xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 86735a4353aee4a3ba1e2feea173a7cc659c7a60)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallBitVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/MemoryLocation.h"
21 #include "llvm/CodeGen/LowLevelType.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/CodeGen/Register.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/ModuleSlotTracker.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/FormattedStream.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstdint>
59 #include <cstring>
60 #include <utility>
61 
62 using namespace llvm;
63 
64 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
65   if (const MachineBasicBlock *MBB = MI.getParent())
66     if (const MachineFunction *MF = MBB->getParent())
67       return MF;
68   return nullptr;
69 }
70 
71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
72 // it.
73 static void tryToGetTargetInfo(const MachineInstr &MI,
74                                const TargetRegisterInfo *&TRI,
75                                const MachineRegisterInfo *&MRI,
76                                const TargetIntrinsicInfo *&IntrinsicInfo,
77                                const TargetInstrInfo *&TII) {
78 
79   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
80     TRI = MF->getSubtarget().getRegisterInfo();
81     MRI = &MF->getRegInfo();
82     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
83     TII = MF->getSubtarget().getInstrInfo();
84   }
85 }
86 
87 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
88   for (MCPhysReg ImpDef : MCID->implicit_defs())
89     addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true));
90   for (MCPhysReg ImpUse : MCID->implicit_uses())
91     addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true));
92 }
93 
94 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
95 /// implicit operands. It reserves space for the number of operands specified by
96 /// the MCInstrDesc.
97 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
98                            DebugLoc DL, bool NoImp)
99     : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0),
100       DbgLoc(std::move(DL)), DebugInstrNum(0) {
101   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
102 
103   // Reserve space for the expected number of operands.
104   if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() +
105                         MCID->implicit_uses().size()) {
106     CapOperands = OperandCapacity::get(NumOps);
107     Operands = MF.allocateOperandArray(CapOperands);
108   }
109 
110   if (!NoImp)
111     addImplicitDefUseOperands(MF);
112 }
113 
114 /// MachineInstr ctor - Copies MachineInstr arg exactly.
115 /// Does not copy the number from debug instruction numbering, to preserve
116 /// uniqueness.
117 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
118     : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0),
119       Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0) {
120   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
121 
122   CapOperands = OperandCapacity::get(MI.getNumOperands());
123   Operands = MF.allocateOperandArray(CapOperands);
124 
125   // Copy operands.
126   for (const MachineOperand &MO : MI.operands())
127     addOperand(MF, MO);
128 
129   // Replicate ties between the operands, which addOperand was not
130   // able to do reliably.
131   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
132     MachineOperand &NewMO = getOperand(i);
133     const MachineOperand &OrigMO = MI.getOperand(i);
134     NewMO.TiedTo = OrigMO.TiedTo;
135   }
136 
137   // Copy all the sensible flags.
138   setFlags(MI.Flags);
139 }
140 
141 void MachineInstr::moveBefore(MachineInstr *MovePos) {
142   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
143 }
144 
145 /// getRegInfo - If this instruction is embedded into a MachineFunction,
146 /// return the MachineRegisterInfo object for the current function, otherwise
147 /// return null.
148 MachineRegisterInfo *MachineInstr::getRegInfo() {
149   if (MachineBasicBlock *MBB = getParent())
150     return &MBB->getParent()->getRegInfo();
151   return nullptr;
152 }
153 
154 const MachineRegisterInfo *MachineInstr::getRegInfo() const {
155   if (const MachineBasicBlock *MBB = getParent())
156     return &MBB->getParent()->getRegInfo();
157   return nullptr;
158 }
159 
160 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
161   for (MachineOperand &MO : operands())
162     if (MO.isReg())
163       MRI.removeRegOperandFromUseList(&MO);
164 }
165 
166 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
167   for (MachineOperand &MO : operands())
168     if (MO.isReg())
169       MRI.addRegOperandToUseList(&MO);
170 }
171 
172 void MachineInstr::addOperand(const MachineOperand &Op) {
173   MachineBasicBlock *MBB = getParent();
174   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
175   MachineFunction *MF = MBB->getParent();
176   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
177   addOperand(*MF, Op);
178 }
179 
180 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
181 /// ranges. If MRI is non-null also update use-def chains.
182 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
183                          unsigned NumOps, MachineRegisterInfo *MRI) {
184   if (MRI)
185     return MRI->moveOperands(Dst, Src, NumOps);
186   // MachineOperand is a trivially copyable type so we can just use memmove.
187   assert(Dst && Src && "Unknown operands");
188   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
189 }
190 
191 /// addOperand - Add the specified operand to the instruction.  If it is an
192 /// implicit operand, it is added to the end of the operand list.  If it is
193 /// an explicit operand it is added at the end of the explicit operand list
194 /// (before the first implicit operand).
195 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
196   assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) &&
197          "Cannot add more operands.");
198   assert(MCID && "Cannot add operands before providing an instr descriptor");
199 
200   // Check if we're adding one of our existing operands.
201   if (&Op >= Operands && &Op < Operands + NumOperands) {
202     // This is unusual: MI->addOperand(MI->getOperand(i)).
203     // If adding Op requires reallocating or moving existing operands around,
204     // the Op reference could go stale. Support it by copying Op.
205     MachineOperand CopyOp(Op);
206     return addOperand(MF, CopyOp);
207   }
208 
209   // Find the insert location for the new operand.  Implicit registers go at
210   // the end, everything else goes before the implicit regs.
211   //
212   // FIXME: Allow mixed explicit and implicit operands on inline asm.
213   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
214   // implicit-defs, but they must not be moved around.  See the FIXME in
215   // InstrEmitter.cpp.
216   unsigned OpNo = getNumOperands();
217   bool isImpReg = Op.isReg() && Op.isImplicit();
218   if (!isImpReg && !isInlineAsm()) {
219     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
220       --OpNo;
221       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
222     }
223   }
224 
225   // OpNo now points as the desired insertion point.  Unless this is a variadic
226   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
227   // RegMask operands go between the explicit and implicit operands.
228   assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() ||
229           Op.isValidExcessOperand()) &&
230          "Trying to add an operand to a machine instr that is already done!");
231 
232   MachineRegisterInfo *MRI = getRegInfo();
233 
234   // Determine if the Operands array needs to be reallocated.
235   // Save the old capacity and operand array.
236   OperandCapacity OldCap = CapOperands;
237   MachineOperand *OldOperands = Operands;
238   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
239     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
240     Operands = MF.allocateOperandArray(CapOperands);
241     // Move the operands before the insertion point.
242     if (OpNo)
243       moveOperands(Operands, OldOperands, OpNo, MRI);
244   }
245 
246   // Move the operands following the insertion point.
247   if (OpNo != NumOperands)
248     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
249                  MRI);
250   ++NumOperands;
251 
252   // Deallocate the old operand array.
253   if (OldOperands != Operands && OldOperands)
254     MF.deallocateOperandArray(OldCap, OldOperands);
255 
256   // Copy Op into place. It still needs to be inserted into the MRI use lists.
257   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
258   NewMO->ParentMI = this;
259 
260   // When adding a register operand, tell MRI about it.
261   if (NewMO->isReg()) {
262     // Ensure isOnRegUseList() returns false, regardless of Op's status.
263     NewMO->Contents.Reg.Prev = nullptr;
264     // Ignore existing ties. This is not a property that can be copied.
265     NewMO->TiedTo = 0;
266     // Add the new operand to MRI, but only for instructions in an MBB.
267     if (MRI)
268       MRI->addRegOperandToUseList(NewMO);
269     // The MCID operand information isn't accurate until we start adding
270     // explicit operands. The implicit operands are added first, then the
271     // explicits are inserted before them.
272     if (!isImpReg) {
273       // Tie uses to defs as indicated in MCInstrDesc.
274       if (NewMO->isUse()) {
275         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
276         if (DefIdx != -1)
277           tieOperands(DefIdx, OpNo);
278       }
279       // If the register operand is flagged as early, mark the operand as such.
280       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
281         NewMO->setIsEarlyClobber(true);
282     }
283     // Ensure debug instructions set debug flag on register uses.
284     if (NewMO->isUse() && isDebugInstr())
285       NewMO->setIsDebug();
286   }
287 }
288 
289 void MachineInstr::removeOperand(unsigned OpNo) {
290   assert(OpNo < getNumOperands() && "Invalid operand number");
291   untieRegOperand(OpNo);
292 
293 #ifndef NDEBUG
294   // Moving tied operands would break the ties.
295   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
296     if (Operands[i].isReg())
297       assert(!Operands[i].isTied() && "Cannot move tied operands");
298 #endif
299 
300   MachineRegisterInfo *MRI = getRegInfo();
301   if (MRI && Operands[OpNo].isReg())
302     MRI->removeRegOperandFromUseList(Operands + OpNo);
303 
304   // Don't call the MachineOperand destructor. A lot of this code depends on
305   // MachineOperand having a trivial destructor anyway, and adding a call here
306   // wouldn't make it 'destructor-correct'.
307 
308   if (unsigned N = NumOperands - 1 - OpNo)
309     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
310   --NumOperands;
311 }
312 
313 void MachineInstr::setExtraInfo(MachineFunction &MF,
314                                 ArrayRef<MachineMemOperand *> MMOs,
315                                 MCSymbol *PreInstrSymbol,
316                                 MCSymbol *PostInstrSymbol,
317                                 MDNode *HeapAllocMarker, MDNode *PCSections,
318                                 uint32_t CFIType) {
319   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
320   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
321   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
322   bool HasPCSections = PCSections != nullptr;
323   bool HasCFIType = CFIType != 0;
324   int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol +
325                     HasHeapAllocMarker + HasPCSections + HasCFIType;
326 
327   // Drop all extra info if there is none.
328   if (NumPointers <= 0) {
329     Info.clear();
330     return;
331   }
332 
333   // If more than one pointer, then store out of line. Store heap alloc markers
334   // out of line because PointerSumType cannot hold more than 4 tag types with
335   // 32-bit pointers.
336   // FIXME: Maybe we should make the symbols in the extra info mutable?
337   else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections ||
338            HasCFIType) {
339     Info.set<EIIK_OutOfLine>(
340         MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol,
341                              HeapAllocMarker, PCSections, CFIType));
342     return;
343   }
344 
345   // Otherwise store the single pointer inline.
346   if (HasPreInstrSymbol)
347     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
348   else if (HasPostInstrSymbol)
349     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
350   else
351     Info.set<EIIK_MMO>(MMOs[0]);
352 }
353 
354 void MachineInstr::dropMemRefs(MachineFunction &MF) {
355   if (memoperands_empty())
356     return;
357 
358   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
359                getHeapAllocMarker(), getPCSections(), getCFIType());
360 }
361 
362 void MachineInstr::setMemRefs(MachineFunction &MF,
363                               ArrayRef<MachineMemOperand *> MMOs) {
364   if (MMOs.empty()) {
365     dropMemRefs(MF);
366     return;
367   }
368 
369   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
370                getHeapAllocMarker(), getPCSections(), getCFIType());
371 }
372 
373 void MachineInstr::addMemOperand(MachineFunction &MF,
374                                  MachineMemOperand *MO) {
375   SmallVector<MachineMemOperand *, 2> MMOs;
376   MMOs.append(memoperands_begin(), memoperands_end());
377   MMOs.push_back(MO);
378   setMemRefs(MF, MMOs);
379 }
380 
381 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
382   if (this == &MI)
383     // Nothing to do for a self-clone!
384     return;
385 
386   assert(&MF == MI.getMF() &&
387          "Invalid machine functions when cloning memory refrences!");
388   // See if we can just steal the extra info already allocated for the
389   // instruction. We can do this whenever the pre- and post-instruction symbols
390   // are the same (including null).
391   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
392       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
393       getHeapAllocMarker() == MI.getHeapAllocMarker() &&
394       getPCSections() == MI.getPCSections()) {
395     Info = MI.Info;
396     return;
397   }
398 
399   // Otherwise, fall back on a copy-based clone.
400   setMemRefs(MF, MI.memoperands());
401 }
402 
403 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
404 /// identical.
405 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
406                              ArrayRef<MachineMemOperand *> RHS) {
407   if (LHS.size() != RHS.size())
408     return false;
409 
410   auto LHSPointees = make_pointee_range(LHS);
411   auto RHSPointees = make_pointee_range(RHS);
412   return std::equal(LHSPointees.begin(), LHSPointees.end(),
413                     RHSPointees.begin());
414 }
415 
416 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
417                                       ArrayRef<const MachineInstr *> MIs) {
418   // Try handling easy numbers of MIs with simpler mechanisms.
419   if (MIs.empty()) {
420     dropMemRefs(MF);
421     return;
422   }
423   if (MIs.size() == 1) {
424     cloneMemRefs(MF, *MIs[0]);
425     return;
426   }
427   // Because an empty memoperands list provides *no* information and must be
428   // handled conservatively (assuming the instruction can do anything), the only
429   // way to merge with it is to drop all other memoperands.
430   if (MIs[0]->memoperands_empty()) {
431     dropMemRefs(MF);
432     return;
433   }
434 
435   // Handle the general case.
436   SmallVector<MachineMemOperand *, 2> MergedMMOs;
437   // Start with the first instruction.
438   assert(&MF == MIs[0]->getMF() &&
439          "Invalid machine functions when cloning memory references!");
440   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
441   // Now walk all the other instructions and accumulate any different MMOs.
442   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
443     assert(&MF == MI.getMF() &&
444            "Invalid machine functions when cloning memory references!");
445 
446     // Skip MIs with identical operands to the first. This is a somewhat
447     // arbitrary hack but will catch common cases without being quadratic.
448     // TODO: We could fully implement merge semantics here if needed.
449     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
450       continue;
451 
452     // Because an empty memoperands list provides *no* information and must be
453     // handled conservatively (assuming the instruction can do anything), the
454     // only way to merge with it is to drop all other memoperands.
455     if (MI.memoperands_empty()) {
456       dropMemRefs(MF);
457       return;
458     }
459 
460     // Otherwise accumulate these into our temporary buffer of the merged state.
461     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
462   }
463 
464   setMemRefs(MF, MergedMMOs);
465 }
466 
467 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
468   // Do nothing if old and new symbols are the same.
469   if (Symbol == getPreInstrSymbol())
470     return;
471 
472   // If there was only one symbol and we're removing it, just clear info.
473   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
474     Info.clear();
475     return;
476   }
477 
478   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
479                getHeapAllocMarker(), getPCSections(), getCFIType());
480 }
481 
482 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
483   // Do nothing if old and new symbols are the same.
484   if (Symbol == getPostInstrSymbol())
485     return;
486 
487   // If there was only one symbol and we're removing it, just clear info.
488   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
489     Info.clear();
490     return;
491   }
492 
493   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
494                getHeapAllocMarker(), getPCSections(), getCFIType());
495 }
496 
497 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
498   // Do nothing if old and new symbols are the same.
499   if (Marker == getHeapAllocMarker())
500     return;
501 
502   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
503                Marker, getPCSections(), getCFIType());
504 }
505 
506 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) {
507   // Do nothing if old and new symbols are the same.
508   if (PCSections == getPCSections())
509     return;
510 
511   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
512                getHeapAllocMarker(), PCSections, getCFIType());
513 }
514 
515 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) {
516   // Do nothing if old and new types are the same.
517   if (Type == getCFIType())
518     return;
519 
520   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
521                getHeapAllocMarker(), getPCSections(), Type);
522 }
523 
524 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
525                                      const MachineInstr &MI) {
526   if (this == &MI)
527     // Nothing to do for a self-clone!
528     return;
529 
530   assert(&MF == MI.getMF() &&
531          "Invalid machine functions when cloning instruction symbols!");
532 
533   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
534   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
535   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
536   setPCSections(MF, MI.getPCSections());
537 }
538 
539 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
540   // For now, the just return the union of the flags. If the flags get more
541   // complicated over time, we might need more logic here.
542   return getFlags() | Other.getFlags();
543 }
544 
545 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
546   uint32_t MIFlags = 0;
547   // Copy the wrapping flags.
548   if (const OverflowingBinaryOperator *OB =
549           dyn_cast<OverflowingBinaryOperator>(&I)) {
550     if (OB->hasNoSignedWrap())
551       MIFlags |= MachineInstr::MIFlag::NoSWrap;
552     if (OB->hasNoUnsignedWrap())
553       MIFlags |= MachineInstr::MIFlag::NoUWrap;
554   }
555 
556   // Copy the exact flag.
557   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
558     if (PE->isExact())
559       MIFlags |= MachineInstr::MIFlag::IsExact;
560 
561   // Copy the fast-math flags.
562   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
563     const FastMathFlags Flags = FP->getFastMathFlags();
564     if (Flags.noNaNs())
565       MIFlags |= MachineInstr::MIFlag::FmNoNans;
566     if (Flags.noInfs())
567       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
568     if (Flags.noSignedZeros())
569       MIFlags |= MachineInstr::MIFlag::FmNsz;
570     if (Flags.allowReciprocal())
571       MIFlags |= MachineInstr::MIFlag::FmArcp;
572     if (Flags.allowContract())
573       MIFlags |= MachineInstr::MIFlag::FmContract;
574     if (Flags.approxFunc())
575       MIFlags |= MachineInstr::MIFlag::FmAfn;
576     if (Flags.allowReassoc())
577       MIFlags |= MachineInstr::MIFlag::FmReassoc;
578   }
579 
580   if (I.getMetadata(LLVMContext::MD_unpredictable))
581     MIFlags |= MachineInstr::MIFlag::Unpredictable;
582 
583   return MIFlags;
584 }
585 
586 void MachineInstr::copyIRFlags(const Instruction &I) {
587   Flags = copyFlagsFromInstruction(I);
588 }
589 
590 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
591   assert(!isBundledWithPred() && "Must be called on bundle header");
592   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
593     if (MII->getDesc().getFlags() & Mask) {
594       if (Type == AnyInBundle)
595         return true;
596     } else {
597       if (Type == AllInBundle && !MII->isBundle())
598         return false;
599     }
600     // This was the last instruction in the bundle.
601     if (!MII->isBundledWithSucc())
602       return Type == AllInBundle;
603   }
604 }
605 
606 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
607                                  MICheckType Check) const {
608   // If opcodes or number of operands are not the same then the two
609   // instructions are obviously not identical.
610   if (Other.getOpcode() != getOpcode() ||
611       Other.getNumOperands() != getNumOperands())
612     return false;
613 
614   if (isBundle()) {
615     // We have passed the test above that both instructions have the same
616     // opcode, so we know that both instructions are bundles here. Let's compare
617     // MIs inside the bundle.
618     assert(Other.isBundle() && "Expected that both instructions are bundles.");
619     MachineBasicBlock::const_instr_iterator I1 = getIterator();
620     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
621     // Loop until we analysed the last intruction inside at least one of the
622     // bundles.
623     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
624       ++I1;
625       ++I2;
626       if (!I1->isIdenticalTo(*I2, Check))
627         return false;
628     }
629     // If we've reached the end of just one of the two bundles, but not both,
630     // the instructions are not identical.
631     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
632       return false;
633   }
634 
635   // Check operands to make sure they match.
636   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
637     const MachineOperand &MO = getOperand(i);
638     const MachineOperand &OMO = Other.getOperand(i);
639     if (!MO.isReg()) {
640       if (!MO.isIdenticalTo(OMO))
641         return false;
642       continue;
643     }
644 
645     // Clients may or may not want to ignore defs when testing for equality.
646     // For example, machine CSE pass only cares about finding common
647     // subexpressions, so it's safe to ignore virtual register defs.
648     if (MO.isDef()) {
649       if (Check == IgnoreDefs)
650         continue;
651       else if (Check == IgnoreVRegDefs) {
652         if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual())
653           if (!MO.isIdenticalTo(OMO))
654             return false;
655       } else {
656         if (!MO.isIdenticalTo(OMO))
657           return false;
658         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
659           return false;
660       }
661     } else {
662       if (!MO.isIdenticalTo(OMO))
663         return false;
664       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
665         return false;
666     }
667   }
668   // If DebugLoc does not match then two debug instructions are not identical.
669   if (isDebugInstr())
670     if (getDebugLoc() && Other.getDebugLoc() &&
671         getDebugLoc() != Other.getDebugLoc())
672       return false;
673   // If pre- or post-instruction symbols do not match then the two instructions
674   // are not identical.
675   if (getPreInstrSymbol() != Other.getPreInstrSymbol() ||
676       getPostInstrSymbol() != Other.getPostInstrSymbol())
677     return false;
678   // Call instructions with different CFI types are not identical.
679   if (isCall() && getCFIType() != Other.getCFIType())
680     return false;
681 
682   return true;
683 }
684 
685 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const {
686   if (!isDebugValueLike() || !Other.isDebugValueLike())
687     return false;
688   if (getDebugLoc() != Other.getDebugLoc())
689     return false;
690   if (getDebugVariable() != Other.getDebugVariable())
691     return false;
692   if (getNumDebugOperands() != Other.getNumDebugOperands())
693     return false;
694   for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx)
695     if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx)))
696       return false;
697   if (!DIExpression::isEqualExpression(
698           getDebugExpression(), isIndirectDebugValue(),
699           Other.getDebugExpression(), Other.isIndirectDebugValue()))
700     return false;
701   return true;
702 }
703 
704 const MachineFunction *MachineInstr::getMF() const {
705   return getParent()->getParent();
706 }
707 
708 MachineInstr *MachineInstr::removeFromParent() {
709   assert(getParent() && "Not embedded in a basic block!");
710   return getParent()->remove(this);
711 }
712 
713 MachineInstr *MachineInstr::removeFromBundle() {
714   assert(getParent() && "Not embedded in a basic block!");
715   return getParent()->remove_instr(this);
716 }
717 
718 void MachineInstr::eraseFromParent() {
719   assert(getParent() && "Not embedded in a basic block!");
720   getParent()->erase(this);
721 }
722 
723 void MachineInstr::eraseFromBundle() {
724   assert(getParent() && "Not embedded in a basic block!");
725   getParent()->erase_instr(this);
726 }
727 
728 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
729   if (!isCall(Type))
730     return false;
731   switch (getOpcode()) {
732   case TargetOpcode::PATCHPOINT:
733   case TargetOpcode::STACKMAP:
734   case TargetOpcode::STATEPOINT:
735   case TargetOpcode::FENTRY_CALL:
736     return false;
737   }
738   return true;
739 }
740 
741 bool MachineInstr::shouldUpdateCallSiteInfo() const {
742   if (isBundle())
743     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
744   return isCandidateForCallSiteEntry();
745 }
746 
747 unsigned MachineInstr::getNumExplicitOperands() const {
748   unsigned NumOperands = MCID->getNumOperands();
749   if (!MCID->isVariadic())
750     return NumOperands;
751 
752   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
753     const MachineOperand &MO = getOperand(I);
754     // The operands must always be in the following order:
755     // - explicit reg defs,
756     // - other explicit operands (reg uses, immediates, etc.),
757     // - implicit reg defs
758     // - implicit reg uses
759     if (MO.isReg() && MO.isImplicit())
760       break;
761     ++NumOperands;
762   }
763   return NumOperands;
764 }
765 
766 unsigned MachineInstr::getNumExplicitDefs() const {
767   unsigned NumDefs = MCID->getNumDefs();
768   if (!MCID->isVariadic())
769     return NumDefs;
770 
771   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
772     const MachineOperand &MO = getOperand(I);
773     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
774       break;
775     ++NumDefs;
776   }
777   return NumDefs;
778 }
779 
780 void MachineInstr::bundleWithPred() {
781   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
782   setFlag(BundledPred);
783   MachineBasicBlock::instr_iterator Pred = getIterator();
784   --Pred;
785   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
786   Pred->setFlag(BundledSucc);
787 }
788 
789 void MachineInstr::bundleWithSucc() {
790   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
791   setFlag(BundledSucc);
792   MachineBasicBlock::instr_iterator Succ = getIterator();
793   ++Succ;
794   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
795   Succ->setFlag(BundledPred);
796 }
797 
798 void MachineInstr::unbundleFromPred() {
799   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
800   clearFlag(BundledPred);
801   MachineBasicBlock::instr_iterator Pred = getIterator();
802   --Pred;
803   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
804   Pred->clearFlag(BundledSucc);
805 }
806 
807 void MachineInstr::unbundleFromSucc() {
808   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
809   clearFlag(BundledSucc);
810   MachineBasicBlock::instr_iterator Succ = getIterator();
811   ++Succ;
812   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
813   Succ->clearFlag(BundledPred);
814 }
815 
816 bool MachineInstr::isStackAligningInlineAsm() const {
817   if (isInlineAsm()) {
818     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
819     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
820       return true;
821   }
822   return false;
823 }
824 
825 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
826   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
827   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
828   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
829 }
830 
831 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
832                                        unsigned *GroupNo) const {
833   assert(isInlineAsm() && "Expected an inline asm instruction");
834   assert(OpIdx < getNumOperands() && "OpIdx out of range");
835 
836   // Ignore queries about the initial operands.
837   if (OpIdx < InlineAsm::MIOp_FirstOperand)
838     return -1;
839 
840   unsigned Group = 0;
841   unsigned NumOps;
842   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
843        i += NumOps) {
844     const MachineOperand &FlagMO = getOperand(i);
845     // If we reach the implicit register operands, stop looking.
846     if (!FlagMO.isImm())
847       return -1;
848     const InlineAsm::Flag F(FlagMO.getImm());
849     NumOps = 1 + F.getNumOperandRegisters();
850     if (i + NumOps > OpIdx) {
851       if (GroupNo)
852         *GroupNo = Group;
853       return i;
854     }
855     ++Group;
856   }
857   return -1;
858 }
859 
860 const DILabel *MachineInstr::getDebugLabel() const {
861   assert(isDebugLabel() && "not a DBG_LABEL");
862   return cast<DILabel>(getOperand(0).getMetadata());
863 }
864 
865 const MachineOperand &MachineInstr::getDebugVariableOp() const {
866   assert((isDebugValueLike()) && "not a DBG_VALUE*");
867   unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
868   return getOperand(VariableOp);
869 }
870 
871 MachineOperand &MachineInstr::getDebugVariableOp() {
872   assert((isDebugValueLike()) && "not a DBG_VALUE*");
873   unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
874   return getOperand(VariableOp);
875 }
876 
877 const DILocalVariable *MachineInstr::getDebugVariable() const {
878   return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
879 }
880 
881 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
882   assert((isDebugValueLike()) && "not a DBG_VALUE*");
883   unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
884   return getOperand(ExpressionOp);
885 }
886 
887 MachineOperand &MachineInstr::getDebugExpressionOp() {
888   assert((isDebugValueLike()) && "not a DBG_VALUE*");
889   unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
890   return getOperand(ExpressionOp);
891 }
892 
893 const DIExpression *MachineInstr::getDebugExpression() const {
894   return cast<DIExpression>(getDebugExpressionOp().getMetadata());
895 }
896 
897 bool MachineInstr::isDebugEntryValue() const {
898   return isDebugValue() && getDebugExpression()->isEntryValue();
899 }
900 
901 const TargetRegisterClass*
902 MachineInstr::getRegClassConstraint(unsigned OpIdx,
903                                     const TargetInstrInfo *TII,
904                                     const TargetRegisterInfo *TRI) const {
905   assert(getParent() && "Can't have an MBB reference here!");
906   assert(getMF() && "Can't have an MF reference here!");
907   const MachineFunction &MF = *getMF();
908 
909   // Most opcodes have fixed constraints in their MCInstrDesc.
910   if (!isInlineAsm())
911     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
912 
913   if (!getOperand(OpIdx).isReg())
914     return nullptr;
915 
916   // For tied uses on inline asm, get the constraint from the def.
917   unsigned DefIdx;
918   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
919     OpIdx = DefIdx;
920 
921   // Inline asm stores register class constraints in the flag word.
922   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
923   if (FlagIdx < 0)
924     return nullptr;
925 
926   const InlineAsm::Flag F(getOperand(FlagIdx).getImm());
927   unsigned RCID;
928   if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) &&
929       F.hasRegClassConstraint(RCID))
930     return TRI->getRegClass(RCID);
931 
932   // Assume that all registers in a memory operand are pointers.
933   if (F.isMemKind())
934     return TRI->getPointerRegClass(MF);
935 
936   return nullptr;
937 }
938 
939 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
940     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
941     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
942   // Check every operands inside the bundle if we have
943   // been asked to.
944   if (ExploreBundle)
945     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
946          ++OpndIt)
947       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
948           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
949   else
950     // Otherwise, just check the current operands.
951     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
952       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
953   return CurRC;
954 }
955 
956 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
957     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
958     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
959   assert(CurRC && "Invalid initial register class");
960   // Check if Reg is constrained by some of its use/def from MI.
961   const MachineOperand &MO = getOperand(OpIdx);
962   if (!MO.isReg() || MO.getReg() != Reg)
963     return CurRC;
964   // If yes, accumulate the constraints through the operand.
965   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
966 }
967 
968 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
969     unsigned OpIdx, const TargetRegisterClass *CurRC,
970     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
971   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
972   const MachineOperand &MO = getOperand(OpIdx);
973   assert(MO.isReg() &&
974          "Cannot get register constraints for non-register operand");
975   assert(CurRC && "Invalid initial register class");
976   if (unsigned SubIdx = MO.getSubReg()) {
977     if (OpRC)
978       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
979     else
980       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
981   } else if (OpRC)
982     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
983   return CurRC;
984 }
985 
986 /// Return the number of instructions inside the MI bundle, not counting the
987 /// header instruction.
988 unsigned MachineInstr::getBundleSize() const {
989   MachineBasicBlock::const_instr_iterator I = getIterator();
990   unsigned Size = 0;
991   while (I->isBundledWithSucc()) {
992     ++Size;
993     ++I;
994   }
995   return Size;
996 }
997 
998 /// Returns true if the MachineInstr has an implicit-use operand of exactly
999 /// the given register (not considering sub/super-registers).
1000 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
1001   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1002     const MachineOperand &MO = getOperand(i);
1003     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1004       return true;
1005   }
1006   return false;
1007 }
1008 
1009 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1010 /// the specific register or -1 if it is not found. It further tightens
1011 /// the search criteria to a use that kills the register if isKill is true.
1012 int MachineInstr::findRegisterUseOperandIdx(
1013     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
1014   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1015     const MachineOperand &MO = getOperand(i);
1016     if (!MO.isReg() || !MO.isUse())
1017       continue;
1018     Register MOReg = MO.getReg();
1019     if (!MOReg)
1020       continue;
1021     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
1022       if (!isKill || MO.isKill())
1023         return i;
1024   }
1025   return -1;
1026 }
1027 
1028 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1029 /// indicating if this instruction reads or writes Reg. This also considers
1030 /// partial defines.
1031 std::pair<bool,bool>
1032 MachineInstr::readsWritesVirtualRegister(Register Reg,
1033                                          SmallVectorImpl<unsigned> *Ops) const {
1034   bool PartDef = false; // Partial redefine.
1035   bool FullDef = false; // Full define.
1036   bool Use = false;
1037 
1038   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1039     const MachineOperand &MO = getOperand(i);
1040     if (!MO.isReg() || MO.getReg() != Reg)
1041       continue;
1042     if (Ops)
1043       Ops->push_back(i);
1044     if (MO.isUse())
1045       Use |= !MO.isUndef();
1046     else if (MO.getSubReg() && !MO.isUndef())
1047       // A partial def undef doesn't count as reading the register.
1048       PartDef = true;
1049     else
1050       FullDef = true;
1051   }
1052   // A partial redefine uses Reg unless there is also a full define.
1053   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1054 }
1055 
1056 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1057 /// the specified register or -1 if it is not found. If isDead is true, defs
1058 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1059 /// also checks if there is a def of a super-register.
1060 int
1061 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1062                                         const TargetRegisterInfo *TRI) const {
1063   bool isPhys = Reg.isPhysical();
1064   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1065     const MachineOperand &MO = getOperand(i);
1066     // Accept regmask operands when Overlap is set.
1067     // Ignore them when looking for a specific def operand (Overlap == false).
1068     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1069       return i;
1070     if (!MO.isReg() || !MO.isDef())
1071       continue;
1072     Register MOReg = MO.getReg();
1073     bool Found = (MOReg == Reg);
1074     if (!Found && TRI && isPhys && MOReg.isPhysical()) {
1075       if (Overlap)
1076         Found = TRI->regsOverlap(MOReg, Reg);
1077       else
1078         Found = TRI->isSubRegister(MOReg, Reg);
1079     }
1080     if (Found && (!isDead || MO.isDead()))
1081       return i;
1082   }
1083   return -1;
1084 }
1085 
1086 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1087 /// operand list that is used to represent the predicate. It returns -1 if
1088 /// none is found.
1089 int MachineInstr::findFirstPredOperandIdx() const {
1090   // Don't call MCID.findFirstPredOperandIdx() because this variant
1091   // is sometimes called on an instruction that's not yet complete, and
1092   // so the number of operands is less than the MCID indicates. In
1093   // particular, the PTX target does this.
1094   const MCInstrDesc &MCID = getDesc();
1095   if (MCID.isPredicable()) {
1096     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1097       if (MCID.operands()[i].isPredicate())
1098         return i;
1099   }
1100 
1101   return -1;
1102 }
1103 
1104 // MachineOperand::TiedTo is 4 bits wide.
1105 const unsigned TiedMax = 15;
1106 
1107 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1108 ///
1109 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1110 /// field. TiedTo can have these values:
1111 ///
1112 /// 0:              Operand is not tied to anything.
1113 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1114 /// TiedMax:        Tied to an operand >= TiedMax-1.
1115 ///
1116 /// The tied def must be one of the first TiedMax operands on a normal
1117 /// instruction. INLINEASM instructions allow more tied defs.
1118 ///
1119 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1120   MachineOperand &DefMO = getOperand(DefIdx);
1121   MachineOperand &UseMO = getOperand(UseIdx);
1122   assert(DefMO.isDef() && "DefIdx must be a def operand");
1123   assert(UseMO.isUse() && "UseIdx must be a use operand");
1124   assert(!DefMO.isTied() && "Def is already tied to another use");
1125   assert(!UseMO.isTied() && "Use is already tied to another def");
1126 
1127   if (DefIdx < TiedMax)
1128     UseMO.TiedTo = DefIdx + 1;
1129   else {
1130     // Inline asm can use the group descriptors to find tied operands,
1131     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1132     // but on normal instruction, the tied def must be within the first TiedMax
1133     // operands.
1134     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1135            "DefIdx out of range");
1136     UseMO.TiedTo = TiedMax;
1137   }
1138 
1139   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1140   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1141 }
1142 
1143 /// Given the index of a tied register operand, find the operand it is tied to.
1144 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1145 /// which must exist.
1146 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1147   const MachineOperand &MO = getOperand(OpIdx);
1148   assert(MO.isTied() && "Operand isn't tied");
1149 
1150   // Normally TiedTo is in range.
1151   if (MO.TiedTo < TiedMax)
1152     return MO.TiedTo - 1;
1153 
1154   // Uses on normal instructions can be out of range.
1155   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1156     // Normal tied defs must be in the 0..TiedMax-1 range.
1157     if (MO.isUse())
1158       return TiedMax - 1;
1159     // MO is a def. Search for the tied use.
1160     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1161       const MachineOperand &UseMO = getOperand(i);
1162       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1163         return i;
1164     }
1165     llvm_unreachable("Can't find tied use");
1166   }
1167 
1168   if (getOpcode() == TargetOpcode::STATEPOINT) {
1169     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1170     // on registers.
1171     StatepointOpers SO(this);
1172     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1173     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1174     unsigned NumDefs = getNumDefs();
1175     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1176       while (!getOperand(CurUseIdx).isReg())
1177         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1178       if (OpIdx == CurDefIdx)
1179         return CurUseIdx;
1180       if (OpIdx == CurUseIdx)
1181         return CurDefIdx;
1182       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1183     }
1184     llvm_unreachable("Can't find tied use");
1185   }
1186 
1187   // Now deal with inline asm by parsing the operand group descriptor flags.
1188   // Find the beginning of each operand group.
1189   SmallVector<unsigned, 8> GroupIdx;
1190   unsigned OpIdxGroup = ~0u;
1191   unsigned NumOps;
1192   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1193        i += NumOps) {
1194     const MachineOperand &FlagMO = getOperand(i);
1195     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1196     unsigned CurGroup = GroupIdx.size();
1197     GroupIdx.push_back(i);
1198     const InlineAsm::Flag F(FlagMO.getImm());
1199     NumOps = 1 + F.getNumOperandRegisters();
1200     // OpIdx belongs to this operand group.
1201     if (OpIdx > i && OpIdx < i + NumOps)
1202       OpIdxGroup = CurGroup;
1203     unsigned TiedGroup;
1204     if (!F.isUseOperandTiedToDef(TiedGroup))
1205       continue;
1206     // Operands in this group are tied to operands in TiedGroup which must be
1207     // earlier. Find the number of operands between the two groups.
1208     unsigned Delta = i - GroupIdx[TiedGroup];
1209 
1210     // OpIdx is a use tied to TiedGroup.
1211     if (OpIdxGroup == CurGroup)
1212       return OpIdx - Delta;
1213 
1214     // OpIdx is a def tied to this use group.
1215     if (OpIdxGroup == TiedGroup)
1216       return OpIdx + Delta;
1217   }
1218   llvm_unreachable("Invalid tied operand on inline asm");
1219 }
1220 
1221 /// clearKillInfo - Clears kill flags on all operands.
1222 ///
1223 void MachineInstr::clearKillInfo() {
1224   for (MachineOperand &MO : operands()) {
1225     if (MO.isReg() && MO.isUse())
1226       MO.setIsKill(false);
1227   }
1228 }
1229 
1230 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1231                                       unsigned SubIdx,
1232                                       const TargetRegisterInfo &RegInfo) {
1233   if (ToReg.isPhysical()) {
1234     if (SubIdx)
1235       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1236     for (MachineOperand &MO : operands()) {
1237       if (!MO.isReg() || MO.getReg() != FromReg)
1238         continue;
1239       MO.substPhysReg(ToReg, RegInfo);
1240     }
1241   } else {
1242     for (MachineOperand &MO : operands()) {
1243       if (!MO.isReg() || MO.getReg() != FromReg)
1244         continue;
1245       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1246     }
1247   }
1248 }
1249 
1250 /// isSafeToMove - Return true if it is safe to move this instruction. If
1251 /// SawStore is set to true, it means that there is a store (or call) between
1252 /// the instruction's location and its intended destination.
1253 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1254   // Ignore stuff that we obviously can't move.
1255   //
1256   // Treat volatile loads as stores. This is not strictly necessary for
1257   // volatiles, but it is required for atomic loads. It is not allowed to move
1258   // a load across an atomic load with Ordering > Monotonic.
1259   if (mayStore() || isCall() || isPHI() ||
1260       (mayLoad() && hasOrderedMemoryRef())) {
1261     SawStore = true;
1262     return false;
1263   }
1264 
1265   if (isPosition() || isDebugInstr() || isTerminator() ||
1266       mayRaiseFPException() || hasUnmodeledSideEffects() ||
1267       isJumpTableDebugInfo())
1268     return false;
1269 
1270   // See if this instruction does a load.  If so, we have to guarantee that the
1271   // loaded value doesn't change between the load and the its intended
1272   // destination. The check for isInvariantLoad gives the target the chance to
1273   // classify the load as always returning a constant, e.g. a constant pool
1274   // load.
1275   if (mayLoad() && !isDereferenceableInvariantLoad())
1276     // Otherwise, this is a real load.  If there is a store between the load and
1277     // end of block, we can't move it.
1278     return !SawStore;
1279 
1280   return true;
1281 }
1282 
1283 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1284                                  bool UseTBAA, const MachineMemOperand *MMOa,
1285                                  const MachineMemOperand *MMOb) {
1286   // The following interface to AA is fashioned after DAGCombiner::isAlias and
1287   // operates with MachineMemOperand offset with some important assumptions:
1288   //   - LLVM fundamentally assumes flat address spaces.
1289   //   - MachineOperand offset can *only* result from legalization and cannot
1290   //     affect queries other than the trivial case of overlap checking.
1291   //   - These offsets never wrap and never step outside of allocated objects.
1292   //   - There should never be any negative offsets here.
1293   //
1294   // FIXME: Modify API to hide this math from "user"
1295   // Even before we go to AA we can reason locally about some memory objects. It
1296   // can save compile time, and possibly catch some corner cases not currently
1297   // covered.
1298 
1299   int64_t OffsetA = MMOa->getOffset();
1300   int64_t OffsetB = MMOb->getOffset();
1301   int64_t MinOffset = std::min(OffsetA, OffsetB);
1302 
1303   uint64_t WidthA = MMOa->getSize();
1304   uint64_t WidthB = MMOb->getSize();
1305   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1306   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1307 
1308   const Value *ValA = MMOa->getValue();
1309   const Value *ValB = MMOb->getValue();
1310   bool SameVal = (ValA && ValB && (ValA == ValB));
1311   if (!SameVal) {
1312     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1313     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1314     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1315       return false;
1316     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1317       return false;
1318     if (PSVa && PSVb && (PSVa == PSVb))
1319       SameVal = true;
1320   }
1321 
1322   if (SameVal) {
1323     if (!KnownWidthA || !KnownWidthB)
1324       return true;
1325     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1326     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1327     return (MinOffset + LowWidth > MaxOffset);
1328   }
1329 
1330   if (!AA)
1331     return true;
1332 
1333   if (!ValA || !ValB)
1334     return true;
1335 
1336   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1337   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1338 
1339   int64_t OverlapA =
1340       KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1341   int64_t OverlapB =
1342       KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1343 
1344   return !AA->isNoAlias(
1345       MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1346       MemoryLocation(ValB, OverlapB,
1347                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1348 }
1349 
1350 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1351                             bool UseTBAA) const {
1352   const MachineFunction *MF = getMF();
1353   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1354   const MachineFrameInfo &MFI = MF->getFrameInfo();
1355 
1356   // Exclude call instruction which may alter the memory but can not be handled
1357   // by this function.
1358   if (isCall() || Other.isCall())
1359     return true;
1360 
1361   // If neither instruction stores to memory, they can't alias in any
1362   // meaningful way, even if they read from the same address.
1363   if (!mayStore() && !Other.mayStore())
1364     return false;
1365 
1366   // Both instructions must be memory operations to be able to alias.
1367   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1368     return false;
1369 
1370   // Let the target decide if memory accesses cannot possibly overlap.
1371   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1372     return false;
1373 
1374   // Memory operations without memory operands may access anything. Be
1375   // conservative and assume `MayAlias`.
1376   if (memoperands_empty() || Other.memoperands_empty())
1377     return true;
1378 
1379   // Skip if there are too many memory operands.
1380   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1381   if (NumChecks > TII->getMemOperandAACheckLimit())
1382     return true;
1383 
1384   // Check each pair of memory operands from both instructions, which can't
1385   // alias only if all pairs won't alias.
1386   for (auto *MMOa : memoperands())
1387     for (auto *MMOb : Other.memoperands())
1388       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1389         return true;
1390 
1391   return false;
1392 }
1393 
1394 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1395 /// or volatile memory reference, or if the information describing the memory
1396 /// reference is not available. Return false if it is known to have no ordered
1397 /// memory references.
1398 bool MachineInstr::hasOrderedMemoryRef() const {
1399   // An instruction known never to access memory won't have a volatile access.
1400   if (!mayStore() &&
1401       !mayLoad() &&
1402       !isCall() &&
1403       !hasUnmodeledSideEffects())
1404     return false;
1405 
1406   // Otherwise, if the instruction has no memory reference information,
1407   // conservatively assume it wasn't preserved.
1408   if (memoperands_empty())
1409     return true;
1410 
1411   // Check if any of our memory operands are ordered.
1412   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1413     return !MMO->isUnordered();
1414   });
1415 }
1416 
1417 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1418 /// trap and is loading from a location whose value is invariant across a run of
1419 /// this function.
1420 bool MachineInstr::isDereferenceableInvariantLoad() const {
1421   // If the instruction doesn't load at all, it isn't an invariant load.
1422   if (!mayLoad())
1423     return false;
1424 
1425   // If the instruction has lost its memoperands, conservatively assume that
1426   // it may not be an invariant load.
1427   if (memoperands_empty())
1428     return false;
1429 
1430   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1431 
1432   for (MachineMemOperand *MMO : memoperands()) {
1433     if (!MMO->isUnordered())
1434       // If the memory operand has ordering side effects, we can't move the
1435       // instruction.  Such an instruction is technically an invariant load,
1436       // but the caller code would need updated to expect that.
1437       return false;
1438     if (MMO->isStore()) return false;
1439     if (MMO->isInvariant() && MMO->isDereferenceable())
1440       continue;
1441 
1442     // A load from a constant PseudoSourceValue is invariant.
1443     if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
1444       if (PSV->isConstant(&MFI))
1445         continue;
1446     }
1447 
1448     // Otherwise assume conservatively.
1449     return false;
1450   }
1451 
1452   // Everything checks out.
1453   return true;
1454 }
1455 
1456 /// isConstantValuePHI - If the specified instruction is a PHI that always
1457 /// merges together the same virtual register, return the register, otherwise
1458 /// return 0.
1459 unsigned MachineInstr::isConstantValuePHI() const {
1460   if (!isPHI())
1461     return 0;
1462   assert(getNumOperands() >= 3 &&
1463          "It's illegal to have a PHI without source operands");
1464 
1465   Register Reg = getOperand(1).getReg();
1466   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1467     if (getOperand(i).getReg() != Reg)
1468       return 0;
1469   return Reg;
1470 }
1471 
1472 bool MachineInstr::hasUnmodeledSideEffects() const {
1473   if (hasProperty(MCID::UnmodeledSideEffects))
1474     return true;
1475   if (isInlineAsm()) {
1476     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1477     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1478       return true;
1479   }
1480 
1481   return false;
1482 }
1483 
1484 bool MachineInstr::isLoadFoldBarrier() const {
1485   return mayStore() || isCall() ||
1486          (hasUnmodeledSideEffects() && !isPseudoProbe());
1487 }
1488 
1489 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1490 ///
1491 bool MachineInstr::allDefsAreDead() const {
1492   for (const MachineOperand &MO : operands()) {
1493     if (!MO.isReg() || MO.isUse())
1494       continue;
1495     if (!MO.isDead())
1496       return false;
1497   }
1498   return true;
1499 }
1500 
1501 bool MachineInstr::allImplicitDefsAreDead() const {
1502   for (const MachineOperand &MO : implicit_operands()) {
1503     if (!MO.isReg() || MO.isUse())
1504       continue;
1505     if (!MO.isDead())
1506       return false;
1507   }
1508   return true;
1509 }
1510 
1511 /// copyImplicitOps - Copy implicit register operands from specified
1512 /// instruction to this instruction.
1513 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1514                                    const MachineInstr &MI) {
1515   for (const MachineOperand &MO :
1516        llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1517     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1518       addOperand(MF, MO);
1519 }
1520 
1521 bool MachineInstr::hasComplexRegisterTies() const {
1522   const MCInstrDesc &MCID = getDesc();
1523   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1524     return true;
1525   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1526     const auto &Operand = getOperand(I);
1527     if (!Operand.isReg() || Operand.isDef())
1528       // Ignore the defined registers as MCID marks only the uses as tied.
1529       continue;
1530     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1531     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1532     if (ExpectedTiedIdx != TiedIdx)
1533       return true;
1534   }
1535   return false;
1536 }
1537 
1538 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1539                                  const MachineRegisterInfo &MRI) const {
1540   const MachineOperand &Op = getOperand(OpIdx);
1541   if (!Op.isReg())
1542     return LLT{};
1543 
1544   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1545     return MRI.getType(Op.getReg());
1546 
1547   auto &OpInfo = getDesc().operands()[OpIdx];
1548   if (!OpInfo.isGenericType())
1549     return MRI.getType(Op.getReg());
1550 
1551   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1552     return LLT{};
1553 
1554   LLT TypeToPrint = MRI.getType(Op.getReg());
1555   // Don't mark the type index printed if it wasn't actually printed: maybe
1556   // another operand with the same type index has an actual type attached:
1557   if (TypeToPrint.isValid())
1558     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1559   return TypeToPrint;
1560 }
1561 
1562 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1563 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1564   dbgs() << "  ";
1565   print(dbgs());
1566 }
1567 
1568 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1569     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1570     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1571   if (Depth >= MaxDepth)
1572     return;
1573   if (!AlreadySeenInstrs.insert(this).second)
1574     return;
1575   // PadToColumn always inserts at least one space.
1576   // Don't mess up the alignment if we don't want any space.
1577   if (Depth)
1578     fdbgs().PadToColumn(Depth * 2);
1579   print(fdbgs());
1580   for (const MachineOperand &MO : operands()) {
1581     if (!MO.isReg() || MO.isDef())
1582       continue;
1583     Register Reg = MO.getReg();
1584     if (Reg.isPhysical())
1585       continue;
1586     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1587     if (NewMI == nullptr)
1588       continue;
1589     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1590   }
1591 }
1592 
1593 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1594                                           unsigned MaxDepth) const {
1595   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1596   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1597 }
1598 #endif
1599 
1600 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1601                          bool SkipDebugLoc, bool AddNewLine,
1602                          const TargetInstrInfo *TII) const {
1603   const Module *M = nullptr;
1604   const Function *F = nullptr;
1605   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1606     F = &MF->getFunction();
1607     M = F->getParent();
1608     if (!TII)
1609       TII = MF->getSubtarget().getInstrInfo();
1610   }
1611 
1612   ModuleSlotTracker MST(M);
1613   if (F)
1614     MST.incorporateFunction(*F);
1615   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1616 }
1617 
1618 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1619                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1620                          bool AddNewLine, const TargetInstrInfo *TII) const {
1621   // We can be a bit tidier if we know the MachineFunction.
1622   const TargetRegisterInfo *TRI = nullptr;
1623   const MachineRegisterInfo *MRI = nullptr;
1624   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1625   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1626 
1627   if (isCFIInstruction())
1628     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1629 
1630   SmallBitVector PrintedTypes(8);
1631   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1632   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1633     if (!ShouldPrintRegisterTies)
1634       return 0U;
1635     const MachineOperand &MO = getOperand(OpIdx);
1636     if (MO.isReg() && MO.isTied() && !MO.isDef())
1637       return findTiedOperandIdx(OpIdx);
1638     return 0U;
1639   };
1640   unsigned StartOp = 0;
1641   unsigned e = getNumOperands();
1642 
1643   // Print explicitly defined operands on the left of an assignment syntax.
1644   while (StartOp < e) {
1645     const MachineOperand &MO = getOperand(StartOp);
1646     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1647       break;
1648 
1649     if (StartOp != 0)
1650       OS << ", ";
1651 
1652     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1653     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1654     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1655              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1656     ++StartOp;
1657   }
1658 
1659   if (StartOp != 0)
1660     OS << " = ";
1661 
1662   if (getFlag(MachineInstr::FrameSetup))
1663     OS << "frame-setup ";
1664   if (getFlag(MachineInstr::FrameDestroy))
1665     OS << "frame-destroy ";
1666   if (getFlag(MachineInstr::FmNoNans))
1667     OS << "nnan ";
1668   if (getFlag(MachineInstr::FmNoInfs))
1669     OS << "ninf ";
1670   if (getFlag(MachineInstr::FmNsz))
1671     OS << "nsz ";
1672   if (getFlag(MachineInstr::FmArcp))
1673     OS << "arcp ";
1674   if (getFlag(MachineInstr::FmContract))
1675     OS << "contract ";
1676   if (getFlag(MachineInstr::FmAfn))
1677     OS << "afn ";
1678   if (getFlag(MachineInstr::FmReassoc))
1679     OS << "reassoc ";
1680   if (getFlag(MachineInstr::NoUWrap))
1681     OS << "nuw ";
1682   if (getFlag(MachineInstr::NoSWrap))
1683     OS << "nsw ";
1684   if (getFlag(MachineInstr::IsExact))
1685     OS << "exact ";
1686   if (getFlag(MachineInstr::NoFPExcept))
1687     OS << "nofpexcept ";
1688   if (getFlag(MachineInstr::NoMerge))
1689     OS << "nomerge ";
1690 
1691   // Print the opcode name.
1692   if (TII)
1693     OS << TII->getName(getOpcode());
1694   else
1695     OS << "UNKNOWN";
1696 
1697   if (SkipOpers)
1698     return;
1699 
1700   // Print the rest of the operands.
1701   bool FirstOp = true;
1702   unsigned AsmDescOp = ~0u;
1703   unsigned AsmOpCount = 0;
1704 
1705   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1706     // Print asm string.
1707     OS << " ";
1708     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1709     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1710     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1711     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1712                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1713                             IntrinsicInfo);
1714 
1715     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1716     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1717     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1718       OS << " [sideeffect]";
1719     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1720       OS << " [mayload]";
1721     if (ExtraInfo & InlineAsm::Extra_MayStore)
1722       OS << " [maystore]";
1723     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1724       OS << " [isconvergent]";
1725     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1726       OS << " [alignstack]";
1727     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1728       OS << " [attdialect]";
1729     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1730       OS << " [inteldialect]";
1731 
1732     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1733     FirstOp = false;
1734   }
1735 
1736   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1737     const MachineOperand &MO = getOperand(i);
1738 
1739     if (FirstOp) FirstOp = false; else OS << ",";
1740     OS << " ";
1741 
1742     if (isDebugValueLike() && MO.isMetadata()) {
1743       // Pretty print DBG_VALUE* instructions.
1744       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1745       if (DIV && !DIV->getName().empty())
1746         OS << "!\"" << DIV->getName() << '\"';
1747       else {
1748         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1749         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1750         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1751                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1752       }
1753     } else if (isDebugLabel() && MO.isMetadata()) {
1754       // Pretty print DBG_LABEL instructions.
1755       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1756       if (DIL && !DIL->getName().empty())
1757         OS << "\"" << DIL->getName() << '\"';
1758       else {
1759         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1760         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1761         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1762                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1763       }
1764     } else if (i == AsmDescOp && MO.isImm()) {
1765       // Pretty print the inline asm operand descriptor.
1766       OS << '$' << AsmOpCount++;
1767       unsigned Flag = MO.getImm();
1768       const InlineAsm::Flag F(Flag);
1769       OS << ":[";
1770       OS << F.getKindName();
1771 
1772       unsigned RCID;
1773       if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) {
1774         if (TRI) {
1775           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1776         } else
1777           OS << ":RC" << RCID;
1778       }
1779 
1780       if (F.isMemKind()) {
1781         const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID();
1782         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1783       }
1784 
1785       unsigned TiedTo;
1786       if (F.isUseOperandTiedToDef(TiedTo))
1787         OS << " tiedto:$" << TiedTo;
1788 
1789       OS << ']';
1790 
1791       // Compute the index of the next operand descriptor.
1792       AsmDescOp += 1 + F.getNumOperandRegisters();
1793     } else {
1794       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1795       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1796       if (MO.isImm() && isOperandSubregIdx(i))
1797         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1798       else
1799         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1800                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1801     }
1802   }
1803 
1804   // Print any optional symbols attached to this instruction as-if they were
1805   // operands.
1806   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1807     if (!FirstOp) {
1808       FirstOp = false;
1809       OS << ',';
1810     }
1811     OS << " pre-instr-symbol ";
1812     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1813   }
1814   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1815     if (!FirstOp) {
1816       FirstOp = false;
1817       OS << ',';
1818     }
1819     OS << " post-instr-symbol ";
1820     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1821   }
1822   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1823     if (!FirstOp) {
1824       FirstOp = false;
1825       OS << ',';
1826     }
1827     OS << " heap-alloc-marker ";
1828     HeapAllocMarker->printAsOperand(OS, MST);
1829   }
1830   if (MDNode *PCSections = getPCSections()) {
1831     if (!FirstOp) {
1832       FirstOp = false;
1833       OS << ',';
1834     }
1835     OS << " pcsections ";
1836     PCSections->printAsOperand(OS, MST);
1837   }
1838   if (uint32_t CFIType = getCFIType()) {
1839     if (!FirstOp)
1840       OS << ',';
1841     OS << " cfi-type " << CFIType;
1842   }
1843 
1844   if (DebugInstrNum) {
1845     if (!FirstOp)
1846       OS << ",";
1847     OS << " debug-instr-number " << DebugInstrNum;
1848   }
1849 
1850   if (!SkipDebugLoc) {
1851     if (const DebugLoc &DL = getDebugLoc()) {
1852       if (!FirstOp)
1853         OS << ',';
1854       OS << " debug-location ";
1855       DL->printAsOperand(OS, MST);
1856     }
1857   }
1858 
1859   if (!memoperands_empty()) {
1860     SmallVector<StringRef, 0> SSNs;
1861     const LLVMContext *Context = nullptr;
1862     std::unique_ptr<LLVMContext> CtxPtr;
1863     const MachineFrameInfo *MFI = nullptr;
1864     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1865       MFI = &MF->getFrameInfo();
1866       Context = &MF->getFunction().getContext();
1867     } else {
1868       CtxPtr = std::make_unique<LLVMContext>();
1869       Context = CtxPtr.get();
1870     }
1871 
1872     OS << " :: ";
1873     bool NeedComma = false;
1874     for (const MachineMemOperand *Op : memoperands()) {
1875       if (NeedComma)
1876         OS << ", ";
1877       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1878       NeedComma = true;
1879     }
1880   }
1881 
1882   if (SkipDebugLoc)
1883     return;
1884 
1885   bool HaveSemi = false;
1886 
1887   // Print debug location information.
1888   if (const DebugLoc &DL = getDebugLoc()) {
1889     if (!HaveSemi) {
1890       OS << ';';
1891       HaveSemi = true;
1892     }
1893     OS << ' ';
1894     DL.print(OS);
1895   }
1896 
1897   // Print extra comments for DEBUG_VALUE and friends if they are well-formed.
1898   if ((isNonListDebugValue() && getNumOperands() >= 4) ||
1899       (isDebugValueList() && getNumOperands() >= 2) ||
1900       (isDebugRef() && getNumOperands() >= 3)) {
1901     if (getDebugVariableOp().isMetadata()) {
1902       if (!HaveSemi) {
1903         OS << ";";
1904         HaveSemi = true;
1905       }
1906       auto *DV = getDebugVariable();
1907       OS << " line no:" << DV->getLine();
1908       if (isIndirectDebugValue())
1909         OS << " indirect";
1910     }
1911   }
1912   // TODO: DBG_LABEL
1913 
1914   if (AddNewLine)
1915     OS << '\n';
1916 }
1917 
1918 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1919                                      const TargetRegisterInfo *RegInfo,
1920                                      bool AddIfNotFound) {
1921   bool isPhysReg = IncomingReg.isPhysical();
1922   bool hasAliases = isPhysReg &&
1923     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1924   bool Found = false;
1925   SmallVector<unsigned,4> DeadOps;
1926   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1927     MachineOperand &MO = getOperand(i);
1928     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1929       continue;
1930 
1931     // DEBUG_VALUE nodes do not contribute to code generation and should
1932     // always be ignored. Failure to do so may result in trying to modify
1933     // KILL flags on DEBUG_VALUE nodes.
1934     if (MO.isDebug())
1935       continue;
1936 
1937     Register Reg = MO.getReg();
1938     if (!Reg)
1939       continue;
1940 
1941     if (Reg == IncomingReg) {
1942       if (!Found) {
1943         if (MO.isKill())
1944           // The register is already marked kill.
1945           return true;
1946         if (isPhysReg && isRegTiedToDefOperand(i))
1947           // Two-address uses of physregs must not be marked kill.
1948           return true;
1949         MO.setIsKill();
1950         Found = true;
1951       }
1952     } else if (hasAliases && MO.isKill() && Reg.isPhysical()) {
1953       // A super-register kill already exists.
1954       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1955         return true;
1956       if (RegInfo->isSubRegister(IncomingReg, Reg))
1957         DeadOps.push_back(i);
1958     }
1959   }
1960 
1961   // Trim unneeded kill operands.
1962   while (!DeadOps.empty()) {
1963     unsigned OpIdx = DeadOps.back();
1964     if (getOperand(OpIdx).isImplicit() &&
1965         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1966       removeOperand(OpIdx);
1967     else
1968       getOperand(OpIdx).setIsKill(false);
1969     DeadOps.pop_back();
1970   }
1971 
1972   // If not found, this means an alias of one of the operands is killed. Add a
1973   // new implicit operand if required.
1974   if (!Found && AddIfNotFound) {
1975     addOperand(MachineOperand::CreateReg(IncomingReg,
1976                                          false /*IsDef*/,
1977                                          true  /*IsImp*/,
1978                                          true  /*IsKill*/));
1979     return true;
1980   }
1981   return Found;
1982 }
1983 
1984 void MachineInstr::clearRegisterKills(Register Reg,
1985                                       const TargetRegisterInfo *RegInfo) {
1986   if (!Reg.isPhysical())
1987     RegInfo = nullptr;
1988   for (MachineOperand &MO : operands()) {
1989     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1990       continue;
1991     Register OpReg = MO.getReg();
1992     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1993       MO.setIsKill(false);
1994   }
1995 }
1996 
1997 bool MachineInstr::addRegisterDead(Register Reg,
1998                                    const TargetRegisterInfo *RegInfo,
1999                                    bool AddIfNotFound) {
2000   bool isPhysReg = Reg.isPhysical();
2001   bool hasAliases = isPhysReg &&
2002     MCRegAliasIterator(Reg, RegInfo, false).isValid();
2003   bool Found = false;
2004   SmallVector<unsigned,4> DeadOps;
2005   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2006     MachineOperand &MO = getOperand(i);
2007     if (!MO.isReg() || !MO.isDef())
2008       continue;
2009     Register MOReg = MO.getReg();
2010     if (!MOReg)
2011       continue;
2012 
2013     if (MOReg == Reg) {
2014       MO.setIsDead();
2015       Found = true;
2016     } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) {
2017       // There exists a super-register that's marked dead.
2018       if (RegInfo->isSuperRegister(Reg, MOReg))
2019         return true;
2020       if (RegInfo->isSubRegister(Reg, MOReg))
2021         DeadOps.push_back(i);
2022     }
2023   }
2024 
2025   // Trim unneeded dead operands.
2026   while (!DeadOps.empty()) {
2027     unsigned OpIdx = DeadOps.back();
2028     if (getOperand(OpIdx).isImplicit() &&
2029         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
2030       removeOperand(OpIdx);
2031     else
2032       getOperand(OpIdx).setIsDead(false);
2033     DeadOps.pop_back();
2034   }
2035 
2036   // If not found, this means an alias of one of the operands is dead. Add a
2037   // new implicit operand if required.
2038   if (Found || !AddIfNotFound)
2039     return Found;
2040 
2041   addOperand(MachineOperand::CreateReg(Reg,
2042                                        true  /*IsDef*/,
2043                                        true  /*IsImp*/,
2044                                        false /*IsKill*/,
2045                                        true  /*IsDead*/));
2046   return true;
2047 }
2048 
2049 void MachineInstr::clearRegisterDeads(Register Reg) {
2050   for (MachineOperand &MO : operands()) {
2051     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2052       continue;
2053     MO.setIsDead(false);
2054   }
2055 }
2056 
2057 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2058   for (MachineOperand &MO : operands()) {
2059     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2060       continue;
2061     MO.setIsUndef(IsUndef);
2062   }
2063 }
2064 
2065 void MachineInstr::addRegisterDefined(Register Reg,
2066                                       const TargetRegisterInfo *RegInfo) {
2067   if (Reg.isPhysical()) {
2068     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2069     if (MO)
2070       return;
2071   } else {
2072     for (const MachineOperand &MO : operands()) {
2073       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2074           MO.getSubReg() == 0)
2075         return;
2076     }
2077   }
2078   addOperand(MachineOperand::CreateReg(Reg,
2079                                        true  /*IsDef*/,
2080                                        true  /*IsImp*/));
2081 }
2082 
2083 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2084                                          const TargetRegisterInfo &TRI) {
2085   bool HasRegMask = false;
2086   for (MachineOperand &MO : operands()) {
2087     if (MO.isRegMask()) {
2088       HasRegMask = true;
2089       continue;
2090     }
2091     if (!MO.isReg() || !MO.isDef()) continue;
2092     Register Reg = MO.getReg();
2093     if (!Reg.isPhysical())
2094       continue;
2095     // If there are no uses, including partial uses, the def is dead.
2096     if (llvm::none_of(UsedRegs,
2097                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2098       MO.setIsDead();
2099   }
2100 
2101   // This is a call with a register mask operand.
2102   // Mask clobbers are always dead, so add defs for the non-dead defines.
2103   if (HasRegMask)
2104     for (const Register &UsedReg : UsedRegs)
2105       addRegisterDefined(UsedReg, &TRI);
2106 }
2107 
2108 unsigned
2109 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2110   // Build up a buffer of hash code components.
2111   SmallVector<size_t, 16> HashComponents;
2112   HashComponents.reserve(MI->getNumOperands() + 1);
2113   HashComponents.push_back(MI->getOpcode());
2114   for (const MachineOperand &MO : MI->operands()) {
2115     if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual())
2116       continue;  // Skip virtual register defs.
2117 
2118     HashComponents.push_back(hash_value(MO));
2119   }
2120   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2121 }
2122 
2123 void MachineInstr::emitError(StringRef Msg) const {
2124   // Find the source location cookie.
2125   uint64_t LocCookie = 0;
2126   const MDNode *LocMD = nullptr;
2127   for (unsigned i = getNumOperands(); i != 0; --i) {
2128     if (getOperand(i-1).isMetadata() &&
2129         (LocMD = getOperand(i-1).getMetadata()) &&
2130         LocMD->getNumOperands() != 0) {
2131       if (const ConstantInt *CI =
2132               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2133         LocCookie = CI->getZExtValue();
2134         break;
2135       }
2136     }
2137   }
2138 
2139   if (const MachineBasicBlock *MBB = getParent())
2140     if (const MachineFunction *MF = MBB->getParent())
2141       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2142   report_fatal_error(Msg);
2143 }
2144 
2145 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2146                                   const MCInstrDesc &MCID, bool IsIndirect,
2147                                   Register Reg, const MDNode *Variable,
2148                                   const MDNode *Expr) {
2149   assert(isa<DILocalVariable>(Variable) && "not a variable");
2150   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2151   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2152          "Expected inlined-at fields to agree");
2153   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2154   if (IsIndirect)
2155     MIB.addImm(0U);
2156   else
2157     MIB.addReg(0U);
2158   return MIB.addMetadata(Variable).addMetadata(Expr);
2159 }
2160 
2161 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2162                                   const MCInstrDesc &MCID, bool IsIndirect,
2163                                   ArrayRef<MachineOperand> DebugOps,
2164                                   const MDNode *Variable, const MDNode *Expr) {
2165   assert(isa<DILocalVariable>(Variable) && "not a variable");
2166   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2167   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2168          "Expected inlined-at fields to agree");
2169   if (MCID.Opcode == TargetOpcode::DBG_VALUE) {
2170     assert(DebugOps.size() == 1 &&
2171            "DBG_VALUE must contain exactly one debug operand");
2172     MachineOperand DebugOp = DebugOps[0];
2173     if (DebugOp.isReg())
2174       return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable,
2175                      Expr);
2176 
2177     auto MIB = BuildMI(MF, DL, MCID).add(DebugOp);
2178     if (IsIndirect)
2179       MIB.addImm(0U);
2180     else
2181       MIB.addReg(0U);
2182     return MIB.addMetadata(Variable).addMetadata(Expr);
2183   }
2184 
2185   auto MIB = BuildMI(MF, DL, MCID);
2186   MIB.addMetadata(Variable).addMetadata(Expr);
2187   for (const MachineOperand &DebugOp : DebugOps)
2188     if (DebugOp.isReg())
2189       MIB.addReg(DebugOp.getReg());
2190     else
2191       MIB.add(DebugOp);
2192   return MIB;
2193 }
2194 
2195 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2196                                   MachineBasicBlock::iterator I,
2197                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2198                                   bool IsIndirect, Register Reg,
2199                                   const MDNode *Variable, const MDNode *Expr) {
2200   MachineFunction &MF = *BB.getParent();
2201   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2202   BB.insert(I, MI);
2203   return MachineInstrBuilder(MF, MI);
2204 }
2205 
2206 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2207                                   MachineBasicBlock::iterator I,
2208                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2209                                   bool IsIndirect,
2210                                   ArrayRef<MachineOperand> DebugOps,
2211                                   const MDNode *Variable, const MDNode *Expr) {
2212   MachineFunction &MF = *BB.getParent();
2213   MachineInstr *MI =
2214       BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr);
2215   BB.insert(I, MI);
2216   return MachineInstrBuilder(MF, *MI);
2217 }
2218 
2219 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2220 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2221 static const DIExpression *
2222 computeExprForSpill(const MachineInstr &MI,
2223                     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2224   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2225          "Expected inlined-at fields to agree");
2226 
2227   const DIExpression *Expr = MI.getDebugExpression();
2228   if (MI.isIndirectDebugValue()) {
2229     assert(MI.getDebugOffset().getImm() == 0 &&
2230            "DBG_VALUE with nonzero offset");
2231     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2232   } else if (MI.isDebugValueList()) {
2233     // We will replace the spilled register with a frame index, so
2234     // immediately deref all references to the spilled register.
2235     std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2236     for (const MachineOperand *Op : SpilledOperands) {
2237       unsigned OpIdx = MI.getDebugOperandIndex(Op);
2238       Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2239     }
2240   }
2241   return Expr;
2242 }
2243 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2244                                                Register SpillReg) {
2245   assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2246   SmallVector<const MachineOperand *> SpillOperands;
2247   for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2248     SpillOperands.push_back(&Op);
2249   return computeExprForSpill(MI, SpillOperands);
2250 }
2251 
2252 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2253                                           MachineBasicBlock::iterator I,
2254                                           const MachineInstr &Orig,
2255                                           int FrameIndex, Register SpillReg) {
2256   assert(!Orig.isDebugRef() &&
2257          "DBG_INSTR_REF should not reference a virtual register.");
2258   const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2259   MachineInstrBuilder NewMI =
2260       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2261   // Non-Variadic Operands: Location, Offset, Variable, Expression
2262   // Variadic Operands:     Variable, Expression, Locations...
2263   if (Orig.isNonListDebugValue())
2264     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2265   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2266   if (Orig.isDebugValueList()) {
2267     for (const MachineOperand &Op : Orig.debug_operands())
2268       if (Op.isReg() && Op.getReg() == SpillReg)
2269         NewMI.addFrameIndex(FrameIndex);
2270       else
2271         NewMI.add(MachineOperand(Op));
2272   }
2273   return NewMI;
2274 }
2275 MachineInstr *llvm::buildDbgValueForSpill(
2276     MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2277     const MachineInstr &Orig, int FrameIndex,
2278     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2279   const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2280   MachineInstrBuilder NewMI =
2281       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2282   // Non-Variadic Operands: Location, Offset, Variable, Expression
2283   // Variadic Operands:     Variable, Expression, Locations...
2284   if (Orig.isNonListDebugValue())
2285     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2286   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2287   if (Orig.isDebugValueList()) {
2288     for (const MachineOperand &Op : Orig.debug_operands())
2289       if (is_contained(SpilledOperands, &Op))
2290         NewMI.addFrameIndex(FrameIndex);
2291       else
2292         NewMI.add(MachineOperand(Op));
2293   }
2294   return NewMI;
2295 }
2296 
2297 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2298                                   Register Reg) {
2299   const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2300   if (Orig.isNonListDebugValue())
2301     Orig.getDebugOffset().ChangeToImmediate(0U);
2302   for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2303     Op.ChangeToFrameIndex(FrameIndex);
2304   Orig.getDebugExpressionOp().setMetadata(Expr);
2305 }
2306 
2307 void MachineInstr::collectDebugValues(
2308                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2309   MachineInstr &MI = *this;
2310   if (!MI.getOperand(0).isReg())
2311     return;
2312 
2313   MachineBasicBlock::iterator DI = MI; ++DI;
2314   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2315        DI != DE; ++DI) {
2316     if (!DI->isDebugValue())
2317       return;
2318     if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2319       DbgValues.push_back(&*DI);
2320   }
2321 }
2322 
2323 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2324   // Collect matching debug values.
2325   SmallVector<MachineInstr *, 2> DbgValues;
2326 
2327   if (!getOperand(0).isReg())
2328     return;
2329 
2330   Register DefReg = getOperand(0).getReg();
2331   auto *MRI = getRegInfo();
2332   for (auto &MO : MRI->use_operands(DefReg)) {
2333     auto *DI = MO.getParent();
2334     if (!DI->isDebugValue())
2335       continue;
2336     if (DI->hasDebugOperandForReg(DefReg)) {
2337       DbgValues.push_back(DI);
2338     }
2339   }
2340 
2341   // Propagate Reg to debug value instructions.
2342   for (auto *DBI : DbgValues)
2343     for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2344       Op.setReg(Reg);
2345 }
2346 
2347 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2348 
2349 static unsigned getSpillSlotSize(const MMOList &Accesses,
2350                                  const MachineFrameInfo &MFI) {
2351   unsigned Size = 0;
2352   for (const auto *A : Accesses)
2353     if (MFI.isSpillSlotObjectIndex(
2354             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2355                 ->getFrameIndex()))
2356       Size += A->getSize();
2357   return Size;
2358 }
2359 
2360 std::optional<unsigned>
2361 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2362   int FI;
2363   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2364     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2365     if (MFI.isSpillSlotObjectIndex(FI))
2366       return (*memoperands_begin())->getSize();
2367   }
2368   return std::nullopt;
2369 }
2370 
2371 std::optional<unsigned>
2372 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2373   MMOList Accesses;
2374   if (TII->hasStoreToStackSlot(*this, Accesses))
2375     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2376   return std::nullopt;
2377 }
2378 
2379 std::optional<unsigned>
2380 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2381   int FI;
2382   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2383     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2384     if (MFI.isSpillSlotObjectIndex(FI))
2385       return (*memoperands_begin())->getSize();
2386   }
2387   return std::nullopt;
2388 }
2389 
2390 std::optional<unsigned>
2391 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2392   MMOList Accesses;
2393   if (TII->hasLoadFromStackSlot(*this, Accesses))
2394     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2395   return std::nullopt;
2396 }
2397 
2398 unsigned MachineInstr::getDebugInstrNum() {
2399   if (DebugInstrNum == 0)
2400     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2401   return DebugInstrNum;
2402 }
2403 
2404 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2405   if (DebugInstrNum == 0)
2406     DebugInstrNum = MF.getNewDebugInstrNum();
2407   return DebugInstrNum;
2408 }
2409 
2410 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const {
2411   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2412                     getRegInfo()->getType(getOperand(1).getReg()));
2413 }
2414 
2415 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const {
2416   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2417                     getRegInfo()->getType(getOperand(1).getReg()),
2418                     getRegInfo()->getType(getOperand(2).getReg()));
2419 }
2420 
2421 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const {
2422   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2423                     getRegInfo()->getType(getOperand(1).getReg()),
2424                     getRegInfo()->getType(getOperand(2).getReg()),
2425                     getRegInfo()->getType(getOperand(3).getReg()));
2426 }
2427 
2428 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const {
2429   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2430                     getRegInfo()->getType(getOperand(1).getReg()),
2431                     getRegInfo()->getType(getOperand(2).getReg()),
2432                     getRegInfo()->getType(getOperand(3).getReg()),
2433                     getRegInfo()->getType(getOperand(4).getReg()));
2434 }
2435 
2436 std::tuple<Register, LLT, Register, LLT>
2437 MachineInstr::getFirst2RegLLTs() const {
2438   Register Reg0 = getOperand(0).getReg();
2439   Register Reg1 = getOperand(1).getReg();
2440   return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2441                     getRegInfo()->getType(Reg1));
2442 }
2443 
2444 std::tuple<Register, LLT, Register, LLT, Register, LLT>
2445 MachineInstr::getFirst3RegLLTs() const {
2446   Register Reg0 = getOperand(0).getReg();
2447   Register Reg1 = getOperand(1).getReg();
2448   Register Reg2 = getOperand(2).getReg();
2449   return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2450                     getRegInfo()->getType(Reg1), Reg2,
2451                     getRegInfo()->getType(Reg2));
2452 }
2453 
2454 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT>
2455 MachineInstr::getFirst4RegLLTs() const {
2456   Register Reg0 = getOperand(0).getReg();
2457   Register Reg1 = getOperand(1).getReg();
2458   Register Reg2 = getOperand(2).getReg();
2459   Register Reg3 = getOperand(3).getReg();
2460   return std::tuple(
2461       Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2462       Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3));
2463 }
2464 
2465 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register,
2466            LLT>
2467 MachineInstr::getFirst5RegLLTs() const {
2468   Register Reg0 = getOperand(0).getReg();
2469   Register Reg1 = getOperand(1).getReg();
2470   Register Reg2 = getOperand(2).getReg();
2471   Register Reg3 = getOperand(3).getReg();
2472   Register Reg4 = getOperand(4).getReg();
2473   return std::tuple(
2474       Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2475       Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3),
2476       Reg4, getRegInfo()->getType(Reg4));
2477 }
2478