
641         return false;
642       continue;
643     }
644 
645     // Clients may or may not want to ignore defs when testing for equality.
646     // For example, machine CSE pass only cares about finding common
647     // subexpressions, so it's safe to ignore virtual register defs.
648     if (MO.isDef()) {
649       if (Check == IgnoreDefs)
650         continue;
651       else if (Check == IgnoreVRegDefs) {
652         if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual())
653           if (!MO.isIdenticalTo(OMO))
654             return false;
655       } else {
656         if (!MO.isIdenticalTo(OMO))
657           return false;
658         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
659           return false;
660       }
661     } else {
662       if (!MO.isIdenticalTo(OMO))
663         return false;
664       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
665         return false;
666     }
667   }
668   // If DebugLoc does not match then two debug instructions are not identical.
669   if (isDebugInstr())
670     if (getDebugLoc() && Other.getDebugLoc() &&
671         getDebugLoc() != Other.getDebugLoc())
672       return false;
673   // If pre- or post-instruction symbols do not match then the two instructions
674   // are not identical.
675   if (getPreInstrSymbol() != Other.getPreInstrSymbol() ||
676       getPostInstrSymbol() != Other.getPostInstrSymbol())
677     return false;
678   // Call instructions with different CFI types are not identical.
679   if (isCall() && getCFIType() != Other.getCFIType())
680     return false;
681 
682   return true;
683 }
684 
685 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const {
686   if (!isDebugValueLike() || !Other.isDebugValueLike())
687     return false;
688   if (getDebugLoc() != Other.getDebugLoc())
689     return false;
690   if (getDebugVariable() != Other.getDebugVariable())
691     return false;
692   if (getNumDebugOperands() != Other.getNumDebugOperands())
693     return false;
694   for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx)
695     if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx)))
696       return false;
697   if (!DIExpression::isEqualExpression(
698           getDebugExpression(), isIndirectDebugValue(),
699           Other.getDebugExpression(), Other.isIndirectDebugValue()))
700     return false;
701   return true;
702 }
703 
704 const MachineFunction *MachineInstr::getMF() const {
705   return getParent()->getParent();
706 }
707 
708 MachineInstr *MachineInstr::removeFromParent() {
709   assert(getParent() && "Not embedded in a basic block!");
710   return getParent()->remove(this);
711 }
712 
713 MachineInstr *MachineInstr::removeFromBundle() {
714   assert(getParent() && "Not embedded in a basic block!");
715   return getParent()->remove_instr(this);
716 }
717 
718 void MachineInstr::eraseFromParent() {
719   assert(getParent() && "Not embedded in a basic block!");
720   getParent()->erase(this);
721 }
722 
723 void MachineInstr::eraseFromBundle() {
724   assert(getParent() && "Not embedded in a basic block!");
725   getParent()->erase_instr(this);
726 }
727 
728 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
729   if (!isCall(Type))
730     return false;
731   switch (getOpcode()) {
732   case TargetOpcode::PATCHPOINT:
733   case TargetOpcode::STACKMAP:
734   case TargetOpcode::STATEPOINT:
735   case TargetOpcode::FENTRY_CALL:
736     return false;
737   }
738   return true;
739 }
740 
741 bool MachineInstr::shouldUpdateCallSiteInfo() const {
742   if (isBundle())
743     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
744   return isCandidateForCallSiteEntry();
745 }
746 
747 unsigned MachineInstr::getNumExplicitOperands() const {
748   unsigned NumOperands = MCID->getNumOperands();
749   if (!MCID->isVariadic())
750     return NumOperands;
751 
752   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
753     const MachineOperand &MO = getOperand(I);
754     // The operands must always be in the following order:
755     // - explicit reg defs,
756     // - other explicit operands (reg uses, immediates, etc.),
757     // - implicit reg defs
758     // - implicit reg uses
759     if (MO.isReg() && MO.isImplicit())
760       break;
761     ++NumOperands;
762   }
763   return NumOperands;
764 }
765 
766 unsigned MachineInstr::getNumExplicitDefs() const {
767   unsigned NumDefs = MCID->getNumDefs();
768   if (!MCID->isVariadic())
769     return NumDefs;
770 
771   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
772     const MachineOperand &MO = getOperand(I);
773     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
774       break;
775     ++NumDefs;
776   }
777   return NumDefs;
778 }
779 
780 void MachineInstr::bundleWithPred() {
781   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
782   setFlag(BundledPred);
783   MachineBasicBlock::instr_iterator Pred = getIterator();
784   --Pred;
785   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
786   Pred->setFlag(BundledSucc);
787 }
788 
789 void MachineInstr::bundleWithSucc() {
790   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
791   setFlag(BundledSucc);
792   MachineBasicBlock::instr_iterator Succ = getIterator();
793   ++Succ;
794   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
795   Succ->setFlag(BundledPred);
796 }
797 
798 void MachineInstr::unbundleFromPred() {
799   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
800   clearFlag(BundledPred);
801   MachineBasicBlock::instr_iterator Pred = getIterator();
802   --Pred;
803   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
804   Pred->clearFlag(BundledSucc);
805 }
806 
807 void MachineInstr::unbundleFromSucc() {
808   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
809   clearFlag(BundledSucc);
810   MachineBasicBlock::instr_iterator Succ = getIterator();
811   ++Succ;
812   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
813   Succ->clearFlag(BundledPred);
814 }
815 
816 bool MachineInstr::isStackAligningInlineAsm() const {
817   if (isInlineAsm()) {
818     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
819     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
820       return true;
821   }
822   return false;
823 }
824 
825 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
826   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
827   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
828   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
829 }
830 
831 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
832                                        unsigned *GroupNo) const {
833   assert(isInlineAsm() && "Expected an inline asm instruction");
834   assert(OpIdx < getNumOperands() && "OpIdx out of range");
835 
836   // Ignore queries about the initial operands.
837   if (OpIdx < InlineAsm::MIOp_FirstOperand)
838     return -1;
839 
840   unsigned Group = 0;
841   unsigned NumOps;
842   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
843        i += NumOps) {
844     const MachineOperand &FlagMO = getOperand(i);
845     // If we reach the implicit register operands, stop looking.
846     if (!FlagMO.isImm())
847       return -1;
848     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
849     if (i + NumOps > OpIdx) {
850       if (GroupNo)
851         *GroupNo = Group;
852       return i;
853     }
854     ++Group;
855   }
856   return -1;
857 }
858 
859 const DILabel *MachineInstr::getDebugLabel() const {
860   assert(isDebugLabel() && "not a DBG_LABEL");
861   return cast<DILabel>(getOperand(0).getMetadata());
862 }
863 
864 const MachineOperand &MachineInstr::getDebugVariableOp() const {
865   assert((isDebugValueLike()) && "not a DBG_VALUE*");
866   unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
867   return getOperand(VariableOp);
868 }
869 
870 MachineOperand &MachineInstr::getDebugVariableOp() {
871   assert((isDebugValueLike()) && "not a DBG_VALUE*");
872   unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
873   return getOperand(VariableOp);
874 }
875 
876 const DILocalVariable *MachineInstr::getDebugVariable() const {
877   return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
878 }
879 
880 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
881   assert((isDebugValueLike()) && "not a DBG_VALUE*");
882   unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
883   return getOperand(ExpressionOp);
884 }
885 
886 MachineOperand &MachineInstr::getDebugExpressionOp() {
887   assert((isDebugValueLike()) && "not a DBG_VALUE*");
888   unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
889   return getOperand(ExpressionOp);
890 }
891 
892 const DIExpression *MachineInstr::getDebugExpression() const {
893   return cast<DIExpression>(getDebugExpressionOp().getMetadata());
894 }
895 
896 bool MachineInstr::isDebugEntryValue() const {
897   return isDebugValue() && getDebugExpression()->isEntryValue();
898 }
899 
900 const TargetRegisterClass*
901 MachineInstr::getRegClassConstraint(unsigned OpIdx,
902                                     const TargetInstrInfo *TII,
903                                     const TargetRegisterInfo *TRI) const {
904   assert(getParent() && "Can't have an MBB reference here!");
905   assert(getMF() && "Can't have an MF reference here!");
906   const MachineFunction &MF = *getMF();
907 
908   // Most opcodes have fixed constraints in their MCInstrDesc.
909   if (!isInlineAsm())
910     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
911 
912   if (!getOperand(OpIdx).isReg())
913     return nullptr;
914 
915   // For tied uses on inline asm, get the constraint from the def.
916   unsigned DefIdx;
917   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
918     OpIdx = DefIdx;
919 
920   // Inline asm stores register class constraints in the flag word.
921   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
922   if (FlagIdx < 0)
923     return nullptr;
924 
925   unsigned Flag = getOperand(FlagIdx).getImm();
926   unsigned RCID;
927   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
928        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
929        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
930       InlineAsm::hasRegClassConstraint(Flag, RCID))
931     return TRI->getRegClass(RCID);
932 
933   // Assume that all registers in a memory operand are pointers.
934   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
935     return TRI->getPointerRegClass(MF);
936 
937   return nullptr;
938 }
939 
940 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
941     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
942     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
943   // Check every operands inside the bundle if we have
944   // been asked to.
945   if (ExploreBundle)
946     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
947          ++OpndIt)
948       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
949           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
950   else
951     // Otherwise, just check the current operands.
952     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
953       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
954   return CurRC;
955 }
956 
957 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
958     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
959     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
960   assert(CurRC && "Invalid initial register class");
961   // Check if Reg is constrained by some of its use/def from MI.
962   const MachineOperand &MO = getOperand(OpIdx);
963   if (!MO.isReg() || MO.getReg() != Reg)
964     return CurRC;
965   // If yes, accumulate the constraints through the operand.
966   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
967 }
968 
969 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
970     unsigned OpIdx, const TargetRegisterClass *CurRC,
971     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
972   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
973   const MachineOperand &MO = getOperand(OpIdx);
974   assert(MO.isReg() &&
975          "Cannot get register constraints for non-register operand");
976   assert(CurRC && "Invalid initial register class");
977   if (unsigned SubIdx = MO.getSubReg()) {
978     if (OpRC)
979       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
980     else
981       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
982   } else if (OpRC)
983     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
984   return CurRC;
985 }
986 
987 /// Return the number of instructions inside the MI bundle, not counting the
988 /// header instruction.
989 unsigned MachineInstr::getBundleSize() const {
990   MachineBasicBlock::const_instr_iterator I = getIterator();
991   unsigned Size = 0;
992   while (I->isBundledWithSucc()) {
993     ++Size;
994     ++I;
995   }
996   return Size;
997 }
998 
999 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1000 /// the given register (not considering sub/super-registers).
1001 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
1002   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1003     const MachineOperand &MO = getOperand(i);
1004     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1005       return true;
1006   }
1007   return false;
1008 }
1009 
1010 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1011 /// the specific register or -1 if it is not found. It further tightens
1012 /// the search criteria to a use that kills the register if isKill is true.
1013 int MachineInstr::findRegisterUseOperandIdx(
1014     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
1015   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1016     const MachineOperand &MO = getOperand(i);
1017     if (!MO.isReg() || !MO.isUse())
1018       continue;
1019     Register MOReg = MO.getReg();
1020     if (!MOReg)
1021       continue;
1022     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
1023       if (!isKill || MO.isKill())
1024         return i;
1025   }
1026   return -1;
1027 }
1028 
1029 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1030 /// indicating if this instruction reads or writes Reg. This also considers
1031 /// partial defines.
1032 std::pair<bool,bool>
1033 MachineInstr::readsWritesVirtualRegister(Register Reg,
1034                                          SmallVectorImpl<unsigned> *Ops) const {
1035   bool PartDef = false; // Partial redefine.
1036   bool FullDef = false; // Full define.
1037   bool Use = false;
1038 
1039   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1040     const MachineOperand &MO = getOperand(i);
1041     if (!MO.isReg() || MO.getReg() != Reg)
1042       continue;
1043     if (Ops)
1044       Ops->push_back(i);
1045     if (MO.isUse())
1046       Use |= !MO.isUndef();
1047     else if (MO.getSubReg() && !MO.isUndef())
1048       // A partial def undef doesn't count as reading the register.
1049       PartDef = true;
1050     else
1051       FullDef = true;
1052   }
1053   // A partial redefine uses Reg unless there is also a full define.
1054   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1055 }
1056 
1057 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1058 /// the specified register or -1 if it is not found. If isDead is true, defs
1059 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1060 /// also checks if there is a def of a super-register.
1061 int
1062 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1063                                         const TargetRegisterInfo *TRI) const {
1064   bool isPhys = Reg.isPhysical();
1065   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1066     const MachineOperand &MO = getOperand(i);
1067     // Accept regmask operands when Overlap is set.
1068     // Ignore them when looking for a specific def operand (Overlap == false).
1069     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1070       return i;
1071     if (!MO.isReg() || !MO.isDef())
1072       continue;
1073     Register MOReg = MO.getReg();
1074     bool Found = (MOReg == Reg);
1075     if (!Found && TRI && isPhys && MOReg.isPhysical()) {
1076       if (Overlap)
1077         Found = TRI->regsOverlap(MOReg, Reg);
1078       else
1079         Found = TRI->isSubRegister(MOReg, Reg);
1080     }
1081     if (Found && (!isDead || MO.isDead()))
1082       return i;
1083   }
1084   return -1;
1085 }
1086 
1087 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1088 /// operand list that is used to represent the predicate. It returns -1 if
1089 /// none is found.
1090 int MachineInstr::findFirstPredOperandIdx() const {
1091   // Don't call MCID.findFirstPredOperandIdx() because this variant
1092   // is sometimes called on an instruction that's not yet complete, and
1093   // so the number of operands is less than the MCID indicates. In
1094   // particular, the PTX target does this.
1095   const MCInstrDesc &MCID = getDesc();
1096   if (MCID.isPredicable()) {
1097     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1098       if (MCID.operands()[i].isPredicate())
1099         return i;
1100   }
1101 
1102   return -1;
1103 }
1104 
1105 // MachineOperand::TiedTo is 4 bits wide.
1106 const unsigned TiedMax = 15;
1107 
1108 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1109 ///
1110 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1111 /// field. TiedTo can have these values:
1112 ///
1113 /// 0:              Operand is not tied to anything.
1114 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1115 /// TiedMax:        Tied to an operand >= TiedMax-1.
1116 ///
1117 /// The tied def must be one of the first TiedMax operands on a normal
1118 /// instruction. INLINEASM instructions allow more tied defs.
1119 ///
1120 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1121   MachineOperand &DefMO = getOperand(DefIdx);
1122   MachineOperand &UseMO = getOperand(UseIdx);
1123   assert(DefMO.isDef() && "DefIdx must be a def operand");
1124   assert(UseMO.isUse() && "UseIdx must be a use operand");
1125   assert(!DefMO.isTied() && "Def is already tied to another use");
1126   assert(!UseMO.isTied() && "Use is already tied to another def");
1127 
1128   if (DefIdx < TiedMax)
1129     UseMO.TiedTo = DefIdx + 1;
1130   else {
1131     // Inline asm can use the group descriptors to find tied operands,
1132     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1133     // but on normal instruction, the tied def must be within the first TiedMax
1134     // operands.
1135     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1136            "DefIdx out of range");
1137     UseMO.TiedTo = TiedMax;
1138   }
1139 
1140   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1141   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1142 }
1143 
1144 /// Given the index of a tied register operand, find the operand it is tied to.
1145 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1146 /// which must exist.
1147 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1148   const MachineOperand &MO = getOperand(OpIdx);
1149   assert(MO.isTied() && "Operand isn't tied");
1150 
1151   // Normally TiedTo is in range.
1152   if (MO.TiedTo < TiedMax)
1153     return MO.TiedTo - 1;
1154 
1155   // Uses on normal instructions can be out of range.
1156   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1157     // Normal tied defs must be in the 0..TiedMax-1 range.
1158     if (MO.isUse())
1159       return TiedMax - 1;
1160     // MO is a def. Search for the tied use.
1161     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1162       const MachineOperand &UseMO = getOperand(i);
1163       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1164         return i;
1165     }
1166     llvm_unreachable("Can't find tied use");
1167   }
1168 
1169   if (getOpcode() == TargetOpcode::STATEPOINT) {
1170     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1171     // on registers.
1172     StatepointOpers SO(this);
1173     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1174     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1175     unsigned NumDefs = getNumDefs();
1176     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1177       while (!getOperand(CurUseIdx).isReg())
1178         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1179       if (OpIdx == CurDefIdx)
1180         return CurUseIdx;
1181       if (OpIdx == CurUseIdx)
1182         return CurDefIdx;
1183       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1184     }
1185     llvm_unreachable("Can't find tied use");
1186   }
1187 
1188   // Now deal with inline asm by parsing the operand group descriptor flags.
1189   // Find the beginning of each operand group.
1190   SmallVector<unsigned, 8> GroupIdx;
1191   unsigned OpIdxGroup = ~0u;
1192   unsigned NumOps;
1193   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1194        i += NumOps) {
1195     const MachineOperand &FlagMO = getOperand(i);
1196     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1197     unsigned CurGroup = GroupIdx.size();
1198     GroupIdx.push_back(i);
1199     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1200     // OpIdx belongs to this operand group.
1201     if (OpIdx > i && OpIdx < i + NumOps)
1202       OpIdxGroup = CurGroup;
1203     unsigned TiedGroup;
1204     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1205       continue;
1206     // Operands in this group are tied to operands in TiedGroup which must be
1207     // earlier. Find the number of operands between the two groups.
1208     unsigned Delta = i - GroupIdx[TiedGroup];
1209 
1210     // OpIdx is a use tied to TiedGroup.
1211     if (OpIdxGroup == CurGroup)
1212       return OpIdx - Delta;
1213 
1214     // OpIdx is a def tied to this use group.
1215     if (OpIdxGroup == TiedGroup)
1216       return OpIdx + Delta;
1217   }
1218   llvm_unreachable("Invalid tied operand on inline asm");
1219 }
1220 
1221 /// clearKillInfo - Clears kill flags on all operands.
1222 ///
1223 void MachineInstr::clearKillInfo() {
1224   for (MachineOperand &MO : operands()) {
1225     if (MO.isReg() && MO.isUse())
1226       MO.setIsKill(false);
1227   }
1228 }
1229 
1230 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1231                                       unsigned SubIdx,
1232                                       const TargetRegisterInfo &RegInfo) {
1233   if (ToReg.isPhysical()) {
1234     if (SubIdx)
1235       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1236     for (MachineOperand &MO : operands()) {
1237       if (!MO.isReg() || MO.getReg() != FromReg)
1238         continue;
1239       MO.substPhysReg(ToReg, RegInfo);
1240     }
1241   } else {
1242     for (MachineOperand &MO : operands()) {
1243       if (!MO.isReg() || MO.getReg() != FromReg)
1244         continue;
1245       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1246     }
1247   }
1248 }
1249 
1250 /// isSafeToMove - Return true if it is safe to move this instruction. If
1251 /// SawStore is set to true, it means that there is a store (or call) between
1252 /// the instruction's location and its intended destination.
1253 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1254   // Ignore stuff that we obviously can't move.
1255   //
1256   // Treat volatile loads as stores. This is not strictly necessary for
1257   // volatiles, but it is required for atomic loads. It is not allowed to move
1258   // a load across an atomic load with Ordering > Monotonic.
1259   if (mayStore() || isCall() || isPHI() ||
1260       (mayLoad() && hasOrderedMemoryRef())) {
1261     SawStore = true;
1262     return false;
1263   }
1264 
1265   if (isPosition() || isDebugInstr() || isTerminator() ||
1266       mayRaiseFPException() || hasUnmodeledSideEffects())
1267     return false;
1268 
1269   // See if this instruction does a load.  If so, we have to guarantee that the
1270   // loaded value doesn't change between the load and the its intended
1271   // destination. The check for isInvariantLoad gives the target the chance to
1272   // classify the load as always returning a constant, e.g. a constant pool
1273   // load.
1274   if (mayLoad() && !isDereferenceableInvariantLoad())
1275     // Otherwise, this is a real load.  If there is a store between the load and
1276     // end of block, we can't move it.
1277     return !SawStore;
1278 
1279   return true;
1280 }
1281 
1282 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1283                                  bool UseTBAA, const MachineMemOperand *MMOa,
1284                                  const MachineMemOperand *MMOb) {
1285   // The following interface to AA is fashioned after DAGCombiner::isAlias and
1286   // operates with MachineMemOperand offset with some important assumptions:
1287   //   - LLVM fundamentally assumes flat address spaces.
1288   //   - MachineOperand offset can *only* result from legalization and cannot
1289   //     affect queries other than the trivial case of overlap checking.
1290   //   - These offsets never wrap and never step outside of allocated objects.
1291   //   - There should never be any negative offsets here.
1292   //
1293   // FIXME: Modify API to hide this math from "user"
1294   // Even before we go to AA we can reason locally about some memory objects. It
1295   // can save compile time, and possibly catch some corner cases not currently
1296   // covered.
1297 
1298   int64_t OffsetA = MMOa->getOffset();
1299   int64_t OffsetB = MMOb->getOffset();
1300   int64_t MinOffset = std::min(OffsetA, OffsetB);
1301 
1302   uint64_t WidthA = MMOa->getSize();
1303   uint64_t WidthB = MMOb->getSize();
1304   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1305   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1306 
1307   const Value *ValA = MMOa->getValue();
1308   const Value *ValB = MMOb->getValue();
1309   bool SameVal = (ValA && ValB && (ValA == ValB));
1310   if (!SameVal) {
1311     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1312     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1313     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1314       return false;
1315     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1316       return false;
1317     if (PSVa && PSVb && (PSVa == PSVb))
1318       SameVal = true;
1319   }
1320 
1321   if (SameVal) {
1322     if (!KnownWidthA || !KnownWidthB)
1323       return true;
1324     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1325     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1326     return (MinOffset + LowWidth > MaxOffset);
1327   }
1328 
1329   if (!AA)
1330     return true;
1331 
1332   if (!ValA || !ValB)
1333     return true;
1334 
1335   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1336   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1337 
1338   int64_t OverlapA =
1339       KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1340   int64_t OverlapB =
1341       KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1342 
1343   return !AA->isNoAlias(
1344       MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1345       MemoryLocation(ValB, OverlapB,
1346                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1347 }
1348 
1349 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1350                             bool UseTBAA) const {
1351   const MachineFunction *MF = getMF();
1352   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1353   const MachineFrameInfo &MFI = MF->getFrameInfo();
1354 
1355   // Exclude call instruction which may alter the memory but can not be handled
1356   // by this function.
1357   if (isCall() || Other.isCall())
1358     return true;
1359 
1360   // If neither instruction stores to memory, they can't alias in any
1361   // meaningful way, even if they read from the same address.
1362   if (!mayStore() && !Other.mayStore())
1363     return false;
1364 
1365   // Both instructions must be memory operations to be able to alias.
1366   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1367     return false;
1368 
1369   // Let the target decide if memory accesses cannot possibly overlap.
1370   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1371     return false;
1372 
1373   // Memory operations without memory operands may access anything. Be
1374   // conservative and assume `MayAlias`.
1375   if (memoperands_empty() || Other.memoperands_empty())
1376     return true;
1377 
1378   // Skip if there are too many memory operands.
1379   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1380   if (NumChecks > TII->getMemOperandAACheckLimit())
1381     return true;
1382 
1383   // Check each pair of memory operands from both instructions, which can't
1384   // alias only if all pairs won't alias.
1385   for (auto *MMOa : memoperands())
1386     for (auto *MMOb : Other.memoperands())
1387       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1388         return true;
1389 
1390   return false;
1391 }
1392 
1393 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1394 /// or volatile memory reference, or if the information describing the memory
1395 /// reference is not available. Return false if it is known to have no ordered
1396 /// memory references.
1397 bool MachineInstr::hasOrderedMemoryRef() const {
1398   // An instruction known never to access memory won't have a volatile access.
1399   if (!mayStore() &&
1400       !mayLoad() &&
1401       !isCall() &&
1402       !hasUnmodeledSideEffects())
1403     return false;
1404 
1405   // Otherwise, if the instruction has no memory reference information,
1406   // conservatively assume it wasn't preserved.
1407   if (memoperands_empty())
1408     return true;
1409 
1410   // Check if any of our memory operands are ordered.
1411   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1412     return !MMO->isUnordered();
1413   });
1414 }
1415 
1416 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1417 /// trap and is loading from a location whose value is invariant across a run of
1418 /// this function.
1419 bool MachineInstr::isDereferenceableInvariantLoad() const {
1420   // If the instruction doesn't load at all, it isn't an invariant load.
1421   if (!mayLoad())
1422     return false;
1423 
1424   // If the instruction has lost its memoperands, conservatively assume that
1425   // it may not be an invariant load.
1426   if (memoperands_empty())
1427     return false;
1428 
1429   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1430 
1431   for (MachineMemOperand *MMO : memoperands()) {
1432     if (!MMO->isUnordered())
1433       // If the memory operand has ordering side effects, we can't move the
1434       // instruction.  Such an instruction is technically an invariant load,
1435       // but the caller code would need updated to expect that.
1436       return false;
1437     if (MMO->isStore()) return false;
1438     if (MMO->isInvariant() && MMO->isDereferenceable())
1439       continue;
1440 
1441     // A load from a constant PseudoSourceValue is invariant.
1442     if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
1443       if (PSV->isConstant(&MFI))
1444         continue;
1445     }
1446 
1447     // Otherwise assume conservatively.
1448     return false;
1449   }
1450 
1451   // Everything checks out.
1452   return true;
1453 }
1454 
1455 /// isConstantValuePHI - If the specified instruction is a PHI that always
1456 /// merges together the same virtual register, return the register, otherwise
1457 /// return 0.
1458 unsigned MachineInstr::isConstantValuePHI() const {
1459   if (!isPHI())
1460     return 0;
1461   assert(getNumOperands() >= 3 &&
1462          "It's illegal to have a PHI without source operands");
1463 
1464   Register Reg = getOperand(1).getReg();
1465   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1466     if (getOperand(i).getReg() != Reg)
1467       return 0;
1468   return Reg;
1469 }
1470 
1471 bool MachineInstr::hasUnmodeledSideEffects() const {
1472   if (hasProperty(MCID::UnmodeledSideEffects))
1473     return true;
1474   if (isInlineAsm()) {
1475     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1476     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1477       return true;
1478   }
1479 
1480   return false;
1481 }
1482 
1483 bool MachineInstr::isLoadFoldBarrier() const {
1484   return mayStore() || isCall() ||
1485          (hasUnmodeledSideEffects() && !isPseudoProbe());
1486 }
1487 
1488 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1489 ///
1490 bool MachineInstr::allDefsAreDead() const {
1491   for (const MachineOperand &MO : operands()) {
1492     if (!MO.isReg() || MO.isUse())
1493       continue;
1494     if (!MO.isDead())
1495       return false;
1496   }
1497   return true;
1498 }
1499 
1500 bool MachineInstr::allImplicitDefsAreDead() const {
1501   for (const MachineOperand &MO : implicit_operands()) {
1502     if (!MO.isReg() || MO.isUse())
1503       continue;
1504     if (!MO.isDead())
1505       return false;
1506   }
1507   return true;
1508 }
1509 
1510 /// copyImplicitOps - Copy implicit register operands from specified
1511 /// instruction to this instruction.
1512 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1513                                    const MachineInstr &MI) {
1514   for (const MachineOperand &MO :
1515        llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1516     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1517       addOperand(MF, MO);
1518 }
1519 
1520 bool MachineInstr::hasComplexRegisterTies() const {
1521   const MCInstrDesc &MCID = getDesc();
1522   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1523     return true;
1524   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1525     const auto &Operand = getOperand(I);
1526     if (!Operand.isReg() || Operand.isDef())
1527       // Ignore the defined registers as MCID marks only the uses as tied.
1528       continue;
1529     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1530     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1531     if (ExpectedTiedIdx != TiedIdx)
1532       return true;
1533   }
1534   return false;
1535 }
1536 
1537 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1538                                  const MachineRegisterInfo &MRI) const {
1539   const MachineOperand &Op = getOperand(OpIdx);
1540   if (!Op.isReg())
1541     return LLT{};
1542 
1543   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1544     return MRI.getType(Op.getReg());
1545 
1546   auto &OpInfo = getDesc().operands()[OpIdx];
1547   if (!OpInfo.isGenericType())
1548     return MRI.getType(Op.getReg());
1549 
1550   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1551     return LLT{};
1552 
1553   LLT TypeToPrint = MRI.getType(Op.getReg());
1554   // Don't mark the type index printed if it wasn't actually printed: maybe
1555   // another operand with the same type index has an actual type attached:
1556   if (TypeToPrint.isValid())
1557     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1558   return TypeToPrint;
1559 }
1560 
1561 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1562 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1563   dbgs() << "  ";
1564   print(dbgs());
1565 }
1566 
1567 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1568     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1569     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1570   if (Depth >= MaxDepth)
1571     return;
1572   if (!AlreadySeenInstrs.insert(this).second)
1573     return;
1574   // PadToColumn always inserts at least one space.
1575   // Don't mess up the alignment if we don't want any space.
1576   if (Depth)
1577     fdbgs().PadToColumn(Depth * 2);
1578   print(fdbgs());
1579   for (const MachineOperand &MO : operands()) {
1580     if (!MO.isReg() || MO.isDef())
1581       continue;
1582     Register Reg = MO.getReg();
1583     if (Reg.isPhysical())
1584       continue;
1585     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1586     if (NewMI == nullptr)
1587       continue;
1588     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1589   }
1590 }
1591 
1592 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1593                                           unsigned MaxDepth) const {
1594   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1595   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1596 }
1597 #endif
1598 
1599 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1600                          bool SkipDebugLoc, bool AddNewLine,
1601                          const TargetInstrInfo *TII) const {
1602   const Module *M = nullptr;
1603   const Function *F = nullptr;
1604   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1605     F = &MF->getFunction();
1606     M = F->getParent();
1607     if (!TII)
1608       TII = MF->getSubtarget().getInstrInfo();
1609   }
1610 
1611   ModuleSlotTracker MST(M);
1612   if (F)
1613     MST.incorporateFunction(*F);
1614   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1615 }
1616 
1617 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1618                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1619                          bool AddNewLine, const TargetInstrInfo *TII) const {
1620   // We can be a bit tidier if we know the MachineFunction.
1621   const TargetRegisterInfo *TRI = nullptr;
1622   const MachineRegisterInfo *MRI = nullptr;
1623   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1624   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1625 
1626   if (isCFIInstruction())
1627     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1628 
1629   SmallBitVector PrintedTypes(8);
1630   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1631   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1632     if (!ShouldPrintRegisterTies)
1633       return 0U;
1634     const MachineOperand &MO = getOperand(OpIdx);
1635     if (MO.isReg() && MO.isTied() && !MO.isDef())
1636       return findTiedOperandIdx(OpIdx);
1637     return 0U;
1638   };
1639   unsigned StartOp = 0;
1640   unsigned e = getNumOperands();
1641 
1642   // Print explicitly defined operands on the left of an assignment syntax.
1643   while (StartOp < e) {
1644     const MachineOperand &MO = getOperand(StartOp);
1645     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1646       break;
1647 
1648     if (StartOp != 0)
1649       OS << ", ";
1650 
1651     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1652     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1653     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1654              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1655     ++StartOp;
1656   }
1657 
1658   if (StartOp != 0)
1659     OS << " = ";
1660 
1661   if (getFlag(MachineInstr::FrameSetup))
1662     OS << "frame-setup ";
1663   if (getFlag(MachineInstr::FrameDestroy))
1664     OS << "frame-destroy ";
1665   if (getFlag(MachineInstr::FmNoNans))
1666     OS << "nnan ";
1667   if (getFlag(MachineInstr::FmNoInfs))
1668     OS << "ninf ";
1669   if (getFlag(MachineInstr::FmNsz))
1670     OS << "nsz ";
1671   if (getFlag(MachineInstr::FmArcp))
1672     OS << "arcp ";
1673   if (getFlag(MachineInstr::FmContract))
1674     OS << "contract ";
1675   if (getFlag(MachineInstr::FmAfn))
1676     OS << "afn ";
1677   if (getFlag(MachineInstr::FmReassoc))
1678     OS << "reassoc ";
1679   if (getFlag(MachineInstr::NoUWrap))
1680     OS << "nuw ";
1681   if (getFlag(MachineInstr::NoSWrap))
1682     OS << "nsw ";
1683   if (getFlag(MachineInstr::IsExact))
1684     OS << "exact ";
1685   if (getFlag(MachineInstr::NoFPExcept))
1686     OS << "nofpexcept ";
1687   if (getFlag(MachineInstr::NoMerge))
1688     OS << "nomerge ";
1689 
1690   // Print the opcode name.
1691   if (TII)
1692     OS << TII->getName(getOpcode());
1693   else
1694     OS << "UNKNOWN";
1695 
1696   if (SkipOpers)
1697     return;
1698 
1699   // Print the rest of the operands.
1700   bool FirstOp = true;
1701   unsigned AsmDescOp = ~0u;
1702   unsigned AsmOpCount = 0;
1703 
1704   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1705     // Print asm string.
1706     OS << " ";
1707     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1708     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1709     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1710     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1711                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1712                             IntrinsicInfo);
1713 
1714     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1715     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1716     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1717       OS << " [sideeffect]";
1718     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1719       OS << " [mayload]";
1720     if (ExtraInfo & InlineAsm::Extra_MayStore)
1721       OS << " [maystore]";
1722     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1723       OS << " [isconvergent]";
1724     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1725       OS << " [alignstack]";
1726     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1727       OS << " [attdialect]";
1728     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1729       OS << " [inteldialect]";
1730 
1731     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1732     FirstOp = false;
1733   }
1734 
1735   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1736     const MachineOperand &MO = getOperand(i);
1737 
1738     if (FirstOp) FirstOp = false; else OS << ",";
1739     OS << " ";
1740 
1741     if (isDebugValueLike() && MO.isMetadata()) {
1742       // Pretty print DBG_VALUE* instructions.
1743       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1744       if (DIV && !DIV->getName().empty())
1745         OS << "!\"" << DIV->getName() << '\"';
1746       else {
1747         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1748         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1749         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1750                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1751       }
1752     } else if (isDebugLabel() && MO.isMetadata()) {
1753       // Pretty print DBG_LABEL instructions.
1754       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1755       if (DIL && !DIL->getName().empty())
1756         OS << "\"" << DIL->getName() << '\"';
1757       else {
1758         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1759         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1760         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1761                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1762       }
1763     } else if (i == AsmDescOp && MO.isImm()) {
1764       // Pretty print the inline asm operand descriptor.
1765       OS << '$' << AsmOpCount++;
1766       unsigned Flag = MO.getImm();
1767       OS << ":[";
1768       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1769 
1770       unsigned RCID = 0;
1771       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1772           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1773         if (TRI) {
1774           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1775         } else
1776           OS << ":RC" << RCID;
1777       }
1778 
1779       if (InlineAsm::isMemKind(Flag)) {
1780         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1781         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1782       }
1783 
1784       unsigned TiedTo = 0;
1785       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1786         OS << " tiedto:$" << TiedTo;
1787 
1788       OS << ']';
1789 
1790       // Compute the index of the next operand descriptor.
1791       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1792     } else {
1793       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1794       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1795       if (MO.isImm() && isOperandSubregIdx(i))
1796         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1797       else
1798         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1799                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1800     }
1801   }
1802 
1803   // Print any optional symbols attached to this instruction as-if they were
1804   // operands.
1805   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1806     if (!FirstOp) {
1807       FirstOp = false;
1808       OS << ',';
1809     }
1810     OS << " pre-instr-symbol ";
1811     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1812   }
1813   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1814     if (!FirstOp) {
1815       FirstOp = false;
1816       OS << ',';
1817     }
1818     OS << " post-instr-symbol ";
1819     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1820   }
1821   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1822     if (!FirstOp) {
1823       FirstOp = false;
1824       OS << ',';
1825     }
1826     OS << " heap-alloc-marker ";
1827     HeapAllocMarker->printAsOperand(OS, MST);
1828   }
1829   if (MDNode *PCSections = getPCSections()) {
1830     if (!FirstOp) {
1831       FirstOp = false;
1832       OS << ',';
1833     }
1834     OS << " pcsections ";
1835     PCSections->printAsOperand(OS, MST);
1836   }
1837   if (uint32_t CFIType = getCFIType()) {
1838     if (!FirstOp)
1839       OS << ',';
1840     OS << " cfi-type " << CFIType;
1841   }
1842 
1843   if (DebugInstrNum) {
1844     if (!FirstOp)
1845       OS << ",";
1846     OS << " debug-instr-number " << DebugInstrNum;
1847   }
1848 
1849   if (!SkipDebugLoc) {
1850     if (const DebugLoc &DL = getDebugLoc()) {
1851       if (!FirstOp)
1852         OS << ',';
1853       OS << " debug-location ";
1854       DL->printAsOperand(OS, MST);
1855     }
1856   }
1857 
1858   if (!memoperands_empty()) {
1859     SmallVector<StringRef, 0> SSNs;
1860     const LLVMContext *Context = nullptr;
1861     std::unique_ptr<LLVMContext> CtxPtr;
1862     const MachineFrameInfo *MFI = nullptr;
1863     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1864       MFI = &MF->getFrameInfo();
1865       Context = &MF->getFunction().getContext();
1866     } else {
1867       CtxPtr = std::make_unique<LLVMContext>();
1868       Context = CtxPtr.get();
1869     }
1870 
1871     OS << " :: ";
1872     bool NeedComma = false;
1873     for (const MachineMemOperand *Op : memoperands()) {
1874       if (NeedComma)
1875         OS << ", ";
1876       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1877       NeedComma = true;
1878     }
1879   }
1880 
1881   if (SkipDebugLoc)
1882     return;
1883 
1884   bool HaveSemi = false;
1885 
1886   // Print debug location information.
1887   if (const DebugLoc &DL = getDebugLoc()) {
1888     if (!HaveSemi) {
1889       OS << ';';
1890       HaveSemi = true;
1891     }
1892     OS << ' ';
1893     DL.print(OS);
1894   }
1895 
1896   // Print extra comments for DEBUG_VALUE and friends if they are well-formed.
1897   if ((isNonListDebugValue() && getNumOperands() >= 4) ||
1898       (isDebugValueList() && getNumOperands() >= 2) ||
1899       (isDebugRef() && getNumOperands() >= 3)) {
1900     if (getDebugVariableOp().isMetadata()) {
1901       if (!HaveSemi) {
1902         OS << ";";
1903         HaveSemi = true;
1904       }
1905       auto *DV = getDebugVariable();
1906       OS << " line no:" << DV->getLine();
1907       if (isIndirectDebugValue())
1908         OS << " indirect";
1909     }
1910   }
1911   // TODO: DBG_LABEL
1912 
1913   if (AddNewLine)
1914     OS << '\n';
1915 }
1916 
1917 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1918                                      const TargetRegisterInfo *RegInfo,
1919                                      bool AddIfNotFound) {
1920   bool isPhysReg = IncomingReg.isPhysical();
1921   bool hasAliases = isPhysReg &&
1922     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1923   bool Found = false;
1924   SmallVector<unsigned,4> DeadOps;
1925   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1926     MachineOperand &MO = getOperand(i);
1927     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1928       continue;
1929 
1930     // DEBUG_VALUE nodes do not contribute to code generation and should
1931     // always be ignored. Failure to do so may result in trying to modify
1932     // KILL flags on DEBUG_VALUE nodes.
1933     if (MO.isDebug())
1934       continue;
1935 
1936     Register Reg = MO.getReg();
1937     if (!Reg)
1938       continue;
1939 
1940     if (Reg == IncomingReg) {
1941       if (!Found) {
1942         if (MO.isKill())
1943           // The register is already marked kill.
1944           return true;
1945         if (isPhysReg && isRegTiedToDefOperand(i))
1946           // Two-address uses of physregs must not be marked kill.
1947           return true;
1948         MO.setIsKill();
1949         Found = true;
1950       }
1951     } else if (hasAliases && MO.isKill() && Reg.isPhysical()) {
1952       // A super-register kill already exists.
1953       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1954         return true;
1955       if (RegInfo->isSubRegister(IncomingReg, Reg))
1956         DeadOps.push_back(i);
1957     }
1958   }
1959 
1960   // Trim unneeded kill operands.
1961   while (!DeadOps.empty()) {
1962     unsigned OpIdx = DeadOps.back();
1963     if (getOperand(OpIdx).isImplicit() &&
1964         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1965       removeOperand(OpIdx);
1966     else
1967       getOperand(OpIdx).setIsKill(false);
1968     DeadOps.pop_back();
1969   }
1970 
1971   // If not found, this means an alias of one of the operands is killed. Add a
1972   // new implicit operand if required.
1973   if (!Found && AddIfNotFound) {
1974     addOperand(MachineOperand::CreateReg(IncomingReg,
1975                                          false /*IsDef*/,
1976                                          true  /*IsImp*/,
1977                                          true  /*IsKill*/));
1978     return true;
1979   }
1980   return Found;
1981 }
1982 
1983 void MachineInstr::clearRegisterKills(Register Reg,
1984                                       const TargetRegisterInfo *RegInfo) {
1985   if (!Reg.isPhysical())
1986     RegInfo = nullptr;
1987   for (MachineOperand &MO : operands()) {
1988     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1989       continue;
1990     Register OpReg = MO.getReg();
1991     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1992       MO.setIsKill(false);
1993   }
1994 }
1995 
1996 bool MachineInstr::addRegisterDead(Register Reg,
1997                                    const TargetRegisterInfo *RegInfo,
1998                                    bool AddIfNotFound) {
1999   bool isPhysReg = Reg.isPhysical();
2000   bool hasAliases = isPhysReg &&
2001     MCRegAliasIterator(Reg, RegInfo, false).isValid();
2002   bool Found = false;
2003   SmallVector<unsigned,4> DeadOps;
2004   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2005     MachineOperand &MO = getOperand(i);
2006     if (!MO.isReg() || !MO.isDef())
2007       continue;
2008     Register MOReg = MO.getReg();
2009     if (!MOReg)
2010       continue;
2011 
2012     if (MOReg == Reg) {
2013       MO.setIsDead();
2014       Found = true;
2015     } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) {
2016       // There exists a super-register that's marked dead.
2017       if (RegInfo->isSuperRegister(Reg, MOReg))
2018         return true;
2019       if (RegInfo->isSubRegister(Reg, MOReg))
2020         DeadOps.push_back(i);
2021     }
2022   }
2023 
2024   // Trim unneeded dead operands.
2025   while (!DeadOps.empty()) {
2026     unsigned OpIdx = DeadOps.back();
2027     if (getOperand(OpIdx).isImplicit() &&
2028         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
2029       removeOperand(OpIdx);
2030     else
2031       getOperand(OpIdx).setIsDead(false);
2032     DeadOps.pop_back();
2033   }
2034 
2035   // If not found, this means an alias of one of the operands is dead. Add a
2036   // new implicit operand if required.
2037   if (Found || !AddIfNotFound)
2038     return Found;
2039 
2040   addOperand(MachineOperand::CreateReg(Reg,
2041                                        true  /*IsDef*/,
2042                                        true  /*IsImp*/,
2043                                        false /*IsKill*/,
2044                                        true  /*IsDead*/));
2045   return true;
2046 }
2047 
2048 void MachineInstr::clearRegisterDeads(Register Reg) {
2049   for (MachineOperand &MO : operands()) {
2050     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2051       continue;
2052     MO.setIsDead(false);
2053   }
2054 }
2055 
2056 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2057   for (MachineOperand &MO : operands()) {
2058     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2059       continue;
2060     MO.setIsUndef(IsUndef);
2061   }
2062 }
2063 
2064 void MachineInstr::addRegisterDefined(Register Reg,
2065                                       const TargetRegisterInfo *RegInfo) {
2066   if (Reg.isPhysical()) {
2067     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2068     if (MO)
2069       return;
2070   } else {
2071     for (const MachineOperand &MO : operands()) {
2072       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2073           MO.getSubReg() == 0)
2074         return;
2075     }
2076   }
2077   addOperand(MachineOperand::CreateReg(Reg,
2078                                        true  /*IsDef*/,
2079                                        true  /*IsImp*/));
2080 }
2081 
2082 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2083                                          const TargetRegisterInfo &TRI) {
2084   bool HasRegMask = false;
2085   for (MachineOperand &MO : operands()) {
2086     if (MO.isRegMask()) {
2087       HasRegMask = true;
2088       continue;
2089     }
2090     if (!MO.isReg() || !MO.isDef()) continue;
2091     Register Reg = MO.getReg();
2092     if (!Reg.isPhysical())
2093       continue;
2094     // If there are no uses, including partial uses, the def is dead.
2095     if (llvm::none_of(UsedRegs,
2096                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2097       MO.setIsDead();
2098   }
2099 
2100   // This is a call with a register mask operand.
2101   // Mask clobbers are always dead, so add defs for the non-dead defines.
2102   if (HasRegMask)
2103     for (const Register &UsedReg : UsedRegs)
2104       addRegisterDefined(UsedReg, &TRI);
2105 }
2106 
2107 unsigned
2108 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2109   // Build up a buffer of hash code components.
2110   SmallVector<size_t, 16> HashComponents;
2111   HashComponents.reserve(MI->getNumOperands() + 1);
2112   HashComponents.push_back(MI->getOpcode());
2113   for (const MachineOperand &MO : MI->operands()) {
2114     if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual())
2115       continue;  // Skip virtual register defs.
2116 
2117     HashComponents.push_back(hash_value(MO));
2118   }
2119   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2120 }
2121 
2122 void MachineInstr::emitError(StringRef Msg) const {
2123   // Find the source location cookie.
2124   uint64_t LocCookie = 0;
2125   const MDNode *LocMD = nullptr;
2126   for (unsigned i = getNumOperands(); i != 0; --i) {
2127     if (getOperand(i-1).isMetadata() &&
2128         (LocMD = getOperand(i-1).getMetadata()) &&
2129         LocMD->getNumOperands() != 0) {
2130       if (const ConstantInt *CI =
2131               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2132         LocCookie = CI->getZExtValue();
2133         break;
2134       }
2135     }
2136   }
2137 
2138   if (const MachineBasicBlock *MBB = getParent())
2139     if (const MachineFunction *MF = MBB->getParent())
2140       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2141   report_fatal_error(Msg);
2142 }
2143 
2144 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2145                                   const MCInstrDesc &MCID, bool IsIndirect,
2146                                   Register Reg, const MDNode *Variable,
2147                                   const MDNode *Expr) {
2148   assert(isa<DILocalVariable>(Variable) && "not a variable");
2149   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2150   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2151          "Expected inlined-at fields to agree");
2152   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2153   if (IsIndirect)
2154     MIB.addImm(0U);
2155   else
2156     MIB.addReg(0U);
2157   return MIB.addMetadata(Variable).addMetadata(Expr);
2158 }
2159 
2160 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2161                                   const MCInstrDesc &MCID, bool IsIndirect,
2162                                   ArrayRef<MachineOperand> DebugOps,
2163                                   const MDNode *Variable, const MDNode *Expr) {
2164   assert(isa<DILocalVariable>(Variable) && "not a variable");
2165   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2166   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2167          "Expected inlined-at fields to agree");
2168   if (MCID.Opcode == TargetOpcode::DBG_VALUE) {
2169     assert(DebugOps.size() == 1 &&
2170            "DBG_VALUE must contain exactly one debug operand");
2171     MachineOperand DebugOp = DebugOps[0];
2172     if (DebugOp.isReg())
2173       return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable,
2174                      Expr);
2175 
2176     auto MIB = BuildMI(MF, DL, MCID).add(DebugOp);
2177     if (IsIndirect)
2178       MIB.addImm(0U);
2179     else
2180       MIB.addReg(0U);
2181     return MIB.addMetadata(Variable).addMetadata(Expr);
2182   }
2183 
2184   auto MIB = BuildMI(MF, DL, MCID);
2185   MIB.addMetadata(Variable).addMetadata(Expr);
2186   for (const MachineOperand &DebugOp : DebugOps)
2187     if (DebugOp.isReg())
2188       MIB.addReg(DebugOp.getReg());
2189     else
2190       MIB.add(DebugOp);
2191   return MIB;
2192 }
2193 
2194 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2195                                   MachineBasicBlock::iterator I,
2196                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2197                                   bool IsIndirect, Register Reg,
2198                                   const MDNode *Variable, const MDNode *Expr) {
2199   MachineFunction &MF = *BB.getParent();
2200   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2201   BB.insert(I, MI);
2202   return MachineInstrBuilder(MF, MI);
2203 }
2204 
2205 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2206                                   MachineBasicBlock::iterator I,
2207                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2208                                   bool IsIndirect,
2209                                   ArrayRef<MachineOperand> DebugOps,
2210                                   const MDNode *Variable, const MDNode *Expr) {
2211   MachineFunction &MF = *BB.getParent();
2212   MachineInstr *MI =
2213       BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr);
2214   BB.insert(I, MI);
2215   return MachineInstrBuilder(MF, *MI);
2216 }
2217 
2218 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2219 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2220 static const DIExpression *
2221 computeExprForSpill(const MachineInstr &MI,
2222                     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2223   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2224          "Expected inlined-at fields to agree");
2225 
2226   const DIExpression *Expr = MI.getDebugExpression();
2227   if (MI.isIndirectDebugValue()) {
2228     assert(MI.getDebugOffset().getImm() == 0 &&
2229            "DBG_VALUE with nonzero offset");
2230     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2231   } else if (MI.isDebugValueList()) {
2232     // We will replace the spilled register with a frame index, so
2233     // immediately deref all references to the spilled register.
2234     std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2235     for (const MachineOperand *Op : SpilledOperands) {
2236       unsigned OpIdx = MI.getDebugOperandIndex(Op);
2237       Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2238     }
2239   }
2240   return Expr;
2241 }
2242 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2243                                                Register SpillReg) {
2244   assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2245   SmallVector<const MachineOperand *> SpillOperands;
2246   for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2247     SpillOperands.push_back(&Op);
2248   return computeExprForSpill(MI, SpillOperands);
2249 }
2250 
2251 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2252                                           MachineBasicBlock::iterator I,
2253                                           const MachineInstr &Orig,
2254                                           int FrameIndex, Register SpillReg) {
2255   assert(!Orig.isDebugRef() &&
2256          "DBG_INSTR_REF should not reference a virtual register.");
2257   const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2258   MachineInstrBuilder NewMI =
2259       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2260   // Non-Variadic Operands: Location, Offset, Variable, Expression
2261   // Variadic Operands:     Variable, Expression, Locations...
2262   if (Orig.isNonListDebugValue())
2263     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2264   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2265   if (Orig.isDebugValueList()) {
2266     for (const MachineOperand &Op : Orig.debug_operands())
2267       if (Op.isReg() && Op.getReg() == SpillReg)
2268         NewMI.addFrameIndex(FrameIndex);
2269       else
2270         NewMI.add(MachineOperand(Op));
2271   }
2272   return NewMI;
2273 }
2274 MachineInstr *llvm::buildDbgValueForSpill(
2275     MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2276     const MachineInstr &Orig, int FrameIndex,
2277     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2278   const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2279   MachineInstrBuilder NewMI =
2280       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2281   // Non-Variadic Operands: Location, Offset, Variable, Expression
2282   // Variadic Operands:     Variable, Expression, Locations...
2283   if (Orig.isNonListDebugValue())
2284     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2285   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2286   if (Orig.isDebugValueList()) {
2287     for (const MachineOperand &Op : Orig.debug_operands())
2288       if (is_contained(SpilledOperands, &Op))
2289         NewMI.addFrameIndex(FrameIndex);
2290       else
2291         NewMI.add(MachineOperand(Op));
2292   }
2293   return NewMI;
2294 }
2295 
2296 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2297                                   Register Reg) {
2298   const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2299   if (Orig.isNonListDebugValue())
2300     Orig.getDebugOffset().ChangeToImmediate(0U);
2301   for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2302     Op.ChangeToFrameIndex(FrameIndex);
2303   Orig.getDebugExpressionOp().setMetadata(Expr);
2304 }
2305 
2306 void MachineInstr::collectDebugValues(
2307                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2308   MachineInstr &MI = *this;
2309   if (!MI.getOperand(0).isReg())
2310     return;
2311 
2312   MachineBasicBlock::iterator DI = MI; ++DI;
2313   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2314        DI != DE; ++DI) {
2315     if (!DI->isDebugValue())
2316       return;
2317     if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2318       DbgValues.push_back(&*DI);
2319   }
2320 }
2321 
2322 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2323   // Collect matching debug values.
2324   SmallVector<MachineInstr *, 2> DbgValues;
2325 
2326   if (!getOperand(0).isReg())
2327     return;
2328 
2329   Register DefReg = getOperand(0).getReg();
2330   auto *MRI = getRegInfo();
2331   for (auto &MO : MRI->use_operands(DefReg)) {
2332     auto *DI = MO.getParent();
2333     if (!DI->isDebugValue())
2334       continue;
2335     if (DI->hasDebugOperandForReg(DefReg)) {
2336       DbgValues.push_back(DI);
2337     }
2338   }
2339 
2340   // Propagate Reg to debug value instructions.
2341   for (auto *DBI : DbgValues)
2342     for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2343       Op.setReg(Reg);
2344 }
2345 
2346 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2347 
2348 static unsigned getSpillSlotSize(const MMOList &Accesses,
2349                                  const MachineFrameInfo &MFI) {
2350   unsigned Size = 0;
2351   for (const auto *A : Accesses)
2352     if (MFI.isSpillSlotObjectIndex(
2353             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2354                 ->getFrameIndex()))
2355       Size += A->getSize();
2356   return Size;
2357 }
2358 
2359 std::optional<unsigned>
2360 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2361   int FI;
2362   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2363     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2364     if (MFI.isSpillSlotObjectIndex(FI))
2365       return (*memoperands_begin())->getSize();
2366   }
2367   return std::nullopt;
2368 }
2369 
2370 std::optional<unsigned>
2371 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2372   MMOList Accesses;
2373   if (TII->hasStoreToStackSlot(*this, Accesses))
2374     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2375   return std::nullopt;
2376 }
2377 
2378 std::optional<unsigned>
2379 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2380   int FI;
2381   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2382     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2383     if (MFI.isSpillSlotObjectIndex(FI))
2384       return (*memoperands_begin())->getSize();
2385   }
2386   return std::nullopt;
2387 }
2388 
2389 std::optional<unsigned>
2390 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2391   MMOList Accesses;
2392   if (TII->hasLoadFromStackSlot(*this, Accesses))
2393     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2394   return std::nullopt;
2395 }
2396 
2397 unsigned MachineInstr::getDebugInstrNum() {
2398   if (DebugInstrNum == 0)
2399     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2400   return DebugInstrNum;
2401 }
2402 
2403 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2404   if (DebugInstrNum == 0)
2405     DebugInstrNum = MF.getNewDebugInstrNum();
2406   return DebugInstrNum;
2407 }
2408 
2409 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const {
2410   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2411                     getRegInfo()->getType(getOperand(1).getReg()));
2412 }
2413 
2414 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const {
2415   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2416                     getRegInfo()->getType(getOperand(1).getReg()),
2417                     getRegInfo()->getType(getOperand(2).getReg()));
2418 }
2419 
2420 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const {
2421   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2422                     getRegInfo()->getType(getOperand(1).getReg()),
2423                     getRegInfo()->getType(getOperand(2).getReg()),
2424                     getRegInfo()->getType(getOperand(3).getReg()));
2425 }
2426 
2427 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const {
2428   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2429                     getRegInfo()->getType(getOperand(1).getReg()),
2430                     getRegInfo()->getType(getOperand(2).getReg()),
2431                     getRegInfo()->getType(getOperand(3).getReg()),
2432                     getRegInfo()->getType(getOperand(4).getReg()));
2433 }
2434 
2435 std::tuple<Register, LLT, Register, LLT>
2436 MachineInstr::getFirst2RegLLTs() const {
2437   Register Reg0 = getOperand(0).getReg();
2438   Register Reg1 = getOperand(1).getReg();
2439   return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2440                     getRegInfo()->getType(Reg1));
2441 }
2442 
2443 std::tuple<Register, LLT, Register, LLT, Register, LLT>
2444 MachineInstr::getFirst3RegLLTs() const {
2445   Register Reg0 = getOperand(0).getReg();
2446   Register Reg1 = getOperand(1).getReg();
2447   Register Reg2 = getOperand(2).getReg();
2448   return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2449                     getRegInfo()->getType(Reg1), Reg2,
2450                     getRegInfo()->getType(Reg2));
2451 }
2452 
2453 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT>
2454 MachineInstr::getFirst4RegLLTs() const {
2455   Register Reg0 = getOperand(0).getReg();
2456   Register Reg1 = getOperand(1).getReg();
2457   Register Reg2 = getOperand(2).getReg();
2458   Register Reg3 = getOperand(3).getReg();
2459   return std::tuple(
2460       Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2461       Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3));
2462 }
2463 
2464 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register,
2465            LLT>
2466 MachineInstr::getFirst5RegLLTs() const {
2467   Register Reg0 = getOperand(0).getReg();
2468   Register Reg1 = getOperand(1).getReg();
2469   Register Reg2 = getOperand(2).getReg();
2470   Register Reg3 = getOperand(3).getReg();
2471   Register Reg4 = getOperand(4).getReg();
2472   return std::tuple(
2473       Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2474       Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3),
2475       Reg4, getRegInfo()->getType(Reg4));
2476 }
2477