1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Assembly/Writer.h" 19 #include "llvm/CodeGen/MachineConstantPool.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/DebugInfo.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/MC/MCInstrDesc.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetRegisterInfo.h" 43 using namespace llvm; 44 45 //===----------------------------------------------------------------------===// 46 // MachineOperand Implementation 47 //===----------------------------------------------------------------------===// 48 49 void MachineOperand::setReg(unsigned Reg) { 50 if (getReg() == Reg) return; // No change. 51 52 // Otherwise, we have to change the register. If this operand is embedded 53 // into a machine function, we need to update the old and new register's 54 // use/def lists. 55 if (MachineInstr *MI = getParent()) 56 if (MachineBasicBlock *MBB = MI->getParent()) 57 if (MachineFunction *MF = MBB->getParent()) { 58 MachineRegisterInfo &MRI = MF->getRegInfo(); 59 MRI.removeRegOperandFromUseList(this); 60 SmallContents.RegNo = Reg; 61 MRI.addRegOperandToUseList(this); 62 return; 63 } 64 65 // Otherwise, just change the register, no problem. :) 66 SmallContents.RegNo = Reg; 67 } 68 69 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 70 const TargetRegisterInfo &TRI) { 71 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 72 if (SubIdx && getSubReg()) 73 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 74 setReg(Reg); 75 if (SubIdx) 76 setSubReg(SubIdx); 77 } 78 79 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 80 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 81 if (getSubReg()) { 82 Reg = TRI.getSubReg(Reg, getSubReg()); 83 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 84 // That won't happen in legal code. 85 setSubReg(0); 86 } 87 setReg(Reg); 88 } 89 90 /// Change a def to a use, or a use to a def. 91 void MachineOperand::setIsDef(bool Val) { 92 assert(isReg() && "Wrong MachineOperand accessor"); 93 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 94 if (IsDef == Val) 95 return; 96 // MRI may keep uses and defs in different list positions. 97 if (MachineInstr *MI = getParent()) 98 if (MachineBasicBlock *MBB = MI->getParent()) 99 if (MachineFunction *MF = MBB->getParent()) { 100 MachineRegisterInfo &MRI = MF->getRegInfo(); 101 MRI.removeRegOperandFromUseList(this); 102 IsDef = Val; 103 MRI.addRegOperandToUseList(this); 104 return; 105 } 106 IsDef = Val; 107 } 108 109 /// ChangeToImmediate - Replace this operand with a new immediate operand of 110 /// the specified value. If an operand is known to be an immediate already, 111 /// the setImm method should be used. 112 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 113 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 114 // If this operand is currently a register operand, and if this is in a 115 // function, deregister the operand from the register's use/def list. 116 if (isReg() && isOnRegUseList()) 117 if (MachineInstr *MI = getParent()) 118 if (MachineBasicBlock *MBB = MI->getParent()) 119 if (MachineFunction *MF = MBB->getParent()) 120 MF->getRegInfo().removeRegOperandFromUseList(this); 121 122 OpKind = MO_Immediate; 123 Contents.ImmVal = ImmVal; 124 } 125 126 /// ChangeToRegister - Replace this operand with a new register operand of 127 /// the specified value. If an operand is known to be an register already, 128 /// the setReg method should be used. 129 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 130 bool isKill, bool isDead, bool isUndef, 131 bool isDebug) { 132 MachineRegisterInfo *RegInfo = 0; 133 if (MachineInstr *MI = getParent()) 134 if (MachineBasicBlock *MBB = MI->getParent()) 135 if (MachineFunction *MF = MBB->getParent()) 136 RegInfo = &MF->getRegInfo(); 137 // If this operand is already a register operand, remove it from the 138 // register's use/def lists. 139 bool WasReg = isReg(); 140 if (RegInfo && WasReg) 141 RegInfo->removeRegOperandFromUseList(this); 142 143 // Change this to a register and set the reg#. 144 OpKind = MO_Register; 145 SmallContents.RegNo = Reg; 146 SubReg_TargetFlags = 0; 147 IsDef = isDef; 148 IsImp = isImp; 149 IsKill = isKill; 150 IsDead = isDead; 151 IsUndef = isUndef; 152 IsInternalRead = false; 153 IsEarlyClobber = false; 154 IsDebug = isDebug; 155 // Ensure isOnRegUseList() returns false. 156 Contents.Reg.Prev = 0; 157 // Preserve the tie when the operand was already a register. 158 if (!WasReg) 159 TiedTo = 0; 160 161 // If this operand is embedded in a function, add the operand to the 162 // register's use/def list. 163 if (RegInfo) 164 RegInfo->addRegOperandToUseList(this); 165 } 166 167 /// isIdenticalTo - Return true if this operand is identical to the specified 168 /// operand. Note that this should stay in sync with the hash_value overload 169 /// below. 170 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 171 if (getType() != Other.getType() || 172 getTargetFlags() != Other.getTargetFlags()) 173 return false; 174 175 switch (getType()) { 176 case MachineOperand::MO_Register: 177 return getReg() == Other.getReg() && isDef() == Other.isDef() && 178 getSubReg() == Other.getSubReg(); 179 case MachineOperand::MO_Immediate: 180 return getImm() == Other.getImm(); 181 case MachineOperand::MO_CImmediate: 182 return getCImm() == Other.getCImm(); 183 case MachineOperand::MO_FPImmediate: 184 return getFPImm() == Other.getFPImm(); 185 case MachineOperand::MO_MachineBasicBlock: 186 return getMBB() == Other.getMBB(); 187 case MachineOperand::MO_FrameIndex: 188 return getIndex() == Other.getIndex(); 189 case MachineOperand::MO_ConstantPoolIndex: 190 case MachineOperand::MO_TargetIndex: 191 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 192 case MachineOperand::MO_JumpTableIndex: 193 return getIndex() == Other.getIndex(); 194 case MachineOperand::MO_GlobalAddress: 195 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 196 case MachineOperand::MO_ExternalSymbol: 197 return !strcmp(getSymbolName(), Other.getSymbolName()) && 198 getOffset() == Other.getOffset(); 199 case MachineOperand::MO_BlockAddress: 200 return getBlockAddress() == Other.getBlockAddress() && 201 getOffset() == Other.getOffset(); 202 case MachineOperand::MO_RegisterMask: 203 case MachineOperand::MO_RegisterLiveOut: 204 return getRegMask() == Other.getRegMask(); 205 case MachineOperand::MO_MCSymbol: 206 return getMCSymbol() == Other.getMCSymbol(); 207 case MachineOperand::MO_Metadata: 208 return getMetadata() == Other.getMetadata(); 209 } 210 llvm_unreachable("Invalid machine operand type"); 211 } 212 213 // Note: this must stay exactly in sync with isIdenticalTo above. 214 hash_code llvm::hash_value(const MachineOperand &MO) { 215 switch (MO.getType()) { 216 case MachineOperand::MO_Register: 217 // Register operands don't have target flags. 218 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 219 case MachineOperand::MO_Immediate: 220 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 221 case MachineOperand::MO_CImmediate: 222 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 223 case MachineOperand::MO_FPImmediate: 224 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 225 case MachineOperand::MO_MachineBasicBlock: 226 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 227 case MachineOperand::MO_FrameIndex: 228 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 229 case MachineOperand::MO_ConstantPoolIndex: 230 case MachineOperand::MO_TargetIndex: 231 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 232 MO.getOffset()); 233 case MachineOperand::MO_JumpTableIndex: 234 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 235 case MachineOperand::MO_ExternalSymbol: 236 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 237 MO.getSymbolName()); 238 case MachineOperand::MO_GlobalAddress: 239 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 240 MO.getOffset()); 241 case MachineOperand::MO_BlockAddress: 242 return hash_combine(MO.getType(), MO.getTargetFlags(), 243 MO.getBlockAddress(), MO.getOffset()); 244 case MachineOperand::MO_RegisterMask: 245 case MachineOperand::MO_RegisterLiveOut: 246 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 247 case MachineOperand::MO_Metadata: 248 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 249 case MachineOperand::MO_MCSymbol: 250 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 251 } 252 llvm_unreachable("Invalid machine operand type"); 253 } 254 255 /// print - Print the specified machine operand. 256 /// 257 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 258 // If the instruction is embedded into a basic block, we can find the 259 // target info for the instruction. 260 if (!TM) 261 if (const MachineInstr *MI = getParent()) 262 if (const MachineBasicBlock *MBB = MI->getParent()) 263 if (const MachineFunction *MF = MBB->getParent()) 264 TM = &MF->getTarget(); 265 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 266 267 switch (getType()) { 268 case MachineOperand::MO_Register: 269 OS << PrintReg(getReg(), TRI, getSubReg()); 270 271 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 272 isInternalRead() || isEarlyClobber() || isTied()) { 273 OS << '<'; 274 bool NeedComma = false; 275 if (isDef()) { 276 if (NeedComma) OS << ','; 277 if (isEarlyClobber()) 278 OS << "earlyclobber,"; 279 if (isImplicit()) 280 OS << "imp-"; 281 OS << "def"; 282 NeedComma = true; 283 // <def,read-undef> only makes sense when getSubReg() is set. 284 // Don't clutter the output otherwise. 285 if (isUndef() && getSubReg()) 286 OS << ",read-undef"; 287 } else if (isImplicit()) { 288 OS << "imp-use"; 289 NeedComma = true; 290 } 291 292 if (isKill()) { 293 if (NeedComma) OS << ','; 294 OS << "kill"; 295 NeedComma = true; 296 } 297 if (isDead()) { 298 if (NeedComma) OS << ','; 299 OS << "dead"; 300 NeedComma = true; 301 } 302 if (isUndef() && isUse()) { 303 if (NeedComma) OS << ','; 304 OS << "undef"; 305 NeedComma = true; 306 } 307 if (isInternalRead()) { 308 if (NeedComma) OS << ','; 309 OS << "internal"; 310 NeedComma = true; 311 } 312 if (isTied()) { 313 if (NeedComma) OS << ','; 314 OS << "tied"; 315 if (TiedTo != 15) 316 OS << unsigned(TiedTo - 1); 317 NeedComma = true; 318 } 319 OS << '>'; 320 } 321 break; 322 case MachineOperand::MO_Immediate: 323 OS << getImm(); 324 break; 325 case MachineOperand::MO_CImmediate: 326 getCImm()->getValue().print(OS, false); 327 break; 328 case MachineOperand::MO_FPImmediate: 329 if (getFPImm()->getType()->isFloatTy()) 330 OS << getFPImm()->getValueAPF().convertToFloat(); 331 else 332 OS << getFPImm()->getValueAPF().convertToDouble(); 333 break; 334 case MachineOperand::MO_MachineBasicBlock: 335 OS << "<BB#" << getMBB()->getNumber() << ">"; 336 break; 337 case MachineOperand::MO_FrameIndex: 338 OS << "<fi#" << getIndex() << '>'; 339 break; 340 case MachineOperand::MO_ConstantPoolIndex: 341 OS << "<cp#" << getIndex(); 342 if (getOffset()) OS << "+" << getOffset(); 343 OS << '>'; 344 break; 345 case MachineOperand::MO_TargetIndex: 346 OS << "<ti#" << getIndex(); 347 if (getOffset()) OS << "+" << getOffset(); 348 OS << '>'; 349 break; 350 case MachineOperand::MO_JumpTableIndex: 351 OS << "<jt#" << getIndex() << '>'; 352 break; 353 case MachineOperand::MO_GlobalAddress: 354 OS << "<ga:"; 355 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 356 if (getOffset()) OS << "+" << getOffset(); 357 OS << '>'; 358 break; 359 case MachineOperand::MO_ExternalSymbol: 360 OS << "<es:" << getSymbolName(); 361 if (getOffset()) OS << "+" << getOffset(); 362 OS << '>'; 363 break; 364 case MachineOperand::MO_BlockAddress: 365 OS << '<'; 366 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 367 if (getOffset()) OS << "+" << getOffset(); 368 OS << '>'; 369 break; 370 case MachineOperand::MO_RegisterMask: 371 OS << "<regmask>"; 372 break; 373 case MachineOperand::MO_RegisterLiveOut: 374 OS << "<regliveout>"; 375 break; 376 case MachineOperand::MO_Metadata: 377 OS << '<'; 378 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 379 OS << '>'; 380 break; 381 case MachineOperand::MO_MCSymbol: 382 OS << "<MCSym=" << *getMCSymbol() << '>'; 383 break; 384 } 385 386 if (unsigned TF = getTargetFlags()) 387 OS << "[TF=" << TF << ']'; 388 } 389 390 //===----------------------------------------------------------------------===// 391 // MachineMemOperand Implementation 392 //===----------------------------------------------------------------------===// 393 394 /// getAddrSpace - Return the LLVM IR address space number that this pointer 395 /// points into. 396 unsigned MachinePointerInfo::getAddrSpace() const { 397 if (V == 0) return 0; 398 return cast<PointerType>(V->getType())->getAddressSpace(); 399 } 400 401 /// getConstantPool - Return a MachinePointerInfo record that refers to the 402 /// constant pool. 403 MachinePointerInfo MachinePointerInfo::getConstantPool() { 404 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 405 } 406 407 /// getFixedStack - Return a MachinePointerInfo record that refers to the 408 /// the specified FrameIndex. 409 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 410 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 411 } 412 413 MachinePointerInfo MachinePointerInfo::getJumpTable() { 414 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 415 } 416 417 MachinePointerInfo MachinePointerInfo::getGOT() { 418 return MachinePointerInfo(PseudoSourceValue::getGOT()); 419 } 420 421 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 422 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 423 } 424 425 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 426 uint64_t s, unsigned int a, 427 const MDNode *TBAAInfo, 428 const MDNode *Ranges) 429 : PtrInfo(ptrinfo), Size(s), 430 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 431 TBAAInfo(TBAAInfo), Ranges(Ranges) { 432 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 433 "invalid pointer value"); 434 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 435 assert((isLoad() || isStore()) && "Not a load/store!"); 436 } 437 438 /// Profile - Gather unique data for the object. 439 /// 440 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 441 ID.AddInteger(getOffset()); 442 ID.AddInteger(Size); 443 ID.AddPointer(getValue()); 444 ID.AddInteger(Flags); 445 } 446 447 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 448 // The Value and Offset may differ due to CSE. But the flags and size 449 // should be the same. 450 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 451 assert(MMO->getSize() == getSize() && "Size mismatch!"); 452 453 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 454 // Update the alignment value. 455 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 456 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 457 // Also update the base and offset, because the new alignment may 458 // not be applicable with the old ones. 459 PtrInfo = MMO->PtrInfo; 460 } 461 } 462 463 /// getAlignment - Return the minimum known alignment in bytes of the 464 /// actual memory reference. 465 uint64_t MachineMemOperand::getAlignment() const { 466 return MinAlign(getBaseAlignment(), getOffset()); 467 } 468 469 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 470 assert((MMO.isLoad() || MMO.isStore()) && 471 "SV has to be a load, store or both."); 472 473 if (MMO.isVolatile()) 474 OS << "Volatile "; 475 476 if (MMO.isLoad()) 477 OS << "LD"; 478 if (MMO.isStore()) 479 OS << "ST"; 480 OS << MMO.getSize(); 481 482 // Print the address information. 483 OS << "["; 484 if (!MMO.getValue()) 485 OS << "<unknown>"; 486 else 487 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 488 489 // If the alignment of the memory reference itself differs from the alignment 490 // of the base pointer, print the base alignment explicitly, next to the base 491 // pointer. 492 if (MMO.getBaseAlignment() != MMO.getAlignment()) 493 OS << "(align=" << MMO.getBaseAlignment() << ")"; 494 495 if (MMO.getOffset() != 0) 496 OS << "+" << MMO.getOffset(); 497 OS << "]"; 498 499 // Print the alignment of the reference. 500 if (MMO.getBaseAlignment() != MMO.getAlignment() || 501 MMO.getBaseAlignment() != MMO.getSize()) 502 OS << "(align=" << MMO.getAlignment() << ")"; 503 504 // Print TBAA info. 505 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 506 OS << "(tbaa="; 507 if (TBAAInfo->getNumOperands() > 0) 508 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 509 else 510 OS << "<unknown>"; 511 OS << ")"; 512 } 513 514 // Print nontemporal info. 515 if (MMO.isNonTemporal()) 516 OS << "(nontemporal)"; 517 518 return OS; 519 } 520 521 //===----------------------------------------------------------------------===// 522 // MachineInstr Implementation 523 //===----------------------------------------------------------------------===// 524 525 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 526 if (MCID->ImplicitDefs) 527 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 528 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 529 if (MCID->ImplicitUses) 530 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 531 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 532 } 533 534 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 535 /// implicit operands. It reserves space for the number of operands specified by 536 /// the MCInstrDesc. 537 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 538 const DebugLoc dl, bool NoImp) 539 : MCID(&tid), Parent(0), Operands(0), NumOperands(0), 540 Flags(0), AsmPrinterFlags(0), 541 NumMemRefs(0), MemRefs(0), debugLoc(dl) { 542 // Reserve space for the expected number of operands. 543 if (unsigned NumOps = MCID->getNumOperands() + 544 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 545 CapOperands = OperandCapacity::get(NumOps); 546 Operands = MF.allocateOperandArray(CapOperands); 547 } 548 549 if (!NoImp) 550 addImplicitDefUseOperands(MF); 551 } 552 553 /// MachineInstr ctor - Copies MachineInstr arg exactly 554 /// 555 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 556 : MCID(&MI.getDesc()), Parent(0), Operands(0), NumOperands(0), 557 Flags(0), AsmPrinterFlags(0), 558 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 559 debugLoc(MI.getDebugLoc()) { 560 CapOperands = OperandCapacity::get(MI.getNumOperands()); 561 Operands = MF.allocateOperandArray(CapOperands); 562 563 // Copy operands. 564 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 565 addOperand(MF, MI.getOperand(i)); 566 567 // Copy all the sensible flags. 568 setFlags(MI.Flags); 569 } 570 571 /// getRegInfo - If this instruction is embedded into a MachineFunction, 572 /// return the MachineRegisterInfo object for the current function, otherwise 573 /// return null. 574 MachineRegisterInfo *MachineInstr::getRegInfo() { 575 if (MachineBasicBlock *MBB = getParent()) 576 return &MBB->getParent()->getRegInfo(); 577 return 0; 578 } 579 580 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 581 /// this instruction from their respective use lists. This requires that the 582 /// operands already be on their use lists. 583 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 584 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 585 if (Operands[i].isReg()) 586 MRI.removeRegOperandFromUseList(&Operands[i]); 587 } 588 589 /// AddRegOperandsToUseLists - Add all of the register operands in 590 /// this instruction from their respective use lists. This requires that the 591 /// operands not be on their use lists yet. 592 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 593 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 594 if (Operands[i].isReg()) 595 MRI.addRegOperandToUseList(&Operands[i]); 596 } 597 598 void MachineInstr::addOperand(const MachineOperand &Op) { 599 MachineBasicBlock *MBB = getParent(); 600 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 601 MachineFunction *MF = MBB->getParent(); 602 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 603 addOperand(*MF, Op); 604 } 605 606 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 607 /// ranges. If MRI is non-null also update use-def chains. 608 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 609 unsigned NumOps, MachineRegisterInfo *MRI) { 610 if (MRI) 611 return MRI->moveOperands(Dst, Src, NumOps); 612 613 // Here it would be convenient to call memmove, so that isn't allowed because 614 // MachineOperand has a constructor and so isn't a POD type. 615 if (Dst < Src) 616 for (unsigned i = 0; i != NumOps; ++i) 617 new (Dst + i) MachineOperand(Src[i]); 618 else 619 for (unsigned i = NumOps; i ; --i) 620 new (Dst + i - 1) MachineOperand(Src[i - 1]); 621 } 622 623 /// addOperand - Add the specified operand to the instruction. If it is an 624 /// implicit operand, it is added to the end of the operand list. If it is 625 /// an explicit operand it is added at the end of the explicit operand list 626 /// (before the first implicit operand). 627 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 628 assert(MCID && "Cannot add operands before providing an instr descriptor"); 629 630 // Check if we're adding one of our existing operands. 631 if (&Op >= Operands && &Op < Operands + NumOperands) { 632 // This is unusual: MI->addOperand(MI->getOperand(i)). 633 // If adding Op requires reallocating or moving existing operands around, 634 // the Op reference could go stale. Support it by copying Op. 635 MachineOperand CopyOp(Op); 636 return addOperand(MF, CopyOp); 637 } 638 639 // Find the insert location for the new operand. Implicit registers go at 640 // the end, everything else goes before the implicit regs. 641 // 642 // FIXME: Allow mixed explicit and implicit operands on inline asm. 643 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 644 // implicit-defs, but they must not be moved around. See the FIXME in 645 // InstrEmitter.cpp. 646 unsigned OpNo = getNumOperands(); 647 bool isImpReg = Op.isReg() && Op.isImplicit(); 648 if (!isImpReg && !isInlineAsm()) { 649 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 650 --OpNo; 651 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 652 } 653 } 654 655 #ifndef NDEBUG 656 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 657 // OpNo now points as the desired insertion point. Unless this is a variadic 658 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 659 // RegMask operands go between the explicit and implicit operands. 660 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 661 OpNo < MCID->getNumOperands() || isMetaDataOp) && 662 "Trying to add an operand to a machine instr that is already done!"); 663 #endif 664 665 MachineRegisterInfo *MRI = getRegInfo(); 666 667 // Determine if the Operands array needs to be reallocated. 668 // Save the old capacity and operand array. 669 OperandCapacity OldCap = CapOperands; 670 MachineOperand *OldOperands = Operands; 671 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 672 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 673 Operands = MF.allocateOperandArray(CapOperands); 674 // Move the operands before the insertion point. 675 if (OpNo) 676 moveOperands(Operands, OldOperands, OpNo, MRI); 677 } 678 679 // Move the operands following the insertion point. 680 if (OpNo != NumOperands) 681 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 682 MRI); 683 ++NumOperands; 684 685 // Deallocate the old operand array. 686 if (OldOperands != Operands && OldOperands) 687 MF.deallocateOperandArray(OldCap, OldOperands); 688 689 // Copy Op into place. It still needs to be inserted into the MRI use lists. 690 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 691 NewMO->ParentMI = this; 692 693 // When adding a register operand, tell MRI about it. 694 if (NewMO->isReg()) { 695 // Ensure isOnRegUseList() returns false, regardless of Op's status. 696 NewMO->Contents.Reg.Prev = 0; 697 // Ignore existing ties. This is not a property that can be copied. 698 NewMO->TiedTo = 0; 699 // Add the new operand to MRI, but only for instructions in an MBB. 700 if (MRI) 701 MRI->addRegOperandToUseList(NewMO); 702 // The MCID operand information isn't accurate until we start adding 703 // explicit operands. The implicit operands are added first, then the 704 // explicits are inserted before them. 705 if (!isImpReg) { 706 // Tie uses to defs as indicated in MCInstrDesc. 707 if (NewMO->isUse()) { 708 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 709 if (DefIdx != -1) 710 tieOperands(DefIdx, OpNo); 711 } 712 // If the register operand is flagged as early, mark the operand as such. 713 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 714 NewMO->setIsEarlyClobber(true); 715 } 716 } 717 } 718 719 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 720 /// fewer operand than it started with. 721 /// 722 void MachineInstr::RemoveOperand(unsigned OpNo) { 723 assert(OpNo < getNumOperands() && "Invalid operand number"); 724 untieRegOperand(OpNo); 725 726 #ifndef NDEBUG 727 // Moving tied operands would break the ties. 728 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 729 if (Operands[i].isReg()) 730 assert(!Operands[i].isTied() && "Cannot move tied operands"); 731 #endif 732 733 MachineRegisterInfo *MRI = getRegInfo(); 734 if (MRI && Operands[OpNo].isReg()) 735 MRI->removeRegOperandFromUseList(Operands + OpNo); 736 737 // Don't call the MachineOperand destructor. A lot of this code depends on 738 // MachineOperand having a trivial destructor anyway, and adding a call here 739 // wouldn't make it 'destructor-correct'. 740 741 if (unsigned N = NumOperands - 1 - OpNo) 742 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 743 --NumOperands; 744 } 745 746 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 747 /// This function should be used only occasionally. The setMemRefs function 748 /// is the primary method for setting up a MachineInstr's MemRefs list. 749 void MachineInstr::addMemOperand(MachineFunction &MF, 750 MachineMemOperand *MO) { 751 mmo_iterator OldMemRefs = MemRefs; 752 unsigned OldNumMemRefs = NumMemRefs; 753 754 unsigned NewNum = NumMemRefs + 1; 755 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 756 757 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 758 NewMemRefs[NewNum - 1] = MO; 759 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 760 } 761 762 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 763 assert(!isBundledWithPred() && "Must be called on bundle header"); 764 for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) { 765 if (MII->getDesc().getFlags() & Mask) { 766 if (Type == AnyInBundle) 767 return true; 768 } else { 769 if (Type == AllInBundle && !MII->isBundle()) 770 return false; 771 } 772 // This was the last instruction in the bundle. 773 if (!MII->isBundledWithSucc()) 774 return Type == AllInBundle; 775 } 776 } 777 778 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 779 MICheckType Check) const { 780 // If opcodes or number of operands are not the same then the two 781 // instructions are obviously not identical. 782 if (Other->getOpcode() != getOpcode() || 783 Other->getNumOperands() != getNumOperands()) 784 return false; 785 786 if (isBundle()) { 787 // Both instructions are bundles, compare MIs inside the bundle. 788 MachineBasicBlock::const_instr_iterator I1 = *this; 789 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 790 MachineBasicBlock::const_instr_iterator I2 = *Other; 791 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 792 while (++I1 != E1 && I1->isInsideBundle()) { 793 ++I2; 794 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 795 return false; 796 } 797 } 798 799 // Check operands to make sure they match. 800 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 801 const MachineOperand &MO = getOperand(i); 802 const MachineOperand &OMO = Other->getOperand(i); 803 if (!MO.isReg()) { 804 if (!MO.isIdenticalTo(OMO)) 805 return false; 806 continue; 807 } 808 809 // Clients may or may not want to ignore defs when testing for equality. 810 // For example, machine CSE pass only cares about finding common 811 // subexpressions, so it's safe to ignore virtual register defs. 812 if (MO.isDef()) { 813 if (Check == IgnoreDefs) 814 continue; 815 else if (Check == IgnoreVRegDefs) { 816 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 817 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 818 if (MO.getReg() != OMO.getReg()) 819 return false; 820 } else { 821 if (!MO.isIdenticalTo(OMO)) 822 return false; 823 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 824 return false; 825 } 826 } else { 827 if (!MO.isIdenticalTo(OMO)) 828 return false; 829 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 830 return false; 831 } 832 } 833 // If DebugLoc does not match then two dbg.values are not identical. 834 if (isDebugValue()) 835 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 836 && getDebugLoc() != Other->getDebugLoc()) 837 return false; 838 return true; 839 } 840 841 MachineInstr *MachineInstr::removeFromParent() { 842 assert(getParent() && "Not embedded in a basic block!"); 843 return getParent()->remove(this); 844 } 845 846 MachineInstr *MachineInstr::removeFromBundle() { 847 assert(getParent() && "Not embedded in a basic block!"); 848 return getParent()->remove_instr(this); 849 } 850 851 void MachineInstr::eraseFromParent() { 852 assert(getParent() && "Not embedded in a basic block!"); 853 getParent()->erase(this); 854 } 855 856 void MachineInstr::eraseFromBundle() { 857 assert(getParent() && "Not embedded in a basic block!"); 858 getParent()->erase_instr(this); 859 } 860 861 /// getNumExplicitOperands - Returns the number of non-implicit operands. 862 /// 863 unsigned MachineInstr::getNumExplicitOperands() const { 864 unsigned NumOperands = MCID->getNumOperands(); 865 if (!MCID->isVariadic()) 866 return NumOperands; 867 868 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 869 const MachineOperand &MO = getOperand(i); 870 if (!MO.isReg() || !MO.isImplicit()) 871 NumOperands++; 872 } 873 return NumOperands; 874 } 875 876 void MachineInstr::bundleWithPred() { 877 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 878 setFlag(BundledPred); 879 MachineBasicBlock::instr_iterator Pred = this; 880 --Pred; 881 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 882 Pred->setFlag(BundledSucc); 883 } 884 885 void MachineInstr::bundleWithSucc() { 886 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 887 setFlag(BundledSucc); 888 MachineBasicBlock::instr_iterator Succ = this; 889 ++Succ; 890 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 891 Succ->setFlag(BundledPred); 892 } 893 894 void MachineInstr::unbundleFromPred() { 895 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 896 clearFlag(BundledPred); 897 MachineBasicBlock::instr_iterator Pred = this; 898 --Pred; 899 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 900 Pred->clearFlag(BundledSucc); 901 } 902 903 void MachineInstr::unbundleFromSucc() { 904 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 905 clearFlag(BundledSucc); 906 MachineBasicBlock::instr_iterator Succ = this; 907 ++Succ; 908 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 909 Succ->clearFlag(BundledPred); 910 } 911 912 bool MachineInstr::isStackAligningInlineAsm() const { 913 if (isInlineAsm()) { 914 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 915 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 916 return true; 917 } 918 return false; 919 } 920 921 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 922 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 923 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 924 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 925 } 926 927 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 928 unsigned *GroupNo) const { 929 assert(isInlineAsm() && "Expected an inline asm instruction"); 930 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 931 932 // Ignore queries about the initial operands. 933 if (OpIdx < InlineAsm::MIOp_FirstOperand) 934 return -1; 935 936 unsigned Group = 0; 937 unsigned NumOps; 938 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 939 i += NumOps) { 940 const MachineOperand &FlagMO = getOperand(i); 941 // If we reach the implicit register operands, stop looking. 942 if (!FlagMO.isImm()) 943 return -1; 944 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 945 if (i + NumOps > OpIdx) { 946 if (GroupNo) 947 *GroupNo = Group; 948 return i; 949 } 950 ++Group; 951 } 952 return -1; 953 } 954 955 const TargetRegisterClass* 956 MachineInstr::getRegClassConstraint(unsigned OpIdx, 957 const TargetInstrInfo *TII, 958 const TargetRegisterInfo *TRI) const { 959 assert(getParent() && "Can't have an MBB reference here!"); 960 assert(getParent()->getParent() && "Can't have an MF reference here!"); 961 const MachineFunction &MF = *getParent()->getParent(); 962 963 // Most opcodes have fixed constraints in their MCInstrDesc. 964 if (!isInlineAsm()) 965 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 966 967 if (!getOperand(OpIdx).isReg()) 968 return NULL; 969 970 // For tied uses on inline asm, get the constraint from the def. 971 unsigned DefIdx; 972 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 973 OpIdx = DefIdx; 974 975 // Inline asm stores register class constraints in the flag word. 976 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 977 if (FlagIdx < 0) 978 return NULL; 979 980 unsigned Flag = getOperand(FlagIdx).getImm(); 981 unsigned RCID; 982 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 983 return TRI->getRegClass(RCID); 984 985 // Assume that all registers in a memory operand are pointers. 986 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 987 return TRI->getPointerRegClass(MF); 988 989 return NULL; 990 } 991 992 /// Return the number of instructions inside the MI bundle, not counting the 993 /// header instruction. 994 unsigned MachineInstr::getBundleSize() const { 995 MachineBasicBlock::const_instr_iterator I = this; 996 unsigned Size = 0; 997 while (I->isBundledWithSucc()) 998 ++Size, ++I; 999 return Size; 1000 } 1001 1002 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1003 /// the specific register or -1 if it is not found. It further tightens 1004 /// the search criteria to a use that kills the register if isKill is true. 1005 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1006 const TargetRegisterInfo *TRI) const { 1007 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1008 const MachineOperand &MO = getOperand(i); 1009 if (!MO.isReg() || !MO.isUse()) 1010 continue; 1011 unsigned MOReg = MO.getReg(); 1012 if (!MOReg) 1013 continue; 1014 if (MOReg == Reg || 1015 (TRI && 1016 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1017 TargetRegisterInfo::isPhysicalRegister(Reg) && 1018 TRI->isSubRegister(MOReg, Reg))) 1019 if (!isKill || MO.isKill()) 1020 return i; 1021 } 1022 return -1; 1023 } 1024 1025 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1026 /// indicating if this instruction reads or writes Reg. This also considers 1027 /// partial defines. 1028 std::pair<bool,bool> 1029 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1030 SmallVectorImpl<unsigned> *Ops) const { 1031 bool PartDef = false; // Partial redefine. 1032 bool FullDef = false; // Full define. 1033 bool Use = false; 1034 1035 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1036 const MachineOperand &MO = getOperand(i); 1037 if (!MO.isReg() || MO.getReg() != Reg) 1038 continue; 1039 if (Ops) 1040 Ops->push_back(i); 1041 if (MO.isUse()) 1042 Use |= !MO.isUndef(); 1043 else if (MO.getSubReg() && !MO.isUndef()) 1044 // A partial <def,undef> doesn't count as reading the register. 1045 PartDef = true; 1046 else 1047 FullDef = true; 1048 } 1049 // A partial redefine uses Reg unless there is also a full define. 1050 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1051 } 1052 1053 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1054 /// the specified register or -1 if it is not found. If isDead is true, defs 1055 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1056 /// also checks if there is a def of a super-register. 1057 int 1058 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1059 const TargetRegisterInfo *TRI) const { 1060 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1061 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1062 const MachineOperand &MO = getOperand(i); 1063 // Accept regmask operands when Overlap is set. 1064 // Ignore them when looking for a specific def operand (Overlap == false). 1065 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1066 return i; 1067 if (!MO.isReg() || !MO.isDef()) 1068 continue; 1069 unsigned MOReg = MO.getReg(); 1070 bool Found = (MOReg == Reg); 1071 if (!Found && TRI && isPhys && 1072 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1073 if (Overlap) 1074 Found = TRI->regsOverlap(MOReg, Reg); 1075 else 1076 Found = TRI->isSubRegister(MOReg, Reg); 1077 } 1078 if (Found && (!isDead || MO.isDead())) 1079 return i; 1080 } 1081 return -1; 1082 } 1083 1084 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1085 /// operand list that is used to represent the predicate. It returns -1 if 1086 /// none is found. 1087 int MachineInstr::findFirstPredOperandIdx() const { 1088 // Don't call MCID.findFirstPredOperandIdx() because this variant 1089 // is sometimes called on an instruction that's not yet complete, and 1090 // so the number of operands is less than the MCID indicates. In 1091 // particular, the PTX target does this. 1092 const MCInstrDesc &MCID = getDesc(); 1093 if (MCID.isPredicable()) { 1094 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1095 if (MCID.OpInfo[i].isPredicate()) 1096 return i; 1097 } 1098 1099 return -1; 1100 } 1101 1102 // MachineOperand::TiedTo is 4 bits wide. 1103 const unsigned TiedMax = 15; 1104 1105 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1106 /// 1107 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1108 /// field. TiedTo can have these values: 1109 /// 1110 /// 0: Operand is not tied to anything. 1111 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1112 /// TiedMax: Tied to an operand >= TiedMax-1. 1113 /// 1114 /// The tied def must be one of the first TiedMax operands on a normal 1115 /// instruction. INLINEASM instructions allow more tied defs. 1116 /// 1117 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1118 MachineOperand &DefMO = getOperand(DefIdx); 1119 MachineOperand &UseMO = getOperand(UseIdx); 1120 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1121 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1122 assert(!DefMO.isTied() && "Def is already tied to another use"); 1123 assert(!UseMO.isTied() && "Use is already tied to another def"); 1124 1125 if (DefIdx < TiedMax) 1126 UseMO.TiedTo = DefIdx + 1; 1127 else { 1128 // Inline asm can use the group descriptors to find tied operands, but on 1129 // normal instruction, the tied def must be within the first TiedMax 1130 // operands. 1131 assert(isInlineAsm() && "DefIdx out of range"); 1132 UseMO.TiedTo = TiedMax; 1133 } 1134 1135 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1136 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1137 } 1138 1139 /// Given the index of a tied register operand, find the operand it is tied to. 1140 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1141 /// which must exist. 1142 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1143 const MachineOperand &MO = getOperand(OpIdx); 1144 assert(MO.isTied() && "Operand isn't tied"); 1145 1146 // Normally TiedTo is in range. 1147 if (MO.TiedTo < TiedMax) 1148 return MO.TiedTo - 1; 1149 1150 // Uses on normal instructions can be out of range. 1151 if (!isInlineAsm()) { 1152 // Normal tied defs must be in the 0..TiedMax-1 range. 1153 if (MO.isUse()) 1154 return TiedMax - 1; 1155 // MO is a def. Search for the tied use. 1156 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1157 const MachineOperand &UseMO = getOperand(i); 1158 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1159 return i; 1160 } 1161 llvm_unreachable("Can't find tied use"); 1162 } 1163 1164 // Now deal with inline asm by parsing the operand group descriptor flags. 1165 // Find the beginning of each operand group. 1166 SmallVector<unsigned, 8> GroupIdx; 1167 unsigned OpIdxGroup = ~0u; 1168 unsigned NumOps; 1169 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1170 i += NumOps) { 1171 const MachineOperand &FlagMO = getOperand(i); 1172 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1173 unsigned CurGroup = GroupIdx.size(); 1174 GroupIdx.push_back(i); 1175 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1176 // OpIdx belongs to this operand group. 1177 if (OpIdx > i && OpIdx < i + NumOps) 1178 OpIdxGroup = CurGroup; 1179 unsigned TiedGroup; 1180 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1181 continue; 1182 // Operands in this group are tied to operands in TiedGroup which must be 1183 // earlier. Find the number of operands between the two groups. 1184 unsigned Delta = i - GroupIdx[TiedGroup]; 1185 1186 // OpIdx is a use tied to TiedGroup. 1187 if (OpIdxGroup == CurGroup) 1188 return OpIdx - Delta; 1189 1190 // OpIdx is a def tied to this use group. 1191 if (OpIdxGroup == TiedGroup) 1192 return OpIdx + Delta; 1193 } 1194 llvm_unreachable("Invalid tied operand on inline asm"); 1195 } 1196 1197 /// clearKillInfo - Clears kill flags on all operands. 1198 /// 1199 void MachineInstr::clearKillInfo() { 1200 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1201 MachineOperand &MO = getOperand(i); 1202 if (MO.isReg() && MO.isUse()) 1203 MO.setIsKill(false); 1204 } 1205 } 1206 1207 void MachineInstr::substituteRegister(unsigned FromReg, 1208 unsigned ToReg, 1209 unsigned SubIdx, 1210 const TargetRegisterInfo &RegInfo) { 1211 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1212 if (SubIdx) 1213 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1214 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1215 MachineOperand &MO = getOperand(i); 1216 if (!MO.isReg() || MO.getReg() != FromReg) 1217 continue; 1218 MO.substPhysReg(ToReg, RegInfo); 1219 } 1220 } else { 1221 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1222 MachineOperand &MO = getOperand(i); 1223 if (!MO.isReg() || MO.getReg() != FromReg) 1224 continue; 1225 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1226 } 1227 } 1228 } 1229 1230 /// isSafeToMove - Return true if it is safe to move this instruction. If 1231 /// SawStore is set to true, it means that there is a store (or call) between 1232 /// the instruction's location and its intended destination. 1233 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1234 AliasAnalysis *AA, 1235 bool &SawStore) const { 1236 // Ignore stuff that we obviously can't move. 1237 // 1238 // Treat volatile loads as stores. This is not strictly necessary for 1239 // volatiles, but it is required for atomic loads. It is not allowed to move 1240 // a load across an atomic load with Ordering > Monotonic. 1241 if (mayStore() || isCall() || 1242 (mayLoad() && hasOrderedMemoryRef())) { 1243 SawStore = true; 1244 return false; 1245 } 1246 1247 if (isLabel() || isDebugValue() || 1248 isTerminator() || hasUnmodeledSideEffects()) 1249 return false; 1250 1251 // See if this instruction does a load. If so, we have to guarantee that the 1252 // loaded value doesn't change between the load and the its intended 1253 // destination. The check for isInvariantLoad gives the targe the chance to 1254 // classify the load as always returning a constant, e.g. a constant pool 1255 // load. 1256 if (mayLoad() && !isInvariantLoad(AA)) 1257 // Otherwise, this is a real load. If there is a store between the load and 1258 // end of block, we can't move it. 1259 return !SawStore; 1260 1261 return true; 1262 } 1263 1264 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1265 /// or volatile memory reference, or if the information describing the memory 1266 /// reference is not available. Return false if it is known to have no ordered 1267 /// memory references. 1268 bool MachineInstr::hasOrderedMemoryRef() const { 1269 // An instruction known never to access memory won't have a volatile access. 1270 if (!mayStore() && 1271 !mayLoad() && 1272 !isCall() && 1273 !hasUnmodeledSideEffects()) 1274 return false; 1275 1276 // Otherwise, if the instruction has no memory reference information, 1277 // conservatively assume it wasn't preserved. 1278 if (memoperands_empty()) 1279 return true; 1280 1281 // Check the memory reference information for ordered references. 1282 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1283 if (!(*I)->isUnordered()) 1284 return true; 1285 1286 return false; 1287 } 1288 1289 /// isInvariantLoad - Return true if this instruction is loading from a 1290 /// location whose value is invariant across the function. For example, 1291 /// loading a value from the constant pool or from the argument area 1292 /// of a function if it does not change. This should only return true of 1293 /// *all* loads the instruction does are invariant (if it does multiple loads). 1294 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1295 // If the instruction doesn't load at all, it isn't an invariant load. 1296 if (!mayLoad()) 1297 return false; 1298 1299 // If the instruction has lost its memoperands, conservatively assume that 1300 // it may not be an invariant load. 1301 if (memoperands_empty()) 1302 return false; 1303 1304 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1305 1306 for (mmo_iterator I = memoperands_begin(), 1307 E = memoperands_end(); I != E; ++I) { 1308 if ((*I)->isVolatile()) return false; 1309 if ((*I)->isStore()) return false; 1310 if ((*I)->isInvariant()) return true; 1311 1312 if (const Value *V = (*I)->getValue()) { 1313 // A load from a constant PseudoSourceValue is invariant. 1314 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1315 if (PSV->isConstant(MFI)) 1316 continue; 1317 // If we have an AliasAnalysis, ask it whether the memory is constant. 1318 if (AA && AA->pointsToConstantMemory( 1319 AliasAnalysis::Location(V, (*I)->getSize(), 1320 (*I)->getTBAAInfo()))) 1321 continue; 1322 } 1323 1324 // Otherwise assume conservatively. 1325 return false; 1326 } 1327 1328 // Everything checks out. 1329 return true; 1330 } 1331 1332 /// isConstantValuePHI - If the specified instruction is a PHI that always 1333 /// merges together the same virtual register, return the register, otherwise 1334 /// return 0. 1335 unsigned MachineInstr::isConstantValuePHI() const { 1336 if (!isPHI()) 1337 return 0; 1338 assert(getNumOperands() >= 3 && 1339 "It's illegal to have a PHI without source operands"); 1340 1341 unsigned Reg = getOperand(1).getReg(); 1342 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1343 if (getOperand(i).getReg() != Reg) 1344 return 0; 1345 return Reg; 1346 } 1347 1348 bool MachineInstr::hasUnmodeledSideEffects() const { 1349 if (hasProperty(MCID::UnmodeledSideEffects)) 1350 return true; 1351 if (isInlineAsm()) { 1352 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1353 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1354 return true; 1355 } 1356 1357 return false; 1358 } 1359 1360 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1361 /// 1362 bool MachineInstr::allDefsAreDead() const { 1363 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1364 const MachineOperand &MO = getOperand(i); 1365 if (!MO.isReg() || MO.isUse()) 1366 continue; 1367 if (!MO.isDead()) 1368 return false; 1369 } 1370 return true; 1371 } 1372 1373 /// copyImplicitOps - Copy implicit register operands from specified 1374 /// instruction to this instruction. 1375 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1376 const MachineInstr *MI) { 1377 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1378 i != e; ++i) { 1379 const MachineOperand &MO = MI->getOperand(i); 1380 if (MO.isReg() && MO.isImplicit()) 1381 addOperand(MF, MO); 1382 } 1383 } 1384 1385 void MachineInstr::dump() const { 1386 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1387 dbgs() << " " << *this; 1388 #endif 1389 } 1390 1391 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1392 raw_ostream &CommentOS) { 1393 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1394 if (!DL.isUnknown()) { // Print source line info. 1395 DIScope Scope(DL.getScope(Ctx)); 1396 assert((!Scope || Scope.isScope()) && 1397 "Scope of a DebugLoc should be null or a DIScope."); 1398 // Omit the directory, because it's likely to be long and uninteresting. 1399 if (Scope) 1400 CommentOS << Scope.getFilename(); 1401 else 1402 CommentOS << "<unknown>"; 1403 CommentOS << ':' << DL.getLine(); 1404 if (DL.getCol() != 0) 1405 CommentOS << ':' << DL.getCol(); 1406 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1407 if (!InlinedAtDL.isUnknown()) { 1408 CommentOS << " @[ "; 1409 printDebugLoc(InlinedAtDL, MF, CommentOS); 1410 CommentOS << " ]"; 1411 } 1412 } 1413 } 1414 1415 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM, 1416 bool SkipOpers) const { 1417 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1418 const MachineFunction *MF = 0; 1419 const MachineRegisterInfo *MRI = 0; 1420 if (const MachineBasicBlock *MBB = getParent()) { 1421 MF = MBB->getParent(); 1422 if (!TM && MF) 1423 TM = &MF->getTarget(); 1424 if (MF) 1425 MRI = &MF->getRegInfo(); 1426 } 1427 1428 // Save a list of virtual registers. 1429 SmallVector<unsigned, 8> VirtRegs; 1430 1431 // Print explicitly defined operands on the left of an assignment syntax. 1432 unsigned StartOp = 0, e = getNumOperands(); 1433 for (; StartOp < e && getOperand(StartOp).isReg() && 1434 getOperand(StartOp).isDef() && 1435 !getOperand(StartOp).isImplicit(); 1436 ++StartOp) { 1437 if (StartOp != 0) OS << ", "; 1438 getOperand(StartOp).print(OS, TM); 1439 unsigned Reg = getOperand(StartOp).getReg(); 1440 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1441 VirtRegs.push_back(Reg); 1442 } 1443 1444 if (StartOp != 0) 1445 OS << " = "; 1446 1447 // Print the opcode name. 1448 if (TM && TM->getInstrInfo()) 1449 OS << TM->getInstrInfo()->getName(getOpcode()); 1450 else 1451 OS << "UNKNOWN"; 1452 1453 if (SkipOpers) 1454 return; 1455 1456 // Print the rest of the operands. 1457 bool OmittedAnyCallClobbers = false; 1458 bool FirstOp = true; 1459 unsigned AsmDescOp = ~0u; 1460 unsigned AsmOpCount = 0; 1461 1462 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1463 // Print asm string. 1464 OS << " "; 1465 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1466 1467 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1468 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1469 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1470 OS << " [sideeffect]"; 1471 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1472 OS << " [mayload]"; 1473 if (ExtraInfo & InlineAsm::Extra_MayStore) 1474 OS << " [maystore]"; 1475 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1476 OS << " [alignstack]"; 1477 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1478 OS << " [attdialect]"; 1479 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1480 OS << " [inteldialect]"; 1481 1482 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1483 FirstOp = false; 1484 } 1485 1486 1487 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1488 const MachineOperand &MO = getOperand(i); 1489 1490 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1491 VirtRegs.push_back(MO.getReg()); 1492 1493 // Omit call-clobbered registers which aren't used anywhere. This makes 1494 // call instructions much less noisy on targets where calls clobber lots 1495 // of registers. Don't rely on MO.isDead() because we may be called before 1496 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1497 if (MF && isCall() && 1498 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1499 unsigned Reg = MO.getReg(); 1500 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1501 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1502 if (MRI.use_empty(Reg)) { 1503 bool HasAliasLive = false; 1504 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); 1505 AI.isValid(); ++AI) { 1506 unsigned AliasReg = *AI; 1507 if (!MRI.use_empty(AliasReg)) { 1508 HasAliasLive = true; 1509 break; 1510 } 1511 } 1512 if (!HasAliasLive) { 1513 OmittedAnyCallClobbers = true; 1514 continue; 1515 } 1516 } 1517 } 1518 } 1519 1520 if (FirstOp) FirstOp = false; else OS << ","; 1521 OS << " "; 1522 if (i < getDesc().NumOperands) { 1523 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1524 if (MCOI.isPredicate()) 1525 OS << "pred:"; 1526 if (MCOI.isOptionalDef()) 1527 OS << "opt:"; 1528 } 1529 if (isDebugValue() && MO.isMetadata()) { 1530 // Pretty print DBG_VALUE instructions. 1531 const MDNode *MD = MO.getMetadata(); 1532 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1533 OS << "!\"" << MDS->getString() << '\"'; 1534 else 1535 MO.print(OS, TM); 1536 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1537 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1538 } else if (i == AsmDescOp && MO.isImm()) { 1539 // Pretty print the inline asm operand descriptor. 1540 OS << '$' << AsmOpCount++; 1541 unsigned Flag = MO.getImm(); 1542 switch (InlineAsm::getKind(Flag)) { 1543 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1544 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1545 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1546 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1547 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1548 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1549 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1550 } 1551 1552 unsigned RCID = 0; 1553 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1554 if (TM) 1555 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1556 else 1557 OS << ":RC" << RCID; 1558 } 1559 1560 unsigned TiedTo = 0; 1561 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1562 OS << " tiedto:$" << TiedTo; 1563 1564 OS << ']'; 1565 1566 // Compute the index of the next operand descriptor. 1567 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1568 } else 1569 MO.print(OS, TM); 1570 } 1571 1572 // Briefly indicate whether any call clobbers were omitted. 1573 if (OmittedAnyCallClobbers) { 1574 if (!FirstOp) OS << ","; 1575 OS << " ..."; 1576 } 1577 1578 bool HaveSemi = false; 1579 const unsigned PrintableFlags = FrameSetup; 1580 if (Flags & PrintableFlags) { 1581 if (!HaveSemi) OS << ";"; HaveSemi = true; 1582 OS << " flags: "; 1583 1584 if (Flags & FrameSetup) 1585 OS << "FrameSetup"; 1586 } 1587 1588 if (!memoperands_empty()) { 1589 if (!HaveSemi) OS << ";"; HaveSemi = true; 1590 1591 OS << " mem:"; 1592 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1593 i != e; ++i) { 1594 OS << **i; 1595 if (llvm::next(i) != e) 1596 OS << " "; 1597 } 1598 } 1599 1600 // Print the regclass of any virtual registers encountered. 1601 if (MRI && !VirtRegs.empty()) { 1602 if (!HaveSemi) OS << ";"; HaveSemi = true; 1603 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1604 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1605 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1606 for (unsigned j = i+1; j != VirtRegs.size();) { 1607 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1608 ++j; 1609 continue; 1610 } 1611 if (VirtRegs[i] != VirtRegs[j]) 1612 OS << "," << PrintReg(VirtRegs[j]); 1613 VirtRegs.erase(VirtRegs.begin()+j); 1614 } 1615 } 1616 } 1617 1618 // Print debug location information. 1619 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1620 if (!HaveSemi) OS << ";"; HaveSemi = true; 1621 DIVariable DV(getOperand(e - 1).getMetadata()); 1622 OS << " line no:" << DV.getLineNumber(); 1623 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1624 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1625 if (!InlinedAtDL.isUnknown()) { 1626 OS << " inlined @[ "; 1627 printDebugLoc(InlinedAtDL, MF, OS); 1628 OS << " ]"; 1629 } 1630 } 1631 } else if (!debugLoc.isUnknown() && MF) { 1632 if (!HaveSemi) OS << ";"; HaveSemi = true; 1633 OS << " dbg:"; 1634 printDebugLoc(debugLoc, MF, OS); 1635 } 1636 1637 OS << '\n'; 1638 } 1639 1640 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1641 const TargetRegisterInfo *RegInfo, 1642 bool AddIfNotFound) { 1643 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1644 bool hasAliases = isPhysReg && 1645 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1646 bool Found = false; 1647 SmallVector<unsigned,4> DeadOps; 1648 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1649 MachineOperand &MO = getOperand(i); 1650 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1651 continue; 1652 unsigned Reg = MO.getReg(); 1653 if (!Reg) 1654 continue; 1655 1656 if (Reg == IncomingReg) { 1657 if (!Found) { 1658 if (MO.isKill()) 1659 // The register is already marked kill. 1660 return true; 1661 if (isPhysReg && isRegTiedToDefOperand(i)) 1662 // Two-address uses of physregs must not be marked kill. 1663 return true; 1664 MO.setIsKill(); 1665 Found = true; 1666 } 1667 } else if (hasAliases && MO.isKill() && 1668 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1669 // A super-register kill already exists. 1670 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1671 return true; 1672 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1673 DeadOps.push_back(i); 1674 } 1675 } 1676 1677 // Trim unneeded kill operands. 1678 while (!DeadOps.empty()) { 1679 unsigned OpIdx = DeadOps.back(); 1680 if (getOperand(OpIdx).isImplicit()) 1681 RemoveOperand(OpIdx); 1682 else 1683 getOperand(OpIdx).setIsKill(false); 1684 DeadOps.pop_back(); 1685 } 1686 1687 // If not found, this means an alias of one of the operands is killed. Add a 1688 // new implicit operand if required. 1689 if (!Found && AddIfNotFound) { 1690 addOperand(MachineOperand::CreateReg(IncomingReg, 1691 false /*IsDef*/, 1692 true /*IsImp*/, 1693 true /*IsKill*/)); 1694 return true; 1695 } 1696 return Found; 1697 } 1698 1699 void MachineInstr::clearRegisterKills(unsigned Reg, 1700 const TargetRegisterInfo *RegInfo) { 1701 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1702 RegInfo = 0; 1703 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1704 MachineOperand &MO = getOperand(i); 1705 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1706 continue; 1707 unsigned OpReg = MO.getReg(); 1708 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1709 MO.setIsKill(false); 1710 } 1711 } 1712 1713 bool MachineInstr::addRegisterDead(unsigned Reg, 1714 const TargetRegisterInfo *RegInfo, 1715 bool AddIfNotFound) { 1716 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1717 bool hasAliases = isPhysReg && 1718 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1719 bool Found = false; 1720 SmallVector<unsigned,4> DeadOps; 1721 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1722 MachineOperand &MO = getOperand(i); 1723 if (!MO.isReg() || !MO.isDef()) 1724 continue; 1725 unsigned MOReg = MO.getReg(); 1726 if (!MOReg) 1727 continue; 1728 1729 if (MOReg == Reg) { 1730 MO.setIsDead(); 1731 Found = true; 1732 } else if (hasAliases && MO.isDead() && 1733 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1734 // There exists a super-register that's marked dead. 1735 if (RegInfo->isSuperRegister(Reg, MOReg)) 1736 return true; 1737 if (RegInfo->isSubRegister(Reg, MOReg)) 1738 DeadOps.push_back(i); 1739 } 1740 } 1741 1742 // Trim unneeded dead operands. 1743 while (!DeadOps.empty()) { 1744 unsigned OpIdx = DeadOps.back(); 1745 if (getOperand(OpIdx).isImplicit()) 1746 RemoveOperand(OpIdx); 1747 else 1748 getOperand(OpIdx).setIsDead(false); 1749 DeadOps.pop_back(); 1750 } 1751 1752 // If not found, this means an alias of one of the operands is dead. Add a 1753 // new implicit operand if required. 1754 if (Found || !AddIfNotFound) 1755 return Found; 1756 1757 addOperand(MachineOperand::CreateReg(Reg, 1758 true /*IsDef*/, 1759 true /*IsImp*/, 1760 false /*IsKill*/, 1761 true /*IsDead*/)); 1762 return true; 1763 } 1764 1765 void MachineInstr::addRegisterDefined(unsigned Reg, 1766 const TargetRegisterInfo *RegInfo) { 1767 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1768 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 1769 if (MO) 1770 return; 1771 } else { 1772 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1773 const MachineOperand &MO = getOperand(i); 1774 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1775 MO.getSubReg() == 0) 1776 return; 1777 } 1778 } 1779 addOperand(MachineOperand::CreateReg(Reg, 1780 true /*IsDef*/, 1781 true /*IsImp*/)); 1782 } 1783 1784 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1785 const TargetRegisterInfo &TRI) { 1786 bool HasRegMask = false; 1787 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1788 MachineOperand &MO = getOperand(i); 1789 if (MO.isRegMask()) { 1790 HasRegMask = true; 1791 continue; 1792 } 1793 if (!MO.isReg() || !MO.isDef()) continue; 1794 unsigned Reg = MO.getReg(); 1795 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1796 bool Dead = true; 1797 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1798 I != E; ++I) 1799 if (TRI.regsOverlap(*I, Reg)) { 1800 Dead = false; 1801 break; 1802 } 1803 // If there are no uses, including partial uses, the def is dead. 1804 if (Dead) MO.setIsDead(); 1805 } 1806 1807 // This is a call with a register mask operand. 1808 // Mask clobbers are always dead, so add defs for the non-dead defines. 1809 if (HasRegMask) 1810 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1811 I != E; ++I) 1812 addRegisterDefined(*I, &TRI); 1813 } 1814 1815 unsigned 1816 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1817 // Build up a buffer of hash code components. 1818 SmallVector<size_t, 8> HashComponents; 1819 HashComponents.reserve(MI->getNumOperands() + 1); 1820 HashComponents.push_back(MI->getOpcode()); 1821 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1822 const MachineOperand &MO = MI->getOperand(i); 1823 if (MO.isReg() && MO.isDef() && 1824 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1825 continue; // Skip virtual register defs. 1826 1827 HashComponents.push_back(hash_value(MO)); 1828 } 1829 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1830 } 1831 1832 void MachineInstr::emitError(StringRef Msg) const { 1833 // Find the source location cookie. 1834 unsigned LocCookie = 0; 1835 const MDNode *LocMD = 0; 1836 for (unsigned i = getNumOperands(); i != 0; --i) { 1837 if (getOperand(i-1).isMetadata() && 1838 (LocMD = getOperand(i-1).getMetadata()) && 1839 LocMD->getNumOperands() != 0) { 1840 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1841 LocCookie = CI->getZExtValue(); 1842 break; 1843 } 1844 } 1845 } 1846 1847 if (const MachineBasicBlock *MBB = getParent()) 1848 if (const MachineFunction *MF = MBB->getParent()) 1849 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1850 report_fatal_error(Msg); 1851 } 1852