1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineMemOperand.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/PseudoSourceValue.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/MC/MCInstrDesc.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 #include "llvm/Target/TargetSubtargetInfo.h" 43 using namespace llvm; 44 45 //===----------------------------------------------------------------------===// 46 // MachineOperand Implementation 47 //===----------------------------------------------------------------------===// 48 49 void MachineOperand::setReg(unsigned Reg) { 50 if (getReg() == Reg) return; // No change. 51 52 // Otherwise, we have to change the register. If this operand is embedded 53 // into a machine function, we need to update the old and new register's 54 // use/def lists. 55 if (MachineInstr *MI = getParent()) 56 if (MachineBasicBlock *MBB = MI->getParent()) 57 if (MachineFunction *MF = MBB->getParent()) { 58 MachineRegisterInfo &MRI = MF->getRegInfo(); 59 MRI.removeRegOperandFromUseList(this); 60 SmallContents.RegNo = Reg; 61 MRI.addRegOperandToUseList(this); 62 return; 63 } 64 65 // Otherwise, just change the register, no problem. :) 66 SmallContents.RegNo = Reg; 67 } 68 69 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 70 const TargetRegisterInfo &TRI) { 71 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 72 if (SubIdx && getSubReg()) 73 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 74 setReg(Reg); 75 if (SubIdx) 76 setSubReg(SubIdx); 77 } 78 79 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 80 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 81 if (getSubReg()) { 82 Reg = TRI.getSubReg(Reg, getSubReg()); 83 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 84 // That won't happen in legal code. 85 setSubReg(0); 86 } 87 setReg(Reg); 88 } 89 90 /// Change a def to a use, or a use to a def. 91 void MachineOperand::setIsDef(bool Val) { 92 assert(isReg() && "Wrong MachineOperand accessor"); 93 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 94 if (IsDef == Val) 95 return; 96 // MRI may keep uses and defs in different list positions. 97 if (MachineInstr *MI = getParent()) 98 if (MachineBasicBlock *MBB = MI->getParent()) 99 if (MachineFunction *MF = MBB->getParent()) { 100 MachineRegisterInfo &MRI = MF->getRegInfo(); 101 MRI.removeRegOperandFromUseList(this); 102 IsDef = Val; 103 MRI.addRegOperandToUseList(this); 104 return; 105 } 106 IsDef = Val; 107 } 108 109 // If this operand is currently a register operand, and if this is in a 110 // function, deregister the operand from the register's use/def list. 111 void MachineOperand::removeRegFromUses() { 112 if (!isReg() || !isOnRegUseList()) 113 return; 114 115 if (MachineInstr *MI = getParent()) { 116 if (MachineBasicBlock *MBB = MI->getParent()) { 117 if (MachineFunction *MF = MBB->getParent()) 118 MF->getRegInfo().removeRegOperandFromUseList(this); 119 } 120 } 121 } 122 123 /// ChangeToImmediate - Replace this operand with a new immediate operand of 124 /// the specified value. If an operand is known to be an immediate already, 125 /// the setImm method should be used. 126 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 127 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 128 129 removeRegFromUses(); 130 131 OpKind = MO_Immediate; 132 Contents.ImmVal = ImmVal; 133 } 134 135 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 136 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 137 138 removeRegFromUses(); 139 140 OpKind = MO_FPImmediate; 141 Contents.CFP = FPImm; 142 } 143 144 /// ChangeToRegister - Replace this operand with a new register operand of 145 /// the specified value. If an operand is known to be an register already, 146 /// the setReg method should be used. 147 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 148 bool isKill, bool isDead, bool isUndef, 149 bool isDebug) { 150 MachineRegisterInfo *RegInfo = nullptr; 151 if (MachineInstr *MI = getParent()) 152 if (MachineBasicBlock *MBB = MI->getParent()) 153 if (MachineFunction *MF = MBB->getParent()) 154 RegInfo = &MF->getRegInfo(); 155 // If this operand is already a register operand, remove it from the 156 // register's use/def lists. 157 bool WasReg = isReg(); 158 if (RegInfo && WasReg) 159 RegInfo->removeRegOperandFromUseList(this); 160 161 // Change this to a register and set the reg#. 162 OpKind = MO_Register; 163 SmallContents.RegNo = Reg; 164 SubReg_TargetFlags = 0; 165 IsDef = isDef; 166 IsImp = isImp; 167 IsKill = isKill; 168 IsDead = isDead; 169 IsUndef = isUndef; 170 IsInternalRead = false; 171 IsEarlyClobber = false; 172 IsDebug = isDebug; 173 // Ensure isOnRegUseList() returns false. 174 Contents.Reg.Prev = nullptr; 175 // Preserve the tie when the operand was already a register. 176 if (!WasReg) 177 TiedTo = 0; 178 179 // If this operand is embedded in a function, add the operand to the 180 // register's use/def list. 181 if (RegInfo) 182 RegInfo->addRegOperandToUseList(this); 183 } 184 185 /// isIdenticalTo - Return true if this operand is identical to the specified 186 /// operand. Note that this should stay in sync with the hash_value overload 187 /// below. 188 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 189 if (getType() != Other.getType() || 190 getTargetFlags() != Other.getTargetFlags()) 191 return false; 192 193 switch (getType()) { 194 case MachineOperand::MO_Register: 195 return getReg() == Other.getReg() && isDef() == Other.isDef() && 196 getSubReg() == Other.getSubReg(); 197 case MachineOperand::MO_Immediate: 198 return getImm() == Other.getImm(); 199 case MachineOperand::MO_CImmediate: 200 return getCImm() == Other.getCImm(); 201 case MachineOperand::MO_FPImmediate: 202 return getFPImm() == Other.getFPImm(); 203 case MachineOperand::MO_MachineBasicBlock: 204 return getMBB() == Other.getMBB(); 205 case MachineOperand::MO_FrameIndex: 206 return getIndex() == Other.getIndex(); 207 case MachineOperand::MO_ConstantPoolIndex: 208 case MachineOperand::MO_TargetIndex: 209 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 210 case MachineOperand::MO_JumpTableIndex: 211 return getIndex() == Other.getIndex(); 212 case MachineOperand::MO_GlobalAddress: 213 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 214 case MachineOperand::MO_ExternalSymbol: 215 return !strcmp(getSymbolName(), Other.getSymbolName()) && 216 getOffset() == Other.getOffset(); 217 case MachineOperand::MO_BlockAddress: 218 return getBlockAddress() == Other.getBlockAddress() && 219 getOffset() == Other.getOffset(); 220 case MachineOperand::MO_RegisterMask: 221 case MachineOperand::MO_RegisterLiveOut: 222 return getRegMask() == Other.getRegMask(); 223 case MachineOperand::MO_MCSymbol: 224 return getMCSymbol() == Other.getMCSymbol(); 225 case MachineOperand::MO_CFIIndex: 226 return getCFIIndex() == Other.getCFIIndex(); 227 case MachineOperand::MO_Metadata: 228 return getMetadata() == Other.getMetadata(); 229 } 230 llvm_unreachable("Invalid machine operand type"); 231 } 232 233 // Note: this must stay exactly in sync with isIdenticalTo above. 234 hash_code llvm::hash_value(const MachineOperand &MO) { 235 switch (MO.getType()) { 236 case MachineOperand::MO_Register: 237 // Register operands don't have target flags. 238 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 239 case MachineOperand::MO_Immediate: 240 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 241 case MachineOperand::MO_CImmediate: 242 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 243 case MachineOperand::MO_FPImmediate: 244 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 245 case MachineOperand::MO_MachineBasicBlock: 246 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 247 case MachineOperand::MO_FrameIndex: 248 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 249 case MachineOperand::MO_ConstantPoolIndex: 250 case MachineOperand::MO_TargetIndex: 251 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 252 MO.getOffset()); 253 case MachineOperand::MO_JumpTableIndex: 254 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 255 case MachineOperand::MO_ExternalSymbol: 256 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 257 MO.getSymbolName()); 258 case MachineOperand::MO_GlobalAddress: 259 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 260 MO.getOffset()); 261 case MachineOperand::MO_BlockAddress: 262 return hash_combine(MO.getType(), MO.getTargetFlags(), 263 MO.getBlockAddress(), MO.getOffset()); 264 case MachineOperand::MO_RegisterMask: 265 case MachineOperand::MO_RegisterLiveOut: 266 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 267 case MachineOperand::MO_Metadata: 268 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 269 case MachineOperand::MO_MCSymbol: 270 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 271 case MachineOperand::MO_CFIIndex: 272 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 273 } 274 llvm_unreachable("Invalid machine operand type"); 275 } 276 277 /// print - Print the specified machine operand. 278 /// 279 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 280 // If the instruction is embedded into a basic block, we can find the 281 // target info for the instruction. 282 if (!TM) 283 if (const MachineInstr *MI = getParent()) 284 if (const MachineBasicBlock *MBB = MI->getParent()) 285 if (const MachineFunction *MF = MBB->getParent()) 286 TM = &MF->getTarget(); 287 const TargetRegisterInfo *TRI = 288 TM ? TM->getSubtargetImpl()->getRegisterInfo() : nullptr; 289 290 switch (getType()) { 291 case MachineOperand::MO_Register: 292 OS << PrintReg(getReg(), TRI, getSubReg()); 293 294 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 295 isInternalRead() || isEarlyClobber() || isTied()) { 296 OS << '<'; 297 bool NeedComma = false; 298 if (isDef()) { 299 if (NeedComma) OS << ','; 300 if (isEarlyClobber()) 301 OS << "earlyclobber,"; 302 if (isImplicit()) 303 OS << "imp-"; 304 OS << "def"; 305 NeedComma = true; 306 // <def,read-undef> only makes sense when getSubReg() is set. 307 // Don't clutter the output otherwise. 308 if (isUndef() && getSubReg()) 309 OS << ",read-undef"; 310 } else if (isImplicit()) { 311 OS << "imp-use"; 312 NeedComma = true; 313 } 314 315 if (isKill()) { 316 if (NeedComma) OS << ','; 317 OS << "kill"; 318 NeedComma = true; 319 } 320 if (isDead()) { 321 if (NeedComma) OS << ','; 322 OS << "dead"; 323 NeedComma = true; 324 } 325 if (isUndef() && isUse()) { 326 if (NeedComma) OS << ','; 327 OS << "undef"; 328 NeedComma = true; 329 } 330 if (isInternalRead()) { 331 if (NeedComma) OS << ','; 332 OS << "internal"; 333 NeedComma = true; 334 } 335 if (isTied()) { 336 if (NeedComma) OS << ','; 337 OS << "tied"; 338 if (TiedTo != 15) 339 OS << unsigned(TiedTo - 1); 340 } 341 OS << '>'; 342 } 343 break; 344 case MachineOperand::MO_Immediate: 345 OS << getImm(); 346 break; 347 case MachineOperand::MO_CImmediate: 348 getCImm()->getValue().print(OS, false); 349 break; 350 case MachineOperand::MO_FPImmediate: 351 if (getFPImm()->getType()->isFloatTy()) 352 OS << getFPImm()->getValueAPF().convertToFloat(); 353 else 354 OS << getFPImm()->getValueAPF().convertToDouble(); 355 break; 356 case MachineOperand::MO_MachineBasicBlock: 357 OS << "<BB#" << getMBB()->getNumber() << ">"; 358 break; 359 case MachineOperand::MO_FrameIndex: 360 OS << "<fi#" << getIndex() << '>'; 361 break; 362 case MachineOperand::MO_ConstantPoolIndex: 363 OS << "<cp#" << getIndex(); 364 if (getOffset()) OS << "+" << getOffset(); 365 OS << '>'; 366 break; 367 case MachineOperand::MO_TargetIndex: 368 OS << "<ti#" << getIndex(); 369 if (getOffset()) OS << "+" << getOffset(); 370 OS << '>'; 371 break; 372 case MachineOperand::MO_JumpTableIndex: 373 OS << "<jt#" << getIndex() << '>'; 374 break; 375 case MachineOperand::MO_GlobalAddress: 376 OS << "<ga:"; 377 getGlobal()->printAsOperand(OS, /*PrintType=*/false); 378 if (getOffset()) OS << "+" << getOffset(); 379 OS << '>'; 380 break; 381 case MachineOperand::MO_ExternalSymbol: 382 OS << "<es:" << getSymbolName(); 383 if (getOffset()) OS << "+" << getOffset(); 384 OS << '>'; 385 break; 386 case MachineOperand::MO_BlockAddress: 387 OS << '<'; 388 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false); 389 if (getOffset()) OS << "+" << getOffset(); 390 OS << '>'; 391 break; 392 case MachineOperand::MO_RegisterMask: 393 OS << "<regmask>"; 394 break; 395 case MachineOperand::MO_RegisterLiveOut: 396 OS << "<regliveout>"; 397 break; 398 case MachineOperand::MO_Metadata: 399 OS << '<'; 400 getMetadata()->printAsOperand(OS, /*PrintType=*/false); 401 OS << '>'; 402 break; 403 case MachineOperand::MO_MCSymbol: 404 OS << "<MCSym=" << *getMCSymbol() << '>'; 405 break; 406 case MachineOperand::MO_CFIIndex: 407 OS << "<call frame instruction>"; 408 break; 409 } 410 411 if (unsigned TF = getTargetFlags()) 412 OS << "[TF=" << TF << ']'; 413 } 414 415 //===----------------------------------------------------------------------===// 416 // MachineMemOperand Implementation 417 //===----------------------------------------------------------------------===// 418 419 /// getAddrSpace - Return the LLVM IR address space number that this pointer 420 /// points into. 421 unsigned MachinePointerInfo::getAddrSpace() const { 422 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 423 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 424 } 425 426 /// getConstantPool - Return a MachinePointerInfo record that refers to the 427 /// constant pool. 428 MachinePointerInfo MachinePointerInfo::getConstantPool() { 429 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 430 } 431 432 /// getFixedStack - Return a MachinePointerInfo record that refers to the 433 /// the specified FrameIndex. 434 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 435 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 436 } 437 438 MachinePointerInfo MachinePointerInfo::getJumpTable() { 439 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 440 } 441 442 MachinePointerInfo MachinePointerInfo::getGOT() { 443 return MachinePointerInfo(PseudoSourceValue::getGOT()); 444 } 445 446 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 447 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 448 } 449 450 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 451 uint64_t s, unsigned int a, 452 const AAMDNodes &AAInfo, 453 const MDNode *Ranges) 454 : PtrInfo(ptrinfo), Size(s), 455 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 456 AAInfo(AAInfo), Ranges(Ranges) { 457 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 458 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 459 "invalid pointer value"); 460 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 461 assert((isLoad() || isStore()) && "Not a load/store!"); 462 } 463 464 /// Profile - Gather unique data for the object. 465 /// 466 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 467 ID.AddInteger(getOffset()); 468 ID.AddInteger(Size); 469 ID.AddPointer(getOpaqueValue()); 470 ID.AddInteger(Flags); 471 } 472 473 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 474 // The Value and Offset may differ due to CSE. But the flags and size 475 // should be the same. 476 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 477 assert(MMO->getSize() == getSize() && "Size mismatch!"); 478 479 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 480 // Update the alignment value. 481 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 482 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 483 // Also update the base and offset, because the new alignment may 484 // not be applicable with the old ones. 485 PtrInfo = MMO->PtrInfo; 486 } 487 } 488 489 /// getAlignment - Return the minimum known alignment in bytes of the 490 /// actual memory reference. 491 uint64_t MachineMemOperand::getAlignment() const { 492 return MinAlign(getBaseAlignment(), getOffset()); 493 } 494 495 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 496 assert((MMO.isLoad() || MMO.isStore()) && 497 "SV has to be a load, store or both."); 498 499 if (MMO.isVolatile()) 500 OS << "Volatile "; 501 502 if (MMO.isLoad()) 503 OS << "LD"; 504 if (MMO.isStore()) 505 OS << "ST"; 506 OS << MMO.getSize(); 507 508 // Print the address information. 509 OS << "["; 510 if (const Value *V = MMO.getValue()) 511 V->printAsOperand(OS, /*PrintType=*/false); 512 else if (const PseudoSourceValue *PSV = MMO.getPseudoValue()) 513 PSV->printCustom(OS); 514 else 515 OS << "<unknown>"; 516 517 unsigned AS = MMO.getAddrSpace(); 518 if (AS != 0) 519 OS << "(addrspace=" << AS << ')'; 520 521 // If the alignment of the memory reference itself differs from the alignment 522 // of the base pointer, print the base alignment explicitly, next to the base 523 // pointer. 524 if (MMO.getBaseAlignment() != MMO.getAlignment()) 525 OS << "(align=" << MMO.getBaseAlignment() << ")"; 526 527 if (MMO.getOffset() != 0) 528 OS << "+" << MMO.getOffset(); 529 OS << "]"; 530 531 // Print the alignment of the reference. 532 if (MMO.getBaseAlignment() != MMO.getAlignment() || 533 MMO.getBaseAlignment() != MMO.getSize()) 534 OS << "(align=" << MMO.getAlignment() << ")"; 535 536 // Print TBAA info. 537 if (const MDNode *TBAAInfo = MMO.getAAInfo().TBAA) { 538 OS << "(tbaa="; 539 if (TBAAInfo->getNumOperands() > 0) 540 TBAAInfo->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 541 else 542 OS << "<unknown>"; 543 OS << ")"; 544 } 545 546 // Print AA scope info. 547 if (const MDNode *ScopeInfo = MMO.getAAInfo().Scope) { 548 OS << "(alias.scope="; 549 if (ScopeInfo->getNumOperands() > 0) 550 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 551 ScopeInfo->getOperand(i)->printAsOperand(OS, /*PrintType=*/false); 552 if (i != ie-1) 553 OS << ","; 554 } 555 else 556 OS << "<unknown>"; 557 OS << ")"; 558 } 559 560 // Print AA noalias scope info. 561 if (const MDNode *NoAliasInfo = MMO.getAAInfo().NoAlias) { 562 OS << "(noalias="; 563 if (NoAliasInfo->getNumOperands() > 0) 564 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 565 NoAliasInfo->getOperand(i)->printAsOperand(OS, /*PrintType=*/false); 566 if (i != ie-1) 567 OS << ","; 568 } 569 else 570 OS << "<unknown>"; 571 OS << ")"; 572 } 573 574 // Print nontemporal info. 575 if (MMO.isNonTemporal()) 576 OS << "(nontemporal)"; 577 578 return OS; 579 } 580 581 //===----------------------------------------------------------------------===// 582 // MachineInstr Implementation 583 //===----------------------------------------------------------------------===// 584 585 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 586 if (MCID->ImplicitDefs) 587 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 588 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 589 if (MCID->ImplicitUses) 590 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 591 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 592 } 593 594 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 595 /// implicit operands. It reserves space for the number of operands specified by 596 /// the MCInstrDesc. 597 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 598 const DebugLoc dl, bool NoImp) 599 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), 600 Flags(0), AsmPrinterFlags(0), 601 NumMemRefs(0), MemRefs(nullptr), debugLoc(dl) { 602 // Reserve space for the expected number of operands. 603 if (unsigned NumOps = MCID->getNumOperands() + 604 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 605 CapOperands = OperandCapacity::get(NumOps); 606 Operands = MF.allocateOperandArray(CapOperands); 607 } 608 609 if (!NoImp) 610 addImplicitDefUseOperands(MF); 611 } 612 613 /// MachineInstr ctor - Copies MachineInstr arg exactly 614 /// 615 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 616 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 617 Flags(0), AsmPrinterFlags(0), 618 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 619 debugLoc(MI.getDebugLoc()) { 620 CapOperands = OperandCapacity::get(MI.getNumOperands()); 621 Operands = MF.allocateOperandArray(CapOperands); 622 623 // Copy operands. 624 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 625 addOperand(MF, MI.getOperand(i)); 626 627 // Copy all the sensible flags. 628 setFlags(MI.Flags); 629 } 630 631 /// getRegInfo - If this instruction is embedded into a MachineFunction, 632 /// return the MachineRegisterInfo object for the current function, otherwise 633 /// return null. 634 MachineRegisterInfo *MachineInstr::getRegInfo() { 635 if (MachineBasicBlock *MBB = getParent()) 636 return &MBB->getParent()->getRegInfo(); 637 return nullptr; 638 } 639 640 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 641 /// this instruction from their respective use lists. This requires that the 642 /// operands already be on their use lists. 643 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 644 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 645 if (Operands[i].isReg()) 646 MRI.removeRegOperandFromUseList(&Operands[i]); 647 } 648 649 /// AddRegOperandsToUseLists - Add all of the register operands in 650 /// this instruction from their respective use lists. This requires that the 651 /// operands not be on their use lists yet. 652 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 653 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 654 if (Operands[i].isReg()) 655 MRI.addRegOperandToUseList(&Operands[i]); 656 } 657 658 void MachineInstr::addOperand(const MachineOperand &Op) { 659 MachineBasicBlock *MBB = getParent(); 660 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 661 MachineFunction *MF = MBB->getParent(); 662 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 663 addOperand(*MF, Op); 664 } 665 666 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 667 /// ranges. If MRI is non-null also update use-def chains. 668 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 669 unsigned NumOps, MachineRegisterInfo *MRI) { 670 if (MRI) 671 return MRI->moveOperands(Dst, Src, NumOps); 672 673 // Here it would be convenient to call memmove, so that isn't allowed because 674 // MachineOperand has a constructor and so isn't a POD type. 675 if (Dst < Src) 676 for (unsigned i = 0; i != NumOps; ++i) 677 new (Dst + i) MachineOperand(Src[i]); 678 else 679 for (unsigned i = NumOps; i ; --i) 680 new (Dst + i - 1) MachineOperand(Src[i - 1]); 681 } 682 683 /// addOperand - Add the specified operand to the instruction. If it is an 684 /// implicit operand, it is added to the end of the operand list. If it is 685 /// an explicit operand it is added at the end of the explicit operand list 686 /// (before the first implicit operand). 687 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 688 assert(MCID && "Cannot add operands before providing an instr descriptor"); 689 690 // Check if we're adding one of our existing operands. 691 if (&Op >= Operands && &Op < Operands + NumOperands) { 692 // This is unusual: MI->addOperand(MI->getOperand(i)). 693 // If adding Op requires reallocating or moving existing operands around, 694 // the Op reference could go stale. Support it by copying Op. 695 MachineOperand CopyOp(Op); 696 return addOperand(MF, CopyOp); 697 } 698 699 // Find the insert location for the new operand. Implicit registers go at 700 // the end, everything else goes before the implicit regs. 701 // 702 // FIXME: Allow mixed explicit and implicit operands on inline asm. 703 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 704 // implicit-defs, but they must not be moved around. See the FIXME in 705 // InstrEmitter.cpp. 706 unsigned OpNo = getNumOperands(); 707 bool isImpReg = Op.isReg() && Op.isImplicit(); 708 if (!isImpReg && !isInlineAsm()) { 709 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 710 --OpNo; 711 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 712 } 713 } 714 715 #ifndef NDEBUG 716 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 717 // OpNo now points as the desired insertion point. Unless this is a variadic 718 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 719 // RegMask operands go between the explicit and implicit operands. 720 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 721 OpNo < MCID->getNumOperands() || isMetaDataOp) && 722 "Trying to add an operand to a machine instr that is already done!"); 723 #endif 724 725 MachineRegisterInfo *MRI = getRegInfo(); 726 727 // Determine if the Operands array needs to be reallocated. 728 // Save the old capacity and operand array. 729 OperandCapacity OldCap = CapOperands; 730 MachineOperand *OldOperands = Operands; 731 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 732 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 733 Operands = MF.allocateOperandArray(CapOperands); 734 // Move the operands before the insertion point. 735 if (OpNo) 736 moveOperands(Operands, OldOperands, OpNo, MRI); 737 } 738 739 // Move the operands following the insertion point. 740 if (OpNo != NumOperands) 741 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 742 MRI); 743 ++NumOperands; 744 745 // Deallocate the old operand array. 746 if (OldOperands != Operands && OldOperands) 747 MF.deallocateOperandArray(OldCap, OldOperands); 748 749 // Copy Op into place. It still needs to be inserted into the MRI use lists. 750 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 751 NewMO->ParentMI = this; 752 753 // When adding a register operand, tell MRI about it. 754 if (NewMO->isReg()) { 755 // Ensure isOnRegUseList() returns false, regardless of Op's status. 756 NewMO->Contents.Reg.Prev = nullptr; 757 // Ignore existing ties. This is not a property that can be copied. 758 NewMO->TiedTo = 0; 759 // Add the new operand to MRI, but only for instructions in an MBB. 760 if (MRI) 761 MRI->addRegOperandToUseList(NewMO); 762 // The MCID operand information isn't accurate until we start adding 763 // explicit operands. The implicit operands are added first, then the 764 // explicits are inserted before them. 765 if (!isImpReg) { 766 // Tie uses to defs as indicated in MCInstrDesc. 767 if (NewMO->isUse()) { 768 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 769 if (DefIdx != -1) 770 tieOperands(DefIdx, OpNo); 771 } 772 // If the register operand is flagged as early, mark the operand as such. 773 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 774 NewMO->setIsEarlyClobber(true); 775 } 776 } 777 } 778 779 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 780 /// fewer operand than it started with. 781 /// 782 void MachineInstr::RemoveOperand(unsigned OpNo) { 783 assert(OpNo < getNumOperands() && "Invalid operand number"); 784 untieRegOperand(OpNo); 785 786 #ifndef NDEBUG 787 // Moving tied operands would break the ties. 788 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 789 if (Operands[i].isReg()) 790 assert(!Operands[i].isTied() && "Cannot move tied operands"); 791 #endif 792 793 MachineRegisterInfo *MRI = getRegInfo(); 794 if (MRI && Operands[OpNo].isReg()) 795 MRI->removeRegOperandFromUseList(Operands + OpNo); 796 797 // Don't call the MachineOperand destructor. A lot of this code depends on 798 // MachineOperand having a trivial destructor anyway, and adding a call here 799 // wouldn't make it 'destructor-correct'. 800 801 if (unsigned N = NumOperands - 1 - OpNo) 802 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 803 --NumOperands; 804 } 805 806 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 807 /// This function should be used only occasionally. The setMemRefs function 808 /// is the primary method for setting up a MachineInstr's MemRefs list. 809 void MachineInstr::addMemOperand(MachineFunction &MF, 810 MachineMemOperand *MO) { 811 mmo_iterator OldMemRefs = MemRefs; 812 unsigned OldNumMemRefs = NumMemRefs; 813 814 unsigned NewNum = NumMemRefs + 1; 815 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 816 817 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 818 NewMemRefs[NewNum - 1] = MO; 819 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 820 } 821 822 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 823 assert(!isBundledWithPred() && "Must be called on bundle header"); 824 for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) { 825 if (MII->getDesc().getFlags() & Mask) { 826 if (Type == AnyInBundle) 827 return true; 828 } else { 829 if (Type == AllInBundle && !MII->isBundle()) 830 return false; 831 } 832 // This was the last instruction in the bundle. 833 if (!MII->isBundledWithSucc()) 834 return Type == AllInBundle; 835 } 836 } 837 838 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 839 MICheckType Check) const { 840 // If opcodes or number of operands are not the same then the two 841 // instructions are obviously not identical. 842 if (Other->getOpcode() != getOpcode() || 843 Other->getNumOperands() != getNumOperands()) 844 return false; 845 846 if (isBundle()) { 847 // Both instructions are bundles, compare MIs inside the bundle. 848 MachineBasicBlock::const_instr_iterator I1 = *this; 849 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 850 MachineBasicBlock::const_instr_iterator I2 = *Other; 851 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 852 while (++I1 != E1 && I1->isInsideBundle()) { 853 ++I2; 854 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 855 return false; 856 } 857 } 858 859 // Check operands to make sure they match. 860 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 861 const MachineOperand &MO = getOperand(i); 862 const MachineOperand &OMO = Other->getOperand(i); 863 if (!MO.isReg()) { 864 if (!MO.isIdenticalTo(OMO)) 865 return false; 866 continue; 867 } 868 869 // Clients may or may not want to ignore defs when testing for equality. 870 // For example, machine CSE pass only cares about finding common 871 // subexpressions, so it's safe to ignore virtual register defs. 872 if (MO.isDef()) { 873 if (Check == IgnoreDefs) 874 continue; 875 else if (Check == IgnoreVRegDefs) { 876 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 877 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 878 if (MO.getReg() != OMO.getReg()) 879 return false; 880 } else { 881 if (!MO.isIdenticalTo(OMO)) 882 return false; 883 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 884 return false; 885 } 886 } else { 887 if (!MO.isIdenticalTo(OMO)) 888 return false; 889 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 890 return false; 891 } 892 } 893 // If DebugLoc does not match then two dbg.values are not identical. 894 if (isDebugValue()) 895 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 896 && getDebugLoc() != Other->getDebugLoc()) 897 return false; 898 return true; 899 } 900 901 MachineInstr *MachineInstr::removeFromParent() { 902 assert(getParent() && "Not embedded in a basic block!"); 903 return getParent()->remove(this); 904 } 905 906 MachineInstr *MachineInstr::removeFromBundle() { 907 assert(getParent() && "Not embedded in a basic block!"); 908 return getParent()->remove_instr(this); 909 } 910 911 void MachineInstr::eraseFromParent() { 912 assert(getParent() && "Not embedded in a basic block!"); 913 getParent()->erase(this); 914 } 915 916 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 917 assert(getParent() && "Not embedded in a basic block!"); 918 MachineBasicBlock *MBB = getParent(); 919 MachineFunction *MF = MBB->getParent(); 920 assert(MF && "Not embedded in a function!"); 921 922 MachineInstr *MI = (MachineInstr *)this; 923 MachineRegisterInfo &MRI = MF->getRegInfo(); 924 925 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 926 const MachineOperand &MO = MI->getOperand(i); 927 if (!MO.isReg() || !MO.isDef()) 928 continue; 929 unsigned Reg = MO.getReg(); 930 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 931 continue; 932 MRI.markUsesInDebugValueAsUndef(Reg); 933 } 934 MI->eraseFromParent(); 935 } 936 937 void MachineInstr::eraseFromBundle() { 938 assert(getParent() && "Not embedded in a basic block!"); 939 getParent()->erase_instr(this); 940 } 941 942 /// getNumExplicitOperands - Returns the number of non-implicit operands. 943 /// 944 unsigned MachineInstr::getNumExplicitOperands() const { 945 unsigned NumOperands = MCID->getNumOperands(); 946 if (!MCID->isVariadic()) 947 return NumOperands; 948 949 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 950 const MachineOperand &MO = getOperand(i); 951 if (!MO.isReg() || !MO.isImplicit()) 952 NumOperands++; 953 } 954 return NumOperands; 955 } 956 957 void MachineInstr::bundleWithPred() { 958 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 959 setFlag(BundledPred); 960 MachineBasicBlock::instr_iterator Pred = this; 961 --Pred; 962 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 963 Pred->setFlag(BundledSucc); 964 } 965 966 void MachineInstr::bundleWithSucc() { 967 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 968 setFlag(BundledSucc); 969 MachineBasicBlock::instr_iterator Succ = this; 970 ++Succ; 971 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 972 Succ->setFlag(BundledPred); 973 } 974 975 void MachineInstr::unbundleFromPred() { 976 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 977 clearFlag(BundledPred); 978 MachineBasicBlock::instr_iterator Pred = this; 979 --Pred; 980 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 981 Pred->clearFlag(BundledSucc); 982 } 983 984 void MachineInstr::unbundleFromSucc() { 985 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 986 clearFlag(BundledSucc); 987 MachineBasicBlock::instr_iterator Succ = this; 988 ++Succ; 989 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 990 Succ->clearFlag(BundledPred); 991 } 992 993 bool MachineInstr::isStackAligningInlineAsm() const { 994 if (isInlineAsm()) { 995 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 996 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 997 return true; 998 } 999 return false; 1000 } 1001 1002 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1003 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1004 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1005 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1006 } 1007 1008 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1009 unsigned *GroupNo) const { 1010 assert(isInlineAsm() && "Expected an inline asm instruction"); 1011 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1012 1013 // Ignore queries about the initial operands. 1014 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1015 return -1; 1016 1017 unsigned Group = 0; 1018 unsigned NumOps; 1019 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1020 i += NumOps) { 1021 const MachineOperand &FlagMO = getOperand(i); 1022 // If we reach the implicit register operands, stop looking. 1023 if (!FlagMO.isImm()) 1024 return -1; 1025 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1026 if (i + NumOps > OpIdx) { 1027 if (GroupNo) 1028 *GroupNo = Group; 1029 return i; 1030 } 1031 ++Group; 1032 } 1033 return -1; 1034 } 1035 1036 const TargetRegisterClass* 1037 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1038 const TargetInstrInfo *TII, 1039 const TargetRegisterInfo *TRI) const { 1040 assert(getParent() && "Can't have an MBB reference here!"); 1041 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1042 const MachineFunction &MF = *getParent()->getParent(); 1043 1044 // Most opcodes have fixed constraints in their MCInstrDesc. 1045 if (!isInlineAsm()) 1046 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1047 1048 if (!getOperand(OpIdx).isReg()) 1049 return nullptr; 1050 1051 // For tied uses on inline asm, get the constraint from the def. 1052 unsigned DefIdx; 1053 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1054 OpIdx = DefIdx; 1055 1056 // Inline asm stores register class constraints in the flag word. 1057 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1058 if (FlagIdx < 0) 1059 return nullptr; 1060 1061 unsigned Flag = getOperand(FlagIdx).getImm(); 1062 unsigned RCID; 1063 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 1064 return TRI->getRegClass(RCID); 1065 1066 // Assume that all registers in a memory operand are pointers. 1067 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1068 return TRI->getPointerRegClass(MF); 1069 1070 return nullptr; 1071 } 1072 1073 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1074 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1075 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1076 // Check every operands inside the bundle if we have 1077 // been asked to. 1078 if (ExploreBundle) 1079 for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC; 1080 ++OpndIt) 1081 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1082 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1083 else 1084 // Otherwise, just check the current operands. 1085 for (ConstMIOperands OpndIt(this); OpndIt.isValid() && CurRC; ++OpndIt) 1086 CurRC = getRegClassConstraintEffectForVRegImpl(OpndIt.getOperandNo(), Reg, 1087 CurRC, TII, TRI); 1088 return CurRC; 1089 } 1090 1091 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1092 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1093 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1094 assert(CurRC && "Invalid initial register class"); 1095 // Check if Reg is constrained by some of its use/def from MI. 1096 const MachineOperand &MO = getOperand(OpIdx); 1097 if (!MO.isReg() || MO.getReg() != Reg) 1098 return CurRC; 1099 // If yes, accumulate the constraints through the operand. 1100 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1101 } 1102 1103 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1104 unsigned OpIdx, const TargetRegisterClass *CurRC, 1105 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1106 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1107 const MachineOperand &MO = getOperand(OpIdx); 1108 assert(MO.isReg() && 1109 "Cannot get register constraints for non-register operand"); 1110 assert(CurRC && "Invalid initial register class"); 1111 if (unsigned SubIdx = MO.getSubReg()) { 1112 if (OpRC) 1113 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1114 else 1115 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1116 } else if (OpRC) 1117 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1118 return CurRC; 1119 } 1120 1121 /// Return the number of instructions inside the MI bundle, not counting the 1122 /// header instruction. 1123 unsigned MachineInstr::getBundleSize() const { 1124 MachineBasicBlock::const_instr_iterator I = this; 1125 unsigned Size = 0; 1126 while (I->isBundledWithSucc()) 1127 ++Size, ++I; 1128 return Size; 1129 } 1130 1131 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1132 /// the specific register or -1 if it is not found. It further tightens 1133 /// the search criteria to a use that kills the register if isKill is true. 1134 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1135 const TargetRegisterInfo *TRI) const { 1136 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1137 const MachineOperand &MO = getOperand(i); 1138 if (!MO.isReg() || !MO.isUse()) 1139 continue; 1140 unsigned MOReg = MO.getReg(); 1141 if (!MOReg) 1142 continue; 1143 if (MOReg == Reg || 1144 (TRI && 1145 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1146 TargetRegisterInfo::isPhysicalRegister(Reg) && 1147 TRI->isSubRegister(MOReg, Reg))) 1148 if (!isKill || MO.isKill()) 1149 return i; 1150 } 1151 return -1; 1152 } 1153 1154 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1155 /// indicating if this instruction reads or writes Reg. This also considers 1156 /// partial defines. 1157 std::pair<bool,bool> 1158 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1159 SmallVectorImpl<unsigned> *Ops) const { 1160 bool PartDef = false; // Partial redefine. 1161 bool FullDef = false; // Full define. 1162 bool Use = false; 1163 1164 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1165 const MachineOperand &MO = getOperand(i); 1166 if (!MO.isReg() || MO.getReg() != Reg) 1167 continue; 1168 if (Ops) 1169 Ops->push_back(i); 1170 if (MO.isUse()) 1171 Use |= !MO.isUndef(); 1172 else if (MO.getSubReg() && !MO.isUndef()) 1173 // A partial <def,undef> doesn't count as reading the register. 1174 PartDef = true; 1175 else 1176 FullDef = true; 1177 } 1178 // A partial redefine uses Reg unless there is also a full define. 1179 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1180 } 1181 1182 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1183 /// the specified register or -1 if it is not found. If isDead is true, defs 1184 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1185 /// also checks if there is a def of a super-register. 1186 int 1187 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1188 const TargetRegisterInfo *TRI) const { 1189 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1190 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1191 const MachineOperand &MO = getOperand(i); 1192 // Accept regmask operands when Overlap is set. 1193 // Ignore them when looking for a specific def operand (Overlap == false). 1194 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1195 return i; 1196 if (!MO.isReg() || !MO.isDef()) 1197 continue; 1198 unsigned MOReg = MO.getReg(); 1199 bool Found = (MOReg == Reg); 1200 if (!Found && TRI && isPhys && 1201 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1202 if (Overlap) 1203 Found = TRI->regsOverlap(MOReg, Reg); 1204 else 1205 Found = TRI->isSubRegister(MOReg, Reg); 1206 } 1207 if (Found && (!isDead || MO.isDead())) 1208 return i; 1209 } 1210 return -1; 1211 } 1212 1213 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1214 /// operand list that is used to represent the predicate. It returns -1 if 1215 /// none is found. 1216 int MachineInstr::findFirstPredOperandIdx() const { 1217 // Don't call MCID.findFirstPredOperandIdx() because this variant 1218 // is sometimes called on an instruction that's not yet complete, and 1219 // so the number of operands is less than the MCID indicates. In 1220 // particular, the PTX target does this. 1221 const MCInstrDesc &MCID = getDesc(); 1222 if (MCID.isPredicable()) { 1223 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1224 if (MCID.OpInfo[i].isPredicate()) 1225 return i; 1226 } 1227 1228 return -1; 1229 } 1230 1231 // MachineOperand::TiedTo is 4 bits wide. 1232 const unsigned TiedMax = 15; 1233 1234 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1235 /// 1236 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1237 /// field. TiedTo can have these values: 1238 /// 1239 /// 0: Operand is not tied to anything. 1240 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1241 /// TiedMax: Tied to an operand >= TiedMax-1. 1242 /// 1243 /// The tied def must be one of the first TiedMax operands on a normal 1244 /// instruction. INLINEASM instructions allow more tied defs. 1245 /// 1246 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1247 MachineOperand &DefMO = getOperand(DefIdx); 1248 MachineOperand &UseMO = getOperand(UseIdx); 1249 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1250 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1251 assert(!DefMO.isTied() && "Def is already tied to another use"); 1252 assert(!UseMO.isTied() && "Use is already tied to another def"); 1253 1254 if (DefIdx < TiedMax) 1255 UseMO.TiedTo = DefIdx + 1; 1256 else { 1257 // Inline asm can use the group descriptors to find tied operands, but on 1258 // normal instruction, the tied def must be within the first TiedMax 1259 // operands. 1260 assert(isInlineAsm() && "DefIdx out of range"); 1261 UseMO.TiedTo = TiedMax; 1262 } 1263 1264 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1265 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1266 } 1267 1268 /// Given the index of a tied register operand, find the operand it is tied to. 1269 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1270 /// which must exist. 1271 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1272 const MachineOperand &MO = getOperand(OpIdx); 1273 assert(MO.isTied() && "Operand isn't tied"); 1274 1275 // Normally TiedTo is in range. 1276 if (MO.TiedTo < TiedMax) 1277 return MO.TiedTo - 1; 1278 1279 // Uses on normal instructions can be out of range. 1280 if (!isInlineAsm()) { 1281 // Normal tied defs must be in the 0..TiedMax-1 range. 1282 if (MO.isUse()) 1283 return TiedMax - 1; 1284 // MO is a def. Search for the tied use. 1285 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1286 const MachineOperand &UseMO = getOperand(i); 1287 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1288 return i; 1289 } 1290 llvm_unreachable("Can't find tied use"); 1291 } 1292 1293 // Now deal with inline asm by parsing the operand group descriptor flags. 1294 // Find the beginning of each operand group. 1295 SmallVector<unsigned, 8> GroupIdx; 1296 unsigned OpIdxGroup = ~0u; 1297 unsigned NumOps; 1298 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1299 i += NumOps) { 1300 const MachineOperand &FlagMO = getOperand(i); 1301 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1302 unsigned CurGroup = GroupIdx.size(); 1303 GroupIdx.push_back(i); 1304 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1305 // OpIdx belongs to this operand group. 1306 if (OpIdx > i && OpIdx < i + NumOps) 1307 OpIdxGroup = CurGroup; 1308 unsigned TiedGroup; 1309 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1310 continue; 1311 // Operands in this group are tied to operands in TiedGroup which must be 1312 // earlier. Find the number of operands between the two groups. 1313 unsigned Delta = i - GroupIdx[TiedGroup]; 1314 1315 // OpIdx is a use tied to TiedGroup. 1316 if (OpIdxGroup == CurGroup) 1317 return OpIdx - Delta; 1318 1319 // OpIdx is a def tied to this use group. 1320 if (OpIdxGroup == TiedGroup) 1321 return OpIdx + Delta; 1322 } 1323 llvm_unreachable("Invalid tied operand on inline asm"); 1324 } 1325 1326 /// clearKillInfo - Clears kill flags on all operands. 1327 /// 1328 void MachineInstr::clearKillInfo() { 1329 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1330 MachineOperand &MO = getOperand(i); 1331 if (MO.isReg() && MO.isUse()) 1332 MO.setIsKill(false); 1333 } 1334 } 1335 1336 void MachineInstr::substituteRegister(unsigned FromReg, 1337 unsigned ToReg, 1338 unsigned SubIdx, 1339 const TargetRegisterInfo &RegInfo) { 1340 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1341 if (SubIdx) 1342 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1343 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1344 MachineOperand &MO = getOperand(i); 1345 if (!MO.isReg() || MO.getReg() != FromReg) 1346 continue; 1347 MO.substPhysReg(ToReg, RegInfo); 1348 } 1349 } else { 1350 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1351 MachineOperand &MO = getOperand(i); 1352 if (!MO.isReg() || MO.getReg() != FromReg) 1353 continue; 1354 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1355 } 1356 } 1357 } 1358 1359 /// isSafeToMove - Return true if it is safe to move this instruction. If 1360 /// SawStore is set to true, it means that there is a store (or call) between 1361 /// the instruction's location and its intended destination. 1362 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1363 AliasAnalysis *AA, 1364 bool &SawStore) const { 1365 // Ignore stuff that we obviously can't move. 1366 // 1367 // Treat volatile loads as stores. This is not strictly necessary for 1368 // volatiles, but it is required for atomic loads. It is not allowed to move 1369 // a load across an atomic load with Ordering > Monotonic. 1370 if (mayStore() || isCall() || 1371 (mayLoad() && hasOrderedMemoryRef())) { 1372 SawStore = true; 1373 return false; 1374 } 1375 1376 if (isPosition() || isDebugValue() || isTerminator() || 1377 hasUnmodeledSideEffects()) 1378 return false; 1379 1380 // See if this instruction does a load. If so, we have to guarantee that the 1381 // loaded value doesn't change between the load and the its intended 1382 // destination. The check for isInvariantLoad gives the targe the chance to 1383 // classify the load as always returning a constant, e.g. a constant pool 1384 // load. 1385 if (mayLoad() && !isInvariantLoad(AA)) 1386 // Otherwise, this is a real load. If there is a store between the load and 1387 // end of block, we can't move it. 1388 return !SawStore; 1389 1390 return true; 1391 } 1392 1393 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1394 /// or volatile memory reference, or if the information describing the memory 1395 /// reference is not available. Return false if it is known to have no ordered 1396 /// memory references. 1397 bool MachineInstr::hasOrderedMemoryRef() const { 1398 // An instruction known never to access memory won't have a volatile access. 1399 if (!mayStore() && 1400 !mayLoad() && 1401 !isCall() && 1402 !hasUnmodeledSideEffects()) 1403 return false; 1404 1405 // Otherwise, if the instruction has no memory reference information, 1406 // conservatively assume it wasn't preserved. 1407 if (memoperands_empty()) 1408 return true; 1409 1410 // Check the memory reference information for ordered references. 1411 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1412 if (!(*I)->isUnordered()) 1413 return true; 1414 1415 return false; 1416 } 1417 1418 /// isInvariantLoad - Return true if this instruction is loading from a 1419 /// location whose value is invariant across the function. For example, 1420 /// loading a value from the constant pool or from the argument area 1421 /// of a function if it does not change. This should only return true of 1422 /// *all* loads the instruction does are invariant (if it does multiple loads). 1423 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1424 // If the instruction doesn't load at all, it isn't an invariant load. 1425 if (!mayLoad()) 1426 return false; 1427 1428 // If the instruction has lost its memoperands, conservatively assume that 1429 // it may not be an invariant load. 1430 if (memoperands_empty()) 1431 return false; 1432 1433 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1434 1435 for (mmo_iterator I = memoperands_begin(), 1436 E = memoperands_end(); I != E; ++I) { 1437 if ((*I)->isVolatile()) return false; 1438 if ((*I)->isStore()) return false; 1439 if ((*I)->isInvariant()) return true; 1440 1441 1442 // A load from a constant PseudoSourceValue is invariant. 1443 if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) 1444 if (PSV->isConstant(MFI)) 1445 continue; 1446 1447 if (const Value *V = (*I)->getValue()) { 1448 // If we have an AliasAnalysis, ask it whether the memory is constant. 1449 if (AA && AA->pointsToConstantMemory( 1450 AliasAnalysis::Location(V, (*I)->getSize(), 1451 (*I)->getAAInfo()))) 1452 continue; 1453 } 1454 1455 // Otherwise assume conservatively. 1456 return false; 1457 } 1458 1459 // Everything checks out. 1460 return true; 1461 } 1462 1463 /// isConstantValuePHI - If the specified instruction is a PHI that always 1464 /// merges together the same virtual register, return the register, otherwise 1465 /// return 0. 1466 unsigned MachineInstr::isConstantValuePHI() const { 1467 if (!isPHI()) 1468 return 0; 1469 assert(getNumOperands() >= 3 && 1470 "It's illegal to have a PHI without source operands"); 1471 1472 unsigned Reg = getOperand(1).getReg(); 1473 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1474 if (getOperand(i).getReg() != Reg) 1475 return 0; 1476 return Reg; 1477 } 1478 1479 bool MachineInstr::hasUnmodeledSideEffects() const { 1480 if (hasProperty(MCID::UnmodeledSideEffects)) 1481 return true; 1482 if (isInlineAsm()) { 1483 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1484 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1485 return true; 1486 } 1487 1488 return false; 1489 } 1490 1491 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1492 /// 1493 bool MachineInstr::allDefsAreDead() const { 1494 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1495 const MachineOperand &MO = getOperand(i); 1496 if (!MO.isReg() || MO.isUse()) 1497 continue; 1498 if (!MO.isDead()) 1499 return false; 1500 } 1501 return true; 1502 } 1503 1504 /// copyImplicitOps - Copy implicit register operands from specified 1505 /// instruction to this instruction. 1506 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1507 const MachineInstr *MI) { 1508 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1509 i != e; ++i) { 1510 const MachineOperand &MO = MI->getOperand(i); 1511 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1512 addOperand(MF, MO); 1513 } 1514 } 1515 1516 void MachineInstr::dump() const { 1517 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1518 dbgs() << " " << *this; 1519 #endif 1520 } 1521 1522 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1523 raw_ostream &CommentOS) { 1524 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1525 DL.print(Ctx, CommentOS); 1526 } 1527 1528 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM, 1529 bool SkipOpers) const { 1530 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1531 const MachineFunction *MF = nullptr; 1532 const MachineRegisterInfo *MRI = nullptr; 1533 if (const MachineBasicBlock *MBB = getParent()) { 1534 MF = MBB->getParent(); 1535 if (!TM && MF) 1536 TM = &MF->getTarget(); 1537 if (MF) 1538 MRI = &MF->getRegInfo(); 1539 } 1540 1541 // Save a list of virtual registers. 1542 SmallVector<unsigned, 8> VirtRegs; 1543 1544 // Print explicitly defined operands on the left of an assignment syntax. 1545 unsigned StartOp = 0, e = getNumOperands(); 1546 for (; StartOp < e && getOperand(StartOp).isReg() && 1547 getOperand(StartOp).isDef() && 1548 !getOperand(StartOp).isImplicit(); 1549 ++StartOp) { 1550 if (StartOp != 0) OS << ", "; 1551 getOperand(StartOp).print(OS, TM); 1552 unsigned Reg = getOperand(StartOp).getReg(); 1553 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1554 VirtRegs.push_back(Reg); 1555 } 1556 1557 if (StartOp != 0) 1558 OS << " = "; 1559 1560 // Print the opcode name. 1561 if (TM && TM->getSubtargetImpl()->getInstrInfo()) 1562 OS << TM->getSubtargetImpl()->getInstrInfo()->getName(getOpcode()); 1563 else 1564 OS << "UNKNOWN"; 1565 1566 if (SkipOpers) 1567 return; 1568 1569 // Print the rest of the operands. 1570 bool OmittedAnyCallClobbers = false; 1571 bool FirstOp = true; 1572 unsigned AsmDescOp = ~0u; 1573 unsigned AsmOpCount = 0; 1574 1575 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1576 // Print asm string. 1577 OS << " "; 1578 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1579 1580 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1581 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1582 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1583 OS << " [sideeffect]"; 1584 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1585 OS << " [mayload]"; 1586 if (ExtraInfo & InlineAsm::Extra_MayStore) 1587 OS << " [maystore]"; 1588 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1589 OS << " [alignstack]"; 1590 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1591 OS << " [attdialect]"; 1592 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1593 OS << " [inteldialect]"; 1594 1595 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1596 FirstOp = false; 1597 } 1598 1599 1600 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1601 const MachineOperand &MO = getOperand(i); 1602 1603 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1604 VirtRegs.push_back(MO.getReg()); 1605 1606 // Omit call-clobbered registers which aren't used anywhere. This makes 1607 // call instructions much less noisy on targets where calls clobber lots 1608 // of registers. Don't rely on MO.isDead() because we may be called before 1609 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1610 if (MF && isCall() && 1611 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1612 unsigned Reg = MO.getReg(); 1613 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1614 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1615 if (MRI.use_empty(Reg)) { 1616 bool HasAliasLive = false; 1617 for (MCRegAliasIterator AI( 1618 Reg, TM->getSubtargetImpl()->getRegisterInfo(), true); 1619 AI.isValid(); ++AI) { 1620 unsigned AliasReg = *AI; 1621 if (!MRI.use_empty(AliasReg)) { 1622 HasAliasLive = true; 1623 break; 1624 } 1625 } 1626 if (!HasAliasLive) { 1627 OmittedAnyCallClobbers = true; 1628 continue; 1629 } 1630 } 1631 } 1632 } 1633 1634 if (FirstOp) FirstOp = false; else OS << ","; 1635 OS << " "; 1636 if (i < getDesc().NumOperands) { 1637 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1638 if (MCOI.isPredicate()) 1639 OS << "pred:"; 1640 if (MCOI.isOptionalDef()) 1641 OS << "opt:"; 1642 } 1643 if (isDebugValue() && MO.isMetadata()) { 1644 // Pretty print DBG_VALUE instructions. 1645 const MDNode *MD = MO.getMetadata(); 1646 if (MD->getNumOperands() >= 2) 1647 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1648 OS << "!\"" << MDS->getString() << '\"'; 1649 else 1650 MO.print(OS, TM); 1651 else 1652 MO.print(OS, TM); 1653 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1654 OS << TM->getSubtargetImpl()->getRegisterInfo()->getSubRegIndexName( 1655 MO.getImm()); 1656 } else if (i == AsmDescOp && MO.isImm()) { 1657 // Pretty print the inline asm operand descriptor. 1658 OS << '$' << AsmOpCount++; 1659 unsigned Flag = MO.getImm(); 1660 switch (InlineAsm::getKind(Flag)) { 1661 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1662 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1663 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1664 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1665 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1666 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1667 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1668 } 1669 1670 unsigned RCID = 0; 1671 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1672 if (TM) 1673 OS << ':' 1674 << TM->getSubtargetImpl() 1675 ->getRegisterInfo() 1676 ->getRegClass(RCID) 1677 ->getName(); 1678 else 1679 OS << ":RC" << RCID; 1680 } 1681 1682 unsigned TiedTo = 0; 1683 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1684 OS << " tiedto:$" << TiedTo; 1685 1686 OS << ']'; 1687 1688 // Compute the index of the next operand descriptor. 1689 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1690 } else 1691 MO.print(OS, TM); 1692 } 1693 1694 // Briefly indicate whether any call clobbers were omitted. 1695 if (OmittedAnyCallClobbers) { 1696 if (!FirstOp) OS << ","; 1697 OS << " ..."; 1698 } 1699 1700 bool HaveSemi = false; 1701 const unsigned PrintableFlags = FrameSetup; 1702 if (Flags & PrintableFlags) { 1703 if (!HaveSemi) OS << ";"; HaveSemi = true; 1704 OS << " flags: "; 1705 1706 if (Flags & FrameSetup) 1707 OS << "FrameSetup"; 1708 } 1709 1710 if (!memoperands_empty()) { 1711 if (!HaveSemi) OS << ";"; HaveSemi = true; 1712 1713 OS << " mem:"; 1714 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1715 i != e; ++i) { 1716 OS << **i; 1717 if (std::next(i) != e) 1718 OS << " "; 1719 } 1720 } 1721 1722 // Print the regclass of any virtual registers encountered. 1723 if (MRI && !VirtRegs.empty()) { 1724 if (!HaveSemi) OS << ";"; HaveSemi = true; 1725 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1726 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1727 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1728 for (unsigned j = i+1; j != VirtRegs.size();) { 1729 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1730 ++j; 1731 continue; 1732 } 1733 if (VirtRegs[i] != VirtRegs[j]) 1734 OS << "," << PrintReg(VirtRegs[j]); 1735 VirtRegs.erase(VirtRegs.begin()+j); 1736 } 1737 } 1738 } 1739 1740 // Print debug location information. 1741 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1742 if (!HaveSemi) OS << ";"; 1743 DIVariable DV(getOperand(e - 1).getMetadata()); 1744 OS << " line no:" << DV.getLineNumber(); 1745 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1746 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1747 if (!InlinedAtDL.isUnknown() && MF) { 1748 OS << " inlined @[ "; 1749 printDebugLoc(InlinedAtDL, MF, OS); 1750 OS << " ]"; 1751 } 1752 } 1753 if (isIndirectDebugValue()) 1754 OS << " indirect"; 1755 } else if (!debugLoc.isUnknown() && MF) { 1756 if (!HaveSemi) OS << ";"; 1757 OS << " dbg:"; 1758 printDebugLoc(debugLoc, MF, OS); 1759 } 1760 1761 OS << '\n'; 1762 } 1763 1764 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1765 const TargetRegisterInfo *RegInfo, 1766 bool AddIfNotFound) { 1767 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1768 bool hasAliases = isPhysReg && 1769 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1770 bool Found = false; 1771 SmallVector<unsigned,4> DeadOps; 1772 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1773 MachineOperand &MO = getOperand(i); 1774 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1775 continue; 1776 unsigned Reg = MO.getReg(); 1777 if (!Reg) 1778 continue; 1779 1780 if (Reg == IncomingReg) { 1781 if (!Found) { 1782 if (MO.isKill()) 1783 // The register is already marked kill. 1784 return true; 1785 if (isPhysReg && isRegTiedToDefOperand(i)) 1786 // Two-address uses of physregs must not be marked kill. 1787 return true; 1788 MO.setIsKill(); 1789 Found = true; 1790 } 1791 } else if (hasAliases && MO.isKill() && 1792 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1793 // A super-register kill already exists. 1794 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1795 return true; 1796 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1797 DeadOps.push_back(i); 1798 } 1799 } 1800 1801 // Trim unneeded kill operands. 1802 while (!DeadOps.empty()) { 1803 unsigned OpIdx = DeadOps.back(); 1804 if (getOperand(OpIdx).isImplicit()) 1805 RemoveOperand(OpIdx); 1806 else 1807 getOperand(OpIdx).setIsKill(false); 1808 DeadOps.pop_back(); 1809 } 1810 1811 // If not found, this means an alias of one of the operands is killed. Add a 1812 // new implicit operand if required. 1813 if (!Found && AddIfNotFound) { 1814 addOperand(MachineOperand::CreateReg(IncomingReg, 1815 false /*IsDef*/, 1816 true /*IsImp*/, 1817 true /*IsKill*/)); 1818 return true; 1819 } 1820 return Found; 1821 } 1822 1823 void MachineInstr::clearRegisterKills(unsigned Reg, 1824 const TargetRegisterInfo *RegInfo) { 1825 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1826 RegInfo = nullptr; 1827 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1828 MachineOperand &MO = getOperand(i); 1829 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1830 continue; 1831 unsigned OpReg = MO.getReg(); 1832 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1833 MO.setIsKill(false); 1834 } 1835 } 1836 1837 bool MachineInstr::addRegisterDead(unsigned Reg, 1838 const TargetRegisterInfo *RegInfo, 1839 bool AddIfNotFound) { 1840 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1841 bool hasAliases = isPhysReg && 1842 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1843 bool Found = false; 1844 SmallVector<unsigned,4> DeadOps; 1845 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1846 MachineOperand &MO = getOperand(i); 1847 if (!MO.isReg() || !MO.isDef()) 1848 continue; 1849 unsigned MOReg = MO.getReg(); 1850 if (!MOReg) 1851 continue; 1852 1853 if (MOReg == Reg) { 1854 MO.setIsDead(); 1855 Found = true; 1856 } else if (hasAliases && MO.isDead() && 1857 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1858 // There exists a super-register that's marked dead. 1859 if (RegInfo->isSuperRegister(Reg, MOReg)) 1860 return true; 1861 if (RegInfo->isSubRegister(Reg, MOReg)) 1862 DeadOps.push_back(i); 1863 } 1864 } 1865 1866 // Trim unneeded dead operands. 1867 while (!DeadOps.empty()) { 1868 unsigned OpIdx = DeadOps.back(); 1869 if (getOperand(OpIdx).isImplicit()) 1870 RemoveOperand(OpIdx); 1871 else 1872 getOperand(OpIdx).setIsDead(false); 1873 DeadOps.pop_back(); 1874 } 1875 1876 // If not found, this means an alias of one of the operands is dead. Add a 1877 // new implicit operand if required. 1878 if (Found || !AddIfNotFound) 1879 return Found; 1880 1881 addOperand(MachineOperand::CreateReg(Reg, 1882 true /*IsDef*/, 1883 true /*IsImp*/, 1884 false /*IsKill*/, 1885 true /*IsDead*/)); 1886 return true; 1887 } 1888 1889 void MachineInstr::addRegisterDefined(unsigned Reg, 1890 const TargetRegisterInfo *RegInfo) { 1891 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1892 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 1893 if (MO) 1894 return; 1895 } else { 1896 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1897 const MachineOperand &MO = getOperand(i); 1898 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1899 MO.getSubReg() == 0) 1900 return; 1901 } 1902 } 1903 addOperand(MachineOperand::CreateReg(Reg, 1904 true /*IsDef*/, 1905 true /*IsImp*/)); 1906 } 1907 1908 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1909 const TargetRegisterInfo &TRI) { 1910 bool HasRegMask = false; 1911 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1912 MachineOperand &MO = getOperand(i); 1913 if (MO.isRegMask()) { 1914 HasRegMask = true; 1915 continue; 1916 } 1917 if (!MO.isReg() || !MO.isDef()) continue; 1918 unsigned Reg = MO.getReg(); 1919 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1920 bool Dead = true; 1921 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1922 I != E; ++I) 1923 if (TRI.regsOverlap(*I, Reg)) { 1924 Dead = false; 1925 break; 1926 } 1927 // If there are no uses, including partial uses, the def is dead. 1928 if (Dead) MO.setIsDead(); 1929 } 1930 1931 // This is a call with a register mask operand. 1932 // Mask clobbers are always dead, so add defs for the non-dead defines. 1933 if (HasRegMask) 1934 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1935 I != E; ++I) 1936 addRegisterDefined(*I, &TRI); 1937 } 1938 1939 unsigned 1940 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1941 // Build up a buffer of hash code components. 1942 SmallVector<size_t, 8> HashComponents; 1943 HashComponents.reserve(MI->getNumOperands() + 1); 1944 HashComponents.push_back(MI->getOpcode()); 1945 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1946 const MachineOperand &MO = MI->getOperand(i); 1947 if (MO.isReg() && MO.isDef() && 1948 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1949 continue; // Skip virtual register defs. 1950 1951 HashComponents.push_back(hash_value(MO)); 1952 } 1953 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1954 } 1955 1956 void MachineInstr::emitError(StringRef Msg) const { 1957 // Find the source location cookie. 1958 unsigned LocCookie = 0; 1959 const MDNode *LocMD = nullptr; 1960 for (unsigned i = getNumOperands(); i != 0; --i) { 1961 if (getOperand(i-1).isMetadata() && 1962 (LocMD = getOperand(i-1).getMetadata()) && 1963 LocMD->getNumOperands() != 0) { 1964 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1965 LocCookie = CI->getZExtValue(); 1966 break; 1967 } 1968 } 1969 } 1970 1971 if (const MachineBasicBlock *MBB = getParent()) 1972 if (const MachineFunction *MF = MBB->getParent()) 1973 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1974 report_fatal_error(Msg); 1975 } 1976