xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 8a4bae99937c003eb9c7a3be1f16c54cab1c0c80)
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/PseudoSourceValue.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ModuleSlotTracker.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/MC/MCInstrDesc.h"
37 #include "llvm/MC/MCSymbol.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include "llvm/Target/TargetIntrinsicInfo.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetRegisterInfo.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
48 using namespace llvm;
49 
50 static cl::opt<bool> PrintWholeRegMask(
51     "print-whole-regmask",
52     cl::desc("Print the full contents of regmask operands in IR dumps"),
53     cl::init(true), cl::Hidden);
54 
55 //===----------------------------------------------------------------------===//
56 // MachineOperand Implementation
57 //===----------------------------------------------------------------------===//
58 
59 void MachineOperand::setReg(unsigned Reg) {
60   if (getReg() == Reg) return; // No change.
61 
62   // Otherwise, we have to change the register.  If this operand is embedded
63   // into a machine function, we need to update the old and new register's
64   // use/def lists.
65   if (MachineInstr *MI = getParent())
66     if (MachineBasicBlock *MBB = MI->getParent())
67       if (MachineFunction *MF = MBB->getParent()) {
68         MachineRegisterInfo &MRI = MF->getRegInfo();
69         MRI.removeRegOperandFromUseList(this);
70         SmallContents.RegNo = Reg;
71         MRI.addRegOperandToUseList(this);
72         return;
73       }
74 
75   // Otherwise, just change the register, no problem.  :)
76   SmallContents.RegNo = Reg;
77 }
78 
79 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
80                                   const TargetRegisterInfo &TRI) {
81   assert(TargetRegisterInfo::isVirtualRegister(Reg));
82   if (SubIdx && getSubReg())
83     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
84   setReg(Reg);
85   if (SubIdx)
86     setSubReg(SubIdx);
87 }
88 
89 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
90   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
91   if (getSubReg()) {
92     Reg = TRI.getSubReg(Reg, getSubReg());
93     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
94     // That won't happen in legal code.
95     setSubReg(0);
96     if (isDef())
97       setIsUndef(false);
98   }
99   setReg(Reg);
100 }
101 
102 /// Change a def to a use, or a use to a def.
103 void MachineOperand::setIsDef(bool Val) {
104   assert(isReg() && "Wrong MachineOperand accessor");
105   assert((!Val || !isDebug()) && "Marking a debug operation as def");
106   if (IsDef == Val)
107     return;
108   // MRI may keep uses and defs in different list positions.
109   if (MachineInstr *MI = getParent())
110     if (MachineBasicBlock *MBB = MI->getParent())
111       if (MachineFunction *MF = MBB->getParent()) {
112         MachineRegisterInfo &MRI = MF->getRegInfo();
113         MRI.removeRegOperandFromUseList(this);
114         IsDef = Val;
115         MRI.addRegOperandToUseList(this);
116         return;
117       }
118   IsDef = Val;
119 }
120 
121 // If this operand is currently a register operand, and if this is in a
122 // function, deregister the operand from the register's use/def list.
123 void MachineOperand::removeRegFromUses() {
124   if (!isReg() || !isOnRegUseList())
125     return;
126 
127   if (MachineInstr *MI = getParent()) {
128     if (MachineBasicBlock *MBB = MI->getParent()) {
129       if (MachineFunction *MF = MBB->getParent())
130         MF->getRegInfo().removeRegOperandFromUseList(this);
131     }
132   }
133 }
134 
135 /// ChangeToImmediate - Replace this operand with a new immediate operand of
136 /// the specified value.  If an operand is known to be an immediate already,
137 /// the setImm method should be used.
138 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
139   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
140 
141   removeRegFromUses();
142 
143   OpKind = MO_Immediate;
144   Contents.ImmVal = ImmVal;
145 }
146 
147 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
148   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
149 
150   removeRegFromUses();
151 
152   OpKind = MO_FPImmediate;
153   Contents.CFP = FPImm;
154 }
155 
156 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
157   assert((!isReg() || !isTied()) &&
158          "Cannot change a tied operand into an external symbol");
159 
160   removeRegFromUses();
161 
162   OpKind = MO_ExternalSymbol;
163   Contents.OffsetedInfo.Val.SymbolName = SymName;
164   setOffset(0); // Offset is always 0.
165   setTargetFlags(TargetFlags);
166 }
167 
168 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
169   assert((!isReg() || !isTied()) &&
170          "Cannot change a tied operand into an MCSymbol");
171 
172   removeRegFromUses();
173 
174   OpKind = MO_MCSymbol;
175   Contents.Sym = Sym;
176 }
177 
178 void MachineOperand::ChangeToFrameIndex(int Idx) {
179   assert((!isReg() || !isTied()) &&
180          "Cannot change a tied operand into a FrameIndex");
181 
182   removeRegFromUses();
183 
184   OpKind = MO_FrameIndex;
185   setIndex(Idx);
186 }
187 
188 /// ChangeToRegister - Replace this operand with a new register operand of
189 /// the specified value.  If an operand is known to be an register already,
190 /// the setReg method should be used.
191 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
192                                       bool isKill, bool isDead, bool isUndef,
193                                       bool isDebug) {
194   MachineRegisterInfo *RegInfo = nullptr;
195   if (MachineInstr *MI = getParent())
196     if (MachineBasicBlock *MBB = MI->getParent())
197       if (MachineFunction *MF = MBB->getParent())
198         RegInfo = &MF->getRegInfo();
199   // If this operand is already a register operand, remove it from the
200   // register's use/def lists.
201   bool WasReg = isReg();
202   if (RegInfo && WasReg)
203     RegInfo->removeRegOperandFromUseList(this);
204 
205   // Change this to a register and set the reg#.
206   OpKind = MO_Register;
207   SmallContents.RegNo = Reg;
208   SubReg_TargetFlags = 0;
209   IsDef = isDef;
210   IsImp = isImp;
211   IsKill = isKill;
212   IsDead = isDead;
213   IsUndef = isUndef;
214   IsInternalRead = false;
215   IsEarlyClobber = false;
216   IsDebug = isDebug;
217   // Ensure isOnRegUseList() returns false.
218   Contents.Reg.Prev = nullptr;
219   // Preserve the tie when the operand was already a register.
220   if (!WasReg)
221     TiedTo = 0;
222 
223   // If this operand is embedded in a function, add the operand to the
224   // register's use/def list.
225   if (RegInfo)
226     RegInfo->addRegOperandToUseList(this);
227 }
228 
229 /// isIdenticalTo - Return true if this operand is identical to the specified
230 /// operand. Note that this should stay in sync with the hash_value overload
231 /// below.
232 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
233   if (getType() != Other.getType() ||
234       getTargetFlags() != Other.getTargetFlags())
235     return false;
236 
237   switch (getType()) {
238   case MachineOperand::MO_Register:
239     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
240            getSubReg() == Other.getSubReg();
241   case MachineOperand::MO_Immediate:
242     return getImm() == Other.getImm();
243   case MachineOperand::MO_CImmediate:
244     return getCImm() == Other.getCImm();
245   case MachineOperand::MO_FPImmediate:
246     return getFPImm() == Other.getFPImm();
247   case MachineOperand::MO_MachineBasicBlock:
248     return getMBB() == Other.getMBB();
249   case MachineOperand::MO_FrameIndex:
250     return getIndex() == Other.getIndex();
251   case MachineOperand::MO_ConstantPoolIndex:
252   case MachineOperand::MO_TargetIndex:
253     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
254   case MachineOperand::MO_JumpTableIndex:
255     return getIndex() == Other.getIndex();
256   case MachineOperand::MO_GlobalAddress:
257     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
258   case MachineOperand::MO_ExternalSymbol:
259     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
260            getOffset() == Other.getOffset();
261   case MachineOperand::MO_BlockAddress:
262     return getBlockAddress() == Other.getBlockAddress() &&
263            getOffset() == Other.getOffset();
264   case MachineOperand::MO_RegisterMask:
265   case MachineOperand::MO_RegisterLiveOut: {
266     // Shallow compare of the two RegMasks
267     const uint32_t *RegMask = getRegMask();
268     const uint32_t *OtherRegMask = Other.getRegMask();
269     if (RegMask == OtherRegMask)
270       return true;
271 
272     // Calculate the size of the RegMask
273     const MachineFunction *MF = getParent()->getParent()->getParent();
274     const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
275     unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32;
276 
277     // Deep compare of the two RegMasks
278     return std::equal(RegMask, RegMask + RegMaskSize, OtherRegMask);
279   }
280   case MachineOperand::MO_MCSymbol:
281     return getMCSymbol() == Other.getMCSymbol();
282   case MachineOperand::MO_CFIIndex:
283     return getCFIIndex() == Other.getCFIIndex();
284   case MachineOperand::MO_Metadata:
285     return getMetadata() == Other.getMetadata();
286   case MachineOperand::MO_IntrinsicID:
287     return getIntrinsicID() == Other.getIntrinsicID();
288   case MachineOperand::MO_Predicate:
289     return getPredicate() == Other.getPredicate();
290   case MachineOperand::MO_Placeholder:
291     return true;
292   }
293   llvm_unreachable("Invalid machine operand type");
294 }
295 
296 // Note: this must stay exactly in sync with isIdenticalTo above.
297 hash_code llvm::hash_value(const MachineOperand &MO) {
298   switch (MO.getType()) {
299   case MachineOperand::MO_Register:
300     // Register operands don't have target flags.
301     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
302   case MachineOperand::MO_Immediate:
303     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
304   case MachineOperand::MO_CImmediate:
305     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
306   case MachineOperand::MO_FPImmediate:
307     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
308   case MachineOperand::MO_MachineBasicBlock:
309     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
310   case MachineOperand::MO_FrameIndex:
311     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
312   case MachineOperand::MO_ConstantPoolIndex:
313   case MachineOperand::MO_TargetIndex:
314     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
315                         MO.getOffset());
316   case MachineOperand::MO_JumpTableIndex:
317     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
318   case MachineOperand::MO_ExternalSymbol:
319     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
320                         MO.getSymbolName());
321   case MachineOperand::MO_GlobalAddress:
322     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
323                         MO.getOffset());
324   case MachineOperand::MO_BlockAddress:
325     return hash_combine(MO.getType(), MO.getTargetFlags(),
326                         MO.getBlockAddress(), MO.getOffset());
327   case MachineOperand::MO_RegisterMask:
328   case MachineOperand::MO_RegisterLiveOut:
329     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
330   case MachineOperand::MO_Metadata:
331     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
332   case MachineOperand::MO_MCSymbol:
333     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
334   case MachineOperand::MO_CFIIndex:
335     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
336   case MachineOperand::MO_IntrinsicID:
337     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID());
338   case MachineOperand::MO_Predicate:
339     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate());
340   case MachineOperand::MO_Placeholder:
341     return hash_combine();
342   }
343   llvm_unreachable("Invalid machine operand type");
344 }
345 
346 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI,
347                            const TargetIntrinsicInfo *IntrinsicInfo) const {
348   ModuleSlotTracker DummyMST(nullptr);
349   print(OS, DummyMST, TRI, IntrinsicInfo);
350 }
351 
352 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
353                            const TargetRegisterInfo *TRI,
354                            const TargetIntrinsicInfo *IntrinsicInfo) const {
355   switch (getType()) {
356   case MachineOperand::MO_Register:
357     OS << PrintReg(getReg(), TRI, getSubReg());
358 
359     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
360         isInternalRead() || isEarlyClobber() || isTied()) {
361       OS << '<';
362       bool NeedComma = false;
363       if (isDef()) {
364         if (NeedComma) OS << ',';
365         if (isEarlyClobber())
366           OS << "earlyclobber,";
367         if (isImplicit())
368           OS << "imp-";
369         OS << "def";
370         NeedComma = true;
371         // <def,read-undef> only makes sense when getSubReg() is set.
372         // Don't clutter the output otherwise.
373         if (isUndef() && getSubReg())
374           OS << ",read-undef";
375       } else if (isImplicit()) {
376         OS << "imp-use";
377         NeedComma = true;
378       }
379 
380       if (isKill()) {
381         if (NeedComma) OS << ',';
382         OS << "kill";
383         NeedComma = true;
384       }
385       if (isDead()) {
386         if (NeedComma) OS << ',';
387         OS << "dead";
388         NeedComma = true;
389       }
390       if (isUndef() && isUse()) {
391         if (NeedComma) OS << ',';
392         OS << "undef";
393         NeedComma = true;
394       }
395       if (isInternalRead()) {
396         if (NeedComma) OS << ',';
397         OS << "internal";
398         NeedComma = true;
399       }
400       if (isTied()) {
401         if (NeedComma) OS << ',';
402         OS << "tied";
403         if (TiedTo != 15)
404           OS << unsigned(TiedTo - 1);
405       }
406       OS << '>';
407     }
408     break;
409   case MachineOperand::MO_Immediate:
410     OS << getImm();
411     break;
412   case MachineOperand::MO_CImmediate:
413     getCImm()->getValue().print(OS, false);
414     break;
415   case MachineOperand::MO_FPImmediate:
416     if (getFPImm()->getType()->isFloatTy()) {
417       OS << getFPImm()->getValueAPF().convertToFloat();
418     } else if (getFPImm()->getType()->isHalfTy()) {
419       APFloat APF = getFPImm()->getValueAPF();
420       bool Unused;
421       APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused);
422       OS << "half " << APF.convertToFloat();
423     } else {
424       OS << getFPImm()->getValueAPF().convertToDouble();
425     }
426     break;
427   case MachineOperand::MO_MachineBasicBlock:
428     OS << "<BB#" << getMBB()->getNumber() << ">";
429     break;
430   case MachineOperand::MO_FrameIndex:
431     OS << "<fi#" << getIndex() << '>';
432     break;
433   case MachineOperand::MO_ConstantPoolIndex:
434     OS << "<cp#" << getIndex();
435     if (getOffset()) OS << "+" << getOffset();
436     OS << '>';
437     break;
438   case MachineOperand::MO_TargetIndex:
439     OS << "<ti#" << getIndex();
440     if (getOffset()) OS << "+" << getOffset();
441     OS << '>';
442     break;
443   case MachineOperand::MO_JumpTableIndex:
444     OS << "<jt#" << getIndex() << '>';
445     break;
446   case MachineOperand::MO_GlobalAddress:
447     OS << "<ga:";
448     getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
449     if (getOffset()) OS << "+" << getOffset();
450     OS << '>';
451     break;
452   case MachineOperand::MO_ExternalSymbol:
453     OS << "<es:" << getSymbolName();
454     if (getOffset()) OS << "+" << getOffset();
455     OS << '>';
456     break;
457   case MachineOperand::MO_BlockAddress:
458     OS << '<';
459     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
460     if (getOffset()) OS << "+" << getOffset();
461     OS << '>';
462     break;
463   case MachineOperand::MO_RegisterMask: {
464     unsigned NumRegsInMask = 0;
465     unsigned NumRegsEmitted = 0;
466     OS << "<regmask";
467     for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
468       unsigned MaskWord = i / 32;
469       unsigned MaskBit = i % 32;
470       if (getRegMask()[MaskWord] & (1 << MaskBit)) {
471         if (PrintWholeRegMask || NumRegsEmitted <= 10) {
472           OS << " " << PrintReg(i, TRI);
473           NumRegsEmitted++;
474         }
475         NumRegsInMask++;
476       }
477     }
478     if (NumRegsEmitted != NumRegsInMask)
479       OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
480     OS << ">";
481     break;
482   }
483   case MachineOperand::MO_RegisterLiveOut:
484     OS << "<regliveout>";
485     break;
486   case MachineOperand::MO_Metadata:
487     OS << '<';
488     getMetadata()->printAsOperand(OS, MST);
489     OS << '>';
490     break;
491   case MachineOperand::MO_MCSymbol:
492     OS << "<MCSym=" << *getMCSymbol() << '>';
493     break;
494   case MachineOperand::MO_CFIIndex:
495     OS << "<call frame instruction>";
496     break;
497   case MachineOperand::MO_IntrinsicID: {
498     Intrinsic::ID ID = getIntrinsicID();
499     if (ID < Intrinsic::num_intrinsics)
500       OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>';
501     else if (IntrinsicInfo)
502       OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>';
503     else
504       OS << "<intrinsic:" << ID << '>';
505     break;
506   }
507   case MachineOperand::MO_Predicate: {
508     auto Pred = static_cast<CmpInst::Predicate>(getPredicate());
509     OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred")
510        << CmpInst::getPredicateName(Pred) << '>';
511     break;
512   }
513   case MachineOperand::MO_Placeholder:
514     OS << "<placeholder>";
515     break;
516   }
517   if (unsigned TF = getTargetFlags())
518     OS << "[TF=" << TF << ']';
519 }
520 
521 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
522 LLVM_DUMP_METHOD void MachineOperand::dump() const {
523   dbgs() << *this << '\n';
524 }
525 #endif
526 
527 //===----------------------------------------------------------------------===//
528 // MachineMemOperand Implementation
529 //===----------------------------------------------------------------------===//
530 
531 /// getAddrSpace - Return the LLVM IR address space number that this pointer
532 /// points into.
533 unsigned MachinePointerInfo::getAddrSpace() const {
534   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
535   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
536 }
537 
538 /// getConstantPool - Return a MachinePointerInfo record that refers to the
539 /// constant pool.
540 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
541   return MachinePointerInfo(MF.getPSVManager().getConstantPool());
542 }
543 
544 /// getFixedStack - Return a MachinePointerInfo record that refers to the
545 /// the specified FrameIndex.
546 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
547                                                      int FI, int64_t Offset) {
548   return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
549 }
550 
551 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
552   return MachinePointerInfo(MF.getPSVManager().getJumpTable());
553 }
554 
555 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
556   return MachinePointerInfo(MF.getPSVManager().getGOT());
557 }
558 
559 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
560                                                 int64_t Offset) {
561   return MachinePointerInfo(MF.getPSVManager().getStack(), Offset);
562 }
563 
564 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f,
565                                      uint64_t s, unsigned int a,
566                                      const AAMDNodes &AAInfo,
567                                      const MDNode *Ranges,
568                                      SynchronizationScope SynchScope,
569                                      AtomicOrdering Ordering,
570                                      AtomicOrdering FailureOrdering)
571     : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1),
572       AAInfo(AAInfo), Ranges(Ranges) {
573   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
574           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
575          "invalid pointer value");
576   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
577   assert((isLoad() || isStore()) && "Not a load/store!");
578 
579   AtomicInfo.SynchScope = static_cast<unsigned>(SynchScope);
580   assert(getSynchScope() == SynchScope && "Value truncated");
581   AtomicInfo.Ordering = static_cast<unsigned>(Ordering);
582   assert(getOrdering() == Ordering && "Value truncated");
583   AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering);
584   assert(getFailureOrdering() == FailureOrdering && "Value truncated");
585 }
586 
587 /// Profile - Gather unique data for the object.
588 ///
589 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
590   ID.AddInteger(getOffset());
591   ID.AddInteger(Size);
592   ID.AddPointer(getOpaqueValue());
593   ID.AddInteger(getFlags());
594   ID.AddInteger(getBaseAlignment());
595 }
596 
597 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
598   // The Value and Offset may differ due to CSE. But the flags and size
599   // should be the same.
600   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
601   assert(MMO->getSize() == getSize() && "Size mismatch!");
602 
603   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
604     // Update the alignment value.
605     BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1;
606     // Also update the base and offset, because the new alignment may
607     // not be applicable with the old ones.
608     PtrInfo = MMO->PtrInfo;
609   }
610 }
611 
612 /// getAlignment - Return the minimum known alignment in bytes of the
613 /// actual memory reference.
614 uint64_t MachineMemOperand::getAlignment() const {
615   return MinAlign(getBaseAlignment(), getOffset());
616 }
617 
618 void MachineMemOperand::print(raw_ostream &OS) const {
619   ModuleSlotTracker DummyMST(nullptr);
620   print(OS, DummyMST);
621 }
622 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
623   assert((isLoad() || isStore()) &&
624          "SV has to be a load, store or both.");
625 
626   if (isVolatile())
627     OS << "Volatile ";
628 
629   if (isLoad())
630     OS << "LD";
631   if (isStore())
632     OS << "ST";
633   OS << getSize();
634 
635   // Print the address information.
636   OS << "[";
637   if (const Value *V = getValue())
638     V->printAsOperand(OS, /*PrintType=*/false, MST);
639   else if (const PseudoSourceValue *PSV = getPseudoValue())
640     PSV->printCustom(OS);
641   else
642     OS << "<unknown>";
643 
644   unsigned AS = getAddrSpace();
645   if (AS != 0)
646     OS << "(addrspace=" << AS << ')';
647 
648   // If the alignment of the memory reference itself differs from the alignment
649   // of the base pointer, print the base alignment explicitly, next to the base
650   // pointer.
651   if (getBaseAlignment() != getAlignment())
652     OS << "(align=" << getBaseAlignment() << ")";
653 
654   if (getOffset() != 0)
655     OS << "+" << getOffset();
656   OS << "]";
657 
658   // Print the alignment of the reference.
659   if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
660     OS << "(align=" << getAlignment() << ")";
661 
662   // Print TBAA info.
663   if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
664     OS << "(tbaa=";
665     if (TBAAInfo->getNumOperands() > 0)
666       TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
667     else
668       OS << "<unknown>";
669     OS << ")";
670   }
671 
672   // Print AA scope info.
673   if (const MDNode *ScopeInfo = getAAInfo().Scope) {
674     OS << "(alias.scope=";
675     if (ScopeInfo->getNumOperands() > 0)
676       for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
677         ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
678         if (i != ie-1)
679           OS << ",";
680       }
681     else
682       OS << "<unknown>";
683     OS << ")";
684   }
685 
686   // Print AA noalias scope info.
687   if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
688     OS << "(noalias=";
689     if (NoAliasInfo->getNumOperands() > 0)
690       for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
691         NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
692         if (i != ie-1)
693           OS << ",";
694       }
695     else
696       OS << "<unknown>";
697     OS << ")";
698   }
699 
700   if (isNonTemporal())
701     OS << "(nontemporal)";
702   if (isDereferenceable())
703     OS << "(dereferenceable)";
704   if (isInvariant())
705     OS << "(invariant)";
706 }
707 
708 //===----------------------------------------------------------------------===//
709 // MachineInstr Implementation
710 //===----------------------------------------------------------------------===//
711 
712 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
713   if (MCID->ImplicitDefs)
714     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
715            ++ImpDefs)
716       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
717   if (MCID->ImplicitUses)
718     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
719            ++ImpUses)
720       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
721 }
722 
723 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
724 /// implicit operands. It reserves space for the number of operands specified by
725 /// the MCInstrDesc.
726 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
727                            DebugLoc dl, bool NoImp)
728     : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0),
729       AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr),
730       debugLoc(std::move(dl)) {
731   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
732 
733   // Reserve space for the expected number of operands.
734   if (unsigned NumOps = MCID->getNumOperands() +
735     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
736     CapOperands = OperandCapacity::get(NumOps);
737     Operands = MF.allocateOperandArray(CapOperands);
738   }
739 
740   if (!NoImp)
741     addImplicitDefUseOperands(MF);
742 }
743 
744 /// MachineInstr ctor - Copies MachineInstr arg exactly
745 ///
746 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
747     : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
748       Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs),
749       MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) {
750   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
751 
752   CapOperands = OperandCapacity::get(MI.getNumOperands());
753   Operands = MF.allocateOperandArray(CapOperands);
754 
755   // Copy operands.
756   for (const MachineOperand &MO : MI.operands())
757     addOperand(MF, MO);
758 
759   // Copy all the sensible flags.
760   setFlags(MI.Flags);
761 }
762 
763 /// getRegInfo - If this instruction is embedded into a MachineFunction,
764 /// return the MachineRegisterInfo object for the current function, otherwise
765 /// return null.
766 MachineRegisterInfo *MachineInstr::getRegInfo() {
767   if (MachineBasicBlock *MBB = getParent())
768     return &MBB->getParent()->getRegInfo();
769   return nullptr;
770 }
771 
772 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
773 /// this instruction from their respective use lists.  This requires that the
774 /// operands already be on their use lists.
775 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
776   for (MachineOperand &MO : operands())
777     if (MO.isReg())
778       MRI.removeRegOperandFromUseList(&MO);
779 }
780 
781 /// AddRegOperandsToUseLists - Add all of the register operands in
782 /// this instruction from their respective use lists.  This requires that the
783 /// operands not be on their use lists yet.
784 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
785   for (MachineOperand &MO : operands())
786     if (MO.isReg())
787       MRI.addRegOperandToUseList(&MO);
788 }
789 
790 void MachineInstr::addOperand(const MachineOperand &Op) {
791   MachineBasicBlock *MBB = getParent();
792   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
793   MachineFunction *MF = MBB->getParent();
794   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
795   addOperand(*MF, Op);
796 }
797 
798 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
799 /// ranges. If MRI is non-null also update use-def chains.
800 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
801                          unsigned NumOps, MachineRegisterInfo *MRI) {
802   if (MRI)
803     return MRI->moveOperands(Dst, Src, NumOps);
804 
805   // MachineOperand is a trivially copyable type so we can just use memmove.
806   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
807 }
808 
809 /// addOperand - Add the specified operand to the instruction.  If it is an
810 /// implicit operand, it is added to the end of the operand list.  If it is
811 /// an explicit operand it is added at the end of the explicit operand list
812 /// (before the first implicit operand).
813 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
814   assert(MCID && "Cannot add operands before providing an instr descriptor");
815 
816   // Check if we're adding one of our existing operands.
817   if (&Op >= Operands && &Op < Operands + NumOperands) {
818     // This is unusual: MI->addOperand(MI->getOperand(i)).
819     // If adding Op requires reallocating or moving existing operands around,
820     // the Op reference could go stale. Support it by copying Op.
821     MachineOperand CopyOp(Op);
822     return addOperand(MF, CopyOp);
823   }
824 
825   // Find the insert location for the new operand.  Implicit registers go at
826   // the end, everything else goes before the implicit regs.
827   //
828   // FIXME: Allow mixed explicit and implicit operands on inline asm.
829   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
830   // implicit-defs, but they must not be moved around.  See the FIXME in
831   // InstrEmitter.cpp.
832   unsigned OpNo = getNumOperands();
833   bool isImpReg = Op.isReg() && Op.isImplicit();
834   if (!isImpReg && !isInlineAsm()) {
835     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
836       --OpNo;
837       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
838     }
839   }
840 
841 #ifndef NDEBUG
842   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
843   // OpNo now points as the desired insertion point.  Unless this is a variadic
844   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
845   // RegMask operands go between the explicit and implicit operands.
846   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
847           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
848          "Trying to add an operand to a machine instr that is already done!");
849 #endif
850 
851   MachineRegisterInfo *MRI = getRegInfo();
852 
853   // Determine if the Operands array needs to be reallocated.
854   // Save the old capacity and operand array.
855   OperandCapacity OldCap = CapOperands;
856   MachineOperand *OldOperands = Operands;
857   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
858     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
859     Operands = MF.allocateOperandArray(CapOperands);
860     // Move the operands before the insertion point.
861     if (OpNo)
862       moveOperands(Operands, OldOperands, OpNo, MRI);
863   }
864 
865   // Move the operands following the insertion point.
866   if (OpNo != NumOperands)
867     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
868                  MRI);
869   ++NumOperands;
870 
871   // Deallocate the old operand array.
872   if (OldOperands != Operands && OldOperands)
873     MF.deallocateOperandArray(OldCap, OldOperands);
874 
875   // Copy Op into place. It still needs to be inserted into the MRI use lists.
876   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
877   NewMO->ParentMI = this;
878 
879   // When adding a register operand, tell MRI about it.
880   if (NewMO->isReg()) {
881     // Ensure isOnRegUseList() returns false, regardless of Op's status.
882     NewMO->Contents.Reg.Prev = nullptr;
883     // Ignore existing ties. This is not a property that can be copied.
884     NewMO->TiedTo = 0;
885     // Add the new operand to MRI, but only for instructions in an MBB.
886     if (MRI)
887       MRI->addRegOperandToUseList(NewMO);
888     // The MCID operand information isn't accurate until we start adding
889     // explicit operands. The implicit operands are added first, then the
890     // explicits are inserted before them.
891     if (!isImpReg) {
892       // Tie uses to defs as indicated in MCInstrDesc.
893       if (NewMO->isUse()) {
894         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
895         if (DefIdx != -1)
896           tieOperands(DefIdx, OpNo);
897       }
898       // If the register operand is flagged as early, mark the operand as such.
899       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
900         NewMO->setIsEarlyClobber(true);
901     }
902   }
903 }
904 
905 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
906 /// fewer operand than it started with.
907 ///
908 void MachineInstr::RemoveOperand(unsigned OpNo) {
909   assert(OpNo < getNumOperands() && "Invalid operand number");
910   untieRegOperand(OpNo);
911 
912 #ifndef NDEBUG
913   // Moving tied operands would break the ties.
914   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
915     if (Operands[i].isReg())
916       assert(!Operands[i].isTied() && "Cannot move tied operands");
917 #endif
918 
919   MachineRegisterInfo *MRI = getRegInfo();
920   if (MRI && Operands[OpNo].isReg())
921     MRI->removeRegOperandFromUseList(Operands + OpNo);
922 
923   // Don't call the MachineOperand destructor. A lot of this code depends on
924   // MachineOperand having a trivial destructor anyway, and adding a call here
925   // wouldn't make it 'destructor-correct'.
926 
927   if (unsigned N = NumOperands - 1 - OpNo)
928     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
929   --NumOperands;
930 }
931 
932 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
933 /// This function should be used only occasionally. The setMemRefs function
934 /// is the primary method for setting up a MachineInstr's MemRefs list.
935 void MachineInstr::addMemOperand(MachineFunction &MF,
936                                  MachineMemOperand *MO) {
937   mmo_iterator OldMemRefs = MemRefs;
938   unsigned OldNumMemRefs = NumMemRefs;
939 
940   unsigned NewNum = NumMemRefs + 1;
941   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
942 
943   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
944   NewMemRefs[NewNum - 1] = MO;
945   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
946 }
947 
948 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
949 /// identical.
950 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
951   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
952   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
953   if ((E1 - I1) != (E2 - I2))
954     return false;
955   for (; I1 != E1; ++I1, ++I2) {
956     if (**I1 != **I2)
957       return false;
958   }
959   return true;
960 }
961 
962 std::pair<MachineInstr::mmo_iterator, unsigned>
963 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
964 
965   // If either of the incoming memrefs are empty, we must be conservative and
966   // treat this as if we've exhausted our space for memrefs and dropped them.
967   if (memoperands_empty() || Other.memoperands_empty())
968     return std::make_pair(nullptr, 0);
969 
970   // If both instructions have identical memrefs, we don't need to merge them.
971   // Since many instructions have a single memref, and we tend to merge things
972   // like pairs of loads from the same location, this catches a large number of
973   // cases in practice.
974   if (hasIdenticalMMOs(*this, Other))
975     return std::make_pair(MemRefs, NumMemRefs);
976 
977   // TODO: consider uniquing elements within the operand lists to reduce
978   // space usage and fall back to conservative information less often.
979   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
980 
981   // If we don't have enough room to store this many memrefs, be conservative
982   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
983   // the new instruction.
984   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
985     return std::make_pair(nullptr, 0);
986 
987   MachineFunction *MF = getParent()->getParent();
988   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
989   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
990                                   MemBegin);
991   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
992                      MemEnd);
993   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
994          "missing memrefs");
995 
996   return std::make_pair(MemBegin, CombinedNumMemRefs);
997 }
998 
999 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
1000   assert(!isBundledWithPred() && "Must be called on bundle header");
1001   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
1002     if (MII->getDesc().getFlags() & Mask) {
1003       if (Type == AnyInBundle)
1004         return true;
1005     } else {
1006       if (Type == AllInBundle && !MII->isBundle())
1007         return false;
1008     }
1009     // This was the last instruction in the bundle.
1010     if (!MII->isBundledWithSucc())
1011       return Type == AllInBundle;
1012   }
1013 }
1014 
1015 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
1016                                  MICheckType Check) const {
1017   // If opcodes or number of operands are not the same then the two
1018   // instructions are obviously not identical.
1019   if (Other.getOpcode() != getOpcode() ||
1020       Other.getNumOperands() != getNumOperands())
1021     return false;
1022 
1023   if (isBundle()) {
1024     // We have passed the test above that both instructions have the same
1025     // opcode, so we know that both instructions are bundles here. Let's compare
1026     // MIs inside the bundle.
1027     assert(Other.isBundle() && "Expected that both instructions are bundles.");
1028     MachineBasicBlock::const_instr_iterator I1 = getIterator();
1029     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
1030     // Loop until we analysed the last intruction inside at least one of the
1031     // bundles.
1032     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
1033       ++I1;
1034       ++I2;
1035       if (!I1->isIdenticalTo(*I2, Check))
1036         return false;
1037     }
1038     // If we've reached the end of just one of the two bundles, but not both,
1039     // the instructions are not identical.
1040     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
1041       return false;
1042   }
1043 
1044   // Check operands to make sure they match.
1045   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1046     const MachineOperand &MO = getOperand(i);
1047     const MachineOperand &OMO = Other.getOperand(i);
1048     if (!MO.isReg()) {
1049       if (!MO.isIdenticalTo(OMO))
1050         return false;
1051       continue;
1052     }
1053 
1054     // Clients may or may not want to ignore defs when testing for equality.
1055     // For example, machine CSE pass only cares about finding common
1056     // subexpressions, so it's safe to ignore virtual register defs.
1057     if (MO.isDef()) {
1058       if (Check == IgnoreDefs)
1059         continue;
1060       else if (Check == IgnoreVRegDefs) {
1061         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1062             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
1063           if (MO.getReg() != OMO.getReg())
1064             return false;
1065       } else {
1066         if (!MO.isIdenticalTo(OMO))
1067           return false;
1068         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
1069           return false;
1070       }
1071     } else {
1072       if (!MO.isIdenticalTo(OMO))
1073         return false;
1074       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
1075         return false;
1076     }
1077   }
1078   // If DebugLoc does not match then two dbg.values are not identical.
1079   if (isDebugValue())
1080     if (getDebugLoc() && Other.getDebugLoc() &&
1081         getDebugLoc() != Other.getDebugLoc())
1082       return false;
1083   return true;
1084 }
1085 
1086 MachineInstr *MachineInstr::removeFromParent() {
1087   assert(getParent() && "Not embedded in a basic block!");
1088   return getParent()->remove(this);
1089 }
1090 
1091 MachineInstr *MachineInstr::removeFromBundle() {
1092   assert(getParent() && "Not embedded in a basic block!");
1093   return getParent()->remove_instr(this);
1094 }
1095 
1096 void MachineInstr::eraseFromParent() {
1097   assert(getParent() && "Not embedded in a basic block!");
1098   getParent()->erase(this);
1099 }
1100 
1101 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
1102   assert(getParent() && "Not embedded in a basic block!");
1103   MachineBasicBlock *MBB = getParent();
1104   MachineFunction *MF = MBB->getParent();
1105   assert(MF && "Not embedded in a function!");
1106 
1107   MachineInstr *MI = (MachineInstr *)this;
1108   MachineRegisterInfo &MRI = MF->getRegInfo();
1109 
1110   for (const MachineOperand &MO : MI->operands()) {
1111     if (!MO.isReg() || !MO.isDef())
1112       continue;
1113     unsigned Reg = MO.getReg();
1114     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1115       continue;
1116     MRI.markUsesInDebugValueAsUndef(Reg);
1117   }
1118   MI->eraseFromParent();
1119 }
1120 
1121 void MachineInstr::eraseFromBundle() {
1122   assert(getParent() && "Not embedded in a basic block!");
1123   getParent()->erase_instr(this);
1124 }
1125 
1126 /// getNumExplicitOperands - Returns the number of non-implicit operands.
1127 ///
1128 unsigned MachineInstr::getNumExplicitOperands() const {
1129   unsigned NumOperands = MCID->getNumOperands();
1130   if (!MCID->isVariadic())
1131     return NumOperands;
1132 
1133   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
1134     const MachineOperand &MO = getOperand(i);
1135     if (!MO.isReg() || !MO.isImplicit())
1136       NumOperands++;
1137   }
1138   return NumOperands;
1139 }
1140 
1141 void MachineInstr::bundleWithPred() {
1142   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
1143   setFlag(BundledPred);
1144   MachineBasicBlock::instr_iterator Pred = getIterator();
1145   --Pred;
1146   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1147   Pred->setFlag(BundledSucc);
1148 }
1149 
1150 void MachineInstr::bundleWithSucc() {
1151   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
1152   setFlag(BundledSucc);
1153   MachineBasicBlock::instr_iterator Succ = getIterator();
1154   ++Succ;
1155   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
1156   Succ->setFlag(BundledPred);
1157 }
1158 
1159 void MachineInstr::unbundleFromPred() {
1160   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
1161   clearFlag(BundledPred);
1162   MachineBasicBlock::instr_iterator Pred = getIterator();
1163   --Pred;
1164   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1165   Pred->clearFlag(BundledSucc);
1166 }
1167 
1168 void MachineInstr::unbundleFromSucc() {
1169   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
1170   clearFlag(BundledSucc);
1171   MachineBasicBlock::instr_iterator Succ = getIterator();
1172   ++Succ;
1173   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
1174   Succ->clearFlag(BundledPred);
1175 }
1176 
1177 bool MachineInstr::isStackAligningInlineAsm() const {
1178   if (isInlineAsm()) {
1179     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1180     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1181       return true;
1182   }
1183   return false;
1184 }
1185 
1186 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
1187   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
1188   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1189   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
1190 }
1191 
1192 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
1193                                        unsigned *GroupNo) const {
1194   assert(isInlineAsm() && "Expected an inline asm instruction");
1195   assert(OpIdx < getNumOperands() && "OpIdx out of range");
1196 
1197   // Ignore queries about the initial operands.
1198   if (OpIdx < InlineAsm::MIOp_FirstOperand)
1199     return -1;
1200 
1201   unsigned Group = 0;
1202   unsigned NumOps;
1203   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1204        i += NumOps) {
1205     const MachineOperand &FlagMO = getOperand(i);
1206     // If we reach the implicit register operands, stop looking.
1207     if (!FlagMO.isImm())
1208       return -1;
1209     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1210     if (i + NumOps > OpIdx) {
1211       if (GroupNo)
1212         *GroupNo = Group;
1213       return i;
1214     }
1215     ++Group;
1216   }
1217   return -1;
1218 }
1219 
1220 const DILocalVariable *MachineInstr::getDebugVariable() const {
1221   assert(isDebugValue() && "not a DBG_VALUE");
1222   return cast<DILocalVariable>(getOperand(2).getMetadata());
1223 }
1224 
1225 const DIExpression *MachineInstr::getDebugExpression() const {
1226   assert(isDebugValue() && "not a DBG_VALUE");
1227   return cast<DIExpression>(getOperand(3).getMetadata());
1228 }
1229 
1230 const TargetRegisterClass*
1231 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1232                                     const TargetInstrInfo *TII,
1233                                     const TargetRegisterInfo *TRI) const {
1234   assert(getParent() && "Can't have an MBB reference here!");
1235   assert(getParent()->getParent() && "Can't have an MF reference here!");
1236   const MachineFunction &MF = *getParent()->getParent();
1237 
1238   // Most opcodes have fixed constraints in their MCInstrDesc.
1239   if (!isInlineAsm())
1240     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1241 
1242   if (!getOperand(OpIdx).isReg())
1243     return nullptr;
1244 
1245   // For tied uses on inline asm, get the constraint from the def.
1246   unsigned DefIdx;
1247   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1248     OpIdx = DefIdx;
1249 
1250   // Inline asm stores register class constraints in the flag word.
1251   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1252   if (FlagIdx < 0)
1253     return nullptr;
1254 
1255   unsigned Flag = getOperand(FlagIdx).getImm();
1256   unsigned RCID;
1257   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
1258        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
1259        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
1260       InlineAsm::hasRegClassConstraint(Flag, RCID))
1261     return TRI->getRegClass(RCID);
1262 
1263   // Assume that all registers in a memory operand are pointers.
1264   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1265     return TRI->getPointerRegClass(MF);
1266 
1267   return nullptr;
1268 }
1269 
1270 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1271     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1272     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1273   // Check every operands inside the bundle if we have
1274   // been asked to.
1275   if (ExploreBundle)
1276     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
1277          ++OpndIt)
1278       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1279           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1280   else
1281     // Otherwise, just check the current operands.
1282     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1283       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1284   return CurRC;
1285 }
1286 
1287 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1288     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1289     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1290   assert(CurRC && "Invalid initial register class");
1291   // Check if Reg is constrained by some of its use/def from MI.
1292   const MachineOperand &MO = getOperand(OpIdx);
1293   if (!MO.isReg() || MO.getReg() != Reg)
1294     return CurRC;
1295   // If yes, accumulate the constraints through the operand.
1296   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1297 }
1298 
1299 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1300     unsigned OpIdx, const TargetRegisterClass *CurRC,
1301     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1302   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1303   const MachineOperand &MO = getOperand(OpIdx);
1304   assert(MO.isReg() &&
1305          "Cannot get register constraints for non-register operand");
1306   assert(CurRC && "Invalid initial register class");
1307   if (unsigned SubIdx = MO.getSubReg()) {
1308     if (OpRC)
1309       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1310     else
1311       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1312   } else if (OpRC)
1313     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1314   return CurRC;
1315 }
1316 
1317 /// Return the number of instructions inside the MI bundle, not counting the
1318 /// header instruction.
1319 unsigned MachineInstr::getBundleSize() const {
1320   MachineBasicBlock::const_instr_iterator I = getIterator();
1321   unsigned Size = 0;
1322   while (I->isBundledWithSucc()) {
1323     ++Size;
1324     ++I;
1325   }
1326   return Size;
1327 }
1328 
1329 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1330 /// the given register (not considering sub/super-registers).
1331 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
1332   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1333     const MachineOperand &MO = getOperand(i);
1334     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1335       return true;
1336   }
1337   return false;
1338 }
1339 
1340 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1341 /// the specific register or -1 if it is not found. It further tightens
1342 /// the search criteria to a use that kills the register if isKill is true.
1343 int MachineInstr::findRegisterUseOperandIdx(
1344     unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
1345   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1346     const MachineOperand &MO = getOperand(i);
1347     if (!MO.isReg() || !MO.isUse())
1348       continue;
1349     unsigned MOReg = MO.getReg();
1350     if (!MOReg)
1351       continue;
1352     if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1353                          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1354                          TRI->isSubRegister(MOReg, Reg)))
1355       if (!isKill || MO.isKill())
1356         return i;
1357   }
1358   return -1;
1359 }
1360 
1361 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1362 /// indicating if this instruction reads or writes Reg. This also considers
1363 /// partial defines.
1364 std::pair<bool,bool>
1365 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1366                                          SmallVectorImpl<unsigned> *Ops) const {
1367   bool PartDef = false; // Partial redefine.
1368   bool FullDef = false; // Full define.
1369   bool Use = false;
1370 
1371   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1372     const MachineOperand &MO = getOperand(i);
1373     if (!MO.isReg() || MO.getReg() != Reg)
1374       continue;
1375     if (Ops)
1376       Ops->push_back(i);
1377     if (MO.isUse())
1378       Use |= !MO.isUndef();
1379     else if (MO.getSubReg() && !MO.isUndef())
1380       // A partial <def,undef> doesn't count as reading the register.
1381       PartDef = true;
1382     else
1383       FullDef = true;
1384   }
1385   // A partial redefine uses Reg unless there is also a full define.
1386   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1387 }
1388 
1389 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1390 /// the specified register or -1 if it is not found. If isDead is true, defs
1391 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1392 /// also checks if there is a def of a super-register.
1393 int
1394 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1395                                         const TargetRegisterInfo *TRI) const {
1396   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1397   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1398     const MachineOperand &MO = getOperand(i);
1399     // Accept regmask operands when Overlap is set.
1400     // Ignore them when looking for a specific def operand (Overlap == false).
1401     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1402       return i;
1403     if (!MO.isReg() || !MO.isDef())
1404       continue;
1405     unsigned MOReg = MO.getReg();
1406     bool Found = (MOReg == Reg);
1407     if (!Found && TRI && isPhys &&
1408         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1409       if (Overlap)
1410         Found = TRI->regsOverlap(MOReg, Reg);
1411       else
1412         Found = TRI->isSubRegister(MOReg, Reg);
1413     }
1414     if (Found && (!isDead || MO.isDead()))
1415       return i;
1416   }
1417   return -1;
1418 }
1419 
1420 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1421 /// operand list that is used to represent the predicate. It returns -1 if
1422 /// none is found.
1423 int MachineInstr::findFirstPredOperandIdx() const {
1424   // Don't call MCID.findFirstPredOperandIdx() because this variant
1425   // is sometimes called on an instruction that's not yet complete, and
1426   // so the number of operands is less than the MCID indicates. In
1427   // particular, the PTX target does this.
1428   const MCInstrDesc &MCID = getDesc();
1429   if (MCID.isPredicable()) {
1430     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1431       if (MCID.OpInfo[i].isPredicate())
1432         return i;
1433   }
1434 
1435   return -1;
1436 }
1437 
1438 // MachineOperand::TiedTo is 4 bits wide.
1439 const unsigned TiedMax = 15;
1440 
1441 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1442 ///
1443 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1444 /// field. TiedTo can have these values:
1445 ///
1446 /// 0:              Operand is not tied to anything.
1447 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1448 /// TiedMax:        Tied to an operand >= TiedMax-1.
1449 ///
1450 /// The tied def must be one of the first TiedMax operands on a normal
1451 /// instruction. INLINEASM instructions allow more tied defs.
1452 ///
1453 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1454   MachineOperand &DefMO = getOperand(DefIdx);
1455   MachineOperand &UseMO = getOperand(UseIdx);
1456   assert(DefMO.isDef() && "DefIdx must be a def operand");
1457   assert(UseMO.isUse() && "UseIdx must be a use operand");
1458   assert(!DefMO.isTied() && "Def is already tied to another use");
1459   assert(!UseMO.isTied() && "Use is already tied to another def");
1460 
1461   if (DefIdx < TiedMax)
1462     UseMO.TiedTo = DefIdx + 1;
1463   else {
1464     // Inline asm can use the group descriptors to find tied operands, but on
1465     // normal instruction, the tied def must be within the first TiedMax
1466     // operands.
1467     assert(isInlineAsm() && "DefIdx out of range");
1468     UseMO.TiedTo = TiedMax;
1469   }
1470 
1471   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1472   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1473 }
1474 
1475 /// Given the index of a tied register operand, find the operand it is tied to.
1476 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1477 /// which must exist.
1478 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1479   const MachineOperand &MO = getOperand(OpIdx);
1480   assert(MO.isTied() && "Operand isn't tied");
1481 
1482   // Normally TiedTo is in range.
1483   if (MO.TiedTo < TiedMax)
1484     return MO.TiedTo - 1;
1485 
1486   // Uses on normal instructions can be out of range.
1487   if (!isInlineAsm()) {
1488     // Normal tied defs must be in the 0..TiedMax-1 range.
1489     if (MO.isUse())
1490       return TiedMax - 1;
1491     // MO is a def. Search for the tied use.
1492     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1493       const MachineOperand &UseMO = getOperand(i);
1494       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1495         return i;
1496     }
1497     llvm_unreachable("Can't find tied use");
1498   }
1499 
1500   // Now deal with inline asm by parsing the operand group descriptor flags.
1501   // Find the beginning of each operand group.
1502   SmallVector<unsigned, 8> GroupIdx;
1503   unsigned OpIdxGroup = ~0u;
1504   unsigned NumOps;
1505   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1506        i += NumOps) {
1507     const MachineOperand &FlagMO = getOperand(i);
1508     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1509     unsigned CurGroup = GroupIdx.size();
1510     GroupIdx.push_back(i);
1511     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1512     // OpIdx belongs to this operand group.
1513     if (OpIdx > i && OpIdx < i + NumOps)
1514       OpIdxGroup = CurGroup;
1515     unsigned TiedGroup;
1516     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1517       continue;
1518     // Operands in this group are tied to operands in TiedGroup which must be
1519     // earlier. Find the number of operands between the two groups.
1520     unsigned Delta = i - GroupIdx[TiedGroup];
1521 
1522     // OpIdx is a use tied to TiedGroup.
1523     if (OpIdxGroup == CurGroup)
1524       return OpIdx - Delta;
1525 
1526     // OpIdx is a def tied to this use group.
1527     if (OpIdxGroup == TiedGroup)
1528       return OpIdx + Delta;
1529   }
1530   llvm_unreachable("Invalid tied operand on inline asm");
1531 }
1532 
1533 /// clearKillInfo - Clears kill flags on all operands.
1534 ///
1535 void MachineInstr::clearKillInfo() {
1536   for (MachineOperand &MO : operands()) {
1537     if (MO.isReg() && MO.isUse())
1538       MO.setIsKill(false);
1539   }
1540 }
1541 
1542 void MachineInstr::substituteRegister(unsigned FromReg,
1543                                       unsigned ToReg,
1544                                       unsigned SubIdx,
1545                                       const TargetRegisterInfo &RegInfo) {
1546   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1547     if (SubIdx)
1548       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1549     for (MachineOperand &MO : operands()) {
1550       if (!MO.isReg() || MO.getReg() != FromReg)
1551         continue;
1552       MO.substPhysReg(ToReg, RegInfo);
1553     }
1554   } else {
1555     for (MachineOperand &MO : operands()) {
1556       if (!MO.isReg() || MO.getReg() != FromReg)
1557         continue;
1558       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1559     }
1560   }
1561 }
1562 
1563 /// isSafeToMove - Return true if it is safe to move this instruction. If
1564 /// SawStore is set to true, it means that there is a store (or call) between
1565 /// the instruction's location and its intended destination.
1566 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1567   // Ignore stuff that we obviously can't move.
1568   //
1569   // Treat volatile loads as stores. This is not strictly necessary for
1570   // volatiles, but it is required for atomic loads. It is not allowed to move
1571   // a load across an atomic load with Ordering > Monotonic.
1572   if (mayStore() || isCall() ||
1573       (mayLoad() && hasOrderedMemoryRef())) {
1574     SawStore = true;
1575     return false;
1576   }
1577 
1578   if (isPosition() || isDebugValue() || isTerminator() ||
1579       hasUnmodeledSideEffects())
1580     return false;
1581 
1582   // See if this instruction does a load.  If so, we have to guarantee that the
1583   // loaded value doesn't change between the load and the its intended
1584   // destination. The check for isInvariantLoad gives the targe the chance to
1585   // classify the load as always returning a constant, e.g. a constant pool
1586   // load.
1587   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1588     // Otherwise, this is a real load.  If there is a store between the load and
1589     // end of block, we can't move it.
1590     return !SawStore;
1591 
1592   return true;
1593 }
1594 
1595 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other,
1596                             bool UseTBAA) {
1597   const MachineFunction *MF = getParent()->getParent();
1598   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1599 
1600   // If neither instruction stores to memory, they can't alias in any
1601   // meaningful way, even if they read from the same address.
1602   if (!mayStore() && !Other.mayStore())
1603     return false;
1604 
1605   // Let the target decide if memory accesses cannot possibly overlap.
1606   if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
1607     return false;
1608 
1609   if (!AA)
1610     return true;
1611 
1612   // FIXME: Need to handle multiple memory operands to support all targets.
1613   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1614     return true;
1615 
1616   MachineMemOperand *MMOa = *memoperands_begin();
1617   MachineMemOperand *MMOb = *Other.memoperands_begin();
1618 
1619   if (!MMOa->getValue() || !MMOb->getValue())
1620     return true;
1621 
1622   // The following interface to AA is fashioned after DAGCombiner::isAlias
1623   // and operates with MachineMemOperand offset with some important
1624   // assumptions:
1625   //   - LLVM fundamentally assumes flat address spaces.
1626   //   - MachineOperand offset can *only* result from legalization and
1627   //     cannot affect queries other than the trivial case of overlap
1628   //     checking.
1629   //   - These offsets never wrap and never step outside
1630   //     of allocated objects.
1631   //   - There should never be any negative offsets here.
1632   //
1633   // FIXME: Modify API to hide this math from "user"
1634   // FIXME: Even before we go to AA we can reason locally about some
1635   // memory objects. It can save compile time, and possibly catch some
1636   // corner cases not currently covered.
1637 
1638   assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
1639   assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
1640 
1641   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
1642   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
1643   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
1644 
1645   AliasResult AAResult =
1646       AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
1647                                UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1648                 MemoryLocation(MMOb->getValue(), Overlapb,
1649                                UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1650 
1651   return (AAResult != NoAlias);
1652 }
1653 
1654 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1655 /// or volatile memory reference, or if the information describing the memory
1656 /// reference is not available. Return false if it is known to have no ordered
1657 /// memory references.
1658 bool MachineInstr::hasOrderedMemoryRef() const {
1659   // An instruction known never to access memory won't have a volatile access.
1660   if (!mayStore() &&
1661       !mayLoad() &&
1662       !isCall() &&
1663       !hasUnmodeledSideEffects())
1664     return false;
1665 
1666   // Otherwise, if the instruction has no memory reference information,
1667   // conservatively assume it wasn't preserved.
1668   if (memoperands_empty())
1669     return true;
1670 
1671   // Check if any of our memory operands are ordered.
1672   return any_of(memoperands(), [](const MachineMemOperand *MMO) {
1673     return !MMO->isUnordered();
1674   });
1675 }
1676 
1677 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1678 /// trap and is loading from a location whose value is invariant across a run of
1679 /// this function.
1680 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1681   // If the instruction doesn't load at all, it isn't an invariant load.
1682   if (!mayLoad())
1683     return false;
1684 
1685   // If the instruction has lost its memoperands, conservatively assume that
1686   // it may not be an invariant load.
1687   if (memoperands_empty())
1688     return false;
1689 
1690   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1691 
1692   for (MachineMemOperand *MMO : memoperands()) {
1693     if (MMO->isVolatile()) return false;
1694     if (MMO->isStore()) return false;
1695     if (MMO->isInvariant() && MMO->isDereferenceable())
1696       continue;
1697 
1698     // A load from a constant PseudoSourceValue is invariant.
1699     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1700       if (PSV->isConstant(&MFI))
1701         continue;
1702 
1703     if (const Value *V = MMO->getValue()) {
1704       // If we have an AliasAnalysis, ask it whether the memory is constant.
1705       if (AA &&
1706           AA->pointsToConstantMemory(
1707               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1708         continue;
1709     }
1710 
1711     // Otherwise assume conservatively.
1712     return false;
1713   }
1714 
1715   // Everything checks out.
1716   return true;
1717 }
1718 
1719 /// isConstantValuePHI - If the specified instruction is a PHI that always
1720 /// merges together the same virtual register, return the register, otherwise
1721 /// return 0.
1722 unsigned MachineInstr::isConstantValuePHI() const {
1723   if (!isPHI())
1724     return 0;
1725   assert(getNumOperands() >= 3 &&
1726          "It's illegal to have a PHI without source operands");
1727 
1728   unsigned Reg = getOperand(1).getReg();
1729   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1730     if (getOperand(i).getReg() != Reg)
1731       return 0;
1732   return Reg;
1733 }
1734 
1735 bool MachineInstr::hasUnmodeledSideEffects() const {
1736   if (hasProperty(MCID::UnmodeledSideEffects))
1737     return true;
1738   if (isInlineAsm()) {
1739     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1740     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1741       return true;
1742   }
1743 
1744   return false;
1745 }
1746 
1747 bool MachineInstr::isLoadFoldBarrier() const {
1748   return mayStore() || isCall() || hasUnmodeledSideEffects();
1749 }
1750 
1751 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1752 ///
1753 bool MachineInstr::allDefsAreDead() const {
1754   for (const MachineOperand &MO : operands()) {
1755     if (!MO.isReg() || MO.isUse())
1756       continue;
1757     if (!MO.isDead())
1758       return false;
1759   }
1760   return true;
1761 }
1762 
1763 /// copyImplicitOps - Copy implicit register operands from specified
1764 /// instruction to this instruction.
1765 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1766                                    const MachineInstr &MI) {
1767   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1768        i != e; ++i) {
1769     const MachineOperand &MO = MI.getOperand(i);
1770     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1771       addOperand(MF, MO);
1772   }
1773 }
1774 
1775 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1776 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1777   dbgs() << "  ";
1778   print(dbgs());
1779 }
1780 #endif
1781 
1782 void MachineInstr::print(raw_ostream &OS, bool SkipOpers, bool SkipDebugLoc,
1783                          const TargetInstrInfo *TII) const {
1784   const Module *M = nullptr;
1785   if (const MachineBasicBlock *MBB = getParent())
1786     if (const MachineFunction *MF = MBB->getParent())
1787       M = MF->getFunction()->getParent();
1788 
1789   ModuleSlotTracker MST(M);
1790   print(OS, MST, SkipOpers, SkipDebugLoc, TII);
1791 }
1792 
1793 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1794                          bool SkipOpers, bool SkipDebugLoc,
1795                          const TargetInstrInfo *TII) const {
1796   // We can be a bit tidier if we know the MachineFunction.
1797   const MachineFunction *MF = nullptr;
1798   const TargetRegisterInfo *TRI = nullptr;
1799   const MachineRegisterInfo *MRI = nullptr;
1800   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1801 
1802   if (const MachineBasicBlock *MBB = getParent()) {
1803     MF = MBB->getParent();
1804     if (MF) {
1805       MRI = &MF->getRegInfo();
1806       TRI = MF->getSubtarget().getRegisterInfo();
1807       if (!TII)
1808         TII = MF->getSubtarget().getInstrInfo();
1809       IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
1810     }
1811   }
1812 
1813   // Save a list of virtual registers.
1814   SmallVector<unsigned, 8> VirtRegs;
1815 
1816   // Print explicitly defined operands on the left of an assignment syntax.
1817   unsigned StartOp = 0, e = getNumOperands();
1818   for (; StartOp < e && getOperand(StartOp).isReg() &&
1819          getOperand(StartOp).isDef() &&
1820          !getOperand(StartOp).isImplicit();
1821        ++StartOp) {
1822     if (StartOp != 0) OS << ", ";
1823     getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo);
1824     unsigned Reg = getOperand(StartOp).getReg();
1825     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1826       VirtRegs.push_back(Reg);
1827       LLT Ty = MRI ? MRI->getType(Reg) : LLT{};
1828       if (Ty.isValid())
1829         OS << '(' << Ty << ')';
1830     }
1831   }
1832 
1833   if (StartOp != 0)
1834     OS << " = ";
1835 
1836   // Print the opcode name.
1837   if (TII)
1838     OS << TII->getName(getOpcode());
1839   else
1840     OS << "UNKNOWN";
1841 
1842   if (SkipOpers)
1843     return;
1844 
1845   // Print the rest of the operands.
1846   bool OmittedAnyCallClobbers = false;
1847   bool FirstOp = true;
1848   unsigned AsmDescOp = ~0u;
1849   unsigned AsmOpCount = 0;
1850 
1851   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1852     // Print asm string.
1853     OS << " ";
1854     getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
1855 
1856     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1857     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1858     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1859       OS << " [sideeffect]";
1860     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1861       OS << " [mayload]";
1862     if (ExtraInfo & InlineAsm::Extra_MayStore)
1863       OS << " [maystore]";
1864     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1865       OS << " [isconvergent]";
1866     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1867       OS << " [alignstack]";
1868     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1869       OS << " [attdialect]";
1870     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1871       OS << " [inteldialect]";
1872 
1873     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1874     FirstOp = false;
1875   }
1876 
1877   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1878     const MachineOperand &MO = getOperand(i);
1879 
1880     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1881       VirtRegs.push_back(MO.getReg());
1882 
1883     // Omit call-clobbered registers which aren't used anywhere. This makes
1884     // call instructions much less noisy on targets where calls clobber lots
1885     // of registers. Don't rely on MO.isDead() because we may be called before
1886     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1887     if (MRI && isCall() &&
1888         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1889       unsigned Reg = MO.getReg();
1890       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1891         if (MRI->use_empty(Reg)) {
1892           bool HasAliasLive = false;
1893           for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
1894             unsigned AliasReg = *AI;
1895             if (!MRI->use_empty(AliasReg)) {
1896               HasAliasLive = true;
1897               break;
1898             }
1899           }
1900           if (!HasAliasLive) {
1901             OmittedAnyCallClobbers = true;
1902             continue;
1903           }
1904         }
1905       }
1906     }
1907 
1908     if (FirstOp) FirstOp = false; else OS << ",";
1909     OS << " ";
1910     if (i < getDesc().NumOperands) {
1911       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1912       if (MCOI.isPredicate())
1913         OS << "pred:";
1914       if (MCOI.isOptionalDef())
1915         OS << "opt:";
1916     }
1917     if (isDebugValue() && MO.isMetadata()) {
1918       // Pretty print DBG_VALUE instructions.
1919       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1920       if (DIV && !DIV->getName().empty())
1921         OS << "!\"" << DIV->getName() << '\"';
1922       else
1923         MO.print(OS, MST, TRI);
1924     } else if (TRI && (isInsertSubreg() || isRegSequence() ||
1925                        (isSubregToReg() && i == 3)) && MO.isImm()) {
1926       OS << TRI->getSubRegIndexName(MO.getImm());
1927     } else if (i == AsmDescOp && MO.isImm()) {
1928       // Pretty print the inline asm operand descriptor.
1929       OS << '$' << AsmOpCount++;
1930       unsigned Flag = MO.getImm();
1931       switch (InlineAsm::getKind(Flag)) {
1932       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1933       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1934       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1935       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1936       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1937       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1938       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1939       }
1940 
1941       unsigned RCID = 0;
1942       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1943           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1944         if (TRI) {
1945           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1946         } else
1947           OS << ":RC" << RCID;
1948       }
1949 
1950       if (InlineAsm::isMemKind(Flag)) {
1951         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1952         switch (MCID) {
1953         case InlineAsm::Constraint_es: OS << ":es"; break;
1954         case InlineAsm::Constraint_i:  OS << ":i"; break;
1955         case InlineAsm::Constraint_m:  OS << ":m"; break;
1956         case InlineAsm::Constraint_o:  OS << ":o"; break;
1957         case InlineAsm::Constraint_v:  OS << ":v"; break;
1958         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1959         case InlineAsm::Constraint_R:  OS << ":R"; break;
1960         case InlineAsm::Constraint_S:  OS << ":S"; break;
1961         case InlineAsm::Constraint_T:  OS << ":T"; break;
1962         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1963         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1964         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1965         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1966         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1967         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1968         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1969         case InlineAsm::Constraint_X:  OS << ":X"; break;
1970         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1971         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1972         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1973         default: OS << ":?"; break;
1974         }
1975       }
1976 
1977       unsigned TiedTo = 0;
1978       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1979         OS << " tiedto:$" << TiedTo;
1980 
1981       OS << ']';
1982 
1983       // Compute the index of the next operand descriptor.
1984       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1985     } else
1986       MO.print(OS, MST, TRI);
1987   }
1988 
1989   // Briefly indicate whether any call clobbers were omitted.
1990   if (OmittedAnyCallClobbers) {
1991     if (!FirstOp) OS << ",";
1992     OS << " ...";
1993   }
1994 
1995   bool HaveSemi = false;
1996   const unsigned PrintableFlags = FrameSetup | FrameDestroy;
1997   if (Flags & PrintableFlags) {
1998     if (!HaveSemi) {
1999       OS << ";";
2000       HaveSemi = true;
2001     }
2002     OS << " flags: ";
2003 
2004     if (Flags & FrameSetup)
2005       OS << "FrameSetup";
2006 
2007     if (Flags & FrameDestroy)
2008       OS << "FrameDestroy";
2009   }
2010 
2011   if (!memoperands_empty()) {
2012     if (!HaveSemi) {
2013       OS << ";";
2014       HaveSemi = true;
2015     }
2016 
2017     OS << " mem:";
2018     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
2019          i != e; ++i) {
2020       (*i)->print(OS, MST);
2021       if (std::next(i) != e)
2022         OS << " ";
2023     }
2024   }
2025 
2026   // Print the regclass of any virtual registers encountered.
2027   if (MRI && !VirtRegs.empty()) {
2028     if (!HaveSemi) {
2029       OS << ";";
2030       HaveSemi = true;
2031     }
2032     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
2033       const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]);
2034       if (!RC)
2035         continue;
2036       // Generic virtual registers do not have register classes.
2037       if (RC.is<const RegisterBank *>())
2038         OS << " " << RC.get<const RegisterBank *>()->getName();
2039       else
2040         OS << " "
2041            << TRI->getRegClassName(RC.get<const TargetRegisterClass *>());
2042       OS << ':' << PrintReg(VirtRegs[i]);
2043       for (unsigned j = i+1; j != VirtRegs.size();) {
2044         if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) {
2045           ++j;
2046           continue;
2047         }
2048         if (VirtRegs[i] != VirtRegs[j])
2049           OS << "," << PrintReg(VirtRegs[j]);
2050         VirtRegs.erase(VirtRegs.begin()+j);
2051       }
2052     }
2053   }
2054 
2055   // Print debug location information.
2056   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
2057     if (!HaveSemi)
2058       OS << ";";
2059     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
2060     OS << " line no:" <<  DV->getLine();
2061     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
2062       DebugLoc InlinedAtDL(InlinedAt);
2063       if (InlinedAtDL && MF) {
2064         OS << " inlined @[ ";
2065         InlinedAtDL.print(OS);
2066         OS << " ]";
2067       }
2068     }
2069     if (isIndirectDebugValue())
2070       OS << " indirect";
2071   } else if (SkipDebugLoc) {
2072     return;
2073   } else if (debugLoc && MF) {
2074     if (!HaveSemi)
2075       OS << ";";
2076     OS << " dbg:";
2077     debugLoc.print(OS);
2078   }
2079 
2080   OS << '\n';
2081 }
2082 
2083 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
2084                                      const TargetRegisterInfo *RegInfo,
2085                                      bool AddIfNotFound) {
2086   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
2087   bool hasAliases = isPhysReg &&
2088     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
2089   bool Found = false;
2090   SmallVector<unsigned,4> DeadOps;
2091   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2092     MachineOperand &MO = getOperand(i);
2093     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
2094       continue;
2095 
2096     // DEBUG_VALUE nodes do not contribute to code generation and should
2097     // always be ignored. Failure to do so may result in trying to modify
2098     // KILL flags on DEBUG_VALUE nodes.
2099     if (MO.isDebug())
2100       continue;
2101 
2102     unsigned Reg = MO.getReg();
2103     if (!Reg)
2104       continue;
2105 
2106     if (Reg == IncomingReg) {
2107       if (!Found) {
2108         if (MO.isKill())
2109           // The register is already marked kill.
2110           return true;
2111         if (isPhysReg && isRegTiedToDefOperand(i))
2112           // Two-address uses of physregs must not be marked kill.
2113           return true;
2114         MO.setIsKill();
2115         Found = true;
2116       }
2117     } else if (hasAliases && MO.isKill() &&
2118                TargetRegisterInfo::isPhysicalRegister(Reg)) {
2119       // A super-register kill already exists.
2120       if (RegInfo->isSuperRegister(IncomingReg, Reg))
2121         return true;
2122       if (RegInfo->isSubRegister(IncomingReg, Reg))
2123         DeadOps.push_back(i);
2124     }
2125   }
2126 
2127   // Trim unneeded kill operands.
2128   while (!DeadOps.empty()) {
2129     unsigned OpIdx = DeadOps.back();
2130     if (getOperand(OpIdx).isImplicit())
2131       RemoveOperand(OpIdx);
2132     else
2133       getOperand(OpIdx).setIsKill(false);
2134     DeadOps.pop_back();
2135   }
2136 
2137   // If not found, this means an alias of one of the operands is killed. Add a
2138   // new implicit operand if required.
2139   if (!Found && AddIfNotFound) {
2140     addOperand(MachineOperand::CreateReg(IncomingReg,
2141                                          false /*IsDef*/,
2142                                          true  /*IsImp*/,
2143                                          true  /*IsKill*/));
2144     return true;
2145   }
2146   return Found;
2147 }
2148 
2149 void MachineInstr::clearRegisterKills(unsigned Reg,
2150                                       const TargetRegisterInfo *RegInfo) {
2151   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
2152     RegInfo = nullptr;
2153   for (MachineOperand &MO : operands()) {
2154     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2155       continue;
2156     unsigned OpReg = MO.getReg();
2157     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
2158       MO.setIsKill(false);
2159   }
2160 }
2161 
2162 bool MachineInstr::addRegisterDead(unsigned Reg,
2163                                    const TargetRegisterInfo *RegInfo,
2164                                    bool AddIfNotFound) {
2165   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
2166   bool hasAliases = isPhysReg &&
2167     MCRegAliasIterator(Reg, RegInfo, false).isValid();
2168   bool Found = false;
2169   SmallVector<unsigned,4> DeadOps;
2170   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2171     MachineOperand &MO = getOperand(i);
2172     if (!MO.isReg() || !MO.isDef())
2173       continue;
2174     unsigned MOReg = MO.getReg();
2175     if (!MOReg)
2176       continue;
2177 
2178     if (MOReg == Reg) {
2179       MO.setIsDead();
2180       Found = true;
2181     } else if (hasAliases && MO.isDead() &&
2182                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
2183       // There exists a super-register that's marked dead.
2184       if (RegInfo->isSuperRegister(Reg, MOReg))
2185         return true;
2186       if (RegInfo->isSubRegister(Reg, MOReg))
2187         DeadOps.push_back(i);
2188     }
2189   }
2190 
2191   // Trim unneeded dead operands.
2192   while (!DeadOps.empty()) {
2193     unsigned OpIdx = DeadOps.back();
2194     if (getOperand(OpIdx).isImplicit())
2195       RemoveOperand(OpIdx);
2196     else
2197       getOperand(OpIdx).setIsDead(false);
2198     DeadOps.pop_back();
2199   }
2200 
2201   // If not found, this means an alias of one of the operands is dead. Add a
2202   // new implicit operand if required.
2203   if (Found || !AddIfNotFound)
2204     return Found;
2205 
2206   addOperand(MachineOperand::CreateReg(Reg,
2207                                        true  /*IsDef*/,
2208                                        true  /*IsImp*/,
2209                                        false /*IsKill*/,
2210                                        true  /*IsDead*/));
2211   return true;
2212 }
2213 
2214 void MachineInstr::clearRegisterDeads(unsigned Reg) {
2215   for (MachineOperand &MO : operands()) {
2216     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2217       continue;
2218     MO.setIsDead(false);
2219   }
2220 }
2221 
2222 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
2223   for (MachineOperand &MO : operands()) {
2224     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2225       continue;
2226     MO.setIsUndef(IsUndef);
2227   }
2228 }
2229 
2230 void MachineInstr::addRegisterDefined(unsigned Reg,
2231                                       const TargetRegisterInfo *RegInfo) {
2232   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
2233     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
2234     if (MO)
2235       return;
2236   } else {
2237     for (const MachineOperand &MO : operands()) {
2238       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2239           MO.getSubReg() == 0)
2240         return;
2241     }
2242   }
2243   addOperand(MachineOperand::CreateReg(Reg,
2244                                        true  /*IsDef*/,
2245                                        true  /*IsImp*/));
2246 }
2247 
2248 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
2249                                          const TargetRegisterInfo &TRI) {
2250   bool HasRegMask = false;
2251   for (MachineOperand &MO : operands()) {
2252     if (MO.isRegMask()) {
2253       HasRegMask = true;
2254       continue;
2255     }
2256     if (!MO.isReg() || !MO.isDef()) continue;
2257     unsigned Reg = MO.getReg();
2258     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
2259     // If there are no uses, including partial uses, the def is dead.
2260     if (none_of(UsedRegs,
2261                 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
2262       MO.setIsDead();
2263   }
2264 
2265   // This is a call with a register mask operand.
2266   // Mask clobbers are always dead, so add defs for the non-dead defines.
2267   if (HasRegMask)
2268     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2269          I != E; ++I)
2270       addRegisterDefined(*I, &TRI);
2271 }
2272 
2273 unsigned
2274 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2275   // Build up a buffer of hash code components.
2276   SmallVector<size_t, 8> HashComponents;
2277   HashComponents.reserve(MI->getNumOperands() + 1);
2278   HashComponents.push_back(MI->getOpcode());
2279   for (const MachineOperand &MO : MI->operands()) {
2280     if (MO.isReg() && MO.isDef() &&
2281         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2282       continue;  // Skip virtual register defs.
2283 
2284     HashComponents.push_back(hash_value(MO));
2285   }
2286   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2287 }
2288 
2289 void MachineInstr::emitError(StringRef Msg) const {
2290   // Find the source location cookie.
2291   unsigned LocCookie = 0;
2292   const MDNode *LocMD = nullptr;
2293   for (unsigned i = getNumOperands(); i != 0; --i) {
2294     if (getOperand(i-1).isMetadata() &&
2295         (LocMD = getOperand(i-1).getMetadata()) &&
2296         LocMD->getNumOperands() != 0) {
2297       if (const ConstantInt *CI =
2298               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2299         LocCookie = CI->getZExtValue();
2300         break;
2301       }
2302     }
2303   }
2304 
2305   if (const MachineBasicBlock *MBB = getParent())
2306     if (const MachineFunction *MF = MBB->getParent())
2307       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2308   report_fatal_error(Msg);
2309 }
2310 
2311 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2312                                   const MCInstrDesc &MCID, bool IsIndirect,
2313                                   unsigned Reg, unsigned Offset,
2314                                   const MDNode *Variable, const MDNode *Expr) {
2315   assert(isa<DILocalVariable>(Variable) && "not a variable");
2316   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2317   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2318          "Expected inlined-at fields to agree");
2319   if (IsIndirect)
2320     return BuildMI(MF, DL, MCID)
2321         .addReg(Reg, RegState::Debug)
2322         .addImm(Offset)
2323         .addMetadata(Variable)
2324         .addMetadata(Expr);
2325   else {
2326     assert(Offset == 0 && "A direct address cannot have an offset.");
2327     return BuildMI(MF, DL, MCID)
2328         .addReg(Reg, RegState::Debug)
2329         .addReg(0U, RegState::Debug)
2330         .addMetadata(Variable)
2331         .addMetadata(Expr);
2332   }
2333 }
2334 
2335 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2336                                   MachineBasicBlock::iterator I,
2337                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2338                                   bool IsIndirect, unsigned Reg,
2339                                   unsigned Offset, const MDNode *Variable,
2340                                   const MDNode *Expr) {
2341   assert(isa<DILocalVariable>(Variable) && "not a variable");
2342   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2343   MachineFunction &MF = *BB.getParent();
2344   MachineInstr *MI =
2345       BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr);
2346   BB.insert(I, MI);
2347   return MachineInstrBuilder(MF, MI);
2348 }
2349