1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/Hashing.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/MemoryLocation.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/PseudoSourceValue.h" 32 #include "llvm/CodeGen/Register.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/ModuleSlotTracker.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/MC/MCInstrDesc.h" 48 #include "llvm/MC/MCRegisterInfo.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/FormattedStream.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstdint> 59 #include <cstring> 60 #include <utility> 61 62 using namespace llvm; 63 64 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 65 if (const MachineBasicBlock *MBB = MI.getParent()) 66 if (const MachineFunction *MF = MBB->getParent()) 67 return MF; 68 return nullptr; 69 } 70 71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 72 // it. 73 static void tryToGetTargetInfo(const MachineInstr &MI, 74 const TargetRegisterInfo *&TRI, 75 const MachineRegisterInfo *&MRI, 76 const TargetIntrinsicInfo *&IntrinsicInfo, 77 const TargetInstrInfo *&TII) { 78 79 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 80 TRI = MF->getSubtarget().getRegisterInfo(); 81 MRI = &MF->getRegInfo(); 82 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 83 TII = MF->getSubtarget().getInstrInfo(); 84 } 85 } 86 87 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 88 for (MCPhysReg ImpDef : MCID->implicit_defs()) 89 addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true)); 90 for (MCPhysReg ImpUse : MCID->implicit_uses()) 91 addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true)); 92 } 93 94 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 95 /// implicit operands. It reserves space for the number of operands specified by 96 /// the MCInstrDesc. 97 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, 98 DebugLoc DL, bool NoImp) 99 : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0), 100 DbgLoc(std::move(DL)), DebugInstrNum(0) { 101 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 102 103 // Reserve space for the expected number of operands. 104 if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() + 105 MCID->implicit_uses().size()) { 106 CapOperands = OperandCapacity::get(NumOps); 107 Operands = MF.allocateOperandArray(CapOperands); 108 } 109 110 if (!NoImp) 111 addImplicitDefUseOperands(MF); 112 } 113 114 /// MachineInstr ctor - Copies MachineInstr arg exactly. 115 /// Does not copy the number from debug instruction numbering, to preserve 116 /// uniqueness. 117 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 118 : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0), 119 Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0) { 120 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 121 122 CapOperands = OperandCapacity::get(MI.getNumOperands()); 123 Operands = MF.allocateOperandArray(CapOperands); 124 125 // Copy operands. 126 for (const MachineOperand &MO : MI.operands()) 127 addOperand(MF, MO); 128 129 // Replicate ties between the operands, which addOperand was not 130 // able to do reliably. 131 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 132 MachineOperand &NewMO = getOperand(i); 133 const MachineOperand &OrigMO = MI.getOperand(i); 134 NewMO.TiedTo = OrigMO.TiedTo; 135 } 136 137 // Copy all the sensible flags. 138 setFlags(MI.Flags); 139 } 140 141 void MachineInstr::moveBefore(MachineInstr *MovePos) { 142 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 143 } 144 145 /// getRegInfo - If this instruction is embedded into a MachineFunction, 146 /// return the MachineRegisterInfo object for the current function, otherwise 147 /// return null. 148 MachineRegisterInfo *MachineInstr::getRegInfo() { 149 if (MachineBasicBlock *MBB = getParent()) 150 return &MBB->getParent()->getRegInfo(); 151 return nullptr; 152 } 153 154 const MachineRegisterInfo *MachineInstr::getRegInfo() const { 155 if (const MachineBasicBlock *MBB = getParent()) 156 return &MBB->getParent()->getRegInfo(); 157 return nullptr; 158 } 159 160 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 161 for (MachineOperand &MO : operands()) 162 if (MO.isReg()) 163 MRI.removeRegOperandFromUseList(&MO); 164 } 165 166 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) { 167 for (MachineOperand &MO : operands()) 168 if (MO.isReg()) 169 MRI.addRegOperandToUseList(&MO); 170 } 171 172 void MachineInstr::addOperand(const MachineOperand &Op) { 173 MachineBasicBlock *MBB = getParent(); 174 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 175 MachineFunction *MF = MBB->getParent(); 176 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 177 addOperand(*MF, Op); 178 } 179 180 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 181 /// ranges. If MRI is non-null also update use-def chains. 182 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 183 unsigned NumOps, MachineRegisterInfo *MRI) { 184 if (MRI) 185 return MRI->moveOperands(Dst, Src, NumOps); 186 // MachineOperand is a trivially copyable type so we can just use memmove. 187 assert(Dst && Src && "Unknown operands"); 188 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 189 } 190 191 /// addOperand - Add the specified operand to the instruction. If it is an 192 /// implicit operand, it is added to the end of the operand list. If it is 193 /// an explicit operand it is added at the end of the explicit operand list 194 /// (before the first implicit operand). 195 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 196 assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) && 197 "Cannot add more operands."); 198 assert(MCID && "Cannot add operands before providing an instr descriptor"); 199 200 // Check if we're adding one of our existing operands. 201 if (&Op >= Operands && &Op < Operands + NumOperands) { 202 // This is unusual: MI->addOperand(MI->getOperand(i)). 203 // If adding Op requires reallocating or moving existing operands around, 204 // the Op reference could go stale. Support it by copying Op. 205 MachineOperand CopyOp(Op); 206 return addOperand(MF, CopyOp); 207 } 208 209 // Find the insert location for the new operand. Implicit registers go at 210 // the end, everything else goes before the implicit regs. 211 // 212 // FIXME: Allow mixed explicit and implicit operands on inline asm. 213 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 214 // implicit-defs, but they must not be moved around. See the FIXME in 215 // InstrEmitter.cpp. 216 unsigned OpNo = getNumOperands(); 217 bool isImpReg = Op.isReg() && Op.isImplicit(); 218 if (!isImpReg && !isInlineAsm()) { 219 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 220 --OpNo; 221 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 222 } 223 } 224 225 // OpNo now points as the desired insertion point. Unless this is a variadic 226 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 227 // RegMask operands go between the explicit and implicit operands. 228 assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() || 229 Op.isValidExcessOperand()) && 230 "Trying to add an operand to a machine instr that is already done!"); 231 232 MachineRegisterInfo *MRI = getRegInfo(); 233 234 // Determine if the Operands array needs to be reallocated. 235 // Save the old capacity and operand array. 236 OperandCapacity OldCap = CapOperands; 237 MachineOperand *OldOperands = Operands; 238 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 239 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 240 Operands = MF.allocateOperandArray(CapOperands); 241 // Move the operands before the insertion point. 242 if (OpNo) 243 moveOperands(Operands, OldOperands, OpNo, MRI); 244 } 245 246 // Move the operands following the insertion point. 247 if (OpNo != NumOperands) 248 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 249 MRI); 250 ++NumOperands; 251 252 // Deallocate the old operand array. 253 if (OldOperands != Operands && OldOperands) 254 MF.deallocateOperandArray(OldCap, OldOperands); 255 256 // Copy Op into place. It still needs to be inserted into the MRI use lists. 257 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 258 NewMO->ParentMI = this; 259 260 // When adding a register operand, tell MRI about it. 261 if (NewMO->isReg()) { 262 // Ensure isOnRegUseList() returns false, regardless of Op's status. 263 NewMO->Contents.Reg.Prev = nullptr; 264 // Ignore existing ties. This is not a property that can be copied. 265 NewMO->TiedTo = 0; 266 // Add the new operand to MRI, but only for instructions in an MBB. 267 if (MRI) 268 MRI->addRegOperandToUseList(NewMO); 269 // The MCID operand information isn't accurate until we start adding 270 // explicit operands. The implicit operands are added first, then the 271 // explicits are inserted before them. 272 if (!isImpReg) { 273 // Tie uses to defs as indicated in MCInstrDesc. 274 if (NewMO->isUse()) { 275 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 276 if (DefIdx != -1) 277 tieOperands(DefIdx, OpNo); 278 } 279 // If the register operand is flagged as early, mark the operand as such. 280 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 281 NewMO->setIsEarlyClobber(true); 282 } 283 // Ensure debug instructions set debug flag on register uses. 284 if (NewMO->isUse() && isDebugInstr()) 285 NewMO->setIsDebug(); 286 } 287 } 288 289 void MachineInstr::removeOperand(unsigned OpNo) { 290 assert(OpNo < getNumOperands() && "Invalid operand number"); 291 untieRegOperand(OpNo); 292 293 #ifndef NDEBUG 294 // Moving tied operands would break the ties. 295 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 296 if (Operands[i].isReg()) 297 assert(!Operands[i].isTied() && "Cannot move tied operands"); 298 #endif 299 300 MachineRegisterInfo *MRI = getRegInfo(); 301 if (MRI && Operands[OpNo].isReg()) 302 MRI->removeRegOperandFromUseList(Operands + OpNo); 303 304 // Don't call the MachineOperand destructor. A lot of this code depends on 305 // MachineOperand having a trivial destructor anyway, and adding a call here 306 // wouldn't make it 'destructor-correct'. 307 308 if (unsigned N = NumOperands - 1 - OpNo) 309 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 310 --NumOperands; 311 } 312 313 void MachineInstr::setExtraInfo(MachineFunction &MF, 314 ArrayRef<MachineMemOperand *> MMOs, 315 MCSymbol *PreInstrSymbol, 316 MCSymbol *PostInstrSymbol, 317 MDNode *HeapAllocMarker, MDNode *PCSections, 318 uint32_t CFIType) { 319 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 320 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 321 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 322 bool HasPCSections = PCSections != nullptr; 323 bool HasCFIType = CFIType != 0; 324 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + 325 HasHeapAllocMarker + HasPCSections + HasCFIType; 326 327 // Drop all extra info if there is none. 328 if (NumPointers <= 0) { 329 Info.clear(); 330 return; 331 } 332 333 // If more than one pointer, then store out of line. Store heap alloc markers 334 // out of line because PointerSumType cannot hold more than 4 tag types with 335 // 32-bit pointers. 336 // FIXME: Maybe we should make the symbols in the extra info mutable? 337 else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections || 338 HasCFIType) { 339 Info.set<EIIK_OutOfLine>( 340 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol, 341 HeapAllocMarker, PCSections, CFIType)); 342 return; 343 } 344 345 // Otherwise store the single pointer inline. 346 if (HasPreInstrSymbol) 347 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 348 else if (HasPostInstrSymbol) 349 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 350 else 351 Info.set<EIIK_MMO>(MMOs[0]); 352 } 353 354 void MachineInstr::dropMemRefs(MachineFunction &MF) { 355 if (memoperands_empty()) 356 return; 357 358 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 359 getHeapAllocMarker(), getPCSections(), getCFIType()); 360 } 361 362 void MachineInstr::setMemRefs(MachineFunction &MF, 363 ArrayRef<MachineMemOperand *> MMOs) { 364 if (MMOs.empty()) { 365 dropMemRefs(MF); 366 return; 367 } 368 369 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 370 getHeapAllocMarker(), getPCSections(), getCFIType()); 371 } 372 373 void MachineInstr::addMemOperand(MachineFunction &MF, 374 MachineMemOperand *MO) { 375 SmallVector<MachineMemOperand *, 2> MMOs; 376 MMOs.append(memoperands_begin(), memoperands_end()); 377 MMOs.push_back(MO); 378 setMemRefs(MF, MMOs); 379 } 380 381 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 382 if (this == &MI) 383 // Nothing to do for a self-clone! 384 return; 385 386 assert(&MF == MI.getMF() && 387 "Invalid machine functions when cloning memory refrences!"); 388 // See if we can just steal the extra info already allocated for the 389 // instruction. We can do this whenever the pre- and post-instruction symbols 390 // are the same (including null). 391 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 392 getPostInstrSymbol() == MI.getPostInstrSymbol() && 393 getHeapAllocMarker() == MI.getHeapAllocMarker() && 394 getPCSections() == MI.getPCSections()) { 395 Info = MI.Info; 396 return; 397 } 398 399 // Otherwise, fall back on a copy-based clone. 400 setMemRefs(MF, MI.memoperands()); 401 } 402 403 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 404 /// identical. 405 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 406 ArrayRef<MachineMemOperand *> RHS) { 407 if (LHS.size() != RHS.size()) 408 return false; 409 410 auto LHSPointees = make_pointee_range(LHS); 411 auto RHSPointees = make_pointee_range(RHS); 412 return std::equal(LHSPointees.begin(), LHSPointees.end(), 413 RHSPointees.begin()); 414 } 415 416 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 417 ArrayRef<const MachineInstr *> MIs) { 418 // Try handling easy numbers of MIs with simpler mechanisms. 419 if (MIs.empty()) { 420 dropMemRefs(MF); 421 return; 422 } 423 if (MIs.size() == 1) { 424 cloneMemRefs(MF, *MIs[0]); 425 return; 426 } 427 // Because an empty memoperands list provides *no* information and must be 428 // handled conservatively (assuming the instruction can do anything), the only 429 // way to merge with it is to drop all other memoperands. 430 if (MIs[0]->memoperands_empty()) { 431 dropMemRefs(MF); 432 return; 433 } 434 435 // Handle the general case. 436 SmallVector<MachineMemOperand *, 2> MergedMMOs; 437 // Start with the first instruction. 438 assert(&MF == MIs[0]->getMF() && 439 "Invalid machine functions when cloning memory references!"); 440 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 441 // Now walk all the other instructions and accumulate any different MMOs. 442 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 443 assert(&MF == MI.getMF() && 444 "Invalid machine functions when cloning memory references!"); 445 446 // Skip MIs with identical operands to the first. This is a somewhat 447 // arbitrary hack but will catch common cases without being quadratic. 448 // TODO: We could fully implement merge semantics here if needed. 449 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 450 continue; 451 452 // Because an empty memoperands list provides *no* information and must be 453 // handled conservatively (assuming the instruction can do anything), the 454 // only way to merge with it is to drop all other memoperands. 455 if (MI.memoperands_empty()) { 456 dropMemRefs(MF); 457 return; 458 } 459 460 // Otherwise accumulate these into our temporary buffer of the merged state. 461 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 462 } 463 464 setMemRefs(MF, MergedMMOs); 465 } 466 467 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 468 // Do nothing if old and new symbols are the same. 469 if (Symbol == getPreInstrSymbol()) 470 return; 471 472 // If there was only one symbol and we're removing it, just clear info. 473 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 474 Info.clear(); 475 return; 476 } 477 478 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 479 getHeapAllocMarker(), getPCSections(), getCFIType()); 480 } 481 482 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 483 // Do nothing if old and new symbols are the same. 484 if (Symbol == getPostInstrSymbol()) 485 return; 486 487 // If there was only one symbol and we're removing it, just clear info. 488 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 489 Info.clear(); 490 return; 491 } 492 493 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 494 getHeapAllocMarker(), getPCSections(), getCFIType()); 495 } 496 497 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 498 // Do nothing if old and new symbols are the same. 499 if (Marker == getHeapAllocMarker()) 500 return; 501 502 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 503 Marker, getPCSections(), getCFIType()); 504 } 505 506 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) { 507 // Do nothing if old and new symbols are the same. 508 if (PCSections == getPCSections()) 509 return; 510 511 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 512 getHeapAllocMarker(), PCSections, getCFIType()); 513 } 514 515 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) { 516 // Do nothing if old and new types are the same. 517 if (Type == getCFIType()) 518 return; 519 520 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 521 getHeapAllocMarker(), getPCSections(), Type); 522 } 523 524 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 525 const MachineInstr &MI) { 526 if (this == &MI) 527 // Nothing to do for a self-clone! 528 return; 529 530 assert(&MF == MI.getMF() && 531 "Invalid machine functions when cloning instruction symbols!"); 532 533 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 534 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 535 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 536 setPCSections(MF, MI.getPCSections()); 537 } 538 539 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 540 // For now, the just return the union of the flags. If the flags get more 541 // complicated over time, we might need more logic here. 542 return getFlags() | Other.getFlags(); 543 } 544 545 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 546 uint32_t MIFlags = 0; 547 // Copy the wrapping flags. 548 if (const OverflowingBinaryOperator *OB = 549 dyn_cast<OverflowingBinaryOperator>(&I)) { 550 if (OB->hasNoSignedWrap()) 551 MIFlags |= MachineInstr::MIFlag::NoSWrap; 552 if (OB->hasNoUnsignedWrap()) 553 MIFlags |= MachineInstr::MIFlag::NoUWrap; 554 } 555 556 // Copy the exact flag. 557 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 558 if (PE->isExact()) 559 MIFlags |= MachineInstr::MIFlag::IsExact; 560 561 // Copy the fast-math flags. 562 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 563 const FastMathFlags Flags = FP->getFastMathFlags(); 564 if (Flags.noNaNs()) 565 MIFlags |= MachineInstr::MIFlag::FmNoNans; 566 if (Flags.noInfs()) 567 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 568 if (Flags.noSignedZeros()) 569 MIFlags |= MachineInstr::MIFlag::FmNsz; 570 if (Flags.allowReciprocal()) 571 MIFlags |= MachineInstr::MIFlag::FmArcp; 572 if (Flags.allowContract()) 573 MIFlags |= MachineInstr::MIFlag::FmContract; 574 if (Flags.approxFunc()) 575 MIFlags |= MachineInstr::MIFlag::FmAfn; 576 if (Flags.allowReassoc()) 577 MIFlags |= MachineInstr::MIFlag::FmReassoc; 578 } 579 580 if (I.getMetadata(LLVMContext::MD_unpredictable)) 581 MIFlags |= MachineInstr::MIFlag::Unpredictable; 582 583 return MIFlags; 584 } 585 586 void MachineInstr::copyIRFlags(const Instruction &I) { 587 Flags = copyFlagsFromInstruction(I); 588 } 589 590 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 591 assert(!isBundledWithPred() && "Must be called on bundle header"); 592 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 593 if (MII->getDesc().getFlags() & Mask) { 594 if (Type == AnyInBundle) 595 return true; 596 } else { 597 if (Type == AllInBundle && !MII->isBundle()) 598 return false; 599 } 600 // This was the last instruction in the bundle. 601 if (!MII->isBundledWithSucc()) 602 return Type == AllInBundle; 603 } 604 } 605 606 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 607 MICheckType Check) const { 608 // If opcodes or number of operands are not the same then the two 609 // instructions are obviously not identical. 610 if (Other.getOpcode() != getOpcode() || 611 Other.getNumOperands() != getNumOperands()) 612 return false; 613 614 if (isBundle()) { 615 // We have passed the test above that both instructions have the same 616 // opcode, so we know that both instructions are bundles here. Let's compare 617 // MIs inside the bundle. 618 assert(Other.isBundle() && "Expected that both instructions are bundles."); 619 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 620 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 621 // Loop until we analysed the last intruction inside at least one of the 622 // bundles. 623 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 624 ++I1; 625 ++I2; 626 if (!I1->isIdenticalTo(*I2, Check)) 627 return false; 628 } 629 // If we've reached the end of just one of the two bundles, but not both, 630 // the instructions are not identical. 631 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 632 return false; 633 } 634 635 // Check operands to make sure they match. 636 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 637 const MachineOperand &MO = getOperand(i); 638 const MachineOperand &OMO = Other.getOperand(i); 639 if (!MO.isReg()) { 640 if (!MO.isIdenticalTo(OMO)) 641 return false; 642 continue; 643 } 644 645 // Clients may or may not want to ignore defs when testing for equality. 646 // For example, machine CSE pass only cares about finding common 647 // subexpressions, so it's safe to ignore virtual register defs. 648 if (MO.isDef()) { 649 if (Check == IgnoreDefs) 650 continue; 651 else if (Check == IgnoreVRegDefs) { 652 if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual()) 653 if (!MO.isIdenticalTo(OMO)) 654 return false; 655 } else { 656 if (!MO.isIdenticalTo(OMO)) 657 return false; 658 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 659 return false; 660 } 661 } else { 662 if (!MO.isIdenticalTo(OMO)) 663 return false; 664 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 665 return false; 666 } 667 } 668 // If DebugLoc does not match then two debug instructions are not identical. 669 if (isDebugInstr()) 670 if (getDebugLoc() && Other.getDebugLoc() && 671 getDebugLoc() != Other.getDebugLoc()) 672 return false; 673 // If pre- or post-instruction symbols do not match then the two instructions 674 // are not identical. 675 if (getPreInstrSymbol() != Other.getPreInstrSymbol() || 676 getPostInstrSymbol() != Other.getPostInstrSymbol()) 677 return false; 678 // Call instructions with different CFI types are not identical. 679 if (isCall() && getCFIType() != Other.getCFIType()) 680 return false; 681 682 return true; 683 } 684 685 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const { 686 if (!isDebugValueLike() || !Other.isDebugValueLike()) 687 return false; 688 if (getDebugLoc() != Other.getDebugLoc()) 689 return false; 690 if (getDebugVariable() != Other.getDebugVariable()) 691 return false; 692 if (getNumDebugOperands() != Other.getNumDebugOperands()) 693 return false; 694 for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx) 695 if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx))) 696 return false; 697 if (!DIExpression::isEqualExpression( 698 getDebugExpression(), isIndirectDebugValue(), 699 Other.getDebugExpression(), Other.isIndirectDebugValue())) 700 return false; 701 return true; 702 } 703 704 const MachineFunction *MachineInstr::getMF() const { 705 return getParent()->getParent(); 706 } 707 708 MachineInstr *MachineInstr::removeFromParent() { 709 assert(getParent() && "Not embedded in a basic block!"); 710 return getParent()->remove(this); 711 } 712 713 MachineInstr *MachineInstr::removeFromBundle() { 714 assert(getParent() && "Not embedded in a basic block!"); 715 return getParent()->remove_instr(this); 716 } 717 718 void MachineInstr::eraseFromParent() { 719 assert(getParent() && "Not embedded in a basic block!"); 720 getParent()->erase(this); 721 } 722 723 void MachineInstr::eraseFromBundle() { 724 assert(getParent() && "Not embedded in a basic block!"); 725 getParent()->erase_instr(this); 726 } 727 728 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 729 if (!isCall(Type)) 730 return false; 731 switch (getOpcode()) { 732 case TargetOpcode::PATCHPOINT: 733 case TargetOpcode::STACKMAP: 734 case TargetOpcode::STATEPOINT: 735 case TargetOpcode::FENTRY_CALL: 736 return false; 737 } 738 return true; 739 } 740 741 bool MachineInstr::shouldUpdateCallSiteInfo() const { 742 if (isBundle()) 743 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 744 return isCandidateForCallSiteEntry(); 745 } 746 747 unsigned MachineInstr::getNumExplicitOperands() const { 748 unsigned NumOperands = MCID->getNumOperands(); 749 if (!MCID->isVariadic()) 750 return NumOperands; 751 752 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 753 const MachineOperand &MO = getOperand(I); 754 // The operands must always be in the following order: 755 // - explicit reg defs, 756 // - other explicit operands (reg uses, immediates, etc.), 757 // - implicit reg defs 758 // - implicit reg uses 759 if (MO.isReg() && MO.isImplicit()) 760 break; 761 ++NumOperands; 762 } 763 return NumOperands; 764 } 765 766 unsigned MachineInstr::getNumExplicitDefs() const { 767 unsigned NumDefs = MCID->getNumDefs(); 768 if (!MCID->isVariadic()) 769 return NumDefs; 770 771 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 772 const MachineOperand &MO = getOperand(I); 773 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 774 break; 775 ++NumDefs; 776 } 777 return NumDefs; 778 } 779 780 void MachineInstr::bundleWithPred() { 781 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 782 setFlag(BundledPred); 783 MachineBasicBlock::instr_iterator Pred = getIterator(); 784 --Pred; 785 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 786 Pred->setFlag(BundledSucc); 787 } 788 789 void MachineInstr::bundleWithSucc() { 790 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 791 setFlag(BundledSucc); 792 MachineBasicBlock::instr_iterator Succ = getIterator(); 793 ++Succ; 794 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 795 Succ->setFlag(BundledPred); 796 } 797 798 void MachineInstr::unbundleFromPred() { 799 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 800 clearFlag(BundledPred); 801 MachineBasicBlock::instr_iterator Pred = getIterator(); 802 --Pred; 803 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 804 Pred->clearFlag(BundledSucc); 805 } 806 807 void MachineInstr::unbundleFromSucc() { 808 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 809 clearFlag(BundledSucc); 810 MachineBasicBlock::instr_iterator Succ = getIterator(); 811 ++Succ; 812 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 813 Succ->clearFlag(BundledPred); 814 } 815 816 bool MachineInstr::isStackAligningInlineAsm() const { 817 if (isInlineAsm()) { 818 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 819 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 820 return true; 821 } 822 return false; 823 } 824 825 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 826 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 827 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 828 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 829 } 830 831 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 832 unsigned *GroupNo) const { 833 assert(isInlineAsm() && "Expected an inline asm instruction"); 834 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 835 836 // Ignore queries about the initial operands. 837 if (OpIdx < InlineAsm::MIOp_FirstOperand) 838 return -1; 839 840 unsigned Group = 0; 841 unsigned NumOps; 842 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 843 i += NumOps) { 844 const MachineOperand &FlagMO = getOperand(i); 845 // If we reach the implicit register operands, stop looking. 846 if (!FlagMO.isImm()) 847 return -1; 848 const InlineAsm::Flag F(FlagMO.getImm()); 849 NumOps = 1 + F.getNumOperandRegisters(); 850 if (i + NumOps > OpIdx) { 851 if (GroupNo) 852 *GroupNo = Group; 853 return i; 854 } 855 ++Group; 856 } 857 return -1; 858 } 859 860 const DILabel *MachineInstr::getDebugLabel() const { 861 assert(isDebugLabel() && "not a DBG_LABEL"); 862 return cast<DILabel>(getOperand(0).getMetadata()); 863 } 864 865 const MachineOperand &MachineInstr::getDebugVariableOp() const { 866 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 867 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 868 return getOperand(VariableOp); 869 } 870 871 MachineOperand &MachineInstr::getDebugVariableOp() { 872 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 873 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 874 return getOperand(VariableOp); 875 } 876 877 const DILocalVariable *MachineInstr::getDebugVariable() const { 878 return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); 879 } 880 881 const MachineOperand &MachineInstr::getDebugExpressionOp() const { 882 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 883 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 884 return getOperand(ExpressionOp); 885 } 886 887 MachineOperand &MachineInstr::getDebugExpressionOp() { 888 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 889 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 890 return getOperand(ExpressionOp); 891 } 892 893 const DIExpression *MachineInstr::getDebugExpression() const { 894 return cast<DIExpression>(getDebugExpressionOp().getMetadata()); 895 } 896 897 bool MachineInstr::isDebugEntryValue() const { 898 return isDebugValue() && getDebugExpression()->isEntryValue(); 899 } 900 901 const TargetRegisterClass* 902 MachineInstr::getRegClassConstraint(unsigned OpIdx, 903 const TargetInstrInfo *TII, 904 const TargetRegisterInfo *TRI) const { 905 assert(getParent() && "Can't have an MBB reference here!"); 906 assert(getMF() && "Can't have an MF reference here!"); 907 const MachineFunction &MF = *getMF(); 908 909 // Most opcodes have fixed constraints in their MCInstrDesc. 910 if (!isInlineAsm()) 911 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 912 913 if (!getOperand(OpIdx).isReg()) 914 return nullptr; 915 916 // For tied uses on inline asm, get the constraint from the def. 917 unsigned DefIdx; 918 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 919 OpIdx = DefIdx; 920 921 // Inline asm stores register class constraints in the flag word. 922 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 923 if (FlagIdx < 0) 924 return nullptr; 925 926 const InlineAsm::Flag F(getOperand(FlagIdx).getImm()); 927 unsigned RCID; 928 if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) && 929 F.hasRegClassConstraint(RCID)) 930 return TRI->getRegClass(RCID); 931 932 // Assume that all registers in a memory operand are pointers. 933 if (F.isMemKind()) 934 return TRI->getPointerRegClass(MF); 935 936 return nullptr; 937 } 938 939 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 940 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 941 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 942 // Check every operands inside the bundle if we have 943 // been asked to. 944 if (ExploreBundle) 945 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 946 ++OpndIt) 947 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 948 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 949 else 950 // Otherwise, just check the current operands. 951 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 952 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 953 return CurRC; 954 } 955 956 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 957 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 958 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 959 assert(CurRC && "Invalid initial register class"); 960 // Check if Reg is constrained by some of its use/def from MI. 961 const MachineOperand &MO = getOperand(OpIdx); 962 if (!MO.isReg() || MO.getReg() != Reg) 963 return CurRC; 964 // If yes, accumulate the constraints through the operand. 965 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 966 } 967 968 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 969 unsigned OpIdx, const TargetRegisterClass *CurRC, 970 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 971 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 972 const MachineOperand &MO = getOperand(OpIdx); 973 assert(MO.isReg() && 974 "Cannot get register constraints for non-register operand"); 975 assert(CurRC && "Invalid initial register class"); 976 if (unsigned SubIdx = MO.getSubReg()) { 977 if (OpRC) 978 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 979 else 980 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 981 } else if (OpRC) 982 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 983 return CurRC; 984 } 985 986 /// Return the number of instructions inside the MI bundle, not counting the 987 /// header instruction. 988 unsigned MachineInstr::getBundleSize() const { 989 MachineBasicBlock::const_instr_iterator I = getIterator(); 990 unsigned Size = 0; 991 while (I->isBundledWithSucc()) { 992 ++Size; 993 ++I; 994 } 995 return Size; 996 } 997 998 /// Returns true if the MachineInstr has an implicit-use operand of exactly 999 /// the given register (not considering sub/super-registers). 1000 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 1001 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1002 const MachineOperand &MO = getOperand(i); 1003 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1004 return true; 1005 } 1006 return false; 1007 } 1008 1009 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1010 /// the specific register or -1 if it is not found. It further tightens 1011 /// the search criteria to a use that kills the register if isKill is true. 1012 int MachineInstr::findRegisterUseOperandIdx( 1013 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1014 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1015 const MachineOperand &MO = getOperand(i); 1016 if (!MO.isReg() || !MO.isUse()) 1017 continue; 1018 Register MOReg = MO.getReg(); 1019 if (!MOReg) 1020 continue; 1021 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 1022 if (!isKill || MO.isKill()) 1023 return i; 1024 } 1025 return -1; 1026 } 1027 1028 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1029 /// indicating if this instruction reads or writes Reg. This also considers 1030 /// partial defines. 1031 std::pair<bool,bool> 1032 MachineInstr::readsWritesVirtualRegister(Register Reg, 1033 SmallVectorImpl<unsigned> *Ops) const { 1034 bool PartDef = false; // Partial redefine. 1035 bool FullDef = false; // Full define. 1036 bool Use = false; 1037 1038 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1039 const MachineOperand &MO = getOperand(i); 1040 if (!MO.isReg() || MO.getReg() != Reg) 1041 continue; 1042 if (Ops) 1043 Ops->push_back(i); 1044 if (MO.isUse()) 1045 Use |= !MO.isUndef(); 1046 else if (MO.getSubReg() && !MO.isUndef()) 1047 // A partial def undef doesn't count as reading the register. 1048 PartDef = true; 1049 else 1050 FullDef = true; 1051 } 1052 // A partial redefine uses Reg unless there is also a full define. 1053 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1054 } 1055 1056 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1057 /// the specified register or -1 if it is not found. If isDead is true, defs 1058 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1059 /// also checks if there is a def of a super-register. 1060 int 1061 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1062 const TargetRegisterInfo *TRI) const { 1063 bool isPhys = Reg.isPhysical(); 1064 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1065 const MachineOperand &MO = getOperand(i); 1066 // Accept regmask operands when Overlap is set. 1067 // Ignore them when looking for a specific def operand (Overlap == false). 1068 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1069 return i; 1070 if (!MO.isReg() || !MO.isDef()) 1071 continue; 1072 Register MOReg = MO.getReg(); 1073 bool Found = (MOReg == Reg); 1074 if (!Found && TRI && isPhys && MOReg.isPhysical()) { 1075 if (Overlap) 1076 Found = TRI->regsOverlap(MOReg, Reg); 1077 else 1078 Found = TRI->isSubRegister(MOReg, Reg); 1079 } 1080 if (Found && (!isDead || MO.isDead())) 1081 return i; 1082 } 1083 return -1; 1084 } 1085 1086 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1087 /// operand list that is used to represent the predicate. It returns -1 if 1088 /// none is found. 1089 int MachineInstr::findFirstPredOperandIdx() const { 1090 // Don't call MCID.findFirstPredOperandIdx() because this variant 1091 // is sometimes called on an instruction that's not yet complete, and 1092 // so the number of operands is less than the MCID indicates. In 1093 // particular, the PTX target does this. 1094 const MCInstrDesc &MCID = getDesc(); 1095 if (MCID.isPredicable()) { 1096 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1097 if (MCID.operands()[i].isPredicate()) 1098 return i; 1099 } 1100 1101 return -1; 1102 } 1103 1104 // MachineOperand::TiedTo is 4 bits wide. 1105 const unsigned TiedMax = 15; 1106 1107 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1108 /// 1109 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1110 /// field. TiedTo can have these values: 1111 /// 1112 /// 0: Operand is not tied to anything. 1113 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1114 /// TiedMax: Tied to an operand >= TiedMax-1. 1115 /// 1116 /// The tied def must be one of the first TiedMax operands on a normal 1117 /// instruction. INLINEASM instructions allow more tied defs. 1118 /// 1119 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1120 MachineOperand &DefMO = getOperand(DefIdx); 1121 MachineOperand &UseMO = getOperand(UseIdx); 1122 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1123 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1124 assert(!DefMO.isTied() && "Def is already tied to another use"); 1125 assert(!UseMO.isTied() && "Use is already tied to another def"); 1126 1127 if (DefIdx < TiedMax) 1128 UseMO.TiedTo = DefIdx + 1; 1129 else { 1130 // Inline asm can use the group descriptors to find tied operands, 1131 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1132 // but on normal instruction, the tied def must be within the first TiedMax 1133 // operands. 1134 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1135 "DefIdx out of range"); 1136 UseMO.TiedTo = TiedMax; 1137 } 1138 1139 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1140 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1141 } 1142 1143 /// Given the index of a tied register operand, find the operand it is tied to. 1144 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1145 /// which must exist. 1146 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1147 const MachineOperand &MO = getOperand(OpIdx); 1148 assert(MO.isTied() && "Operand isn't tied"); 1149 1150 // Normally TiedTo is in range. 1151 if (MO.TiedTo < TiedMax) 1152 return MO.TiedTo - 1; 1153 1154 // Uses on normal instructions can be out of range. 1155 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1156 // Normal tied defs must be in the 0..TiedMax-1 range. 1157 if (MO.isUse()) 1158 return TiedMax - 1; 1159 // MO is a def. Search for the tied use. 1160 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1161 const MachineOperand &UseMO = getOperand(i); 1162 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1163 return i; 1164 } 1165 llvm_unreachable("Can't find tied use"); 1166 } 1167 1168 if (getOpcode() == TargetOpcode::STATEPOINT) { 1169 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1170 // on registers. 1171 StatepointOpers SO(this); 1172 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1173 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1174 unsigned NumDefs = getNumDefs(); 1175 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1176 while (!getOperand(CurUseIdx).isReg()) 1177 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1178 if (OpIdx == CurDefIdx) 1179 return CurUseIdx; 1180 if (OpIdx == CurUseIdx) 1181 return CurDefIdx; 1182 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1183 } 1184 llvm_unreachable("Can't find tied use"); 1185 } 1186 1187 // Now deal with inline asm by parsing the operand group descriptor flags. 1188 // Find the beginning of each operand group. 1189 SmallVector<unsigned, 8> GroupIdx; 1190 unsigned OpIdxGroup = ~0u; 1191 unsigned NumOps; 1192 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1193 i += NumOps) { 1194 const MachineOperand &FlagMO = getOperand(i); 1195 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1196 unsigned CurGroup = GroupIdx.size(); 1197 GroupIdx.push_back(i); 1198 const InlineAsm::Flag F(FlagMO.getImm()); 1199 NumOps = 1 + F.getNumOperandRegisters(); 1200 // OpIdx belongs to this operand group. 1201 if (OpIdx > i && OpIdx < i + NumOps) 1202 OpIdxGroup = CurGroup; 1203 unsigned TiedGroup; 1204 if (!F.isUseOperandTiedToDef(TiedGroup)) 1205 continue; 1206 // Operands in this group are tied to operands in TiedGroup which must be 1207 // earlier. Find the number of operands between the two groups. 1208 unsigned Delta = i - GroupIdx[TiedGroup]; 1209 1210 // OpIdx is a use tied to TiedGroup. 1211 if (OpIdxGroup == CurGroup) 1212 return OpIdx - Delta; 1213 1214 // OpIdx is a def tied to this use group. 1215 if (OpIdxGroup == TiedGroup) 1216 return OpIdx + Delta; 1217 } 1218 llvm_unreachable("Invalid tied operand on inline asm"); 1219 } 1220 1221 /// clearKillInfo - Clears kill flags on all operands. 1222 /// 1223 void MachineInstr::clearKillInfo() { 1224 for (MachineOperand &MO : operands()) { 1225 if (MO.isReg() && MO.isUse()) 1226 MO.setIsKill(false); 1227 } 1228 } 1229 1230 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1231 unsigned SubIdx, 1232 const TargetRegisterInfo &RegInfo) { 1233 if (ToReg.isPhysical()) { 1234 if (SubIdx) 1235 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1236 for (MachineOperand &MO : operands()) { 1237 if (!MO.isReg() || MO.getReg() != FromReg) 1238 continue; 1239 MO.substPhysReg(ToReg, RegInfo); 1240 } 1241 } else { 1242 for (MachineOperand &MO : operands()) { 1243 if (!MO.isReg() || MO.getReg() != FromReg) 1244 continue; 1245 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1246 } 1247 } 1248 } 1249 1250 /// isSafeToMove - Return true if it is safe to move this instruction. If 1251 /// SawStore is set to true, it means that there is a store (or call) between 1252 /// the instruction's location and its intended destination. 1253 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1254 // Ignore stuff that we obviously can't move. 1255 // 1256 // Treat volatile loads as stores. This is not strictly necessary for 1257 // volatiles, but it is required for atomic loads. It is not allowed to move 1258 // a load across an atomic load with Ordering > Monotonic. 1259 if (mayStore() || isCall() || isPHI() || 1260 (mayLoad() && hasOrderedMemoryRef())) { 1261 SawStore = true; 1262 return false; 1263 } 1264 1265 if (isPosition() || isDebugInstr() || isTerminator() || 1266 mayRaiseFPException() || hasUnmodeledSideEffects() || 1267 isJumpTableDebugInfo()) 1268 return false; 1269 1270 // See if this instruction does a load. If so, we have to guarantee that the 1271 // loaded value doesn't change between the load and the its intended 1272 // destination. The check for isInvariantLoad gives the target the chance to 1273 // classify the load as always returning a constant, e.g. a constant pool 1274 // load. 1275 if (mayLoad() && !isDereferenceableInvariantLoad()) 1276 // Otherwise, this is a real load. If there is a store between the load and 1277 // end of block, we can't move it. 1278 return !SawStore; 1279 1280 return true; 1281 } 1282 1283 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1284 bool UseTBAA, const MachineMemOperand *MMOa, 1285 const MachineMemOperand *MMOb) { 1286 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1287 // operates with MachineMemOperand offset with some important assumptions: 1288 // - LLVM fundamentally assumes flat address spaces. 1289 // - MachineOperand offset can *only* result from legalization and cannot 1290 // affect queries other than the trivial case of overlap checking. 1291 // - These offsets never wrap and never step outside of allocated objects. 1292 // - There should never be any negative offsets here. 1293 // 1294 // FIXME: Modify API to hide this math from "user" 1295 // Even before we go to AA we can reason locally about some memory objects. It 1296 // can save compile time, and possibly catch some corner cases not currently 1297 // covered. 1298 1299 int64_t OffsetA = MMOa->getOffset(); 1300 int64_t OffsetB = MMOb->getOffset(); 1301 int64_t MinOffset = std::min(OffsetA, OffsetB); 1302 1303 uint64_t WidthA = MMOa->getSize(); 1304 uint64_t WidthB = MMOb->getSize(); 1305 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1306 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1307 1308 const Value *ValA = MMOa->getValue(); 1309 const Value *ValB = MMOb->getValue(); 1310 bool SameVal = (ValA && ValB && (ValA == ValB)); 1311 if (!SameVal) { 1312 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1313 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1314 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1315 return false; 1316 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1317 return false; 1318 if (PSVa && PSVb && (PSVa == PSVb)) 1319 SameVal = true; 1320 } 1321 1322 if (SameVal) { 1323 if (!KnownWidthA || !KnownWidthB) 1324 return true; 1325 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1326 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1327 return (MinOffset + LowWidth > MaxOffset); 1328 } 1329 1330 if (!AA) 1331 return true; 1332 1333 if (!ValA || !ValB) 1334 return true; 1335 1336 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1337 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1338 1339 int64_t OverlapA = 1340 KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize; 1341 int64_t OverlapB = 1342 KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize; 1343 1344 return !AA->isNoAlias( 1345 MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1346 MemoryLocation(ValB, OverlapB, 1347 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1348 } 1349 1350 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1351 bool UseTBAA) const { 1352 const MachineFunction *MF = getMF(); 1353 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1354 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1355 1356 // Exclude call instruction which may alter the memory but can not be handled 1357 // by this function. 1358 if (isCall() || Other.isCall()) 1359 return true; 1360 1361 // If neither instruction stores to memory, they can't alias in any 1362 // meaningful way, even if they read from the same address. 1363 if (!mayStore() && !Other.mayStore()) 1364 return false; 1365 1366 // Both instructions must be memory operations to be able to alias. 1367 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1368 return false; 1369 1370 // Let the target decide if memory accesses cannot possibly overlap. 1371 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1372 return false; 1373 1374 // Memory operations without memory operands may access anything. Be 1375 // conservative and assume `MayAlias`. 1376 if (memoperands_empty() || Other.memoperands_empty()) 1377 return true; 1378 1379 // Skip if there are too many memory operands. 1380 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1381 if (NumChecks > TII->getMemOperandAACheckLimit()) 1382 return true; 1383 1384 // Check each pair of memory operands from both instructions, which can't 1385 // alias only if all pairs won't alias. 1386 for (auto *MMOa : memoperands()) 1387 for (auto *MMOb : Other.memoperands()) 1388 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1389 return true; 1390 1391 return false; 1392 } 1393 1394 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1395 /// or volatile memory reference, or if the information describing the memory 1396 /// reference is not available. Return false if it is known to have no ordered 1397 /// memory references. 1398 bool MachineInstr::hasOrderedMemoryRef() const { 1399 // An instruction known never to access memory won't have a volatile access. 1400 if (!mayStore() && 1401 !mayLoad() && 1402 !isCall() && 1403 !hasUnmodeledSideEffects()) 1404 return false; 1405 1406 // Otherwise, if the instruction has no memory reference information, 1407 // conservatively assume it wasn't preserved. 1408 if (memoperands_empty()) 1409 return true; 1410 1411 // Check if any of our memory operands are ordered. 1412 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1413 return !MMO->isUnordered(); 1414 }); 1415 } 1416 1417 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1418 /// trap and is loading from a location whose value is invariant across a run of 1419 /// this function. 1420 bool MachineInstr::isDereferenceableInvariantLoad() const { 1421 // If the instruction doesn't load at all, it isn't an invariant load. 1422 if (!mayLoad()) 1423 return false; 1424 1425 // If the instruction has lost its memoperands, conservatively assume that 1426 // it may not be an invariant load. 1427 if (memoperands_empty()) 1428 return false; 1429 1430 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1431 1432 for (MachineMemOperand *MMO : memoperands()) { 1433 if (!MMO->isUnordered()) 1434 // If the memory operand has ordering side effects, we can't move the 1435 // instruction. Such an instruction is technically an invariant load, 1436 // but the caller code would need updated to expect that. 1437 return false; 1438 if (MMO->isStore()) return false; 1439 if (MMO->isInvariant() && MMO->isDereferenceable()) 1440 continue; 1441 1442 // A load from a constant PseudoSourceValue is invariant. 1443 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 1444 if (PSV->isConstant(&MFI)) 1445 continue; 1446 } 1447 1448 // Otherwise assume conservatively. 1449 return false; 1450 } 1451 1452 // Everything checks out. 1453 return true; 1454 } 1455 1456 /// isConstantValuePHI - If the specified instruction is a PHI that always 1457 /// merges together the same virtual register, return the register, otherwise 1458 /// return 0. 1459 unsigned MachineInstr::isConstantValuePHI() const { 1460 if (!isPHI()) 1461 return 0; 1462 assert(getNumOperands() >= 3 && 1463 "It's illegal to have a PHI without source operands"); 1464 1465 Register Reg = getOperand(1).getReg(); 1466 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1467 if (getOperand(i).getReg() != Reg) 1468 return 0; 1469 return Reg; 1470 } 1471 1472 bool MachineInstr::hasUnmodeledSideEffects() const { 1473 if (hasProperty(MCID::UnmodeledSideEffects)) 1474 return true; 1475 if (isInlineAsm()) { 1476 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1477 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1478 return true; 1479 } 1480 1481 return false; 1482 } 1483 1484 bool MachineInstr::isLoadFoldBarrier() const { 1485 return mayStore() || isCall() || 1486 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1487 } 1488 1489 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1490 /// 1491 bool MachineInstr::allDefsAreDead() const { 1492 for (const MachineOperand &MO : operands()) { 1493 if (!MO.isReg() || MO.isUse()) 1494 continue; 1495 if (!MO.isDead()) 1496 return false; 1497 } 1498 return true; 1499 } 1500 1501 bool MachineInstr::allImplicitDefsAreDead() const { 1502 for (const MachineOperand &MO : implicit_operands()) { 1503 if (!MO.isReg() || MO.isUse()) 1504 continue; 1505 if (!MO.isDead()) 1506 return false; 1507 } 1508 return true; 1509 } 1510 1511 /// copyImplicitOps - Copy implicit register operands from specified 1512 /// instruction to this instruction. 1513 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1514 const MachineInstr &MI) { 1515 for (const MachineOperand &MO : 1516 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) 1517 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1518 addOperand(MF, MO); 1519 } 1520 1521 bool MachineInstr::hasComplexRegisterTies() const { 1522 const MCInstrDesc &MCID = getDesc(); 1523 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1524 return true; 1525 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1526 const auto &Operand = getOperand(I); 1527 if (!Operand.isReg() || Operand.isDef()) 1528 // Ignore the defined registers as MCID marks only the uses as tied. 1529 continue; 1530 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1531 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1532 if (ExpectedTiedIdx != TiedIdx) 1533 return true; 1534 } 1535 return false; 1536 } 1537 1538 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1539 const MachineRegisterInfo &MRI) const { 1540 const MachineOperand &Op = getOperand(OpIdx); 1541 if (!Op.isReg()) 1542 return LLT{}; 1543 1544 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1545 return MRI.getType(Op.getReg()); 1546 1547 auto &OpInfo = getDesc().operands()[OpIdx]; 1548 if (!OpInfo.isGenericType()) 1549 return MRI.getType(Op.getReg()); 1550 1551 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1552 return LLT{}; 1553 1554 LLT TypeToPrint = MRI.getType(Op.getReg()); 1555 // Don't mark the type index printed if it wasn't actually printed: maybe 1556 // another operand with the same type index has an actual type attached: 1557 if (TypeToPrint.isValid()) 1558 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1559 return TypeToPrint; 1560 } 1561 1562 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1563 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1564 dbgs() << " "; 1565 print(dbgs()); 1566 } 1567 1568 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1569 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1570 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1571 if (Depth >= MaxDepth) 1572 return; 1573 if (!AlreadySeenInstrs.insert(this).second) 1574 return; 1575 // PadToColumn always inserts at least one space. 1576 // Don't mess up the alignment if we don't want any space. 1577 if (Depth) 1578 fdbgs().PadToColumn(Depth * 2); 1579 print(fdbgs()); 1580 for (const MachineOperand &MO : operands()) { 1581 if (!MO.isReg() || MO.isDef()) 1582 continue; 1583 Register Reg = MO.getReg(); 1584 if (Reg.isPhysical()) 1585 continue; 1586 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1587 if (NewMI == nullptr) 1588 continue; 1589 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1590 } 1591 } 1592 1593 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1594 unsigned MaxDepth) const { 1595 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1596 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1597 } 1598 #endif 1599 1600 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1601 bool SkipDebugLoc, bool AddNewLine, 1602 const TargetInstrInfo *TII) const { 1603 const Module *M = nullptr; 1604 const Function *F = nullptr; 1605 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1606 F = &MF->getFunction(); 1607 M = F->getParent(); 1608 if (!TII) 1609 TII = MF->getSubtarget().getInstrInfo(); 1610 } 1611 1612 ModuleSlotTracker MST(M); 1613 if (F) 1614 MST.incorporateFunction(*F); 1615 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1616 } 1617 1618 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1619 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1620 bool AddNewLine, const TargetInstrInfo *TII) const { 1621 // We can be a bit tidier if we know the MachineFunction. 1622 const TargetRegisterInfo *TRI = nullptr; 1623 const MachineRegisterInfo *MRI = nullptr; 1624 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1625 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1626 1627 if (isCFIInstruction()) 1628 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1629 1630 SmallBitVector PrintedTypes(8); 1631 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1632 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1633 if (!ShouldPrintRegisterTies) 1634 return 0U; 1635 const MachineOperand &MO = getOperand(OpIdx); 1636 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1637 return findTiedOperandIdx(OpIdx); 1638 return 0U; 1639 }; 1640 unsigned StartOp = 0; 1641 unsigned e = getNumOperands(); 1642 1643 // Print explicitly defined operands on the left of an assignment syntax. 1644 while (StartOp < e) { 1645 const MachineOperand &MO = getOperand(StartOp); 1646 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1647 break; 1648 1649 if (StartOp != 0) 1650 OS << ", "; 1651 1652 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1653 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1654 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1655 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1656 ++StartOp; 1657 } 1658 1659 if (StartOp != 0) 1660 OS << " = "; 1661 1662 if (getFlag(MachineInstr::FrameSetup)) 1663 OS << "frame-setup "; 1664 if (getFlag(MachineInstr::FrameDestroy)) 1665 OS << "frame-destroy "; 1666 if (getFlag(MachineInstr::FmNoNans)) 1667 OS << "nnan "; 1668 if (getFlag(MachineInstr::FmNoInfs)) 1669 OS << "ninf "; 1670 if (getFlag(MachineInstr::FmNsz)) 1671 OS << "nsz "; 1672 if (getFlag(MachineInstr::FmArcp)) 1673 OS << "arcp "; 1674 if (getFlag(MachineInstr::FmContract)) 1675 OS << "contract "; 1676 if (getFlag(MachineInstr::FmAfn)) 1677 OS << "afn "; 1678 if (getFlag(MachineInstr::FmReassoc)) 1679 OS << "reassoc "; 1680 if (getFlag(MachineInstr::NoUWrap)) 1681 OS << "nuw "; 1682 if (getFlag(MachineInstr::NoSWrap)) 1683 OS << "nsw "; 1684 if (getFlag(MachineInstr::IsExact)) 1685 OS << "exact "; 1686 if (getFlag(MachineInstr::NoFPExcept)) 1687 OS << "nofpexcept "; 1688 if (getFlag(MachineInstr::NoMerge)) 1689 OS << "nomerge "; 1690 1691 // Print the opcode name. 1692 if (TII) 1693 OS << TII->getName(getOpcode()); 1694 else 1695 OS << "UNKNOWN"; 1696 1697 if (SkipOpers) 1698 return; 1699 1700 // Print the rest of the operands. 1701 bool FirstOp = true; 1702 unsigned AsmDescOp = ~0u; 1703 unsigned AsmOpCount = 0; 1704 1705 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1706 // Print asm string. 1707 OS << " "; 1708 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1709 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1710 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1711 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1712 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1713 IntrinsicInfo); 1714 1715 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1716 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1717 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1718 OS << " [sideeffect]"; 1719 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1720 OS << " [mayload]"; 1721 if (ExtraInfo & InlineAsm::Extra_MayStore) 1722 OS << " [maystore]"; 1723 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1724 OS << " [isconvergent]"; 1725 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1726 OS << " [alignstack]"; 1727 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1728 OS << " [attdialect]"; 1729 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1730 OS << " [inteldialect]"; 1731 1732 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1733 FirstOp = false; 1734 } 1735 1736 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1737 const MachineOperand &MO = getOperand(i); 1738 1739 if (FirstOp) FirstOp = false; else OS << ","; 1740 OS << " "; 1741 1742 if (isDebugValueLike() && MO.isMetadata()) { 1743 // Pretty print DBG_VALUE* instructions. 1744 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1745 if (DIV && !DIV->getName().empty()) 1746 OS << "!\"" << DIV->getName() << '\"'; 1747 else { 1748 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1749 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1750 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1751 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1752 } 1753 } else if (isDebugLabel() && MO.isMetadata()) { 1754 // Pretty print DBG_LABEL instructions. 1755 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1756 if (DIL && !DIL->getName().empty()) 1757 OS << "\"" << DIL->getName() << '\"'; 1758 else { 1759 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1760 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1761 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1762 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1763 } 1764 } else if (i == AsmDescOp && MO.isImm()) { 1765 // Pretty print the inline asm operand descriptor. 1766 OS << '$' << AsmOpCount++; 1767 unsigned Flag = MO.getImm(); 1768 const InlineAsm::Flag F(Flag); 1769 OS << ":["; 1770 OS << F.getKindName(); 1771 1772 unsigned RCID; 1773 if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) { 1774 if (TRI) { 1775 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1776 } else 1777 OS << ":RC" << RCID; 1778 } 1779 1780 if (F.isMemKind()) { 1781 const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID(); 1782 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1783 } 1784 1785 unsigned TiedTo; 1786 if (F.isUseOperandTiedToDef(TiedTo)) 1787 OS << " tiedto:$" << TiedTo; 1788 1789 OS << ']'; 1790 1791 // Compute the index of the next operand descriptor. 1792 AsmDescOp += 1 + F.getNumOperandRegisters(); 1793 } else { 1794 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1795 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1796 if (MO.isImm() && isOperandSubregIdx(i)) 1797 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1798 else 1799 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1800 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1801 } 1802 } 1803 1804 // Print any optional symbols attached to this instruction as-if they were 1805 // operands. 1806 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1807 if (!FirstOp) { 1808 FirstOp = false; 1809 OS << ','; 1810 } 1811 OS << " pre-instr-symbol "; 1812 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1813 } 1814 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1815 if (!FirstOp) { 1816 FirstOp = false; 1817 OS << ','; 1818 } 1819 OS << " post-instr-symbol "; 1820 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1821 } 1822 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1823 if (!FirstOp) { 1824 FirstOp = false; 1825 OS << ','; 1826 } 1827 OS << " heap-alloc-marker "; 1828 HeapAllocMarker->printAsOperand(OS, MST); 1829 } 1830 if (MDNode *PCSections = getPCSections()) { 1831 if (!FirstOp) { 1832 FirstOp = false; 1833 OS << ','; 1834 } 1835 OS << " pcsections "; 1836 PCSections->printAsOperand(OS, MST); 1837 } 1838 if (uint32_t CFIType = getCFIType()) { 1839 if (!FirstOp) 1840 OS << ','; 1841 OS << " cfi-type " << CFIType; 1842 } 1843 1844 if (DebugInstrNum) { 1845 if (!FirstOp) 1846 OS << ","; 1847 OS << " debug-instr-number " << DebugInstrNum; 1848 } 1849 1850 if (!SkipDebugLoc) { 1851 if (const DebugLoc &DL = getDebugLoc()) { 1852 if (!FirstOp) 1853 OS << ','; 1854 OS << " debug-location "; 1855 DL->printAsOperand(OS, MST); 1856 } 1857 } 1858 1859 if (!memoperands_empty()) { 1860 SmallVector<StringRef, 0> SSNs; 1861 const LLVMContext *Context = nullptr; 1862 std::unique_ptr<LLVMContext> CtxPtr; 1863 const MachineFrameInfo *MFI = nullptr; 1864 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1865 MFI = &MF->getFrameInfo(); 1866 Context = &MF->getFunction().getContext(); 1867 } else { 1868 CtxPtr = std::make_unique<LLVMContext>(); 1869 Context = CtxPtr.get(); 1870 } 1871 1872 OS << " :: "; 1873 bool NeedComma = false; 1874 for (const MachineMemOperand *Op : memoperands()) { 1875 if (NeedComma) 1876 OS << ", "; 1877 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1878 NeedComma = true; 1879 } 1880 } 1881 1882 if (SkipDebugLoc) 1883 return; 1884 1885 bool HaveSemi = false; 1886 1887 // Print debug location information. 1888 if (const DebugLoc &DL = getDebugLoc()) { 1889 if (!HaveSemi) { 1890 OS << ';'; 1891 HaveSemi = true; 1892 } 1893 OS << ' '; 1894 DL.print(OS); 1895 } 1896 1897 // Print extra comments for DEBUG_VALUE and friends if they are well-formed. 1898 if ((isNonListDebugValue() && getNumOperands() >= 4) || 1899 (isDebugValueList() && getNumOperands() >= 2) || 1900 (isDebugRef() && getNumOperands() >= 3)) { 1901 if (getDebugVariableOp().isMetadata()) { 1902 if (!HaveSemi) { 1903 OS << ";"; 1904 HaveSemi = true; 1905 } 1906 auto *DV = getDebugVariable(); 1907 OS << " line no:" << DV->getLine(); 1908 if (isIndirectDebugValue()) 1909 OS << " indirect"; 1910 } 1911 } 1912 // TODO: DBG_LABEL 1913 1914 if (AddNewLine) 1915 OS << '\n'; 1916 } 1917 1918 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1919 const TargetRegisterInfo *RegInfo, 1920 bool AddIfNotFound) { 1921 bool isPhysReg = IncomingReg.isPhysical(); 1922 bool hasAliases = isPhysReg && 1923 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1924 bool Found = false; 1925 SmallVector<unsigned,4> DeadOps; 1926 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1927 MachineOperand &MO = getOperand(i); 1928 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1929 continue; 1930 1931 // DEBUG_VALUE nodes do not contribute to code generation and should 1932 // always be ignored. Failure to do so may result in trying to modify 1933 // KILL flags on DEBUG_VALUE nodes. 1934 if (MO.isDebug()) 1935 continue; 1936 1937 Register Reg = MO.getReg(); 1938 if (!Reg) 1939 continue; 1940 1941 if (Reg == IncomingReg) { 1942 if (!Found) { 1943 if (MO.isKill()) 1944 // The register is already marked kill. 1945 return true; 1946 if (isPhysReg && isRegTiedToDefOperand(i)) 1947 // Two-address uses of physregs must not be marked kill. 1948 return true; 1949 MO.setIsKill(); 1950 Found = true; 1951 } 1952 } else if (hasAliases && MO.isKill() && Reg.isPhysical()) { 1953 // A super-register kill already exists. 1954 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1955 return true; 1956 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1957 DeadOps.push_back(i); 1958 } 1959 } 1960 1961 // Trim unneeded kill operands. 1962 while (!DeadOps.empty()) { 1963 unsigned OpIdx = DeadOps.back(); 1964 if (getOperand(OpIdx).isImplicit() && 1965 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1966 removeOperand(OpIdx); 1967 else 1968 getOperand(OpIdx).setIsKill(false); 1969 DeadOps.pop_back(); 1970 } 1971 1972 // If not found, this means an alias of one of the operands is killed. Add a 1973 // new implicit operand if required. 1974 if (!Found && AddIfNotFound) { 1975 addOperand(MachineOperand::CreateReg(IncomingReg, 1976 false /*IsDef*/, 1977 true /*IsImp*/, 1978 true /*IsKill*/)); 1979 return true; 1980 } 1981 return Found; 1982 } 1983 1984 void MachineInstr::clearRegisterKills(Register Reg, 1985 const TargetRegisterInfo *RegInfo) { 1986 if (!Reg.isPhysical()) 1987 RegInfo = nullptr; 1988 for (MachineOperand &MO : operands()) { 1989 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1990 continue; 1991 Register OpReg = MO.getReg(); 1992 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1993 MO.setIsKill(false); 1994 } 1995 } 1996 1997 bool MachineInstr::addRegisterDead(Register Reg, 1998 const TargetRegisterInfo *RegInfo, 1999 bool AddIfNotFound) { 2000 bool isPhysReg = Reg.isPhysical(); 2001 bool hasAliases = isPhysReg && 2002 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2003 bool Found = false; 2004 SmallVector<unsigned,4> DeadOps; 2005 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2006 MachineOperand &MO = getOperand(i); 2007 if (!MO.isReg() || !MO.isDef()) 2008 continue; 2009 Register MOReg = MO.getReg(); 2010 if (!MOReg) 2011 continue; 2012 2013 if (MOReg == Reg) { 2014 MO.setIsDead(); 2015 Found = true; 2016 } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) { 2017 // There exists a super-register that's marked dead. 2018 if (RegInfo->isSuperRegister(Reg, MOReg)) 2019 return true; 2020 if (RegInfo->isSubRegister(Reg, MOReg)) 2021 DeadOps.push_back(i); 2022 } 2023 } 2024 2025 // Trim unneeded dead operands. 2026 while (!DeadOps.empty()) { 2027 unsigned OpIdx = DeadOps.back(); 2028 if (getOperand(OpIdx).isImplicit() && 2029 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2030 removeOperand(OpIdx); 2031 else 2032 getOperand(OpIdx).setIsDead(false); 2033 DeadOps.pop_back(); 2034 } 2035 2036 // If not found, this means an alias of one of the operands is dead. Add a 2037 // new implicit operand if required. 2038 if (Found || !AddIfNotFound) 2039 return Found; 2040 2041 addOperand(MachineOperand::CreateReg(Reg, 2042 true /*IsDef*/, 2043 true /*IsImp*/, 2044 false /*IsKill*/, 2045 true /*IsDead*/)); 2046 return true; 2047 } 2048 2049 void MachineInstr::clearRegisterDeads(Register Reg) { 2050 for (MachineOperand &MO : operands()) { 2051 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2052 continue; 2053 MO.setIsDead(false); 2054 } 2055 } 2056 2057 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2058 for (MachineOperand &MO : operands()) { 2059 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2060 continue; 2061 MO.setIsUndef(IsUndef); 2062 } 2063 } 2064 2065 void MachineInstr::addRegisterDefined(Register Reg, 2066 const TargetRegisterInfo *RegInfo) { 2067 if (Reg.isPhysical()) { 2068 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 2069 if (MO) 2070 return; 2071 } else { 2072 for (const MachineOperand &MO : operands()) { 2073 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2074 MO.getSubReg() == 0) 2075 return; 2076 } 2077 } 2078 addOperand(MachineOperand::CreateReg(Reg, 2079 true /*IsDef*/, 2080 true /*IsImp*/)); 2081 } 2082 2083 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2084 const TargetRegisterInfo &TRI) { 2085 bool HasRegMask = false; 2086 for (MachineOperand &MO : operands()) { 2087 if (MO.isRegMask()) { 2088 HasRegMask = true; 2089 continue; 2090 } 2091 if (!MO.isReg() || !MO.isDef()) continue; 2092 Register Reg = MO.getReg(); 2093 if (!Reg.isPhysical()) 2094 continue; 2095 // If there are no uses, including partial uses, the def is dead. 2096 if (llvm::none_of(UsedRegs, 2097 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2098 MO.setIsDead(); 2099 } 2100 2101 // This is a call with a register mask operand. 2102 // Mask clobbers are always dead, so add defs for the non-dead defines. 2103 if (HasRegMask) 2104 for (const Register &UsedReg : UsedRegs) 2105 addRegisterDefined(UsedReg, &TRI); 2106 } 2107 2108 unsigned 2109 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2110 // Build up a buffer of hash code components. 2111 SmallVector<size_t, 16> HashComponents; 2112 HashComponents.reserve(MI->getNumOperands() + 1); 2113 HashComponents.push_back(MI->getOpcode()); 2114 for (const MachineOperand &MO : MI->operands()) { 2115 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual()) 2116 continue; // Skip virtual register defs. 2117 2118 HashComponents.push_back(hash_value(MO)); 2119 } 2120 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2121 } 2122 2123 void MachineInstr::emitError(StringRef Msg) const { 2124 // Find the source location cookie. 2125 uint64_t LocCookie = 0; 2126 const MDNode *LocMD = nullptr; 2127 for (unsigned i = getNumOperands(); i != 0; --i) { 2128 if (getOperand(i-1).isMetadata() && 2129 (LocMD = getOperand(i-1).getMetadata()) && 2130 LocMD->getNumOperands() != 0) { 2131 if (const ConstantInt *CI = 2132 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2133 LocCookie = CI->getZExtValue(); 2134 break; 2135 } 2136 } 2137 } 2138 2139 if (const MachineBasicBlock *MBB = getParent()) 2140 if (const MachineFunction *MF = MBB->getParent()) 2141 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2142 report_fatal_error(Msg); 2143 } 2144 2145 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2146 const MCInstrDesc &MCID, bool IsIndirect, 2147 Register Reg, const MDNode *Variable, 2148 const MDNode *Expr) { 2149 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2150 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2151 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2152 "Expected inlined-at fields to agree"); 2153 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); 2154 if (IsIndirect) 2155 MIB.addImm(0U); 2156 else 2157 MIB.addReg(0U); 2158 return MIB.addMetadata(Variable).addMetadata(Expr); 2159 } 2160 2161 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2162 const MCInstrDesc &MCID, bool IsIndirect, 2163 ArrayRef<MachineOperand> DebugOps, 2164 const MDNode *Variable, const MDNode *Expr) { 2165 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2166 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2167 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2168 "Expected inlined-at fields to agree"); 2169 if (MCID.Opcode == TargetOpcode::DBG_VALUE) { 2170 assert(DebugOps.size() == 1 && 2171 "DBG_VALUE must contain exactly one debug operand"); 2172 MachineOperand DebugOp = DebugOps[0]; 2173 if (DebugOp.isReg()) 2174 return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable, 2175 Expr); 2176 2177 auto MIB = BuildMI(MF, DL, MCID).add(DebugOp); 2178 if (IsIndirect) 2179 MIB.addImm(0U); 2180 else 2181 MIB.addReg(0U); 2182 return MIB.addMetadata(Variable).addMetadata(Expr); 2183 } 2184 2185 auto MIB = BuildMI(MF, DL, MCID); 2186 MIB.addMetadata(Variable).addMetadata(Expr); 2187 for (const MachineOperand &DebugOp : DebugOps) 2188 if (DebugOp.isReg()) 2189 MIB.addReg(DebugOp.getReg()); 2190 else 2191 MIB.add(DebugOp); 2192 return MIB; 2193 } 2194 2195 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2196 MachineBasicBlock::iterator I, 2197 const DebugLoc &DL, const MCInstrDesc &MCID, 2198 bool IsIndirect, Register Reg, 2199 const MDNode *Variable, const MDNode *Expr) { 2200 MachineFunction &MF = *BB.getParent(); 2201 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2202 BB.insert(I, MI); 2203 return MachineInstrBuilder(MF, MI); 2204 } 2205 2206 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2207 MachineBasicBlock::iterator I, 2208 const DebugLoc &DL, const MCInstrDesc &MCID, 2209 bool IsIndirect, 2210 ArrayRef<MachineOperand> DebugOps, 2211 const MDNode *Variable, const MDNode *Expr) { 2212 MachineFunction &MF = *BB.getParent(); 2213 MachineInstr *MI = 2214 BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr); 2215 BB.insert(I, MI); 2216 return MachineInstrBuilder(MF, *MI); 2217 } 2218 2219 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2220 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2221 static const DIExpression * 2222 computeExprForSpill(const MachineInstr &MI, 2223 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2224 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2225 "Expected inlined-at fields to agree"); 2226 2227 const DIExpression *Expr = MI.getDebugExpression(); 2228 if (MI.isIndirectDebugValue()) { 2229 assert(MI.getDebugOffset().getImm() == 0 && 2230 "DBG_VALUE with nonzero offset"); 2231 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2232 } else if (MI.isDebugValueList()) { 2233 // We will replace the spilled register with a frame index, so 2234 // immediately deref all references to the spilled register. 2235 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; 2236 for (const MachineOperand *Op : SpilledOperands) { 2237 unsigned OpIdx = MI.getDebugOperandIndex(Op); 2238 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); 2239 } 2240 } 2241 return Expr; 2242 } 2243 static const DIExpression *computeExprForSpill(const MachineInstr &MI, 2244 Register SpillReg) { 2245 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); 2246 SmallVector<const MachineOperand *> SpillOperands; 2247 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) 2248 SpillOperands.push_back(&Op); 2249 return computeExprForSpill(MI, SpillOperands); 2250 } 2251 2252 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2253 MachineBasicBlock::iterator I, 2254 const MachineInstr &Orig, 2255 int FrameIndex, Register SpillReg) { 2256 assert(!Orig.isDebugRef() && 2257 "DBG_INSTR_REF should not reference a virtual register."); 2258 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); 2259 MachineInstrBuilder NewMI = 2260 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2261 // Non-Variadic Operands: Location, Offset, Variable, Expression 2262 // Variadic Operands: Variable, Expression, Locations... 2263 if (Orig.isNonListDebugValue()) 2264 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2265 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2266 if (Orig.isDebugValueList()) { 2267 for (const MachineOperand &Op : Orig.debug_operands()) 2268 if (Op.isReg() && Op.getReg() == SpillReg) 2269 NewMI.addFrameIndex(FrameIndex); 2270 else 2271 NewMI.add(MachineOperand(Op)); 2272 } 2273 return NewMI; 2274 } 2275 MachineInstr *llvm::buildDbgValueForSpill( 2276 MachineBasicBlock &BB, MachineBasicBlock::iterator I, 2277 const MachineInstr &Orig, int FrameIndex, 2278 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2279 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); 2280 MachineInstrBuilder NewMI = 2281 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2282 // Non-Variadic Operands: Location, Offset, Variable, Expression 2283 // Variadic Operands: Variable, Expression, Locations... 2284 if (Orig.isNonListDebugValue()) 2285 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2286 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2287 if (Orig.isDebugValueList()) { 2288 for (const MachineOperand &Op : Orig.debug_operands()) 2289 if (is_contained(SpilledOperands, &Op)) 2290 NewMI.addFrameIndex(FrameIndex); 2291 else 2292 NewMI.add(MachineOperand(Op)); 2293 } 2294 return NewMI; 2295 } 2296 2297 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, 2298 Register Reg) { 2299 const DIExpression *Expr = computeExprForSpill(Orig, Reg); 2300 if (Orig.isNonListDebugValue()) 2301 Orig.getDebugOffset().ChangeToImmediate(0U); 2302 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) 2303 Op.ChangeToFrameIndex(FrameIndex); 2304 Orig.getDebugExpressionOp().setMetadata(Expr); 2305 } 2306 2307 void MachineInstr::collectDebugValues( 2308 SmallVectorImpl<MachineInstr *> &DbgValues) { 2309 MachineInstr &MI = *this; 2310 if (!MI.getOperand(0).isReg()) 2311 return; 2312 2313 MachineBasicBlock::iterator DI = MI; ++DI; 2314 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2315 DI != DE; ++DI) { 2316 if (!DI->isDebugValue()) 2317 return; 2318 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) 2319 DbgValues.push_back(&*DI); 2320 } 2321 } 2322 2323 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2324 // Collect matching debug values. 2325 SmallVector<MachineInstr *, 2> DbgValues; 2326 2327 if (!getOperand(0).isReg()) 2328 return; 2329 2330 Register DefReg = getOperand(0).getReg(); 2331 auto *MRI = getRegInfo(); 2332 for (auto &MO : MRI->use_operands(DefReg)) { 2333 auto *DI = MO.getParent(); 2334 if (!DI->isDebugValue()) 2335 continue; 2336 if (DI->hasDebugOperandForReg(DefReg)) { 2337 DbgValues.push_back(DI); 2338 } 2339 } 2340 2341 // Propagate Reg to debug value instructions. 2342 for (auto *DBI : DbgValues) 2343 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) 2344 Op.setReg(Reg); 2345 } 2346 2347 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2348 2349 static unsigned getSpillSlotSize(const MMOList &Accesses, 2350 const MachineFrameInfo &MFI) { 2351 unsigned Size = 0; 2352 for (const auto *A : Accesses) 2353 if (MFI.isSpillSlotObjectIndex( 2354 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2355 ->getFrameIndex())) 2356 Size += A->getSize(); 2357 return Size; 2358 } 2359 2360 std::optional<unsigned> 2361 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2362 int FI; 2363 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2364 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2365 if (MFI.isSpillSlotObjectIndex(FI)) 2366 return (*memoperands_begin())->getSize(); 2367 } 2368 return std::nullopt; 2369 } 2370 2371 std::optional<unsigned> 2372 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2373 MMOList Accesses; 2374 if (TII->hasStoreToStackSlot(*this, Accesses)) 2375 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2376 return std::nullopt; 2377 } 2378 2379 std::optional<unsigned> 2380 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2381 int FI; 2382 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2383 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2384 if (MFI.isSpillSlotObjectIndex(FI)) 2385 return (*memoperands_begin())->getSize(); 2386 } 2387 return std::nullopt; 2388 } 2389 2390 std::optional<unsigned> 2391 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2392 MMOList Accesses; 2393 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2394 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2395 return std::nullopt; 2396 } 2397 2398 unsigned MachineInstr::getDebugInstrNum() { 2399 if (DebugInstrNum == 0) 2400 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2401 return DebugInstrNum; 2402 } 2403 2404 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { 2405 if (DebugInstrNum == 0) 2406 DebugInstrNum = MF.getNewDebugInstrNum(); 2407 return DebugInstrNum; 2408 } 2409 2410 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const { 2411 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2412 getRegInfo()->getType(getOperand(1).getReg())); 2413 } 2414 2415 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const { 2416 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2417 getRegInfo()->getType(getOperand(1).getReg()), 2418 getRegInfo()->getType(getOperand(2).getReg())); 2419 } 2420 2421 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const { 2422 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2423 getRegInfo()->getType(getOperand(1).getReg()), 2424 getRegInfo()->getType(getOperand(2).getReg()), 2425 getRegInfo()->getType(getOperand(3).getReg())); 2426 } 2427 2428 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const { 2429 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2430 getRegInfo()->getType(getOperand(1).getReg()), 2431 getRegInfo()->getType(getOperand(2).getReg()), 2432 getRegInfo()->getType(getOperand(3).getReg()), 2433 getRegInfo()->getType(getOperand(4).getReg())); 2434 } 2435 2436 std::tuple<Register, LLT, Register, LLT> 2437 MachineInstr::getFirst2RegLLTs() const { 2438 Register Reg0 = getOperand(0).getReg(); 2439 Register Reg1 = getOperand(1).getReg(); 2440 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2441 getRegInfo()->getType(Reg1)); 2442 } 2443 2444 std::tuple<Register, LLT, Register, LLT, Register, LLT> 2445 MachineInstr::getFirst3RegLLTs() const { 2446 Register Reg0 = getOperand(0).getReg(); 2447 Register Reg1 = getOperand(1).getReg(); 2448 Register Reg2 = getOperand(2).getReg(); 2449 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2450 getRegInfo()->getType(Reg1), Reg2, 2451 getRegInfo()->getType(Reg2)); 2452 } 2453 2454 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT> 2455 MachineInstr::getFirst4RegLLTs() const { 2456 Register Reg0 = getOperand(0).getReg(); 2457 Register Reg1 = getOperand(1).getReg(); 2458 Register Reg2 = getOperand(2).getReg(); 2459 Register Reg3 = getOperand(3).getReg(); 2460 return std::tuple( 2461 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2462 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3)); 2463 } 2464 2465 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register, 2466 LLT> 2467 MachineInstr::getFirst5RegLLTs() const { 2468 Register Reg0 = getOperand(0).getReg(); 2469 Register Reg1 = getOperand(1).getReg(); 2470 Register Reg2 = getOperand(2).getReg(); 2471 Register Reg3 = getOperand(3).getReg(); 2472 Register Reg4 = getOperand(4).getReg(); 2473 return std::tuple( 2474 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2475 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3), 2476 Reg4, getRegInfo()->getType(Reg4)); 2477 } 2478