1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineInstrBundle.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/PseudoSourceValue.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/ModuleSlotTracker.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/MC/MCInstrDesc.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/LowLevelTypeImpl.h" 59 #include "llvm/Support/MathExtras.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetInstrInfo.h" 62 #include "llvm/Target/TargetIntrinsicInfo.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include "llvm/Target/TargetRegisterInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstddef> 69 #include <cstdint> 70 #include <cstring> 71 #include <iterator> 72 #include <utility> 73 74 using namespace llvm; 75 76 static cl::opt<int> PrintRegMaskNumRegs( 77 "print-regmask-num-regs", 78 cl::desc("Number of registers to limit to when " 79 "printing regmask operands in IR dumps. " 80 "unlimited = -1"), 81 cl::init(32), cl::Hidden); 82 83 //===----------------------------------------------------------------------===// 84 // MachineOperand Implementation 85 //===----------------------------------------------------------------------===// 86 87 void MachineOperand::setReg(unsigned Reg) { 88 if (getReg() == Reg) return; // No change. 89 90 // Otherwise, we have to change the register. If this operand is embedded 91 // into a machine function, we need to update the old and new register's 92 // use/def lists. 93 if (MachineInstr *MI = getParent()) 94 if (MachineBasicBlock *MBB = MI->getParent()) 95 if (MachineFunction *MF = MBB->getParent()) { 96 MachineRegisterInfo &MRI = MF->getRegInfo(); 97 MRI.removeRegOperandFromUseList(this); 98 SmallContents.RegNo = Reg; 99 MRI.addRegOperandToUseList(this); 100 return; 101 } 102 103 // Otherwise, just change the register, no problem. :) 104 SmallContents.RegNo = Reg; 105 } 106 107 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 108 const TargetRegisterInfo &TRI) { 109 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 110 if (SubIdx && getSubReg()) 111 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 112 setReg(Reg); 113 if (SubIdx) 114 setSubReg(SubIdx); 115 } 116 117 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 118 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 119 if (getSubReg()) { 120 Reg = TRI.getSubReg(Reg, getSubReg()); 121 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 122 // That won't happen in legal code. 123 setSubReg(0); 124 if (isDef()) 125 setIsUndef(false); 126 } 127 setReg(Reg); 128 } 129 130 /// Change a def to a use, or a use to a def. 131 void MachineOperand::setIsDef(bool Val) { 132 assert(isReg() && "Wrong MachineOperand accessor"); 133 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 134 if (IsDef == Val) 135 return; 136 // MRI may keep uses and defs in different list positions. 137 if (MachineInstr *MI = getParent()) 138 if (MachineBasicBlock *MBB = MI->getParent()) 139 if (MachineFunction *MF = MBB->getParent()) { 140 MachineRegisterInfo &MRI = MF->getRegInfo(); 141 MRI.removeRegOperandFromUseList(this); 142 IsDef = Val; 143 MRI.addRegOperandToUseList(this); 144 return; 145 } 146 IsDef = Val; 147 } 148 149 // If this operand is currently a register operand, and if this is in a 150 // function, deregister the operand from the register's use/def list. 151 void MachineOperand::removeRegFromUses() { 152 if (!isReg() || !isOnRegUseList()) 153 return; 154 155 if (MachineInstr *MI = getParent()) { 156 if (MachineBasicBlock *MBB = MI->getParent()) { 157 if (MachineFunction *MF = MBB->getParent()) 158 MF->getRegInfo().removeRegOperandFromUseList(this); 159 } 160 } 161 } 162 163 /// ChangeToImmediate - Replace this operand with a new immediate operand of 164 /// the specified value. If an operand is known to be an immediate already, 165 /// the setImm method should be used. 166 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 167 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 168 169 removeRegFromUses(); 170 171 OpKind = MO_Immediate; 172 Contents.ImmVal = ImmVal; 173 } 174 175 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 176 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 177 178 removeRegFromUses(); 179 180 OpKind = MO_FPImmediate; 181 Contents.CFP = FPImm; 182 } 183 184 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 185 assert((!isReg() || !isTied()) && 186 "Cannot change a tied operand into an external symbol"); 187 188 removeRegFromUses(); 189 190 OpKind = MO_ExternalSymbol; 191 Contents.OffsetedInfo.Val.SymbolName = SymName; 192 setOffset(0); // Offset is always 0. 193 setTargetFlags(TargetFlags); 194 } 195 196 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 197 assert((!isReg() || !isTied()) && 198 "Cannot change a tied operand into an MCSymbol"); 199 200 removeRegFromUses(); 201 202 OpKind = MO_MCSymbol; 203 Contents.Sym = Sym; 204 } 205 206 void MachineOperand::ChangeToFrameIndex(int Idx) { 207 assert((!isReg() || !isTied()) && 208 "Cannot change a tied operand into a FrameIndex"); 209 210 removeRegFromUses(); 211 212 OpKind = MO_FrameIndex; 213 setIndex(Idx); 214 } 215 216 void MachineOperand::ChangeToTargetIndex(unsigned Idx, int64_t Offset, 217 unsigned char TargetFlags) { 218 assert((!isReg() || !isTied()) && 219 "Cannot change a tied operand into a FrameIndex"); 220 221 removeRegFromUses(); 222 223 OpKind = MO_TargetIndex; 224 setIndex(Idx); 225 setOffset(Offset); 226 setTargetFlags(TargetFlags); 227 } 228 229 /// ChangeToRegister - Replace this operand with a new register operand of 230 /// the specified value. If an operand is known to be an register already, 231 /// the setReg method should be used. 232 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 233 bool isKill, bool isDead, bool isUndef, 234 bool isDebug) { 235 MachineRegisterInfo *RegInfo = nullptr; 236 if (MachineInstr *MI = getParent()) 237 if (MachineBasicBlock *MBB = MI->getParent()) 238 if (MachineFunction *MF = MBB->getParent()) 239 RegInfo = &MF->getRegInfo(); 240 // If this operand is already a register operand, remove it from the 241 // register's use/def lists. 242 bool WasReg = isReg(); 243 if (RegInfo && WasReg) 244 RegInfo->removeRegOperandFromUseList(this); 245 246 // Change this to a register and set the reg#. 247 OpKind = MO_Register; 248 SmallContents.RegNo = Reg; 249 SubReg_TargetFlags = 0; 250 IsDef = isDef; 251 IsImp = isImp; 252 IsKill = isKill; 253 IsDead = isDead; 254 IsUndef = isUndef; 255 IsInternalRead = false; 256 IsEarlyClobber = false; 257 IsDebug = isDebug; 258 // Ensure isOnRegUseList() returns false. 259 Contents.Reg.Prev = nullptr; 260 // Preserve the tie when the operand was already a register. 261 if (!WasReg) 262 TiedTo = 0; 263 264 // If this operand is embedded in a function, add the operand to the 265 // register's use/def list. 266 if (RegInfo) 267 RegInfo->addRegOperandToUseList(this); 268 } 269 270 /// isIdenticalTo - Return true if this operand is identical to the specified 271 /// operand. Note that this should stay in sync with the hash_value overload 272 /// below. 273 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 274 if (getType() != Other.getType() || 275 getTargetFlags() != Other.getTargetFlags()) 276 return false; 277 278 switch (getType()) { 279 case MachineOperand::MO_Register: 280 return getReg() == Other.getReg() && isDef() == Other.isDef() && 281 getSubReg() == Other.getSubReg(); 282 case MachineOperand::MO_Immediate: 283 return getImm() == Other.getImm(); 284 case MachineOperand::MO_CImmediate: 285 return getCImm() == Other.getCImm(); 286 case MachineOperand::MO_FPImmediate: 287 return getFPImm() == Other.getFPImm(); 288 case MachineOperand::MO_MachineBasicBlock: 289 return getMBB() == Other.getMBB(); 290 case MachineOperand::MO_FrameIndex: 291 return getIndex() == Other.getIndex(); 292 case MachineOperand::MO_ConstantPoolIndex: 293 case MachineOperand::MO_TargetIndex: 294 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 295 case MachineOperand::MO_JumpTableIndex: 296 return getIndex() == Other.getIndex(); 297 case MachineOperand::MO_GlobalAddress: 298 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 299 case MachineOperand::MO_ExternalSymbol: 300 return strcmp(getSymbolName(), Other.getSymbolName()) == 0 && 301 getOffset() == Other.getOffset(); 302 case MachineOperand::MO_BlockAddress: 303 return getBlockAddress() == Other.getBlockAddress() && 304 getOffset() == Other.getOffset(); 305 case MachineOperand::MO_RegisterMask: 306 case MachineOperand::MO_RegisterLiveOut: { 307 // Shallow compare of the two RegMasks 308 const uint32_t *RegMask = getRegMask(); 309 const uint32_t *OtherRegMask = Other.getRegMask(); 310 if (RegMask == OtherRegMask) 311 return true; 312 313 // Calculate the size of the RegMask 314 const MachineFunction *MF = getParent()->getParent()->getParent(); 315 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 316 unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32; 317 318 // Deep compare of the two RegMasks 319 return std::equal(RegMask, RegMask + RegMaskSize, OtherRegMask); 320 } 321 case MachineOperand::MO_MCSymbol: 322 return getMCSymbol() == Other.getMCSymbol(); 323 case MachineOperand::MO_CFIIndex: 324 return getCFIIndex() == Other.getCFIIndex(); 325 case MachineOperand::MO_Metadata: 326 return getMetadata() == Other.getMetadata(); 327 case MachineOperand::MO_IntrinsicID: 328 return getIntrinsicID() == Other.getIntrinsicID(); 329 case MachineOperand::MO_Predicate: 330 return getPredicate() == Other.getPredicate(); 331 } 332 llvm_unreachable("Invalid machine operand type"); 333 } 334 335 // Note: this must stay exactly in sync with isIdenticalTo above. 336 hash_code llvm::hash_value(const MachineOperand &MO) { 337 switch (MO.getType()) { 338 case MachineOperand::MO_Register: 339 // Register operands don't have target flags. 340 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 341 case MachineOperand::MO_Immediate: 342 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 343 case MachineOperand::MO_CImmediate: 344 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 345 case MachineOperand::MO_FPImmediate: 346 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 347 case MachineOperand::MO_MachineBasicBlock: 348 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 349 case MachineOperand::MO_FrameIndex: 350 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 351 case MachineOperand::MO_ConstantPoolIndex: 352 case MachineOperand::MO_TargetIndex: 353 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 354 MO.getOffset()); 355 case MachineOperand::MO_JumpTableIndex: 356 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 357 case MachineOperand::MO_ExternalSymbol: 358 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 359 MO.getSymbolName()); 360 case MachineOperand::MO_GlobalAddress: 361 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 362 MO.getOffset()); 363 case MachineOperand::MO_BlockAddress: 364 return hash_combine(MO.getType(), MO.getTargetFlags(), 365 MO.getBlockAddress(), MO.getOffset()); 366 case MachineOperand::MO_RegisterMask: 367 case MachineOperand::MO_RegisterLiveOut: 368 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 369 case MachineOperand::MO_Metadata: 370 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 371 case MachineOperand::MO_MCSymbol: 372 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 373 case MachineOperand::MO_CFIIndex: 374 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 375 case MachineOperand::MO_IntrinsicID: 376 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID()); 377 case MachineOperand::MO_Predicate: 378 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate()); 379 } 380 llvm_unreachable("Invalid machine operand type"); 381 } 382 383 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI, 384 const TargetIntrinsicInfo *IntrinsicInfo) const { 385 ModuleSlotTracker DummyMST(nullptr); 386 print(OS, DummyMST, TRI, IntrinsicInfo); 387 } 388 389 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 390 const TargetRegisterInfo *TRI, 391 const TargetIntrinsicInfo *IntrinsicInfo) const { 392 switch (getType()) { 393 case MachineOperand::MO_Register: 394 OS << PrintReg(getReg(), TRI, getSubReg()); 395 396 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 397 isInternalRead() || isEarlyClobber() || isTied()) { 398 OS << '<'; 399 bool NeedComma = false; 400 if (isDef()) { 401 if (NeedComma) OS << ','; 402 if (isEarlyClobber()) 403 OS << "earlyclobber,"; 404 if (isImplicit()) 405 OS << "imp-"; 406 OS << "def"; 407 NeedComma = true; 408 // <def,read-undef> only makes sense when getSubReg() is set. 409 // Don't clutter the output otherwise. 410 if (isUndef() && getSubReg()) 411 OS << ",read-undef"; 412 } else if (isImplicit()) { 413 OS << "imp-use"; 414 NeedComma = true; 415 } 416 417 if (isKill()) { 418 if (NeedComma) OS << ','; 419 OS << "kill"; 420 NeedComma = true; 421 } 422 if (isDead()) { 423 if (NeedComma) OS << ','; 424 OS << "dead"; 425 NeedComma = true; 426 } 427 if (isUndef() && isUse()) { 428 if (NeedComma) OS << ','; 429 OS << "undef"; 430 NeedComma = true; 431 } 432 if (isInternalRead()) { 433 if (NeedComma) OS << ','; 434 OS << "internal"; 435 NeedComma = true; 436 } 437 if (isTied()) { 438 if (NeedComma) OS << ','; 439 OS << "tied"; 440 if (TiedTo != 15) 441 OS << unsigned(TiedTo - 1); 442 } 443 OS << '>'; 444 } 445 break; 446 case MachineOperand::MO_Immediate: 447 OS << getImm(); 448 break; 449 case MachineOperand::MO_CImmediate: 450 getCImm()->getValue().print(OS, false); 451 break; 452 case MachineOperand::MO_FPImmediate: 453 if (getFPImm()->getType()->isFloatTy()) { 454 OS << getFPImm()->getValueAPF().convertToFloat(); 455 } else if (getFPImm()->getType()->isHalfTy()) { 456 APFloat APF = getFPImm()->getValueAPF(); 457 bool Unused; 458 APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused); 459 OS << "half " << APF.convertToFloat(); 460 } else if (getFPImm()->getType()->isFP128Ty()) { 461 APFloat APF = getFPImm()->getValueAPF(); 462 SmallString<16> Str; 463 getFPImm()->getValueAPF().toString(Str); 464 OS << "quad " << Str; 465 } else if (getFPImm()->getType()->isX86_FP80Ty()) { 466 APFloat APF = getFPImm()->getValueAPF(); 467 OS << "x86_fp80 0xK"; 468 APInt API = APF.bitcastToAPInt(); 469 OS << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4, 470 /*Upper=*/true); 471 OS << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 472 /*Upper=*/true); 473 } else { 474 OS << getFPImm()->getValueAPF().convertToDouble(); 475 } 476 break; 477 case MachineOperand::MO_MachineBasicBlock: 478 OS << "<BB#" << getMBB()->getNumber() << ">"; 479 break; 480 case MachineOperand::MO_FrameIndex: 481 OS << "<fi#" << getIndex() << '>'; 482 break; 483 case MachineOperand::MO_ConstantPoolIndex: 484 OS << "<cp#" << getIndex(); 485 if (getOffset()) OS << "+" << getOffset(); 486 OS << '>'; 487 break; 488 case MachineOperand::MO_TargetIndex: 489 OS << "<ti#" << getIndex(); 490 if (getOffset()) OS << "+" << getOffset(); 491 OS << '>'; 492 break; 493 case MachineOperand::MO_JumpTableIndex: 494 OS << "<jt#" << getIndex() << '>'; 495 break; 496 case MachineOperand::MO_GlobalAddress: 497 OS << "<ga:"; 498 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 499 if (getOffset()) OS << "+" << getOffset(); 500 OS << '>'; 501 break; 502 case MachineOperand::MO_ExternalSymbol: 503 OS << "<es:" << getSymbolName(); 504 if (getOffset()) OS << "+" << getOffset(); 505 OS << '>'; 506 break; 507 case MachineOperand::MO_BlockAddress: 508 OS << '<'; 509 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 510 if (getOffset()) OS << "+" << getOffset(); 511 OS << '>'; 512 break; 513 case MachineOperand::MO_RegisterMask: { 514 unsigned NumRegsInMask = 0; 515 unsigned NumRegsEmitted = 0; 516 OS << "<regmask"; 517 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 518 unsigned MaskWord = i / 32; 519 unsigned MaskBit = i % 32; 520 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 521 if (PrintRegMaskNumRegs < 0 || 522 NumRegsEmitted <= static_cast<unsigned>(PrintRegMaskNumRegs)) { 523 OS << " " << PrintReg(i, TRI); 524 NumRegsEmitted++; 525 } 526 NumRegsInMask++; 527 } 528 } 529 if (NumRegsEmitted != NumRegsInMask) 530 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 531 OS << ">"; 532 break; 533 } 534 case MachineOperand::MO_RegisterLiveOut: 535 OS << "<regliveout>"; 536 break; 537 case MachineOperand::MO_Metadata: 538 OS << '<'; 539 getMetadata()->printAsOperand(OS, MST); 540 OS << '>'; 541 break; 542 case MachineOperand::MO_MCSymbol: 543 OS << "<MCSym=" << *getMCSymbol() << '>'; 544 break; 545 case MachineOperand::MO_CFIIndex: 546 OS << "<call frame instruction>"; 547 break; 548 case MachineOperand::MO_IntrinsicID: { 549 Intrinsic::ID ID = getIntrinsicID(); 550 if (ID < Intrinsic::num_intrinsics) 551 OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>'; 552 else if (IntrinsicInfo) 553 OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>'; 554 else 555 OS << "<intrinsic:" << ID << '>'; 556 break; 557 } 558 case MachineOperand::MO_Predicate: { 559 auto Pred = static_cast<CmpInst::Predicate>(getPredicate()); 560 OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred") 561 << CmpInst::getPredicateName(Pred) << '>'; 562 break; 563 } 564 } 565 if (unsigned TF = getTargetFlags()) 566 OS << "[TF=" << TF << ']'; 567 } 568 569 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 570 LLVM_DUMP_METHOD void MachineOperand::dump() const { 571 dbgs() << *this << '\n'; 572 } 573 #endif 574 575 //===----------------------------------------------------------------------===// 576 // MachineMemOperand Implementation 577 //===----------------------------------------------------------------------===// 578 579 /// getAddrSpace - Return the LLVM IR address space number that this pointer 580 /// points into. 581 unsigned MachinePointerInfo::getAddrSpace() const { 582 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 583 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 584 } 585 586 /// isDereferenceable - Return true if V is always dereferenceable for 587 /// Offset + Size byte. 588 bool MachinePointerInfo::isDereferenceable(unsigned Size, LLVMContext &C, 589 const DataLayout &DL) const { 590 if (!V.is<const Value*>()) 591 return false; 592 593 const Value *BasePtr = V.get<const Value*>(); 594 if (BasePtr == nullptr) 595 return false; 596 597 return isDereferenceableAndAlignedPointer( 598 BasePtr, 1, APInt(DL.getPointerSizeInBits(), Offset + Size), DL); 599 } 600 601 /// getConstantPool - Return a MachinePointerInfo record that refers to the 602 /// constant pool. 603 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 604 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 605 } 606 607 /// getFixedStack - Return a MachinePointerInfo record that refers to the 608 /// the specified FrameIndex. 609 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 610 int FI, int64_t Offset) { 611 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 612 } 613 614 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 615 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 616 } 617 618 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 619 return MachinePointerInfo(MF.getPSVManager().getGOT()); 620 } 621 622 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 623 int64_t Offset, 624 uint8_t ID) { 625 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset,ID); 626 } 627 628 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, 629 uint64_t s, unsigned int a, 630 const AAMDNodes &AAInfo, 631 const MDNode *Ranges, 632 SyncScope::ID SSID, 633 AtomicOrdering Ordering, 634 AtomicOrdering FailureOrdering) 635 : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), 636 AAInfo(AAInfo), Ranges(Ranges) { 637 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 638 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 639 "invalid pointer value"); 640 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 641 assert((isLoad() || isStore()) && "Not a load/store!"); 642 643 AtomicInfo.SSID = static_cast<unsigned>(SSID); 644 assert(getSyncScopeID() == SSID && "Value truncated"); 645 AtomicInfo.Ordering = static_cast<unsigned>(Ordering); 646 assert(getOrdering() == Ordering && "Value truncated"); 647 AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering); 648 assert(getFailureOrdering() == FailureOrdering && "Value truncated"); 649 } 650 651 /// Profile - Gather unique data for the object. 652 /// 653 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 654 ID.AddInteger(getOffset()); 655 ID.AddInteger(Size); 656 ID.AddPointer(getOpaqueValue()); 657 ID.AddInteger(getFlags()); 658 ID.AddInteger(getBaseAlignment()); 659 } 660 661 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 662 // The Value and Offset may differ due to CSE. But the flags and size 663 // should be the same. 664 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 665 assert(MMO->getSize() == getSize() && "Size mismatch!"); 666 667 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 668 // Update the alignment value. 669 BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; 670 // Also update the base and offset, because the new alignment may 671 // not be applicable with the old ones. 672 PtrInfo = MMO->PtrInfo; 673 } 674 } 675 676 /// getAlignment - Return the minimum known alignment in bytes of the 677 /// actual memory reference. 678 uint64_t MachineMemOperand::getAlignment() const { 679 return MinAlign(getBaseAlignment(), getOffset()); 680 } 681 682 void MachineMemOperand::print(raw_ostream &OS) const { 683 ModuleSlotTracker DummyMST(nullptr); 684 print(OS, DummyMST); 685 } 686 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 687 assert((isLoad() || isStore()) && 688 "SV has to be a load, store or both."); 689 690 if (isVolatile()) 691 OS << "Volatile "; 692 693 if (isLoad()) 694 OS << "LD"; 695 if (isStore()) 696 OS << "ST"; 697 OS << getSize(); 698 699 // Print the address information. 700 OS << "["; 701 if (const Value *V = getValue()) 702 V->printAsOperand(OS, /*PrintType=*/false, MST); 703 else if (const PseudoSourceValue *PSV = getPseudoValue()) 704 PSV->printCustom(OS); 705 else 706 OS << "<unknown>"; 707 708 unsigned AS = getAddrSpace(); 709 if (AS != 0) 710 OS << "(addrspace=" << AS << ')'; 711 712 // If the alignment of the memory reference itself differs from the alignment 713 // of the base pointer, print the base alignment explicitly, next to the base 714 // pointer. 715 if (getBaseAlignment() != getAlignment()) 716 OS << "(align=" << getBaseAlignment() << ")"; 717 718 if (getOffset() != 0) 719 OS << "+" << getOffset(); 720 OS << "]"; 721 722 // Print the alignment of the reference. 723 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 724 OS << "(align=" << getAlignment() << ")"; 725 726 // Print TBAA info. 727 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 728 OS << "(tbaa="; 729 if (TBAAInfo->getNumOperands() > 0) 730 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 731 else 732 OS << "<unknown>"; 733 OS << ")"; 734 } 735 736 // Print AA scope info. 737 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 738 OS << "(alias.scope="; 739 if (ScopeInfo->getNumOperands() > 0) 740 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 741 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 742 if (i != ie-1) 743 OS << ","; 744 } 745 else 746 OS << "<unknown>"; 747 OS << ")"; 748 } 749 750 // Print AA noalias scope info. 751 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 752 OS << "(noalias="; 753 if (NoAliasInfo->getNumOperands() > 0) 754 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 755 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 756 if (i != ie-1) 757 OS << ","; 758 } 759 else 760 OS << "<unknown>"; 761 OS << ")"; 762 } 763 764 if (isNonTemporal()) 765 OS << "(nontemporal)"; 766 if (isDereferenceable()) 767 OS << "(dereferenceable)"; 768 if (isInvariant()) 769 OS << "(invariant)"; 770 if (getFlags() & MOTargetFlag1) 771 OS << "(flag1)"; 772 if (getFlags() & MOTargetFlag2) 773 OS << "(flag2)"; 774 if (getFlags() & MOTargetFlag3) 775 OS << "(flag3)"; 776 } 777 778 //===----------------------------------------------------------------------===// 779 // MachineInstr Implementation 780 //===----------------------------------------------------------------------===// 781 782 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 783 if (MCID->ImplicitDefs) 784 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 785 ++ImpDefs) 786 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 787 if (MCID->ImplicitUses) 788 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 789 ++ImpUses) 790 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 791 } 792 793 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 794 /// implicit operands. It reserves space for the number of operands specified by 795 /// the MCInstrDesc. 796 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 797 DebugLoc dl, bool NoImp) 798 : MCID(&tid), debugLoc(std::move(dl)) { 799 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 800 801 // Reserve space for the expected number of operands. 802 if (unsigned NumOps = MCID->getNumOperands() + 803 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 804 CapOperands = OperandCapacity::get(NumOps); 805 Operands = MF.allocateOperandArray(CapOperands); 806 } 807 808 if (!NoImp) 809 addImplicitDefUseOperands(MF); 810 } 811 812 /// MachineInstr ctor - Copies MachineInstr arg exactly 813 /// 814 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 815 : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 816 debugLoc(MI.getDebugLoc()) { 817 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 818 819 CapOperands = OperandCapacity::get(MI.getNumOperands()); 820 Operands = MF.allocateOperandArray(CapOperands); 821 822 // Copy operands. 823 for (const MachineOperand &MO : MI.operands()) 824 addOperand(MF, MO); 825 826 // Copy all the sensible flags. 827 setFlags(MI.Flags); 828 } 829 830 /// getRegInfo - If this instruction is embedded into a MachineFunction, 831 /// return the MachineRegisterInfo object for the current function, otherwise 832 /// return null. 833 MachineRegisterInfo *MachineInstr::getRegInfo() { 834 if (MachineBasicBlock *MBB = getParent()) 835 return &MBB->getParent()->getRegInfo(); 836 return nullptr; 837 } 838 839 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 840 /// this instruction from their respective use lists. This requires that the 841 /// operands already be on their use lists. 842 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 843 for (MachineOperand &MO : operands()) 844 if (MO.isReg()) 845 MRI.removeRegOperandFromUseList(&MO); 846 } 847 848 /// AddRegOperandsToUseLists - Add all of the register operands in 849 /// this instruction from their respective use lists. This requires that the 850 /// operands not be on their use lists yet. 851 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 852 for (MachineOperand &MO : operands()) 853 if (MO.isReg()) 854 MRI.addRegOperandToUseList(&MO); 855 } 856 857 void MachineInstr::addOperand(const MachineOperand &Op) { 858 MachineBasicBlock *MBB = getParent(); 859 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 860 MachineFunction *MF = MBB->getParent(); 861 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 862 addOperand(*MF, Op); 863 } 864 865 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 866 /// ranges. If MRI is non-null also update use-def chains. 867 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 868 unsigned NumOps, MachineRegisterInfo *MRI) { 869 if (MRI) 870 return MRI->moveOperands(Dst, Src, NumOps); 871 872 // MachineOperand is a trivially copyable type so we can just use memmove. 873 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 874 } 875 876 /// addOperand - Add the specified operand to the instruction. If it is an 877 /// implicit operand, it is added to the end of the operand list. If it is 878 /// an explicit operand it is added at the end of the explicit operand list 879 /// (before the first implicit operand). 880 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 881 assert(MCID && "Cannot add operands before providing an instr descriptor"); 882 883 // Check if we're adding one of our existing operands. 884 if (&Op >= Operands && &Op < Operands + NumOperands) { 885 // This is unusual: MI->addOperand(MI->getOperand(i)). 886 // If adding Op requires reallocating or moving existing operands around, 887 // the Op reference could go stale. Support it by copying Op. 888 MachineOperand CopyOp(Op); 889 return addOperand(MF, CopyOp); 890 } 891 892 // Find the insert location for the new operand. Implicit registers go at 893 // the end, everything else goes before the implicit regs. 894 // 895 // FIXME: Allow mixed explicit and implicit operands on inline asm. 896 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 897 // implicit-defs, but they must not be moved around. See the FIXME in 898 // InstrEmitter.cpp. 899 unsigned OpNo = getNumOperands(); 900 bool isImpReg = Op.isReg() && Op.isImplicit(); 901 if (!isImpReg && !isInlineAsm()) { 902 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 903 --OpNo; 904 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 905 } 906 } 907 908 #ifndef NDEBUG 909 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 910 // OpNo now points as the desired insertion point. Unless this is a variadic 911 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 912 // RegMask operands go between the explicit and implicit operands. 913 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 914 OpNo < MCID->getNumOperands() || isMetaDataOp) && 915 "Trying to add an operand to a machine instr that is already done!"); 916 #endif 917 918 MachineRegisterInfo *MRI = getRegInfo(); 919 920 // Determine if the Operands array needs to be reallocated. 921 // Save the old capacity and operand array. 922 OperandCapacity OldCap = CapOperands; 923 MachineOperand *OldOperands = Operands; 924 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 925 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 926 Operands = MF.allocateOperandArray(CapOperands); 927 // Move the operands before the insertion point. 928 if (OpNo) 929 moveOperands(Operands, OldOperands, OpNo, MRI); 930 } 931 932 // Move the operands following the insertion point. 933 if (OpNo != NumOperands) 934 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 935 MRI); 936 ++NumOperands; 937 938 // Deallocate the old operand array. 939 if (OldOperands != Operands && OldOperands) 940 MF.deallocateOperandArray(OldCap, OldOperands); 941 942 // Copy Op into place. It still needs to be inserted into the MRI use lists. 943 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 944 NewMO->ParentMI = this; 945 946 // When adding a register operand, tell MRI about it. 947 if (NewMO->isReg()) { 948 // Ensure isOnRegUseList() returns false, regardless of Op's status. 949 NewMO->Contents.Reg.Prev = nullptr; 950 // Ignore existing ties. This is not a property that can be copied. 951 NewMO->TiedTo = 0; 952 // Add the new operand to MRI, but only for instructions in an MBB. 953 if (MRI) 954 MRI->addRegOperandToUseList(NewMO); 955 // The MCID operand information isn't accurate until we start adding 956 // explicit operands. The implicit operands are added first, then the 957 // explicits are inserted before them. 958 if (!isImpReg) { 959 // Tie uses to defs as indicated in MCInstrDesc. 960 if (NewMO->isUse()) { 961 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 962 if (DefIdx != -1) 963 tieOperands(DefIdx, OpNo); 964 } 965 // If the register operand is flagged as early, mark the operand as such. 966 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 967 NewMO->setIsEarlyClobber(true); 968 } 969 } 970 } 971 972 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 973 /// fewer operand than it started with. 974 /// 975 void MachineInstr::RemoveOperand(unsigned OpNo) { 976 assert(OpNo < getNumOperands() && "Invalid operand number"); 977 untieRegOperand(OpNo); 978 979 #ifndef NDEBUG 980 // Moving tied operands would break the ties. 981 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 982 if (Operands[i].isReg()) 983 assert(!Operands[i].isTied() && "Cannot move tied operands"); 984 #endif 985 986 MachineRegisterInfo *MRI = getRegInfo(); 987 if (MRI && Operands[OpNo].isReg()) 988 MRI->removeRegOperandFromUseList(Operands + OpNo); 989 990 // Don't call the MachineOperand destructor. A lot of this code depends on 991 // MachineOperand having a trivial destructor anyway, and adding a call here 992 // wouldn't make it 'destructor-correct'. 993 994 if (unsigned N = NumOperands - 1 - OpNo) 995 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 996 --NumOperands; 997 } 998 999 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 1000 /// This function should be used only occasionally. The setMemRefs function 1001 /// is the primary method for setting up a MachineInstr's MemRefs list. 1002 void MachineInstr::addMemOperand(MachineFunction &MF, 1003 MachineMemOperand *MO) { 1004 mmo_iterator OldMemRefs = MemRefs; 1005 unsigned OldNumMemRefs = NumMemRefs; 1006 1007 unsigned NewNum = NumMemRefs + 1; 1008 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 1009 1010 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 1011 NewMemRefs[NewNum - 1] = MO; 1012 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 1013 } 1014 1015 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 1016 /// identical. 1017 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 1018 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 1019 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 1020 if ((E1 - I1) != (E2 - I2)) 1021 return false; 1022 for (; I1 != E1; ++I1, ++I2) { 1023 if (**I1 != **I2) 1024 return false; 1025 } 1026 return true; 1027 } 1028 1029 std::pair<MachineInstr::mmo_iterator, unsigned> 1030 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 1031 1032 // If either of the incoming memrefs are empty, we must be conservative and 1033 // treat this as if we've exhausted our space for memrefs and dropped them. 1034 if (memoperands_empty() || Other.memoperands_empty()) 1035 return std::make_pair(nullptr, 0); 1036 1037 // If both instructions have identical memrefs, we don't need to merge them. 1038 // Since many instructions have a single memref, and we tend to merge things 1039 // like pairs of loads from the same location, this catches a large number of 1040 // cases in practice. 1041 if (hasIdenticalMMOs(*this, Other)) 1042 return std::make_pair(MemRefs, NumMemRefs); 1043 1044 // TODO: consider uniquing elements within the operand lists to reduce 1045 // space usage and fall back to conservative information less often. 1046 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 1047 1048 // If we don't have enough room to store this many memrefs, be conservative 1049 // and drop them. Otherwise, we'd fail asserts when trying to add them to 1050 // the new instruction. 1051 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 1052 return std::make_pair(nullptr, 0); 1053 1054 MachineFunction *MF = getParent()->getParent(); 1055 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 1056 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 1057 MemBegin); 1058 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 1059 MemEnd); 1060 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 1061 "missing memrefs"); 1062 1063 return std::make_pair(MemBegin, CombinedNumMemRefs); 1064 } 1065 1066 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 1067 assert(!isBundledWithPred() && "Must be called on bundle header"); 1068 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 1069 if (MII->getDesc().getFlags() & Mask) { 1070 if (Type == AnyInBundle) 1071 return true; 1072 } else { 1073 if (Type == AllInBundle && !MII->isBundle()) 1074 return false; 1075 } 1076 // This was the last instruction in the bundle. 1077 if (!MII->isBundledWithSucc()) 1078 return Type == AllInBundle; 1079 } 1080 } 1081 1082 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 1083 MICheckType Check) const { 1084 // If opcodes or number of operands are not the same then the two 1085 // instructions are obviously not identical. 1086 if (Other.getOpcode() != getOpcode() || 1087 Other.getNumOperands() != getNumOperands()) 1088 return false; 1089 1090 if (isBundle()) { 1091 // We have passed the test above that both instructions have the same 1092 // opcode, so we know that both instructions are bundles here. Let's compare 1093 // MIs inside the bundle. 1094 assert(Other.isBundle() && "Expected that both instructions are bundles."); 1095 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 1096 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 1097 // Loop until we analysed the last intruction inside at least one of the 1098 // bundles. 1099 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 1100 ++I1; 1101 ++I2; 1102 if (!I1->isIdenticalTo(*I2, Check)) 1103 return false; 1104 } 1105 // If we've reached the end of just one of the two bundles, but not both, 1106 // the instructions are not identical. 1107 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 1108 return false; 1109 } 1110 1111 // Check operands to make sure they match. 1112 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1113 const MachineOperand &MO = getOperand(i); 1114 const MachineOperand &OMO = Other.getOperand(i); 1115 if (!MO.isReg()) { 1116 if (!MO.isIdenticalTo(OMO)) 1117 return false; 1118 continue; 1119 } 1120 1121 // Clients may or may not want to ignore defs when testing for equality. 1122 // For example, machine CSE pass only cares about finding common 1123 // subexpressions, so it's safe to ignore virtual register defs. 1124 if (MO.isDef()) { 1125 if (Check == IgnoreDefs) 1126 continue; 1127 else if (Check == IgnoreVRegDefs) { 1128 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1129 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 1130 if (MO.getReg() != OMO.getReg()) 1131 return false; 1132 } else { 1133 if (!MO.isIdenticalTo(OMO)) 1134 return false; 1135 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 1136 return false; 1137 } 1138 } else { 1139 if (!MO.isIdenticalTo(OMO)) 1140 return false; 1141 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1142 return false; 1143 } 1144 } 1145 // If DebugLoc does not match then two dbg.values are not identical. 1146 if (isDebugValue()) 1147 if (getDebugLoc() && Other.getDebugLoc() && 1148 getDebugLoc() != Other.getDebugLoc()) 1149 return false; 1150 return true; 1151 } 1152 1153 MachineInstr *MachineInstr::removeFromParent() { 1154 assert(getParent() && "Not embedded in a basic block!"); 1155 return getParent()->remove(this); 1156 } 1157 1158 MachineInstr *MachineInstr::removeFromBundle() { 1159 assert(getParent() && "Not embedded in a basic block!"); 1160 return getParent()->remove_instr(this); 1161 } 1162 1163 void MachineInstr::eraseFromParent() { 1164 assert(getParent() && "Not embedded in a basic block!"); 1165 getParent()->erase(this); 1166 } 1167 1168 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1169 assert(getParent() && "Not embedded in a basic block!"); 1170 MachineBasicBlock *MBB = getParent(); 1171 MachineFunction *MF = MBB->getParent(); 1172 assert(MF && "Not embedded in a function!"); 1173 1174 MachineInstr *MI = (MachineInstr *)this; 1175 MachineRegisterInfo &MRI = MF->getRegInfo(); 1176 1177 for (const MachineOperand &MO : MI->operands()) { 1178 if (!MO.isReg() || !MO.isDef()) 1179 continue; 1180 unsigned Reg = MO.getReg(); 1181 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1182 continue; 1183 MRI.markUsesInDebugValueAsUndef(Reg); 1184 } 1185 MI->eraseFromParent(); 1186 } 1187 1188 void MachineInstr::eraseFromBundle() { 1189 assert(getParent() && "Not embedded in a basic block!"); 1190 getParent()->erase_instr(this); 1191 } 1192 1193 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1194 /// 1195 unsigned MachineInstr::getNumExplicitOperands() const { 1196 unsigned NumOperands = MCID->getNumOperands(); 1197 if (!MCID->isVariadic()) 1198 return NumOperands; 1199 1200 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1201 const MachineOperand &MO = getOperand(i); 1202 if (!MO.isReg() || !MO.isImplicit()) 1203 NumOperands++; 1204 } 1205 return NumOperands; 1206 } 1207 1208 void MachineInstr::bundleWithPred() { 1209 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1210 setFlag(BundledPred); 1211 MachineBasicBlock::instr_iterator Pred = getIterator(); 1212 --Pred; 1213 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1214 Pred->setFlag(BundledSucc); 1215 } 1216 1217 void MachineInstr::bundleWithSucc() { 1218 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1219 setFlag(BundledSucc); 1220 MachineBasicBlock::instr_iterator Succ = getIterator(); 1221 ++Succ; 1222 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1223 Succ->setFlag(BundledPred); 1224 } 1225 1226 void MachineInstr::unbundleFromPred() { 1227 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1228 clearFlag(BundledPred); 1229 MachineBasicBlock::instr_iterator Pred = getIterator(); 1230 --Pred; 1231 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1232 Pred->clearFlag(BundledSucc); 1233 } 1234 1235 void MachineInstr::unbundleFromSucc() { 1236 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1237 clearFlag(BundledSucc); 1238 MachineBasicBlock::instr_iterator Succ = getIterator(); 1239 ++Succ; 1240 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1241 Succ->clearFlag(BundledPred); 1242 } 1243 1244 bool MachineInstr::isStackAligningInlineAsm() const { 1245 if (isInlineAsm()) { 1246 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1247 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1248 return true; 1249 } 1250 return false; 1251 } 1252 1253 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1254 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1255 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1256 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1257 } 1258 1259 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1260 unsigned *GroupNo) const { 1261 assert(isInlineAsm() && "Expected an inline asm instruction"); 1262 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1263 1264 // Ignore queries about the initial operands. 1265 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1266 return -1; 1267 1268 unsigned Group = 0; 1269 unsigned NumOps; 1270 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1271 i += NumOps) { 1272 const MachineOperand &FlagMO = getOperand(i); 1273 // If we reach the implicit register operands, stop looking. 1274 if (!FlagMO.isImm()) 1275 return -1; 1276 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1277 if (i + NumOps > OpIdx) { 1278 if (GroupNo) 1279 *GroupNo = Group; 1280 return i; 1281 } 1282 ++Group; 1283 } 1284 return -1; 1285 } 1286 1287 const DILocalVariable *MachineInstr::getDebugVariable() const { 1288 assert(isDebugValue() && "not a DBG_VALUE"); 1289 return cast<DILocalVariable>(getOperand(2).getMetadata()); 1290 } 1291 1292 const DIExpression *MachineInstr::getDebugExpression() const { 1293 assert(isDebugValue() && "not a DBG_VALUE"); 1294 return cast<DIExpression>(getOperand(3).getMetadata()); 1295 } 1296 1297 const TargetRegisterClass* 1298 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1299 const TargetInstrInfo *TII, 1300 const TargetRegisterInfo *TRI) const { 1301 assert(getParent() && "Can't have an MBB reference here!"); 1302 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1303 const MachineFunction &MF = *getParent()->getParent(); 1304 1305 // Most opcodes have fixed constraints in their MCInstrDesc. 1306 if (!isInlineAsm()) 1307 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1308 1309 if (!getOperand(OpIdx).isReg()) 1310 return nullptr; 1311 1312 // For tied uses on inline asm, get the constraint from the def. 1313 unsigned DefIdx; 1314 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1315 OpIdx = DefIdx; 1316 1317 // Inline asm stores register class constraints in the flag word. 1318 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1319 if (FlagIdx < 0) 1320 return nullptr; 1321 1322 unsigned Flag = getOperand(FlagIdx).getImm(); 1323 unsigned RCID; 1324 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 1325 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 1326 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 1327 InlineAsm::hasRegClassConstraint(Flag, RCID)) 1328 return TRI->getRegClass(RCID); 1329 1330 // Assume that all registers in a memory operand are pointers. 1331 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1332 return TRI->getPointerRegClass(MF); 1333 1334 return nullptr; 1335 } 1336 1337 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1338 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1339 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1340 // Check every operands inside the bundle if we have 1341 // been asked to. 1342 if (ExploreBundle) 1343 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 1344 ++OpndIt) 1345 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1346 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1347 else 1348 // Otherwise, just check the current operands. 1349 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1350 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1351 return CurRC; 1352 } 1353 1354 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1355 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1356 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1357 assert(CurRC && "Invalid initial register class"); 1358 // Check if Reg is constrained by some of its use/def from MI. 1359 const MachineOperand &MO = getOperand(OpIdx); 1360 if (!MO.isReg() || MO.getReg() != Reg) 1361 return CurRC; 1362 // If yes, accumulate the constraints through the operand. 1363 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1364 } 1365 1366 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1367 unsigned OpIdx, const TargetRegisterClass *CurRC, 1368 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1369 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1370 const MachineOperand &MO = getOperand(OpIdx); 1371 assert(MO.isReg() && 1372 "Cannot get register constraints for non-register operand"); 1373 assert(CurRC && "Invalid initial register class"); 1374 if (unsigned SubIdx = MO.getSubReg()) { 1375 if (OpRC) 1376 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1377 else 1378 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1379 } else if (OpRC) 1380 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1381 return CurRC; 1382 } 1383 1384 /// Return the number of instructions inside the MI bundle, not counting the 1385 /// header instruction. 1386 unsigned MachineInstr::getBundleSize() const { 1387 MachineBasicBlock::const_instr_iterator I = getIterator(); 1388 unsigned Size = 0; 1389 while (I->isBundledWithSucc()) { 1390 ++Size; 1391 ++I; 1392 } 1393 return Size; 1394 } 1395 1396 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1397 /// the given register (not considering sub/super-registers). 1398 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 1399 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1400 const MachineOperand &MO = getOperand(i); 1401 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1402 return true; 1403 } 1404 return false; 1405 } 1406 1407 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1408 /// the specific register or -1 if it is not found. It further tightens 1409 /// the search criteria to a use that kills the register if isKill is true. 1410 int MachineInstr::findRegisterUseOperandIdx( 1411 unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1412 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1413 const MachineOperand &MO = getOperand(i); 1414 if (!MO.isReg() || !MO.isUse()) 1415 continue; 1416 unsigned MOReg = MO.getReg(); 1417 if (!MOReg) 1418 continue; 1419 if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && 1420 TargetRegisterInfo::isPhysicalRegister(Reg) && 1421 TRI->isSubRegister(MOReg, Reg))) 1422 if (!isKill || MO.isKill()) 1423 return i; 1424 } 1425 return -1; 1426 } 1427 1428 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1429 /// indicating if this instruction reads or writes Reg. This also considers 1430 /// partial defines. 1431 std::pair<bool,bool> 1432 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1433 SmallVectorImpl<unsigned> *Ops) const { 1434 bool PartDef = false; // Partial redefine. 1435 bool FullDef = false; // Full define. 1436 bool Use = false; 1437 1438 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1439 const MachineOperand &MO = getOperand(i); 1440 if (!MO.isReg() || MO.getReg() != Reg) 1441 continue; 1442 if (Ops) 1443 Ops->push_back(i); 1444 if (MO.isUse()) 1445 Use |= !MO.isUndef(); 1446 else if (MO.getSubReg() && !MO.isUndef()) 1447 // A partial <def,undef> doesn't count as reading the register. 1448 PartDef = true; 1449 else 1450 FullDef = true; 1451 } 1452 // A partial redefine uses Reg unless there is also a full define. 1453 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1454 } 1455 1456 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1457 /// the specified register or -1 if it is not found. If isDead is true, defs 1458 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1459 /// also checks if there is a def of a super-register. 1460 int 1461 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1462 const TargetRegisterInfo *TRI) const { 1463 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1464 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1465 const MachineOperand &MO = getOperand(i); 1466 // Accept regmask operands when Overlap is set. 1467 // Ignore them when looking for a specific def operand (Overlap == false). 1468 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1469 return i; 1470 if (!MO.isReg() || !MO.isDef()) 1471 continue; 1472 unsigned MOReg = MO.getReg(); 1473 bool Found = (MOReg == Reg); 1474 if (!Found && TRI && isPhys && 1475 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1476 if (Overlap) 1477 Found = TRI->regsOverlap(MOReg, Reg); 1478 else 1479 Found = TRI->isSubRegister(MOReg, Reg); 1480 } 1481 if (Found && (!isDead || MO.isDead())) 1482 return i; 1483 } 1484 return -1; 1485 } 1486 1487 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1488 /// operand list that is used to represent the predicate. It returns -1 if 1489 /// none is found. 1490 int MachineInstr::findFirstPredOperandIdx() const { 1491 // Don't call MCID.findFirstPredOperandIdx() because this variant 1492 // is sometimes called on an instruction that's not yet complete, and 1493 // so the number of operands is less than the MCID indicates. In 1494 // particular, the PTX target does this. 1495 const MCInstrDesc &MCID = getDesc(); 1496 if (MCID.isPredicable()) { 1497 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1498 if (MCID.OpInfo[i].isPredicate()) 1499 return i; 1500 } 1501 1502 return -1; 1503 } 1504 1505 // MachineOperand::TiedTo is 4 bits wide. 1506 const unsigned TiedMax = 15; 1507 1508 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1509 /// 1510 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1511 /// field. TiedTo can have these values: 1512 /// 1513 /// 0: Operand is not tied to anything. 1514 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1515 /// TiedMax: Tied to an operand >= TiedMax-1. 1516 /// 1517 /// The tied def must be one of the first TiedMax operands on a normal 1518 /// instruction. INLINEASM instructions allow more tied defs. 1519 /// 1520 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1521 MachineOperand &DefMO = getOperand(DefIdx); 1522 MachineOperand &UseMO = getOperand(UseIdx); 1523 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1524 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1525 assert(!DefMO.isTied() && "Def is already tied to another use"); 1526 assert(!UseMO.isTied() && "Use is already tied to another def"); 1527 1528 if (DefIdx < TiedMax) 1529 UseMO.TiedTo = DefIdx + 1; 1530 else { 1531 // Inline asm can use the group descriptors to find tied operands, but on 1532 // normal instruction, the tied def must be within the first TiedMax 1533 // operands. 1534 assert(isInlineAsm() && "DefIdx out of range"); 1535 UseMO.TiedTo = TiedMax; 1536 } 1537 1538 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1539 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1540 } 1541 1542 /// Given the index of a tied register operand, find the operand it is tied to. 1543 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1544 /// which must exist. 1545 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1546 const MachineOperand &MO = getOperand(OpIdx); 1547 assert(MO.isTied() && "Operand isn't tied"); 1548 1549 // Normally TiedTo is in range. 1550 if (MO.TiedTo < TiedMax) 1551 return MO.TiedTo - 1; 1552 1553 // Uses on normal instructions can be out of range. 1554 if (!isInlineAsm()) { 1555 // Normal tied defs must be in the 0..TiedMax-1 range. 1556 if (MO.isUse()) 1557 return TiedMax - 1; 1558 // MO is a def. Search for the tied use. 1559 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1560 const MachineOperand &UseMO = getOperand(i); 1561 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1562 return i; 1563 } 1564 llvm_unreachable("Can't find tied use"); 1565 } 1566 1567 // Now deal with inline asm by parsing the operand group descriptor flags. 1568 // Find the beginning of each operand group. 1569 SmallVector<unsigned, 8> GroupIdx; 1570 unsigned OpIdxGroup = ~0u; 1571 unsigned NumOps; 1572 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1573 i += NumOps) { 1574 const MachineOperand &FlagMO = getOperand(i); 1575 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1576 unsigned CurGroup = GroupIdx.size(); 1577 GroupIdx.push_back(i); 1578 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1579 // OpIdx belongs to this operand group. 1580 if (OpIdx > i && OpIdx < i + NumOps) 1581 OpIdxGroup = CurGroup; 1582 unsigned TiedGroup; 1583 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1584 continue; 1585 // Operands in this group are tied to operands in TiedGroup which must be 1586 // earlier. Find the number of operands between the two groups. 1587 unsigned Delta = i - GroupIdx[TiedGroup]; 1588 1589 // OpIdx is a use tied to TiedGroup. 1590 if (OpIdxGroup == CurGroup) 1591 return OpIdx - Delta; 1592 1593 // OpIdx is a def tied to this use group. 1594 if (OpIdxGroup == TiedGroup) 1595 return OpIdx + Delta; 1596 } 1597 llvm_unreachable("Invalid tied operand on inline asm"); 1598 } 1599 1600 /// clearKillInfo - Clears kill flags on all operands. 1601 /// 1602 void MachineInstr::clearKillInfo() { 1603 for (MachineOperand &MO : operands()) { 1604 if (MO.isReg() && MO.isUse()) 1605 MO.setIsKill(false); 1606 } 1607 } 1608 1609 void MachineInstr::substituteRegister(unsigned FromReg, 1610 unsigned ToReg, 1611 unsigned SubIdx, 1612 const TargetRegisterInfo &RegInfo) { 1613 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1614 if (SubIdx) 1615 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1616 for (MachineOperand &MO : operands()) { 1617 if (!MO.isReg() || MO.getReg() != FromReg) 1618 continue; 1619 MO.substPhysReg(ToReg, RegInfo); 1620 } 1621 } else { 1622 for (MachineOperand &MO : operands()) { 1623 if (!MO.isReg() || MO.getReg() != FromReg) 1624 continue; 1625 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1626 } 1627 } 1628 } 1629 1630 /// isSafeToMove - Return true if it is safe to move this instruction. If 1631 /// SawStore is set to true, it means that there is a store (or call) between 1632 /// the instruction's location and its intended destination. 1633 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1634 // Ignore stuff that we obviously can't move. 1635 // 1636 // Treat volatile loads as stores. This is not strictly necessary for 1637 // volatiles, but it is required for atomic loads. It is not allowed to move 1638 // a load across an atomic load with Ordering > Monotonic. 1639 if (mayStore() || isCall() || 1640 (mayLoad() && hasOrderedMemoryRef())) { 1641 SawStore = true; 1642 return false; 1643 } 1644 1645 if (isPosition() || isDebugValue() || isTerminator() || 1646 hasUnmodeledSideEffects()) 1647 return false; 1648 1649 // See if this instruction does a load. If so, we have to guarantee that the 1650 // loaded value doesn't change between the load and the its intended 1651 // destination. The check for isInvariantLoad gives the targe the chance to 1652 // classify the load as always returning a constant, e.g. a constant pool 1653 // load. 1654 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1655 // Otherwise, this is a real load. If there is a store between the load and 1656 // end of block, we can't move it. 1657 return !SawStore; 1658 1659 return true; 1660 } 1661 1662 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other, 1663 bool UseTBAA) { 1664 const MachineFunction *MF = getParent()->getParent(); 1665 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1666 1667 // If neither instruction stores to memory, they can't alias in any 1668 // meaningful way, even if they read from the same address. 1669 if (!mayStore() && !Other.mayStore()) 1670 return false; 1671 1672 // Let the target decide if memory accesses cannot possibly overlap. 1673 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA)) 1674 return false; 1675 1676 if (!AA) 1677 return true; 1678 1679 // FIXME: Need to handle multiple memory operands to support all targets. 1680 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1681 return true; 1682 1683 MachineMemOperand *MMOa = *memoperands_begin(); 1684 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1685 1686 if (!MMOa->getValue() || !MMOb->getValue()) 1687 return true; 1688 1689 // The following interface to AA is fashioned after DAGCombiner::isAlias 1690 // and operates with MachineMemOperand offset with some important 1691 // assumptions: 1692 // - LLVM fundamentally assumes flat address spaces. 1693 // - MachineOperand offset can *only* result from legalization and 1694 // cannot affect queries other than the trivial case of overlap 1695 // checking. 1696 // - These offsets never wrap and never step outside 1697 // of allocated objects. 1698 // - There should never be any negative offsets here. 1699 // 1700 // FIXME: Modify API to hide this math from "user" 1701 // FIXME: Even before we go to AA we can reason locally about some 1702 // memory objects. It can save compile time, and possibly catch some 1703 // corner cases not currently covered. 1704 1705 assert((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 1706 assert((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 1707 1708 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 1709 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 1710 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 1711 1712 AliasResult AAResult = 1713 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, 1714 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1715 MemoryLocation(MMOb->getValue(), Overlapb, 1716 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1717 1718 return (AAResult != NoAlias); 1719 } 1720 1721 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1722 /// or volatile memory reference, or if the information describing the memory 1723 /// reference is not available. Return false if it is known to have no ordered 1724 /// memory references. 1725 bool MachineInstr::hasOrderedMemoryRef() const { 1726 // An instruction known never to access memory won't have a volatile access. 1727 if (!mayStore() && 1728 !mayLoad() && 1729 !isCall() && 1730 !hasUnmodeledSideEffects()) 1731 return false; 1732 1733 // Otherwise, if the instruction has no memory reference information, 1734 // conservatively assume it wasn't preserved. 1735 if (memoperands_empty()) 1736 return true; 1737 1738 // Check if any of our memory operands are ordered. 1739 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1740 return !MMO->isUnordered(); 1741 }); 1742 } 1743 1744 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1745 /// trap and is loading from a location whose value is invariant across a run of 1746 /// this function. 1747 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { 1748 // If the instruction doesn't load at all, it isn't an invariant load. 1749 if (!mayLoad()) 1750 return false; 1751 1752 // If the instruction has lost its memoperands, conservatively assume that 1753 // it may not be an invariant load. 1754 if (memoperands_empty()) 1755 return false; 1756 1757 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1758 1759 for (MachineMemOperand *MMO : memoperands()) { 1760 if (MMO->isVolatile()) return false; 1761 if (MMO->isStore()) return false; 1762 if (MMO->isInvariant() && MMO->isDereferenceable()) 1763 continue; 1764 1765 // A load from a constant PseudoSourceValue is invariant. 1766 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1767 if (PSV->isConstant(&MFI)) 1768 continue; 1769 1770 if (const Value *V = MMO->getValue()) { 1771 // If we have an AliasAnalysis, ask it whether the memory is constant. 1772 if (AA && 1773 AA->pointsToConstantMemory( 1774 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1775 continue; 1776 } 1777 1778 // Otherwise assume conservatively. 1779 return false; 1780 } 1781 1782 // Everything checks out. 1783 return true; 1784 } 1785 1786 /// isConstantValuePHI - If the specified instruction is a PHI that always 1787 /// merges together the same virtual register, return the register, otherwise 1788 /// return 0. 1789 unsigned MachineInstr::isConstantValuePHI() const { 1790 if (!isPHI()) 1791 return 0; 1792 assert(getNumOperands() >= 3 && 1793 "It's illegal to have a PHI without source operands"); 1794 1795 unsigned Reg = getOperand(1).getReg(); 1796 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1797 if (getOperand(i).getReg() != Reg) 1798 return 0; 1799 return Reg; 1800 } 1801 1802 bool MachineInstr::hasUnmodeledSideEffects() const { 1803 if (hasProperty(MCID::UnmodeledSideEffects)) 1804 return true; 1805 if (isInlineAsm()) { 1806 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1807 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1808 return true; 1809 } 1810 1811 return false; 1812 } 1813 1814 bool MachineInstr::isLoadFoldBarrier() const { 1815 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1816 } 1817 1818 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1819 /// 1820 bool MachineInstr::allDefsAreDead() const { 1821 for (const MachineOperand &MO : operands()) { 1822 if (!MO.isReg() || MO.isUse()) 1823 continue; 1824 if (!MO.isDead()) 1825 return false; 1826 } 1827 return true; 1828 } 1829 1830 /// copyImplicitOps - Copy implicit register operands from specified 1831 /// instruction to this instruction. 1832 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1833 const MachineInstr &MI) { 1834 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1835 i != e; ++i) { 1836 const MachineOperand &MO = MI.getOperand(i); 1837 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1838 addOperand(MF, MO); 1839 } 1840 } 1841 1842 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1843 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1844 dbgs() << " "; 1845 print(dbgs()); 1846 } 1847 #endif 1848 1849 void MachineInstr::print(raw_ostream &OS, bool SkipOpers, bool SkipDebugLoc, 1850 const TargetInstrInfo *TII) const { 1851 const Module *M = nullptr; 1852 if (const MachineBasicBlock *MBB = getParent()) 1853 if (const MachineFunction *MF = MBB->getParent()) 1854 M = MF->getFunction()->getParent(); 1855 1856 ModuleSlotTracker MST(M); 1857 print(OS, MST, SkipOpers, SkipDebugLoc, TII); 1858 } 1859 1860 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1861 bool SkipOpers, bool SkipDebugLoc, 1862 const TargetInstrInfo *TII) const { 1863 // We can be a bit tidier if we know the MachineFunction. 1864 const MachineFunction *MF = nullptr; 1865 const TargetRegisterInfo *TRI = nullptr; 1866 const MachineRegisterInfo *MRI = nullptr; 1867 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1868 1869 if (const MachineBasicBlock *MBB = getParent()) { 1870 MF = MBB->getParent(); 1871 if (MF) { 1872 MRI = &MF->getRegInfo(); 1873 TRI = MF->getSubtarget().getRegisterInfo(); 1874 if (!TII) 1875 TII = MF->getSubtarget().getInstrInfo(); 1876 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 1877 } 1878 } 1879 1880 // Save a list of virtual registers. 1881 SmallVector<unsigned, 8> VirtRegs; 1882 1883 // Print explicitly defined operands on the left of an assignment syntax. 1884 unsigned StartOp = 0, e = getNumOperands(); 1885 for (; StartOp < e && getOperand(StartOp).isReg() && 1886 getOperand(StartOp).isDef() && 1887 !getOperand(StartOp).isImplicit(); 1888 ++StartOp) { 1889 if (StartOp != 0) OS << ", "; 1890 getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo); 1891 unsigned Reg = getOperand(StartOp).getReg(); 1892 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1893 VirtRegs.push_back(Reg); 1894 LLT Ty = MRI ? MRI->getType(Reg) : LLT{}; 1895 if (Ty.isValid()) 1896 OS << '(' << Ty << ')'; 1897 } 1898 } 1899 1900 if (StartOp != 0) 1901 OS << " = "; 1902 1903 // Print the opcode name. 1904 if (TII) 1905 OS << TII->getName(getOpcode()); 1906 else 1907 OS << "UNKNOWN"; 1908 1909 if (SkipOpers) 1910 return; 1911 1912 // Print the rest of the operands. 1913 bool FirstOp = true; 1914 unsigned AsmDescOp = ~0u; 1915 unsigned AsmOpCount = 0; 1916 1917 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1918 // Print asm string. 1919 OS << " "; 1920 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1921 1922 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1923 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1924 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1925 OS << " [sideeffect]"; 1926 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1927 OS << " [mayload]"; 1928 if (ExtraInfo & InlineAsm::Extra_MayStore) 1929 OS << " [maystore]"; 1930 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1931 OS << " [isconvergent]"; 1932 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1933 OS << " [alignstack]"; 1934 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1935 OS << " [attdialect]"; 1936 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1937 OS << " [inteldialect]"; 1938 1939 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1940 FirstOp = false; 1941 } 1942 1943 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1944 const MachineOperand &MO = getOperand(i); 1945 1946 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1947 VirtRegs.push_back(MO.getReg()); 1948 1949 if (FirstOp) FirstOp = false; else OS << ","; 1950 OS << " "; 1951 if (i < getDesc().NumOperands) { 1952 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1953 if (MCOI.isPredicate()) 1954 OS << "pred:"; 1955 if (MCOI.isOptionalDef()) 1956 OS << "opt:"; 1957 } 1958 if (isDebugValue() && MO.isMetadata()) { 1959 // Pretty print DBG_VALUE instructions. 1960 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1961 if (DIV && !DIV->getName().empty()) 1962 OS << "!\"" << DIV->getName() << '\"'; 1963 else 1964 MO.print(OS, MST, TRI); 1965 } else if (TRI && (isInsertSubreg() || isRegSequence() || 1966 (isSubregToReg() && i == 3)) && MO.isImm()) { 1967 OS << TRI->getSubRegIndexName(MO.getImm()); 1968 } else if (i == AsmDescOp && MO.isImm()) { 1969 // Pretty print the inline asm operand descriptor. 1970 OS << '$' << AsmOpCount++; 1971 unsigned Flag = MO.getImm(); 1972 switch (InlineAsm::getKind(Flag)) { 1973 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1974 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1975 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1976 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1977 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1978 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1979 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1980 } 1981 1982 unsigned RCID = 0; 1983 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1984 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1985 if (TRI) { 1986 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1987 } else 1988 OS << ":RC" << RCID; 1989 } 1990 1991 if (InlineAsm::isMemKind(Flag)) { 1992 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1993 switch (MCID) { 1994 case InlineAsm::Constraint_es: OS << ":es"; break; 1995 case InlineAsm::Constraint_i: OS << ":i"; break; 1996 case InlineAsm::Constraint_m: OS << ":m"; break; 1997 case InlineAsm::Constraint_o: OS << ":o"; break; 1998 case InlineAsm::Constraint_v: OS << ":v"; break; 1999 case InlineAsm::Constraint_Q: OS << ":Q"; break; 2000 case InlineAsm::Constraint_R: OS << ":R"; break; 2001 case InlineAsm::Constraint_S: OS << ":S"; break; 2002 case InlineAsm::Constraint_T: OS << ":T"; break; 2003 case InlineAsm::Constraint_Um: OS << ":Um"; break; 2004 case InlineAsm::Constraint_Un: OS << ":Un"; break; 2005 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 2006 case InlineAsm::Constraint_Us: OS << ":Us"; break; 2007 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 2008 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 2009 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 2010 case InlineAsm::Constraint_X: OS << ":X"; break; 2011 case InlineAsm::Constraint_Z: OS << ":Z"; break; 2012 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 2013 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 2014 default: OS << ":?"; break; 2015 } 2016 } 2017 2018 unsigned TiedTo = 0; 2019 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 2020 OS << " tiedto:$" << TiedTo; 2021 2022 OS << ']'; 2023 2024 // Compute the index of the next operand descriptor. 2025 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 2026 } else 2027 MO.print(OS, MST, TRI); 2028 } 2029 2030 bool HaveSemi = false; 2031 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 2032 if (Flags & PrintableFlags) { 2033 if (!HaveSemi) { 2034 OS << ";"; 2035 HaveSemi = true; 2036 } 2037 OS << " flags: "; 2038 2039 if (Flags & FrameSetup) 2040 OS << "FrameSetup"; 2041 2042 if (Flags & FrameDestroy) 2043 OS << "FrameDestroy"; 2044 } 2045 2046 if (!memoperands_empty()) { 2047 if (!HaveSemi) { 2048 OS << ";"; 2049 HaveSemi = true; 2050 } 2051 2052 OS << " mem:"; 2053 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 2054 i != e; ++i) { 2055 (*i)->print(OS, MST); 2056 if (std::next(i) != e) 2057 OS << " "; 2058 } 2059 } 2060 2061 // Print the regclass of any virtual registers encountered. 2062 if (MRI && !VirtRegs.empty()) { 2063 if (!HaveSemi) { 2064 OS << ";"; 2065 HaveSemi = true; 2066 } 2067 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 2068 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); 2069 if (!RC) 2070 continue; 2071 // Generic virtual registers do not have register classes. 2072 if (RC.is<const RegisterBank *>()) 2073 OS << " " << RC.get<const RegisterBank *>()->getName(); 2074 else 2075 OS << " " 2076 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); 2077 OS << ':' << PrintReg(VirtRegs[i]); 2078 for (unsigned j = i+1; j != VirtRegs.size();) { 2079 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { 2080 ++j; 2081 continue; 2082 } 2083 if (VirtRegs[i] != VirtRegs[j]) 2084 OS << "," << PrintReg(VirtRegs[j]); 2085 VirtRegs.erase(VirtRegs.begin()+j); 2086 } 2087 } 2088 } 2089 2090 // Print debug location information. 2091 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 2092 if (!HaveSemi) 2093 OS << ";"; 2094 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 2095 OS << " line no:" << DV->getLine(); 2096 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 2097 DebugLoc InlinedAtDL(InlinedAt); 2098 if (InlinedAtDL && MF) { 2099 OS << " inlined @[ "; 2100 InlinedAtDL.print(OS); 2101 OS << " ]"; 2102 } 2103 } 2104 if (isIndirectDebugValue()) 2105 OS << " indirect"; 2106 } else if (SkipDebugLoc) { 2107 return; 2108 } else if (debugLoc && MF) { 2109 if (!HaveSemi) 2110 OS << ";"; 2111 OS << " dbg:"; 2112 debugLoc.print(OS); 2113 } 2114 2115 OS << '\n'; 2116 } 2117 2118 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 2119 const TargetRegisterInfo *RegInfo, 2120 bool AddIfNotFound) { 2121 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 2122 bool hasAliases = isPhysReg && 2123 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 2124 bool Found = false; 2125 SmallVector<unsigned,4> DeadOps; 2126 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2127 MachineOperand &MO = getOperand(i); 2128 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2129 continue; 2130 2131 // DEBUG_VALUE nodes do not contribute to code generation and should 2132 // always be ignored. Failure to do so may result in trying to modify 2133 // KILL flags on DEBUG_VALUE nodes. 2134 if (MO.isDebug()) 2135 continue; 2136 2137 unsigned Reg = MO.getReg(); 2138 if (!Reg) 2139 continue; 2140 2141 if (Reg == IncomingReg) { 2142 if (!Found) { 2143 if (MO.isKill()) 2144 // The register is already marked kill. 2145 return true; 2146 if (isPhysReg && isRegTiedToDefOperand(i)) 2147 // Two-address uses of physregs must not be marked kill. 2148 return true; 2149 MO.setIsKill(); 2150 Found = true; 2151 } 2152 } else if (hasAliases && MO.isKill() && 2153 TargetRegisterInfo::isPhysicalRegister(Reg)) { 2154 // A super-register kill already exists. 2155 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2156 return true; 2157 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2158 DeadOps.push_back(i); 2159 } 2160 } 2161 2162 // Trim unneeded kill operands. 2163 while (!DeadOps.empty()) { 2164 unsigned OpIdx = DeadOps.back(); 2165 if (getOperand(OpIdx).isImplicit()) 2166 RemoveOperand(OpIdx); 2167 else 2168 getOperand(OpIdx).setIsKill(false); 2169 DeadOps.pop_back(); 2170 } 2171 2172 // If not found, this means an alias of one of the operands is killed. Add a 2173 // new implicit operand if required. 2174 if (!Found && AddIfNotFound) { 2175 addOperand(MachineOperand::CreateReg(IncomingReg, 2176 false /*IsDef*/, 2177 true /*IsImp*/, 2178 true /*IsKill*/)); 2179 return true; 2180 } 2181 return Found; 2182 } 2183 2184 void MachineInstr::clearRegisterKills(unsigned Reg, 2185 const TargetRegisterInfo *RegInfo) { 2186 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 2187 RegInfo = nullptr; 2188 for (MachineOperand &MO : operands()) { 2189 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2190 continue; 2191 unsigned OpReg = MO.getReg(); 2192 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2193 MO.setIsKill(false); 2194 } 2195 } 2196 2197 bool MachineInstr::addRegisterDead(unsigned Reg, 2198 const TargetRegisterInfo *RegInfo, 2199 bool AddIfNotFound) { 2200 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 2201 bool hasAliases = isPhysReg && 2202 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2203 bool Found = false; 2204 SmallVector<unsigned,4> DeadOps; 2205 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2206 MachineOperand &MO = getOperand(i); 2207 if (!MO.isReg() || !MO.isDef()) 2208 continue; 2209 unsigned MOReg = MO.getReg(); 2210 if (!MOReg) 2211 continue; 2212 2213 if (MOReg == Reg) { 2214 MO.setIsDead(); 2215 Found = true; 2216 } else if (hasAliases && MO.isDead() && 2217 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 2218 // There exists a super-register that's marked dead. 2219 if (RegInfo->isSuperRegister(Reg, MOReg)) 2220 return true; 2221 if (RegInfo->isSubRegister(Reg, MOReg)) 2222 DeadOps.push_back(i); 2223 } 2224 } 2225 2226 // Trim unneeded dead operands. 2227 while (!DeadOps.empty()) { 2228 unsigned OpIdx = DeadOps.back(); 2229 if (getOperand(OpIdx).isImplicit()) 2230 RemoveOperand(OpIdx); 2231 else 2232 getOperand(OpIdx).setIsDead(false); 2233 DeadOps.pop_back(); 2234 } 2235 2236 // If not found, this means an alias of one of the operands is dead. Add a 2237 // new implicit operand if required. 2238 if (Found || !AddIfNotFound) 2239 return Found; 2240 2241 addOperand(MachineOperand::CreateReg(Reg, 2242 true /*IsDef*/, 2243 true /*IsImp*/, 2244 false /*IsKill*/, 2245 true /*IsDead*/)); 2246 return true; 2247 } 2248 2249 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2250 for (MachineOperand &MO : operands()) { 2251 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2252 continue; 2253 MO.setIsDead(false); 2254 } 2255 } 2256 2257 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2258 for (MachineOperand &MO : operands()) { 2259 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2260 continue; 2261 MO.setIsUndef(IsUndef); 2262 } 2263 } 2264 2265 void MachineInstr::addRegisterDefined(unsigned Reg, 2266 const TargetRegisterInfo *RegInfo) { 2267 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2268 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2269 if (MO) 2270 return; 2271 } else { 2272 for (const MachineOperand &MO : operands()) { 2273 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2274 MO.getSubReg() == 0) 2275 return; 2276 } 2277 } 2278 addOperand(MachineOperand::CreateReg(Reg, 2279 true /*IsDef*/, 2280 true /*IsImp*/)); 2281 } 2282 2283 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2284 const TargetRegisterInfo &TRI) { 2285 bool HasRegMask = false; 2286 for (MachineOperand &MO : operands()) { 2287 if (MO.isRegMask()) { 2288 HasRegMask = true; 2289 continue; 2290 } 2291 if (!MO.isReg() || !MO.isDef()) continue; 2292 unsigned Reg = MO.getReg(); 2293 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2294 // If there are no uses, including partial uses, the def is dead. 2295 if (llvm::none_of(UsedRegs, 2296 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2297 MO.setIsDead(); 2298 } 2299 2300 // This is a call with a register mask operand. 2301 // Mask clobbers are always dead, so add defs for the non-dead defines. 2302 if (HasRegMask) 2303 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2304 I != E; ++I) 2305 addRegisterDefined(*I, &TRI); 2306 } 2307 2308 unsigned 2309 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2310 // Build up a buffer of hash code components. 2311 SmallVector<size_t, 8> HashComponents; 2312 HashComponents.reserve(MI->getNumOperands() + 1); 2313 HashComponents.push_back(MI->getOpcode()); 2314 for (const MachineOperand &MO : MI->operands()) { 2315 if (MO.isReg() && MO.isDef() && 2316 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2317 continue; // Skip virtual register defs. 2318 2319 HashComponents.push_back(hash_value(MO)); 2320 } 2321 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2322 } 2323 2324 void MachineInstr::emitError(StringRef Msg) const { 2325 // Find the source location cookie. 2326 unsigned LocCookie = 0; 2327 const MDNode *LocMD = nullptr; 2328 for (unsigned i = getNumOperands(); i != 0; --i) { 2329 if (getOperand(i-1).isMetadata() && 2330 (LocMD = getOperand(i-1).getMetadata()) && 2331 LocMD->getNumOperands() != 0) { 2332 if (const ConstantInt *CI = 2333 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2334 LocCookie = CI->getZExtValue(); 2335 break; 2336 } 2337 } 2338 } 2339 2340 if (const MachineBasicBlock *MBB = getParent()) 2341 if (const MachineFunction *MF = MBB->getParent()) 2342 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2343 report_fatal_error(Msg); 2344 } 2345 2346 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2347 const MCInstrDesc &MCID, bool IsIndirect, 2348 unsigned Reg, const MDNode *Variable, 2349 const MDNode *Expr) { 2350 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2351 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2352 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2353 "Expected inlined-at fields to agree"); 2354 if (IsIndirect) 2355 return BuildMI(MF, DL, MCID) 2356 .addReg(Reg, RegState::Debug) 2357 .addImm(0U) 2358 .addMetadata(Variable) 2359 .addMetadata(Expr); 2360 else 2361 return BuildMI(MF, DL, MCID) 2362 .addReg(Reg, RegState::Debug) 2363 .addReg(0U, RegState::Debug) 2364 .addMetadata(Variable) 2365 .addMetadata(Expr); 2366 } 2367 2368 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2369 MachineBasicBlock::iterator I, 2370 const DebugLoc &DL, const MCInstrDesc &MCID, 2371 bool IsIndirect, unsigned Reg, 2372 const MDNode *Variable, const MDNode *Expr) { 2373 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2374 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2375 MachineFunction &MF = *BB.getParent(); 2376 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2377 BB.insert(I, MI); 2378 return MachineInstrBuilder(MF, MI); 2379 } 2380 2381 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2382 MachineBasicBlock::iterator I, 2383 const MachineInstr &Orig, 2384 int FrameIndex) { 2385 const MDNode *Var = Orig.getDebugVariable(); 2386 const auto *Expr = cast_or_null<DIExpression>(Orig.getDebugExpression()); 2387 bool IsIndirect = Orig.isIndirectDebugValue(); 2388 if (IsIndirect) 2389 assert(Orig.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 2390 DebugLoc DL = Orig.getDebugLoc(); 2391 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 2392 "Expected inlined-at fields to agree"); 2393 // If the DBG_VALUE already was a memory location, add an extra 2394 // DW_OP_deref. Otherwise just turning this from a register into a 2395 // memory/indirect location is sufficient. 2396 if (IsIndirect) 2397 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 2398 return BuildMI(BB, I, DL, Orig.getDesc()) 2399 .addFrameIndex(FrameIndex) 2400 .addImm(0U) 2401 .addMetadata(Var) 2402 .addMetadata(Expr); 2403 } 2404