xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 8c2b69d53a3234b24003929235cd2b4de62240dd)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCInstrDesc.h"
58 #include "llvm/MC/MCRegisterInfo.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/FormattedStream.h"
66 #include "llvm/Support/LowLevelTypeImpl.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <cstring>
76 #include <iterator>
77 #include <utility>
78 
79 using namespace llvm;
80 
81 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
82   if (const MachineBasicBlock *MBB = MI.getParent())
83     if (const MachineFunction *MF = MBB->getParent())
84       return MF;
85   return nullptr;
86 }
87 
88 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
89 // it.
90 static void tryToGetTargetInfo(const MachineInstr &MI,
91                                const TargetRegisterInfo *&TRI,
92                                const MachineRegisterInfo *&MRI,
93                                const TargetIntrinsicInfo *&IntrinsicInfo,
94                                const TargetInstrInfo *&TII) {
95 
96   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
97     TRI = MF->getSubtarget().getRegisterInfo();
98     MRI = &MF->getRegInfo();
99     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
100     TII = MF->getSubtarget().getInstrInfo();
101   }
102 }
103 
104 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
105   if (MCID->ImplicitDefs)
106     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
107            ++ImpDefs)
108       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
109   if (MCID->ImplicitUses)
110     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
111            ++ImpUses)
112       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
113 }
114 
115 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
116 /// implicit operands. It reserves space for the number of operands specified by
117 /// the MCInstrDesc.
118 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
119                            DebugLoc dl, bool NoImp)
120     : MCID(&tid), debugLoc(std::move(dl)), DebugInstrNum(0) {
121   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
122 
123   // Reserve space for the expected number of operands.
124   if (unsigned NumOps = MCID->getNumOperands() +
125     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
126     CapOperands = OperandCapacity::get(NumOps);
127     Operands = MF.allocateOperandArray(CapOperands);
128   }
129 
130   if (!NoImp)
131     addImplicitDefUseOperands(MF);
132 }
133 
134 /// MachineInstr ctor - Copies MachineInstr arg exactly.
135 /// Does not copy the number from debug instruction numbering, to preserve
136 /// uniqueness.
137 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
138     : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()),
139       DebugInstrNum(0) {
140   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
141 
142   CapOperands = OperandCapacity::get(MI.getNumOperands());
143   Operands = MF.allocateOperandArray(CapOperands);
144 
145   // Copy operands.
146   for (const MachineOperand &MO : MI.operands())
147     addOperand(MF, MO);
148 
149   // Copy all the sensible flags.
150   setFlags(MI.Flags);
151 }
152 
153 void MachineInstr::moveBefore(MachineInstr *MovePos) {
154   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
155 }
156 
157 /// getRegInfo - If this instruction is embedded into a MachineFunction,
158 /// return the MachineRegisterInfo object for the current function, otherwise
159 /// return null.
160 MachineRegisterInfo *MachineInstr::getRegInfo() {
161   if (MachineBasicBlock *MBB = getParent())
162     return &MBB->getParent()->getRegInfo();
163   return nullptr;
164 }
165 
166 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
167 /// this instruction from their respective use lists.  This requires that the
168 /// operands already be on their use lists.
169 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
170   for (MachineOperand &MO : operands())
171     if (MO.isReg())
172       MRI.removeRegOperandFromUseList(&MO);
173 }
174 
175 /// AddRegOperandsToUseLists - Add all of the register operands in
176 /// this instruction from their respective use lists.  This requires that the
177 /// operands not be on their use lists yet.
178 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
179   for (MachineOperand &MO : operands())
180     if (MO.isReg())
181       MRI.addRegOperandToUseList(&MO);
182 }
183 
184 void MachineInstr::addOperand(const MachineOperand &Op) {
185   MachineBasicBlock *MBB = getParent();
186   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
187   MachineFunction *MF = MBB->getParent();
188   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
189   addOperand(*MF, Op);
190 }
191 
192 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
193 /// ranges. If MRI is non-null also update use-def chains.
194 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
195                          unsigned NumOps, MachineRegisterInfo *MRI) {
196   if (MRI)
197     return MRI->moveOperands(Dst, Src, NumOps);
198   // MachineOperand is a trivially copyable type so we can just use memmove.
199   assert(Dst && Src && "Unknown operands");
200   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
201 }
202 
203 /// addOperand - Add the specified operand to the instruction.  If it is an
204 /// implicit operand, it is added to the end of the operand list.  If it is
205 /// an explicit operand it is added at the end of the explicit operand list
206 /// (before the first implicit operand).
207 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
208   assert(MCID && "Cannot add operands before providing an instr descriptor");
209 
210   // Check if we're adding one of our existing operands.
211   if (&Op >= Operands && &Op < Operands + NumOperands) {
212     // This is unusual: MI->addOperand(MI->getOperand(i)).
213     // If adding Op requires reallocating or moving existing operands around,
214     // the Op reference could go stale. Support it by copying Op.
215     MachineOperand CopyOp(Op);
216     return addOperand(MF, CopyOp);
217   }
218 
219   // Find the insert location for the new operand.  Implicit registers go at
220   // the end, everything else goes before the implicit regs.
221   //
222   // FIXME: Allow mixed explicit and implicit operands on inline asm.
223   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
224   // implicit-defs, but they must not be moved around.  See the FIXME in
225   // InstrEmitter.cpp.
226   unsigned OpNo = getNumOperands();
227   bool isImpReg = Op.isReg() && Op.isImplicit();
228   if (!isImpReg && !isInlineAsm()) {
229     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
230       --OpNo;
231       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
232     }
233   }
234 
235 #ifndef NDEBUG
236   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
237                    Op.getType() == MachineOperand::MO_MCSymbol;
238   // OpNo now points as the desired insertion point.  Unless this is a variadic
239   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
240   // RegMask operands go between the explicit and implicit operands.
241   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
242           OpNo < MCID->getNumOperands() || isDebugOp) &&
243          "Trying to add an operand to a machine instr that is already done!");
244 #endif
245 
246   MachineRegisterInfo *MRI = getRegInfo();
247 
248   // Determine if the Operands array needs to be reallocated.
249   // Save the old capacity and operand array.
250   OperandCapacity OldCap = CapOperands;
251   MachineOperand *OldOperands = Operands;
252   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
253     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
254     Operands = MF.allocateOperandArray(CapOperands);
255     // Move the operands before the insertion point.
256     if (OpNo)
257       moveOperands(Operands, OldOperands, OpNo, MRI);
258   }
259 
260   // Move the operands following the insertion point.
261   if (OpNo != NumOperands)
262     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
263                  MRI);
264   ++NumOperands;
265 
266   // Deallocate the old operand array.
267   if (OldOperands != Operands && OldOperands)
268     MF.deallocateOperandArray(OldCap, OldOperands);
269 
270   // Copy Op into place. It still needs to be inserted into the MRI use lists.
271   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
272   NewMO->ParentMI = this;
273 
274   // When adding a register operand, tell MRI about it.
275   if (NewMO->isReg()) {
276     // Ensure isOnRegUseList() returns false, regardless of Op's status.
277     NewMO->Contents.Reg.Prev = nullptr;
278     // Ignore existing ties. This is not a property that can be copied.
279     NewMO->TiedTo = 0;
280     // Add the new operand to MRI, but only for instructions in an MBB.
281     if (MRI)
282       MRI->addRegOperandToUseList(NewMO);
283     // The MCID operand information isn't accurate until we start adding
284     // explicit operands. The implicit operands are added first, then the
285     // explicits are inserted before them.
286     if (!isImpReg) {
287       // Tie uses to defs as indicated in MCInstrDesc.
288       if (NewMO->isUse()) {
289         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
290         if (DefIdx != -1)
291           tieOperands(DefIdx, OpNo);
292       }
293       // If the register operand is flagged as early, mark the operand as such.
294       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
295         NewMO->setIsEarlyClobber(true);
296     }
297   }
298 }
299 
300 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
301 /// fewer operand than it started with.
302 ///
303 void MachineInstr::RemoveOperand(unsigned OpNo) {
304   assert(OpNo < getNumOperands() && "Invalid operand number");
305   untieRegOperand(OpNo);
306 
307 #ifndef NDEBUG
308   // Moving tied operands would break the ties.
309   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
310     if (Operands[i].isReg())
311       assert(!Operands[i].isTied() && "Cannot move tied operands");
312 #endif
313 
314   MachineRegisterInfo *MRI = getRegInfo();
315   if (MRI && Operands[OpNo].isReg())
316     MRI->removeRegOperandFromUseList(Operands + OpNo);
317 
318   // Don't call the MachineOperand destructor. A lot of this code depends on
319   // MachineOperand having a trivial destructor anyway, and adding a call here
320   // wouldn't make it 'destructor-correct'.
321 
322   if (unsigned N = NumOperands - 1 - OpNo)
323     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
324   --NumOperands;
325 }
326 
327 void MachineInstr::setExtraInfo(MachineFunction &MF,
328                                 ArrayRef<MachineMemOperand *> MMOs,
329                                 MCSymbol *PreInstrSymbol,
330                                 MCSymbol *PostInstrSymbol,
331                                 MDNode *HeapAllocMarker) {
332   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
333   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
334   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
335   int NumPointers =
336       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
337 
338   // Drop all extra info if there is none.
339   if (NumPointers <= 0) {
340     Info.clear();
341     return;
342   }
343 
344   // If more than one pointer, then store out of line. Store heap alloc markers
345   // out of line because PointerSumType cannot hold more than 4 tag types with
346   // 32-bit pointers.
347   // FIXME: Maybe we should make the symbols in the extra info mutable?
348   else if (NumPointers > 1 || HasHeapAllocMarker) {
349     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
350         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
351     return;
352   }
353 
354   // Otherwise store the single pointer inline.
355   if (HasPreInstrSymbol)
356     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
357   else if (HasPostInstrSymbol)
358     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
359   else
360     Info.set<EIIK_MMO>(MMOs[0]);
361 }
362 
363 void MachineInstr::dropMemRefs(MachineFunction &MF) {
364   if (memoperands_empty())
365     return;
366 
367   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
368                getHeapAllocMarker());
369 }
370 
371 void MachineInstr::setMemRefs(MachineFunction &MF,
372                               ArrayRef<MachineMemOperand *> MMOs) {
373   if (MMOs.empty()) {
374     dropMemRefs(MF);
375     return;
376   }
377 
378   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
379                getHeapAllocMarker());
380 }
381 
382 void MachineInstr::addMemOperand(MachineFunction &MF,
383                                  MachineMemOperand *MO) {
384   SmallVector<MachineMemOperand *, 2> MMOs;
385   MMOs.append(memoperands_begin(), memoperands_end());
386   MMOs.push_back(MO);
387   setMemRefs(MF, MMOs);
388 }
389 
390 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
391   if (this == &MI)
392     // Nothing to do for a self-clone!
393     return;
394 
395   assert(&MF == MI.getMF() &&
396          "Invalid machine functions when cloning memory refrences!");
397   // See if we can just steal the extra info already allocated for the
398   // instruction. We can do this whenever the pre- and post-instruction symbols
399   // are the same (including null).
400   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
401       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
402       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
403     Info = MI.Info;
404     return;
405   }
406 
407   // Otherwise, fall back on a copy-based clone.
408   setMemRefs(MF, MI.memoperands());
409 }
410 
411 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
412 /// identical.
413 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
414                              ArrayRef<MachineMemOperand *> RHS) {
415   if (LHS.size() != RHS.size())
416     return false;
417 
418   auto LHSPointees = make_pointee_range(LHS);
419   auto RHSPointees = make_pointee_range(RHS);
420   return std::equal(LHSPointees.begin(), LHSPointees.end(),
421                     RHSPointees.begin());
422 }
423 
424 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
425                                       ArrayRef<const MachineInstr *> MIs) {
426   // Try handling easy numbers of MIs with simpler mechanisms.
427   if (MIs.empty()) {
428     dropMemRefs(MF);
429     return;
430   }
431   if (MIs.size() == 1) {
432     cloneMemRefs(MF, *MIs[0]);
433     return;
434   }
435   // Because an empty memoperands list provides *no* information and must be
436   // handled conservatively (assuming the instruction can do anything), the only
437   // way to merge with it is to drop all other memoperands.
438   if (MIs[0]->memoperands_empty()) {
439     dropMemRefs(MF);
440     return;
441   }
442 
443   // Handle the general case.
444   SmallVector<MachineMemOperand *, 2> MergedMMOs;
445   // Start with the first instruction.
446   assert(&MF == MIs[0]->getMF() &&
447          "Invalid machine functions when cloning memory references!");
448   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
449   // Now walk all the other instructions and accumulate any different MMOs.
450   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
451     assert(&MF == MI.getMF() &&
452            "Invalid machine functions when cloning memory references!");
453 
454     // Skip MIs with identical operands to the first. This is a somewhat
455     // arbitrary hack but will catch common cases without being quadratic.
456     // TODO: We could fully implement merge semantics here if needed.
457     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
458       continue;
459 
460     // Because an empty memoperands list provides *no* information and must be
461     // handled conservatively (assuming the instruction can do anything), the
462     // only way to merge with it is to drop all other memoperands.
463     if (MI.memoperands_empty()) {
464       dropMemRefs(MF);
465       return;
466     }
467 
468     // Otherwise accumulate these into our temporary buffer of the merged state.
469     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
470   }
471 
472   setMemRefs(MF, MergedMMOs);
473 }
474 
475 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
476   // Do nothing if old and new symbols are the same.
477   if (Symbol == getPreInstrSymbol())
478     return;
479 
480   // If there was only one symbol and we're removing it, just clear info.
481   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
482     Info.clear();
483     return;
484   }
485 
486   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
487                getHeapAllocMarker());
488 }
489 
490 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
491   // Do nothing if old and new symbols are the same.
492   if (Symbol == getPostInstrSymbol())
493     return;
494 
495   // If there was only one symbol and we're removing it, just clear info.
496   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
497     Info.clear();
498     return;
499   }
500 
501   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
502                getHeapAllocMarker());
503 }
504 
505 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
506   // Do nothing if old and new symbols are the same.
507   if (Marker == getHeapAllocMarker())
508     return;
509 
510   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
511                Marker);
512 }
513 
514 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
515                                      const MachineInstr &MI) {
516   if (this == &MI)
517     // Nothing to do for a self-clone!
518     return;
519 
520   assert(&MF == MI.getMF() &&
521          "Invalid machine functions when cloning instruction symbols!");
522 
523   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
524   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
525   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
526 }
527 
528 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
529   // For now, the just return the union of the flags. If the flags get more
530   // complicated over time, we might need more logic here.
531   return getFlags() | Other.getFlags();
532 }
533 
534 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
535   uint16_t MIFlags = 0;
536   // Copy the wrapping flags.
537   if (const OverflowingBinaryOperator *OB =
538           dyn_cast<OverflowingBinaryOperator>(&I)) {
539     if (OB->hasNoSignedWrap())
540       MIFlags |= MachineInstr::MIFlag::NoSWrap;
541     if (OB->hasNoUnsignedWrap())
542       MIFlags |= MachineInstr::MIFlag::NoUWrap;
543   }
544 
545   // Copy the exact flag.
546   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
547     if (PE->isExact())
548       MIFlags |= MachineInstr::MIFlag::IsExact;
549 
550   // Copy the fast-math flags.
551   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
552     const FastMathFlags Flags = FP->getFastMathFlags();
553     if (Flags.noNaNs())
554       MIFlags |= MachineInstr::MIFlag::FmNoNans;
555     if (Flags.noInfs())
556       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
557     if (Flags.noSignedZeros())
558       MIFlags |= MachineInstr::MIFlag::FmNsz;
559     if (Flags.allowReciprocal())
560       MIFlags |= MachineInstr::MIFlag::FmArcp;
561     if (Flags.allowContract())
562       MIFlags |= MachineInstr::MIFlag::FmContract;
563     if (Flags.approxFunc())
564       MIFlags |= MachineInstr::MIFlag::FmAfn;
565     if (Flags.allowReassoc())
566       MIFlags |= MachineInstr::MIFlag::FmReassoc;
567   }
568 
569   return MIFlags;
570 }
571 
572 void MachineInstr::copyIRFlags(const Instruction &I) {
573   Flags = copyFlagsFromInstruction(I);
574 }
575 
576 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
577   assert(!isBundledWithPred() && "Must be called on bundle header");
578   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
579     if (MII->getDesc().getFlags() & Mask) {
580       if (Type == AnyInBundle)
581         return true;
582     } else {
583       if (Type == AllInBundle && !MII->isBundle())
584         return false;
585     }
586     // This was the last instruction in the bundle.
587     if (!MII->isBundledWithSucc())
588       return Type == AllInBundle;
589   }
590 }
591 
592 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
593                                  MICheckType Check) const {
594   // If opcodes or number of operands are not the same then the two
595   // instructions are obviously not identical.
596   if (Other.getOpcode() != getOpcode() ||
597       Other.getNumOperands() != getNumOperands())
598     return false;
599 
600   if (isBundle()) {
601     // We have passed the test above that both instructions have the same
602     // opcode, so we know that both instructions are bundles here. Let's compare
603     // MIs inside the bundle.
604     assert(Other.isBundle() && "Expected that both instructions are bundles.");
605     MachineBasicBlock::const_instr_iterator I1 = getIterator();
606     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
607     // Loop until we analysed the last intruction inside at least one of the
608     // bundles.
609     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
610       ++I1;
611       ++I2;
612       if (!I1->isIdenticalTo(*I2, Check))
613         return false;
614     }
615     // If we've reached the end of just one of the two bundles, but not both,
616     // the instructions are not identical.
617     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
618       return false;
619   }
620 
621   // Check operands to make sure they match.
622   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
623     const MachineOperand &MO = getOperand(i);
624     const MachineOperand &OMO = Other.getOperand(i);
625     if (!MO.isReg()) {
626       if (!MO.isIdenticalTo(OMO))
627         return false;
628       continue;
629     }
630 
631     // Clients may or may not want to ignore defs when testing for equality.
632     // For example, machine CSE pass only cares about finding common
633     // subexpressions, so it's safe to ignore virtual register defs.
634     if (MO.isDef()) {
635       if (Check == IgnoreDefs)
636         continue;
637       else if (Check == IgnoreVRegDefs) {
638         if (!Register::isVirtualRegister(MO.getReg()) ||
639             !Register::isVirtualRegister(OMO.getReg()))
640           if (!MO.isIdenticalTo(OMO))
641             return false;
642       } else {
643         if (!MO.isIdenticalTo(OMO))
644           return false;
645         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
646           return false;
647       }
648     } else {
649       if (!MO.isIdenticalTo(OMO))
650         return false;
651       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
652         return false;
653     }
654   }
655   // If DebugLoc does not match then two debug instructions are not identical.
656   if (isDebugInstr())
657     if (getDebugLoc() && Other.getDebugLoc() &&
658         getDebugLoc() != Other.getDebugLoc())
659       return false;
660   return true;
661 }
662 
663 const MachineFunction *MachineInstr::getMF() const {
664   return getParent()->getParent();
665 }
666 
667 MachineInstr *MachineInstr::removeFromParent() {
668   assert(getParent() && "Not embedded in a basic block!");
669   return getParent()->remove(this);
670 }
671 
672 MachineInstr *MachineInstr::removeFromBundle() {
673   assert(getParent() && "Not embedded in a basic block!");
674   return getParent()->remove_instr(this);
675 }
676 
677 void MachineInstr::eraseFromParent() {
678   assert(getParent() && "Not embedded in a basic block!");
679   getParent()->erase(this);
680 }
681 
682 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
683   assert(getParent() && "Not embedded in a basic block!");
684   MachineBasicBlock *MBB = getParent();
685   MachineFunction *MF = MBB->getParent();
686   assert(MF && "Not embedded in a function!");
687 
688   MachineInstr *MI = (MachineInstr *)this;
689   MachineRegisterInfo &MRI = MF->getRegInfo();
690 
691   for (const MachineOperand &MO : MI->operands()) {
692     if (!MO.isReg() || !MO.isDef())
693       continue;
694     Register Reg = MO.getReg();
695     if (!Reg.isVirtual())
696       continue;
697     MRI.markUsesInDebugValueAsUndef(Reg);
698   }
699   MI->eraseFromParent();
700 }
701 
702 void MachineInstr::eraseFromBundle() {
703   assert(getParent() && "Not embedded in a basic block!");
704   getParent()->erase_instr(this);
705 }
706 
707 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
708   if (!isCall(Type))
709     return false;
710   switch (getOpcode()) {
711   case TargetOpcode::PATCHABLE_EVENT_CALL:
712   case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
713   case TargetOpcode::PATCHPOINT:
714   case TargetOpcode::STACKMAP:
715   case TargetOpcode::STATEPOINT:
716     return false;
717   }
718   return true;
719 }
720 
721 bool MachineInstr::shouldUpdateCallSiteInfo() const {
722   if (isBundle())
723     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
724   return isCandidateForCallSiteEntry();
725 }
726 
727 unsigned MachineInstr::getNumExplicitOperands() const {
728   unsigned NumOperands = MCID->getNumOperands();
729   if (!MCID->isVariadic())
730     return NumOperands;
731 
732   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
733     const MachineOperand &MO = getOperand(I);
734     // The operands must always be in the following order:
735     // - explicit reg defs,
736     // - other explicit operands (reg uses, immediates, etc.),
737     // - implicit reg defs
738     // - implicit reg uses
739     if (MO.isReg() && MO.isImplicit())
740       break;
741     ++NumOperands;
742   }
743   return NumOperands;
744 }
745 
746 unsigned MachineInstr::getNumExplicitDefs() const {
747   unsigned NumDefs = MCID->getNumDefs();
748   if (!MCID->isVariadic())
749     return NumDefs;
750 
751   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
752     const MachineOperand &MO = getOperand(I);
753     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
754       break;
755     ++NumDefs;
756   }
757   return NumDefs;
758 }
759 
760 void MachineInstr::bundleWithPred() {
761   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
762   setFlag(BundledPred);
763   MachineBasicBlock::instr_iterator Pred = getIterator();
764   --Pred;
765   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
766   Pred->setFlag(BundledSucc);
767 }
768 
769 void MachineInstr::bundleWithSucc() {
770   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
771   setFlag(BundledSucc);
772   MachineBasicBlock::instr_iterator Succ = getIterator();
773   ++Succ;
774   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
775   Succ->setFlag(BundledPred);
776 }
777 
778 void MachineInstr::unbundleFromPred() {
779   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
780   clearFlag(BundledPred);
781   MachineBasicBlock::instr_iterator Pred = getIterator();
782   --Pred;
783   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
784   Pred->clearFlag(BundledSucc);
785 }
786 
787 void MachineInstr::unbundleFromSucc() {
788   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
789   clearFlag(BundledSucc);
790   MachineBasicBlock::instr_iterator Succ = getIterator();
791   ++Succ;
792   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
793   Succ->clearFlag(BundledPred);
794 }
795 
796 bool MachineInstr::isStackAligningInlineAsm() const {
797   if (isInlineAsm()) {
798     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
799     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
800       return true;
801   }
802   return false;
803 }
804 
805 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
806   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
807   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
808   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
809 }
810 
811 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
812                                        unsigned *GroupNo) const {
813   assert(isInlineAsm() && "Expected an inline asm instruction");
814   assert(OpIdx < getNumOperands() && "OpIdx out of range");
815 
816   // Ignore queries about the initial operands.
817   if (OpIdx < InlineAsm::MIOp_FirstOperand)
818     return -1;
819 
820   unsigned Group = 0;
821   unsigned NumOps;
822   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
823        i += NumOps) {
824     const MachineOperand &FlagMO = getOperand(i);
825     // If we reach the implicit register operands, stop looking.
826     if (!FlagMO.isImm())
827       return -1;
828     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
829     if (i + NumOps > OpIdx) {
830       if (GroupNo)
831         *GroupNo = Group;
832       return i;
833     }
834     ++Group;
835   }
836   return -1;
837 }
838 
839 const DILabel *MachineInstr::getDebugLabel() const {
840   assert(isDebugLabel() && "not a DBG_LABEL");
841   return cast<DILabel>(getOperand(0).getMetadata());
842 }
843 
844 const MachineOperand &MachineInstr::getDebugVariableOp() const {
845   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
846   return getOperand(2);
847 }
848 
849 MachineOperand &MachineInstr::getDebugVariableOp() {
850   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
851   return getOperand(2);
852 }
853 
854 const DILocalVariable *MachineInstr::getDebugVariable() const {
855   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
856   return cast<DILocalVariable>(getOperand(2).getMetadata());
857 }
858 
859 MachineOperand &MachineInstr::getDebugExpressionOp() {
860   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
861   return getOperand(3);
862 }
863 
864 const DIExpression *MachineInstr::getDebugExpression() const {
865   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
866   return cast<DIExpression>(getOperand(3).getMetadata());
867 }
868 
869 bool MachineInstr::isDebugEntryValue() const {
870   return isDebugValue() && getDebugExpression()->isEntryValue();
871 }
872 
873 const TargetRegisterClass*
874 MachineInstr::getRegClassConstraint(unsigned OpIdx,
875                                     const TargetInstrInfo *TII,
876                                     const TargetRegisterInfo *TRI) const {
877   assert(getParent() && "Can't have an MBB reference here!");
878   assert(getMF() && "Can't have an MF reference here!");
879   const MachineFunction &MF = *getMF();
880 
881   // Most opcodes have fixed constraints in their MCInstrDesc.
882   if (!isInlineAsm())
883     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
884 
885   if (!getOperand(OpIdx).isReg())
886     return nullptr;
887 
888   // For tied uses on inline asm, get the constraint from the def.
889   unsigned DefIdx;
890   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
891     OpIdx = DefIdx;
892 
893   // Inline asm stores register class constraints in the flag word.
894   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
895   if (FlagIdx < 0)
896     return nullptr;
897 
898   unsigned Flag = getOperand(FlagIdx).getImm();
899   unsigned RCID;
900   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
901        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
902        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
903       InlineAsm::hasRegClassConstraint(Flag, RCID))
904     return TRI->getRegClass(RCID);
905 
906   // Assume that all registers in a memory operand are pointers.
907   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
908     return TRI->getPointerRegClass(MF);
909 
910   return nullptr;
911 }
912 
913 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
914     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
915     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
916   // Check every operands inside the bundle if we have
917   // been asked to.
918   if (ExploreBundle)
919     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
920          ++OpndIt)
921       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
922           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
923   else
924     // Otherwise, just check the current operands.
925     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
926       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
927   return CurRC;
928 }
929 
930 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
931     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
932     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
933   assert(CurRC && "Invalid initial register class");
934   // Check if Reg is constrained by some of its use/def from MI.
935   const MachineOperand &MO = getOperand(OpIdx);
936   if (!MO.isReg() || MO.getReg() != Reg)
937     return CurRC;
938   // If yes, accumulate the constraints through the operand.
939   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
940 }
941 
942 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
943     unsigned OpIdx, const TargetRegisterClass *CurRC,
944     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
945   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
946   const MachineOperand &MO = getOperand(OpIdx);
947   assert(MO.isReg() &&
948          "Cannot get register constraints for non-register operand");
949   assert(CurRC && "Invalid initial register class");
950   if (unsigned SubIdx = MO.getSubReg()) {
951     if (OpRC)
952       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
953     else
954       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
955   } else if (OpRC)
956     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
957   return CurRC;
958 }
959 
960 /// Return the number of instructions inside the MI bundle, not counting the
961 /// header instruction.
962 unsigned MachineInstr::getBundleSize() const {
963   MachineBasicBlock::const_instr_iterator I = getIterator();
964   unsigned Size = 0;
965   while (I->isBundledWithSucc()) {
966     ++Size;
967     ++I;
968   }
969   return Size;
970 }
971 
972 /// Returns true if the MachineInstr has an implicit-use operand of exactly
973 /// the given register (not considering sub/super-registers).
974 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
975   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
976     const MachineOperand &MO = getOperand(i);
977     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
978       return true;
979   }
980   return false;
981 }
982 
983 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
984 /// the specific register or -1 if it is not found. It further tightens
985 /// the search criteria to a use that kills the register if isKill is true.
986 int MachineInstr::findRegisterUseOperandIdx(
987     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
988   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
989     const MachineOperand &MO = getOperand(i);
990     if (!MO.isReg() || !MO.isUse())
991       continue;
992     Register MOReg = MO.getReg();
993     if (!MOReg)
994       continue;
995     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
996       if (!isKill || MO.isKill())
997         return i;
998   }
999   return -1;
1000 }
1001 
1002 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1003 /// indicating if this instruction reads or writes Reg. This also considers
1004 /// partial defines.
1005 std::pair<bool,bool>
1006 MachineInstr::readsWritesVirtualRegister(Register Reg,
1007                                          SmallVectorImpl<unsigned> *Ops) const {
1008   bool PartDef = false; // Partial redefine.
1009   bool FullDef = false; // Full define.
1010   bool Use = false;
1011 
1012   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1013     const MachineOperand &MO = getOperand(i);
1014     if (!MO.isReg() || MO.getReg() != Reg)
1015       continue;
1016     if (Ops)
1017       Ops->push_back(i);
1018     if (MO.isUse())
1019       Use |= !MO.isUndef();
1020     else if (MO.getSubReg() && !MO.isUndef())
1021       // A partial def undef doesn't count as reading the register.
1022       PartDef = true;
1023     else
1024       FullDef = true;
1025   }
1026   // A partial redefine uses Reg unless there is also a full define.
1027   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1028 }
1029 
1030 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1031 /// the specified register or -1 if it is not found. If isDead is true, defs
1032 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1033 /// also checks if there is a def of a super-register.
1034 int
1035 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1036                                         const TargetRegisterInfo *TRI) const {
1037   bool isPhys = Register::isPhysicalRegister(Reg);
1038   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1039     const MachineOperand &MO = getOperand(i);
1040     // Accept regmask operands when Overlap is set.
1041     // Ignore them when looking for a specific def operand (Overlap == false).
1042     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1043       return i;
1044     if (!MO.isReg() || !MO.isDef())
1045       continue;
1046     Register MOReg = MO.getReg();
1047     bool Found = (MOReg == Reg);
1048     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1049       if (Overlap)
1050         Found = TRI->regsOverlap(MOReg, Reg);
1051       else
1052         Found = TRI->isSubRegister(MOReg, Reg);
1053     }
1054     if (Found && (!isDead || MO.isDead()))
1055       return i;
1056   }
1057   return -1;
1058 }
1059 
1060 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1061 /// operand list that is used to represent the predicate. It returns -1 if
1062 /// none is found.
1063 int MachineInstr::findFirstPredOperandIdx() const {
1064   // Don't call MCID.findFirstPredOperandIdx() because this variant
1065   // is sometimes called on an instruction that's not yet complete, and
1066   // so the number of operands is less than the MCID indicates. In
1067   // particular, the PTX target does this.
1068   const MCInstrDesc &MCID = getDesc();
1069   if (MCID.isPredicable()) {
1070     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1071       if (MCID.OpInfo[i].isPredicate())
1072         return i;
1073   }
1074 
1075   return -1;
1076 }
1077 
1078 // MachineOperand::TiedTo is 4 bits wide.
1079 const unsigned TiedMax = 15;
1080 
1081 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1082 ///
1083 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1084 /// field. TiedTo can have these values:
1085 ///
1086 /// 0:              Operand is not tied to anything.
1087 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1088 /// TiedMax:        Tied to an operand >= TiedMax-1.
1089 ///
1090 /// The tied def must be one of the first TiedMax operands on a normal
1091 /// instruction. INLINEASM instructions allow more tied defs.
1092 ///
1093 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1094   MachineOperand &DefMO = getOperand(DefIdx);
1095   MachineOperand &UseMO = getOperand(UseIdx);
1096   assert(DefMO.isDef() && "DefIdx must be a def operand");
1097   assert(UseMO.isUse() && "UseIdx must be a use operand");
1098   assert(!DefMO.isTied() && "Def is already tied to another use");
1099   assert(!UseMO.isTied() && "Use is already tied to another def");
1100 
1101   if (DefIdx < TiedMax)
1102     UseMO.TiedTo = DefIdx + 1;
1103   else {
1104     // Inline asm can use the group descriptors to find tied operands,
1105     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1106     // but on normal instruction, the tied def must be within the first TiedMax
1107     // operands.
1108     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1109            "DefIdx out of range");
1110     UseMO.TiedTo = TiedMax;
1111   }
1112 
1113   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1114   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1115 }
1116 
1117 /// Given the index of a tied register operand, find the operand it is tied to.
1118 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1119 /// which must exist.
1120 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1121   const MachineOperand &MO = getOperand(OpIdx);
1122   assert(MO.isTied() && "Operand isn't tied");
1123 
1124   // Normally TiedTo is in range.
1125   if (MO.TiedTo < TiedMax)
1126     return MO.TiedTo - 1;
1127 
1128   // Uses on normal instructions can be out of range.
1129   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1130     // Normal tied defs must be in the 0..TiedMax-1 range.
1131     if (MO.isUse())
1132       return TiedMax - 1;
1133     // MO is a def. Search for the tied use.
1134     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1135       const MachineOperand &UseMO = getOperand(i);
1136       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1137         return i;
1138     }
1139     llvm_unreachable("Can't find tied use");
1140   }
1141 
1142   if (getOpcode() == TargetOpcode::STATEPOINT) {
1143     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1144     // on registers.
1145     StatepointOpers SO(this);
1146     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1147     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1148     unsigned NumDefs = getNumDefs();
1149     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1150       while (!getOperand(CurUseIdx).isReg())
1151         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1152       if (OpIdx == CurDefIdx)
1153         return CurUseIdx;
1154       if (OpIdx == CurUseIdx)
1155         return CurDefIdx;
1156       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1157     }
1158     llvm_unreachable("Can't find tied use");
1159   }
1160 
1161   // Now deal with inline asm by parsing the operand group descriptor flags.
1162   // Find the beginning of each operand group.
1163   SmallVector<unsigned, 8> GroupIdx;
1164   unsigned OpIdxGroup = ~0u;
1165   unsigned NumOps;
1166   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1167        i += NumOps) {
1168     const MachineOperand &FlagMO = getOperand(i);
1169     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1170     unsigned CurGroup = GroupIdx.size();
1171     GroupIdx.push_back(i);
1172     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1173     // OpIdx belongs to this operand group.
1174     if (OpIdx > i && OpIdx < i + NumOps)
1175       OpIdxGroup = CurGroup;
1176     unsigned TiedGroup;
1177     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1178       continue;
1179     // Operands in this group are tied to operands in TiedGroup which must be
1180     // earlier. Find the number of operands between the two groups.
1181     unsigned Delta = i - GroupIdx[TiedGroup];
1182 
1183     // OpIdx is a use tied to TiedGroup.
1184     if (OpIdxGroup == CurGroup)
1185       return OpIdx - Delta;
1186 
1187     // OpIdx is a def tied to this use group.
1188     if (OpIdxGroup == TiedGroup)
1189       return OpIdx + Delta;
1190   }
1191   llvm_unreachable("Invalid tied operand on inline asm");
1192 }
1193 
1194 /// clearKillInfo - Clears kill flags on all operands.
1195 ///
1196 void MachineInstr::clearKillInfo() {
1197   for (MachineOperand &MO : operands()) {
1198     if (MO.isReg() && MO.isUse())
1199       MO.setIsKill(false);
1200   }
1201 }
1202 
1203 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1204                                       unsigned SubIdx,
1205                                       const TargetRegisterInfo &RegInfo) {
1206   if (Register::isPhysicalRegister(ToReg)) {
1207     if (SubIdx)
1208       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1209     for (MachineOperand &MO : operands()) {
1210       if (!MO.isReg() || MO.getReg() != FromReg)
1211         continue;
1212       MO.substPhysReg(ToReg, RegInfo);
1213     }
1214   } else {
1215     for (MachineOperand &MO : operands()) {
1216       if (!MO.isReg() || MO.getReg() != FromReg)
1217         continue;
1218       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1219     }
1220   }
1221 }
1222 
1223 /// isSafeToMove - Return true if it is safe to move this instruction. If
1224 /// SawStore is set to true, it means that there is a store (or call) between
1225 /// the instruction's location and its intended destination.
1226 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1227   // Ignore stuff that we obviously can't move.
1228   //
1229   // Treat volatile loads as stores. This is not strictly necessary for
1230   // volatiles, but it is required for atomic loads. It is not allowed to move
1231   // a load across an atomic load with Ordering > Monotonic.
1232   if (mayStore() || isCall() || isPHI() ||
1233       (mayLoad() && hasOrderedMemoryRef())) {
1234     SawStore = true;
1235     return false;
1236   }
1237 
1238   if (isPosition() || isDebugInstr() || isTerminator() ||
1239       mayRaiseFPException() || hasUnmodeledSideEffects())
1240     return false;
1241 
1242   // See if this instruction does a load.  If so, we have to guarantee that the
1243   // loaded value doesn't change between the load and the its intended
1244   // destination. The check for isInvariantLoad gives the target the chance to
1245   // classify the load as always returning a constant, e.g. a constant pool
1246   // load.
1247   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1248     // Otherwise, this is a real load.  If there is a store between the load and
1249     // end of block, we can't move it.
1250     return !SawStore;
1251 
1252   return true;
1253 }
1254 
1255 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1256                             bool UseTBAA) const {
1257   const MachineFunction *MF = getMF();
1258   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1259   const MachineFrameInfo &MFI = MF->getFrameInfo();
1260 
1261   // Execulde call instruction which may alter the memory but can not be handled
1262   // by this function.
1263   if (isCall() || Other.isCall())
1264     return true;
1265 
1266   // If neither instruction stores to memory, they can't alias in any
1267   // meaningful way, even if they read from the same address.
1268   if (!mayStore() && !Other.mayStore())
1269     return false;
1270 
1271   // Both instructions must be memory operations to be able to alias.
1272   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1273     return false;
1274 
1275   // Let the target decide if memory accesses cannot possibly overlap.
1276   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1277     return false;
1278 
1279   // FIXME: Need to handle multiple memory operands to support all targets.
1280   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1281     return true;
1282 
1283   MachineMemOperand *MMOa = *memoperands_begin();
1284   MachineMemOperand *MMOb = *Other.memoperands_begin();
1285 
1286   // The following interface to AA is fashioned after DAGCombiner::isAlias
1287   // and operates with MachineMemOperand offset with some important
1288   // assumptions:
1289   //   - LLVM fundamentally assumes flat address spaces.
1290   //   - MachineOperand offset can *only* result from legalization and
1291   //     cannot affect queries other than the trivial case of overlap
1292   //     checking.
1293   //   - These offsets never wrap and never step outside
1294   //     of allocated objects.
1295   //   - There should never be any negative offsets here.
1296   //
1297   // FIXME: Modify API to hide this math from "user"
1298   // Even before we go to AA we can reason locally about some
1299   // memory objects. It can save compile time, and possibly catch some
1300   // corner cases not currently covered.
1301 
1302   int64_t OffsetA = MMOa->getOffset();
1303   int64_t OffsetB = MMOb->getOffset();
1304   int64_t MinOffset = std::min(OffsetA, OffsetB);
1305 
1306   uint64_t WidthA = MMOa->getSize();
1307   uint64_t WidthB = MMOb->getSize();
1308   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1309   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1310 
1311   const Value *ValA = MMOa->getValue();
1312   const Value *ValB = MMOb->getValue();
1313   bool SameVal = (ValA && ValB && (ValA == ValB));
1314   if (!SameVal) {
1315     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1316     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1317     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1318       return false;
1319     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1320       return false;
1321     if (PSVa && PSVb && (PSVa == PSVb))
1322       SameVal = true;
1323   }
1324 
1325   if (SameVal) {
1326     if (!KnownWidthA || !KnownWidthB)
1327       return true;
1328     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1329     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1330     return (MinOffset + LowWidth > MaxOffset);
1331   }
1332 
1333   if (!AA)
1334     return true;
1335 
1336   if (!ValA || !ValB)
1337     return true;
1338 
1339   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1340   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1341 
1342   int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1343                                  : MemoryLocation::UnknownSize;
1344   int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1345                                  : MemoryLocation::UnknownSize;
1346 
1347   AliasResult AAResult = AA->alias(
1348       MemoryLocation(ValA, OverlapA,
1349                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1350       MemoryLocation(ValB, OverlapB,
1351                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1352 
1353   return (AAResult != NoAlias);
1354 }
1355 
1356 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1357 /// or volatile memory reference, or if the information describing the memory
1358 /// reference is not available. Return false if it is known to have no ordered
1359 /// memory references.
1360 bool MachineInstr::hasOrderedMemoryRef() const {
1361   // An instruction known never to access memory won't have a volatile access.
1362   if (!mayStore() &&
1363       !mayLoad() &&
1364       !isCall() &&
1365       !hasUnmodeledSideEffects())
1366     return false;
1367 
1368   // Otherwise, if the instruction has no memory reference information,
1369   // conservatively assume it wasn't preserved.
1370   if (memoperands_empty())
1371     return true;
1372 
1373   // Check if any of our memory operands are ordered.
1374   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1375     return !MMO->isUnordered();
1376   });
1377 }
1378 
1379 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1380 /// trap and is loading from a location whose value is invariant across a run of
1381 /// this function.
1382 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1383   // If the instruction doesn't load at all, it isn't an invariant load.
1384   if (!mayLoad())
1385     return false;
1386 
1387   // If the instruction has lost its memoperands, conservatively assume that
1388   // it may not be an invariant load.
1389   if (memoperands_empty())
1390     return false;
1391 
1392   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1393 
1394   for (MachineMemOperand *MMO : memoperands()) {
1395     if (!MMO->isUnordered())
1396       // If the memory operand has ordering side effects, we can't move the
1397       // instruction.  Such an instruction is technically an invariant load,
1398       // but the caller code would need updated to expect that.
1399       return false;
1400     if (MMO->isStore()) return false;
1401     if (MMO->isInvariant() && MMO->isDereferenceable())
1402       continue;
1403 
1404     // A load from a constant PseudoSourceValue is invariant.
1405     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1406       if (PSV->isConstant(&MFI))
1407         continue;
1408 
1409     if (const Value *V = MMO->getValue()) {
1410       // If we have an AliasAnalysis, ask it whether the memory is constant.
1411       if (AA &&
1412           AA->pointsToConstantMemory(
1413               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1414         continue;
1415     }
1416 
1417     // Otherwise assume conservatively.
1418     return false;
1419   }
1420 
1421   // Everything checks out.
1422   return true;
1423 }
1424 
1425 /// isConstantValuePHI - If the specified instruction is a PHI that always
1426 /// merges together the same virtual register, return the register, otherwise
1427 /// return 0.
1428 unsigned MachineInstr::isConstantValuePHI() const {
1429   if (!isPHI())
1430     return 0;
1431   assert(getNumOperands() >= 3 &&
1432          "It's illegal to have a PHI without source operands");
1433 
1434   Register Reg = getOperand(1).getReg();
1435   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1436     if (getOperand(i).getReg() != Reg)
1437       return 0;
1438   return Reg;
1439 }
1440 
1441 bool MachineInstr::hasUnmodeledSideEffects() const {
1442   if (hasProperty(MCID::UnmodeledSideEffects))
1443     return true;
1444   if (isInlineAsm()) {
1445     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1446     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1447       return true;
1448   }
1449 
1450   return false;
1451 }
1452 
1453 bool MachineInstr::isLoadFoldBarrier() const {
1454   return mayStore() || isCall() || hasUnmodeledSideEffects();
1455 }
1456 
1457 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1458 ///
1459 bool MachineInstr::allDefsAreDead() const {
1460   for (const MachineOperand &MO : operands()) {
1461     if (!MO.isReg() || MO.isUse())
1462       continue;
1463     if (!MO.isDead())
1464       return false;
1465   }
1466   return true;
1467 }
1468 
1469 /// copyImplicitOps - Copy implicit register operands from specified
1470 /// instruction to this instruction.
1471 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1472                                    const MachineInstr &MI) {
1473   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1474        i != e; ++i) {
1475     const MachineOperand &MO = MI.getOperand(i);
1476     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1477       addOperand(MF, MO);
1478   }
1479 }
1480 
1481 bool MachineInstr::hasComplexRegisterTies() const {
1482   const MCInstrDesc &MCID = getDesc();
1483   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1484     return true;
1485   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1486     const auto &Operand = getOperand(I);
1487     if (!Operand.isReg() || Operand.isDef())
1488       // Ignore the defined registers as MCID marks only the uses as tied.
1489       continue;
1490     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1491     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1492     if (ExpectedTiedIdx != TiedIdx)
1493       return true;
1494   }
1495   return false;
1496 }
1497 
1498 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1499                                  const MachineRegisterInfo &MRI) const {
1500   const MachineOperand &Op = getOperand(OpIdx);
1501   if (!Op.isReg())
1502     return LLT{};
1503 
1504   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1505     return MRI.getType(Op.getReg());
1506 
1507   auto &OpInfo = getDesc().OpInfo[OpIdx];
1508   if (!OpInfo.isGenericType())
1509     return MRI.getType(Op.getReg());
1510 
1511   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1512     return LLT{};
1513 
1514   LLT TypeToPrint = MRI.getType(Op.getReg());
1515   // Don't mark the type index printed if it wasn't actually printed: maybe
1516   // another operand with the same type index has an actual type attached:
1517   if (TypeToPrint.isValid())
1518     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1519   return TypeToPrint;
1520 }
1521 
1522 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1523 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1524   dbgs() << "  ";
1525   print(dbgs());
1526 }
1527 
1528 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1529     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1530     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1531   if (Depth >= MaxDepth)
1532     return;
1533   if (!AlreadySeenInstrs.insert(this).second)
1534     return;
1535   // PadToColumn always inserts at least one space.
1536   // Don't mess up the alignment if we don't want any space.
1537   if (Depth)
1538     fdbgs().PadToColumn(Depth * 2);
1539   print(fdbgs());
1540   for (const MachineOperand &MO : operands()) {
1541     if (!MO.isReg() || MO.isDef())
1542       continue;
1543     Register Reg = MO.getReg();
1544     if (Reg.isPhysical())
1545       continue;
1546     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1547     if (NewMI == nullptr)
1548       continue;
1549     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1550   }
1551 }
1552 
1553 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1554                                           unsigned MaxDepth) const {
1555   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1556   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1557 }
1558 #endif
1559 
1560 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1561                          bool SkipDebugLoc, bool AddNewLine,
1562                          const TargetInstrInfo *TII) const {
1563   const Module *M = nullptr;
1564   const Function *F = nullptr;
1565   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1566     F = &MF->getFunction();
1567     M = F->getParent();
1568     if (!TII)
1569       TII = MF->getSubtarget().getInstrInfo();
1570   }
1571 
1572   ModuleSlotTracker MST(M);
1573   if (F)
1574     MST.incorporateFunction(*F);
1575   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1576 }
1577 
1578 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1579                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1580                          bool AddNewLine, const TargetInstrInfo *TII) const {
1581   // We can be a bit tidier if we know the MachineFunction.
1582   const TargetRegisterInfo *TRI = nullptr;
1583   const MachineRegisterInfo *MRI = nullptr;
1584   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1585   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1586 
1587   if (isCFIInstruction())
1588     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1589 
1590   SmallBitVector PrintedTypes(8);
1591   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1592   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1593     if (!ShouldPrintRegisterTies)
1594       return 0U;
1595     const MachineOperand &MO = getOperand(OpIdx);
1596     if (MO.isReg() && MO.isTied() && !MO.isDef())
1597       return findTiedOperandIdx(OpIdx);
1598     return 0U;
1599   };
1600   unsigned StartOp = 0;
1601   unsigned e = getNumOperands();
1602 
1603   // Print explicitly defined operands on the left of an assignment syntax.
1604   while (StartOp < e) {
1605     const MachineOperand &MO = getOperand(StartOp);
1606     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1607       break;
1608 
1609     if (StartOp != 0)
1610       OS << ", ";
1611 
1612     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1613     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1614     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1615              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1616     ++StartOp;
1617   }
1618 
1619   if (StartOp != 0)
1620     OS << " = ";
1621 
1622   if (getFlag(MachineInstr::FrameSetup))
1623     OS << "frame-setup ";
1624   if (getFlag(MachineInstr::FrameDestroy))
1625     OS << "frame-destroy ";
1626   if (getFlag(MachineInstr::FmNoNans))
1627     OS << "nnan ";
1628   if (getFlag(MachineInstr::FmNoInfs))
1629     OS << "ninf ";
1630   if (getFlag(MachineInstr::FmNsz))
1631     OS << "nsz ";
1632   if (getFlag(MachineInstr::FmArcp))
1633     OS << "arcp ";
1634   if (getFlag(MachineInstr::FmContract))
1635     OS << "contract ";
1636   if (getFlag(MachineInstr::FmAfn))
1637     OS << "afn ";
1638   if (getFlag(MachineInstr::FmReassoc))
1639     OS << "reassoc ";
1640   if (getFlag(MachineInstr::NoUWrap))
1641     OS << "nuw ";
1642   if (getFlag(MachineInstr::NoSWrap))
1643     OS << "nsw ";
1644   if (getFlag(MachineInstr::IsExact))
1645     OS << "exact ";
1646   if (getFlag(MachineInstr::NoFPExcept))
1647     OS << "nofpexcept ";
1648   if (getFlag(MachineInstr::NoMerge))
1649     OS << "nomerge ";
1650 
1651   // Print the opcode name.
1652   if (TII)
1653     OS << TII->getName(getOpcode());
1654   else
1655     OS << "UNKNOWN";
1656 
1657   if (SkipOpers)
1658     return;
1659 
1660   // Print the rest of the operands.
1661   bool FirstOp = true;
1662   unsigned AsmDescOp = ~0u;
1663   unsigned AsmOpCount = 0;
1664 
1665   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1666     // Print asm string.
1667     OS << " ";
1668     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1669     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1670     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1671     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1672                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1673                             IntrinsicInfo);
1674 
1675     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1676     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1677     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1678       OS << " [sideeffect]";
1679     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1680       OS << " [mayload]";
1681     if (ExtraInfo & InlineAsm::Extra_MayStore)
1682       OS << " [maystore]";
1683     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1684       OS << " [isconvergent]";
1685     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1686       OS << " [alignstack]";
1687     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1688       OS << " [attdialect]";
1689     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1690       OS << " [inteldialect]";
1691 
1692     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1693     FirstOp = false;
1694   }
1695 
1696   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1697     const MachineOperand &MO = getOperand(i);
1698 
1699     if (FirstOp) FirstOp = false; else OS << ",";
1700     OS << " ";
1701 
1702     if (isDebugValue() && MO.isMetadata()) {
1703       // Pretty print DBG_VALUE instructions.
1704       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1705       if (DIV && !DIV->getName().empty())
1706         OS << "!\"" << DIV->getName() << '\"';
1707       else {
1708         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1709         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1710         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1711                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1712       }
1713     } else if (isDebugLabel() && MO.isMetadata()) {
1714       // Pretty print DBG_LABEL instructions.
1715       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1716       if (DIL && !DIL->getName().empty())
1717         OS << "\"" << DIL->getName() << '\"';
1718       else {
1719         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1720         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1721         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1722                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1723       }
1724     } else if (i == AsmDescOp && MO.isImm()) {
1725       // Pretty print the inline asm operand descriptor.
1726       OS << '$' << AsmOpCount++;
1727       unsigned Flag = MO.getImm();
1728       OS << ":[";
1729       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1730 
1731       unsigned RCID = 0;
1732       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1733           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1734         if (TRI) {
1735           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1736         } else
1737           OS << ":RC" << RCID;
1738       }
1739 
1740       if (InlineAsm::isMemKind(Flag)) {
1741         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1742         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1743       }
1744 
1745       unsigned TiedTo = 0;
1746       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1747         OS << " tiedto:$" << TiedTo;
1748 
1749       OS << ']';
1750 
1751       // Compute the index of the next operand descriptor.
1752       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1753     } else {
1754       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1755       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1756       if (MO.isImm() && isOperandSubregIdx(i))
1757         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1758       else
1759         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1760                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1761     }
1762   }
1763 
1764   // Print any optional symbols attached to this instruction as-if they were
1765   // operands.
1766   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1767     if (!FirstOp) {
1768       FirstOp = false;
1769       OS << ',';
1770     }
1771     OS << " pre-instr-symbol ";
1772     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1773   }
1774   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1775     if (!FirstOp) {
1776       FirstOp = false;
1777       OS << ',';
1778     }
1779     OS << " post-instr-symbol ";
1780     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1781   }
1782   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1783     if (!FirstOp) {
1784       FirstOp = false;
1785       OS << ',';
1786     }
1787     OS << " heap-alloc-marker ";
1788     HeapAllocMarker->printAsOperand(OS, MST);
1789   }
1790 
1791   if (DebugInstrNum) {
1792     if (!FirstOp)
1793       OS << ",";
1794     OS << " debug-instr-number " << DebugInstrNum;
1795   }
1796 
1797   if (!SkipDebugLoc) {
1798     if (const DebugLoc &DL = getDebugLoc()) {
1799       if (!FirstOp)
1800         OS << ',';
1801       OS << " debug-location ";
1802       DL->printAsOperand(OS, MST);
1803     }
1804   }
1805 
1806   if (!memoperands_empty()) {
1807     SmallVector<StringRef, 0> SSNs;
1808     const LLVMContext *Context = nullptr;
1809     std::unique_ptr<LLVMContext> CtxPtr;
1810     const MachineFrameInfo *MFI = nullptr;
1811     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1812       MFI = &MF->getFrameInfo();
1813       Context = &MF->getFunction().getContext();
1814     } else {
1815       CtxPtr = std::make_unique<LLVMContext>();
1816       Context = CtxPtr.get();
1817     }
1818 
1819     OS << " :: ";
1820     bool NeedComma = false;
1821     for (const MachineMemOperand *Op : memoperands()) {
1822       if (NeedComma)
1823         OS << ", ";
1824       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1825       NeedComma = true;
1826     }
1827   }
1828 
1829   if (SkipDebugLoc)
1830     return;
1831 
1832   bool HaveSemi = false;
1833 
1834   // Print debug location information.
1835   if (const DebugLoc &DL = getDebugLoc()) {
1836     if (!HaveSemi) {
1837       OS << ';';
1838       HaveSemi = true;
1839     }
1840     OS << ' ';
1841     DL.print(OS);
1842   }
1843 
1844   // Print extra comments for DEBUG_VALUE.
1845   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1846     if (!HaveSemi) {
1847       OS << ";";
1848       HaveSemi = true;
1849     }
1850     auto *DV = getDebugVariable();
1851     OS << " line no:" <<  DV->getLine();
1852     if (isIndirectDebugValue())
1853       OS << " indirect";
1854   }
1855   // TODO: DBG_LABEL
1856 
1857   if (AddNewLine)
1858     OS << '\n';
1859 }
1860 
1861 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1862                                      const TargetRegisterInfo *RegInfo,
1863                                      bool AddIfNotFound) {
1864   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1865   bool hasAliases = isPhysReg &&
1866     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1867   bool Found = false;
1868   SmallVector<unsigned,4> DeadOps;
1869   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1870     MachineOperand &MO = getOperand(i);
1871     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1872       continue;
1873 
1874     // DEBUG_VALUE nodes do not contribute to code generation and should
1875     // always be ignored. Failure to do so may result in trying to modify
1876     // KILL flags on DEBUG_VALUE nodes.
1877     if (MO.isDebug())
1878       continue;
1879 
1880     Register Reg = MO.getReg();
1881     if (!Reg)
1882       continue;
1883 
1884     if (Reg == IncomingReg) {
1885       if (!Found) {
1886         if (MO.isKill())
1887           // The register is already marked kill.
1888           return true;
1889         if (isPhysReg && isRegTiedToDefOperand(i))
1890           // Two-address uses of physregs must not be marked kill.
1891           return true;
1892         MO.setIsKill();
1893         Found = true;
1894       }
1895     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1896       // A super-register kill already exists.
1897       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1898         return true;
1899       if (RegInfo->isSubRegister(IncomingReg, Reg))
1900         DeadOps.push_back(i);
1901     }
1902   }
1903 
1904   // Trim unneeded kill operands.
1905   while (!DeadOps.empty()) {
1906     unsigned OpIdx = DeadOps.back();
1907     if (getOperand(OpIdx).isImplicit() &&
1908         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1909       RemoveOperand(OpIdx);
1910     else
1911       getOperand(OpIdx).setIsKill(false);
1912     DeadOps.pop_back();
1913   }
1914 
1915   // If not found, this means an alias of one of the operands is killed. Add a
1916   // new implicit operand if required.
1917   if (!Found && AddIfNotFound) {
1918     addOperand(MachineOperand::CreateReg(IncomingReg,
1919                                          false /*IsDef*/,
1920                                          true  /*IsImp*/,
1921                                          true  /*IsKill*/));
1922     return true;
1923   }
1924   return Found;
1925 }
1926 
1927 void MachineInstr::clearRegisterKills(Register Reg,
1928                                       const TargetRegisterInfo *RegInfo) {
1929   if (!Register::isPhysicalRegister(Reg))
1930     RegInfo = nullptr;
1931   for (MachineOperand &MO : operands()) {
1932     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1933       continue;
1934     Register OpReg = MO.getReg();
1935     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1936       MO.setIsKill(false);
1937   }
1938 }
1939 
1940 bool MachineInstr::addRegisterDead(Register Reg,
1941                                    const TargetRegisterInfo *RegInfo,
1942                                    bool AddIfNotFound) {
1943   bool isPhysReg = Register::isPhysicalRegister(Reg);
1944   bool hasAliases = isPhysReg &&
1945     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1946   bool Found = false;
1947   SmallVector<unsigned,4> DeadOps;
1948   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1949     MachineOperand &MO = getOperand(i);
1950     if (!MO.isReg() || !MO.isDef())
1951       continue;
1952     Register MOReg = MO.getReg();
1953     if (!MOReg)
1954       continue;
1955 
1956     if (MOReg == Reg) {
1957       MO.setIsDead();
1958       Found = true;
1959     } else if (hasAliases && MO.isDead() &&
1960                Register::isPhysicalRegister(MOReg)) {
1961       // There exists a super-register that's marked dead.
1962       if (RegInfo->isSuperRegister(Reg, MOReg))
1963         return true;
1964       if (RegInfo->isSubRegister(Reg, MOReg))
1965         DeadOps.push_back(i);
1966     }
1967   }
1968 
1969   // Trim unneeded dead operands.
1970   while (!DeadOps.empty()) {
1971     unsigned OpIdx = DeadOps.back();
1972     if (getOperand(OpIdx).isImplicit() &&
1973         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1974       RemoveOperand(OpIdx);
1975     else
1976       getOperand(OpIdx).setIsDead(false);
1977     DeadOps.pop_back();
1978   }
1979 
1980   // If not found, this means an alias of one of the operands is dead. Add a
1981   // new implicit operand if required.
1982   if (Found || !AddIfNotFound)
1983     return Found;
1984 
1985   addOperand(MachineOperand::CreateReg(Reg,
1986                                        true  /*IsDef*/,
1987                                        true  /*IsImp*/,
1988                                        false /*IsKill*/,
1989                                        true  /*IsDead*/));
1990   return true;
1991 }
1992 
1993 void MachineInstr::clearRegisterDeads(Register Reg) {
1994   for (MachineOperand &MO : operands()) {
1995     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1996       continue;
1997     MO.setIsDead(false);
1998   }
1999 }
2000 
2001 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2002   for (MachineOperand &MO : operands()) {
2003     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2004       continue;
2005     MO.setIsUndef(IsUndef);
2006   }
2007 }
2008 
2009 void MachineInstr::addRegisterDefined(Register Reg,
2010                                       const TargetRegisterInfo *RegInfo) {
2011   if (Register::isPhysicalRegister(Reg)) {
2012     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2013     if (MO)
2014       return;
2015   } else {
2016     for (const MachineOperand &MO : operands()) {
2017       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2018           MO.getSubReg() == 0)
2019         return;
2020     }
2021   }
2022   addOperand(MachineOperand::CreateReg(Reg,
2023                                        true  /*IsDef*/,
2024                                        true  /*IsImp*/));
2025 }
2026 
2027 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2028                                          const TargetRegisterInfo &TRI) {
2029   bool HasRegMask = false;
2030   for (MachineOperand &MO : operands()) {
2031     if (MO.isRegMask()) {
2032       HasRegMask = true;
2033       continue;
2034     }
2035     if (!MO.isReg() || !MO.isDef()) continue;
2036     Register Reg = MO.getReg();
2037     if (!Reg.isPhysical())
2038       continue;
2039     // If there are no uses, including partial uses, the def is dead.
2040     if (llvm::none_of(UsedRegs,
2041                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2042       MO.setIsDead();
2043   }
2044 
2045   // This is a call with a register mask operand.
2046   // Mask clobbers are always dead, so add defs for the non-dead defines.
2047   if (HasRegMask)
2048     for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2049          I != E; ++I)
2050       addRegisterDefined(*I, &TRI);
2051 }
2052 
2053 unsigned
2054 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2055   // Build up a buffer of hash code components.
2056   SmallVector<size_t, 16> HashComponents;
2057   HashComponents.reserve(MI->getNumOperands() + 1);
2058   HashComponents.push_back(MI->getOpcode());
2059   for (const MachineOperand &MO : MI->operands()) {
2060     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2061       continue;  // Skip virtual register defs.
2062 
2063     HashComponents.push_back(hash_value(MO));
2064   }
2065   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2066 }
2067 
2068 void MachineInstr::emitError(StringRef Msg) const {
2069   // Find the source location cookie.
2070   unsigned LocCookie = 0;
2071   const MDNode *LocMD = nullptr;
2072   for (unsigned i = getNumOperands(); i != 0; --i) {
2073     if (getOperand(i-1).isMetadata() &&
2074         (LocMD = getOperand(i-1).getMetadata()) &&
2075         LocMD->getNumOperands() != 0) {
2076       if (const ConstantInt *CI =
2077               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2078         LocCookie = CI->getZExtValue();
2079         break;
2080       }
2081     }
2082   }
2083 
2084   if (const MachineBasicBlock *MBB = getParent())
2085     if (const MachineFunction *MF = MBB->getParent())
2086       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2087   report_fatal_error(Msg);
2088 }
2089 
2090 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2091                                   const MCInstrDesc &MCID, bool IsIndirect,
2092                                   Register Reg, const MDNode *Variable,
2093                                   const MDNode *Expr) {
2094   assert(isa<DILocalVariable>(Variable) && "not a variable");
2095   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2096   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2097          "Expected inlined-at fields to agree");
2098   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2099   if (IsIndirect)
2100     MIB.addImm(0U);
2101   else
2102     MIB.addReg(0U, RegState::Debug);
2103   return MIB.addMetadata(Variable).addMetadata(Expr);
2104 }
2105 
2106 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2107                                   const MCInstrDesc &MCID, bool IsIndirect,
2108                                   MachineOperand &MO, const MDNode *Variable,
2109                                   const MDNode *Expr) {
2110   assert(isa<DILocalVariable>(Variable) && "not a variable");
2111   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2112   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2113          "Expected inlined-at fields to agree");
2114   if (MO.isReg())
2115     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2116 
2117   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2118   if (IsIndirect)
2119     MIB.addImm(0U);
2120   else
2121     MIB.addReg(0U, RegState::Debug);
2122   return MIB.addMetadata(Variable).addMetadata(Expr);
2123  }
2124 
2125 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2126                                   MachineBasicBlock::iterator I,
2127                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2128                                   bool IsIndirect, Register Reg,
2129                                   const MDNode *Variable, const MDNode *Expr) {
2130   MachineFunction &MF = *BB.getParent();
2131   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2132   BB.insert(I, MI);
2133   return MachineInstrBuilder(MF, MI);
2134 }
2135 
2136 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2137                                   MachineBasicBlock::iterator I,
2138                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2139                                   bool IsIndirect, MachineOperand &MO,
2140                                   const MDNode *Variable, const MDNode *Expr) {
2141   MachineFunction &MF = *BB.getParent();
2142   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2143   BB.insert(I, MI);
2144   return MachineInstrBuilder(MF, *MI);
2145 }
2146 
2147 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2148 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2149 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2150   assert(MI.getOperand(0).isReg() && "can't spill non-register");
2151   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2152          "Expected inlined-at fields to agree");
2153 
2154   const DIExpression *Expr = MI.getDebugExpression();
2155   if (MI.isIndirectDebugValue()) {
2156     assert(MI.getDebugOffset().getImm() == 0 &&
2157            "DBG_VALUE with nonzero offset");
2158     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2159   }
2160   return Expr;
2161 }
2162 
2163 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2164                                           MachineBasicBlock::iterator I,
2165                                           const MachineInstr &Orig,
2166                                           int FrameIndex) {
2167   const DIExpression *Expr = computeExprForSpill(Orig);
2168   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2169       .addFrameIndex(FrameIndex)
2170       .addImm(0U)
2171       .addMetadata(Orig.getDebugVariable())
2172       .addMetadata(Expr);
2173 }
2174 
2175 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2176   const DIExpression *Expr = computeExprForSpill(Orig);
2177   Orig.getDebugOperand(0).ChangeToFrameIndex(FrameIndex);
2178   Orig.getDebugOffset().ChangeToImmediate(0U);
2179   Orig.getDebugExpressionOp().setMetadata(Expr);
2180 }
2181 
2182 void MachineInstr::collectDebugValues(
2183                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2184   MachineInstr &MI = *this;
2185   if (!MI.getOperand(0).isReg())
2186     return;
2187 
2188   MachineBasicBlock::iterator DI = MI; ++DI;
2189   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2190        DI != DE; ++DI) {
2191     if (!DI->isDebugValue())
2192       return;
2193     if (DI->getDebugOperandForReg(MI.getOperand(0).getReg()))
2194       DbgValues.push_back(&*DI);
2195   }
2196 }
2197 
2198 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2199   // Collect matching debug values.
2200   SmallVector<MachineInstr *, 2> DbgValues;
2201 
2202   if (!getOperand(0).isReg())
2203     return;
2204 
2205   Register DefReg = getOperand(0).getReg();
2206   auto *MRI = getRegInfo();
2207   for (auto &MO : MRI->use_operands(DefReg)) {
2208     auto *DI = MO.getParent();
2209     if (!DI->isDebugValue())
2210       continue;
2211     if (DI->getDebugOperandForReg(DefReg)) {
2212       DbgValues.push_back(DI);
2213     }
2214   }
2215 
2216   // Propagate Reg to debug value instructions.
2217   for (auto *DBI : DbgValues)
2218     DBI->getDebugOperandForReg(DefReg)->setReg(Reg);
2219 }
2220 
2221 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2222 
2223 static unsigned getSpillSlotSize(const MMOList &Accesses,
2224                                  const MachineFrameInfo &MFI) {
2225   unsigned Size = 0;
2226   for (auto A : Accesses)
2227     if (MFI.isSpillSlotObjectIndex(
2228             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2229                 ->getFrameIndex()))
2230       Size += A->getSize();
2231   return Size;
2232 }
2233 
2234 Optional<unsigned>
2235 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2236   int FI;
2237   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2238     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2239     if (MFI.isSpillSlotObjectIndex(FI))
2240       return (*memoperands_begin())->getSize();
2241   }
2242   return None;
2243 }
2244 
2245 Optional<unsigned>
2246 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2247   MMOList Accesses;
2248   if (TII->hasStoreToStackSlot(*this, Accesses))
2249     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2250   return None;
2251 }
2252 
2253 Optional<unsigned>
2254 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2255   int FI;
2256   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2257     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2258     if (MFI.isSpillSlotObjectIndex(FI))
2259       return (*memoperands_begin())->getSize();
2260   }
2261   return None;
2262 }
2263 
2264 Optional<unsigned>
2265 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2266   MMOList Accesses;
2267   if (TII->hasLoadFromStackSlot(*this, Accesses))
2268     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2269   return None;
2270 }
2271 
2272 unsigned MachineInstr::getDebugInstrNum() {
2273   if (DebugInstrNum == 0)
2274     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2275   return DebugInstrNum;
2276 }
2277