1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/Hashing.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/MemoryLocation.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineInstrBundle.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/Register.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/CodeGenTypes/LowLevelType.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/ModuleSlotTracker.h" 47 #include "llvm/IR/Operator.h" 48 #include "llvm/MC/MCInstrDesc.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/FormattedStream.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Target/TargetMachine.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <cstring> 61 #include <utility> 62 63 using namespace llvm; 64 65 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 66 if (const MachineBasicBlock *MBB = MI.getParent()) 67 if (const MachineFunction *MF = MBB->getParent()) 68 return MF; 69 return nullptr; 70 } 71 72 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 73 // it. 74 static void tryToGetTargetInfo(const MachineInstr &MI, 75 const TargetRegisterInfo *&TRI, 76 const MachineRegisterInfo *&MRI, 77 const TargetIntrinsicInfo *&IntrinsicInfo, 78 const TargetInstrInfo *&TII) { 79 80 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 81 TRI = MF->getSubtarget().getRegisterInfo(); 82 MRI = &MF->getRegInfo(); 83 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 84 TII = MF->getSubtarget().getInstrInfo(); 85 } 86 } 87 88 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 89 for (MCPhysReg ImpDef : MCID->implicit_defs()) 90 addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true)); 91 for (MCPhysReg ImpUse : MCID->implicit_uses()) 92 addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true)); 93 } 94 95 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 96 /// implicit operands. It reserves space for the number of operands specified by 97 /// the MCInstrDesc. 98 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, 99 DebugLoc DL, bool NoImp) 100 : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0), 101 DbgLoc(std::move(DL)), DebugInstrNum(0) { 102 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 103 104 // Reserve space for the expected number of operands. 105 if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() + 106 MCID->implicit_uses().size()) { 107 CapOperands = OperandCapacity::get(NumOps); 108 Operands = MF.allocateOperandArray(CapOperands); 109 } 110 111 if (!NoImp) 112 addImplicitDefUseOperands(MF); 113 } 114 115 /// MachineInstr ctor - Copies MachineInstr arg exactly. 116 /// Does not copy the number from debug instruction numbering, to preserve 117 /// uniqueness. 118 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 119 : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0), 120 Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0) { 121 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 122 123 CapOperands = OperandCapacity::get(MI.getNumOperands()); 124 Operands = MF.allocateOperandArray(CapOperands); 125 126 // Copy operands. 127 for (const MachineOperand &MO : MI.operands()) 128 addOperand(MF, MO); 129 130 // Replicate ties between the operands, which addOperand was not 131 // able to do reliably. 132 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 133 MachineOperand &NewMO = getOperand(i); 134 const MachineOperand &OrigMO = MI.getOperand(i); 135 NewMO.TiedTo = OrigMO.TiedTo; 136 } 137 138 // Copy all the sensible flags. 139 setFlags(MI.Flags); 140 } 141 142 void MachineInstr::setDesc(const MCInstrDesc &TID) { 143 if (getParent()) 144 getMF()->handleChangeDesc(*this, TID); 145 MCID = &TID; 146 } 147 148 void MachineInstr::moveBefore(MachineInstr *MovePos) { 149 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 150 } 151 152 /// getRegInfo - If this instruction is embedded into a MachineFunction, 153 /// return the MachineRegisterInfo object for the current function, otherwise 154 /// return null. 155 MachineRegisterInfo *MachineInstr::getRegInfo() { 156 if (MachineBasicBlock *MBB = getParent()) 157 return &MBB->getParent()->getRegInfo(); 158 return nullptr; 159 } 160 161 const MachineRegisterInfo *MachineInstr::getRegInfo() const { 162 if (const MachineBasicBlock *MBB = getParent()) 163 return &MBB->getParent()->getRegInfo(); 164 return nullptr; 165 } 166 167 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 168 for (MachineOperand &MO : operands()) 169 if (MO.isReg()) 170 MRI.removeRegOperandFromUseList(&MO); 171 } 172 173 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) { 174 for (MachineOperand &MO : operands()) 175 if (MO.isReg()) 176 MRI.addRegOperandToUseList(&MO); 177 } 178 179 void MachineInstr::addOperand(const MachineOperand &Op) { 180 MachineBasicBlock *MBB = getParent(); 181 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 182 MachineFunction *MF = MBB->getParent(); 183 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 184 addOperand(*MF, Op); 185 } 186 187 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 188 /// ranges. If MRI is non-null also update use-def chains. 189 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 190 unsigned NumOps, MachineRegisterInfo *MRI) { 191 if (MRI) 192 return MRI->moveOperands(Dst, Src, NumOps); 193 // MachineOperand is a trivially copyable type so we can just use memmove. 194 assert(Dst && Src && "Unknown operands"); 195 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 196 } 197 198 /// addOperand - Add the specified operand to the instruction. If it is an 199 /// implicit operand, it is added to the end of the operand list. If it is 200 /// an explicit operand it is added at the end of the explicit operand list 201 /// (before the first implicit operand). 202 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 203 assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) && 204 "Cannot add more operands."); 205 assert(MCID && "Cannot add operands before providing an instr descriptor"); 206 207 // Check if we're adding one of our existing operands. 208 if (&Op >= Operands && &Op < Operands + NumOperands) { 209 // This is unusual: MI->addOperand(MI->getOperand(i)). 210 // If adding Op requires reallocating or moving existing operands around, 211 // the Op reference could go stale. Support it by copying Op. 212 MachineOperand CopyOp(Op); 213 return addOperand(MF, CopyOp); 214 } 215 216 // Find the insert location for the new operand. Implicit registers go at 217 // the end, everything else goes before the implicit regs. 218 // 219 // FIXME: Allow mixed explicit and implicit operands on inline asm. 220 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 221 // implicit-defs, but they must not be moved around. See the FIXME in 222 // InstrEmitter.cpp. 223 unsigned OpNo = getNumOperands(); 224 bool isImpReg = Op.isReg() && Op.isImplicit(); 225 if (!isImpReg && !isInlineAsm()) { 226 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 227 --OpNo; 228 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 229 } 230 } 231 232 // OpNo now points as the desired insertion point. Unless this is a variadic 233 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 234 // RegMask operands go between the explicit and implicit operands. 235 MachineRegisterInfo *MRI = getRegInfo(); 236 237 // Determine if the Operands array needs to be reallocated. 238 // Save the old capacity and operand array. 239 OperandCapacity OldCap = CapOperands; 240 MachineOperand *OldOperands = Operands; 241 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 242 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 243 Operands = MF.allocateOperandArray(CapOperands); 244 // Move the operands before the insertion point. 245 if (OpNo) 246 moveOperands(Operands, OldOperands, OpNo, MRI); 247 } 248 249 // Move the operands following the insertion point. 250 if (OpNo != NumOperands) 251 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 252 MRI); 253 ++NumOperands; 254 255 // Deallocate the old operand array. 256 if (OldOperands != Operands && OldOperands) 257 MF.deallocateOperandArray(OldCap, OldOperands); 258 259 // Copy Op into place. It still needs to be inserted into the MRI use lists. 260 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 261 NewMO->ParentMI = this; 262 263 // When adding a register operand, tell MRI about it. 264 if (NewMO->isReg()) { 265 // Ensure isOnRegUseList() returns false, regardless of Op's status. 266 NewMO->Contents.Reg.Prev = nullptr; 267 // Ignore existing ties. This is not a property that can be copied. 268 NewMO->TiedTo = 0; 269 // Add the new operand to MRI, but only for instructions in an MBB. 270 if (MRI) 271 MRI->addRegOperandToUseList(NewMO); 272 // The MCID operand information isn't accurate until we start adding 273 // explicit operands. The implicit operands are added first, then the 274 // explicits are inserted before them. 275 if (!isImpReg) { 276 // Tie uses to defs as indicated in MCInstrDesc. 277 if (NewMO->isUse()) { 278 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 279 if (DefIdx != -1) 280 tieOperands(DefIdx, OpNo); 281 } 282 // If the register operand is flagged as early, mark the operand as such. 283 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 284 NewMO->setIsEarlyClobber(true); 285 } 286 // Ensure debug instructions set debug flag on register uses. 287 if (NewMO->isUse() && isDebugInstr()) 288 NewMO->setIsDebug(); 289 } 290 } 291 292 void MachineInstr::removeOperand(unsigned OpNo) { 293 assert(OpNo < getNumOperands() && "Invalid operand number"); 294 untieRegOperand(OpNo); 295 296 #ifndef NDEBUG 297 // Moving tied operands would break the ties. 298 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 299 if (Operands[i].isReg()) 300 assert(!Operands[i].isTied() && "Cannot move tied operands"); 301 #endif 302 303 MachineRegisterInfo *MRI = getRegInfo(); 304 if (MRI && Operands[OpNo].isReg()) 305 MRI->removeRegOperandFromUseList(Operands + OpNo); 306 307 // Don't call the MachineOperand destructor. A lot of this code depends on 308 // MachineOperand having a trivial destructor anyway, and adding a call here 309 // wouldn't make it 'destructor-correct'. 310 311 if (unsigned N = NumOperands - 1 - OpNo) 312 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 313 --NumOperands; 314 } 315 316 void MachineInstr::setExtraInfo(MachineFunction &MF, 317 ArrayRef<MachineMemOperand *> MMOs, 318 MCSymbol *PreInstrSymbol, 319 MCSymbol *PostInstrSymbol, 320 MDNode *HeapAllocMarker, MDNode *PCSections, 321 uint32_t CFIType) { 322 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 323 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 324 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 325 bool HasPCSections = PCSections != nullptr; 326 bool HasCFIType = CFIType != 0; 327 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + 328 HasHeapAllocMarker + HasPCSections + HasCFIType; 329 330 // Drop all extra info if there is none. 331 if (NumPointers <= 0) { 332 Info.clear(); 333 return; 334 } 335 336 // If more than one pointer, then store out of line. Store heap alloc markers 337 // out of line because PointerSumType cannot hold more than 4 tag types with 338 // 32-bit pointers. 339 // FIXME: Maybe we should make the symbols in the extra info mutable? 340 else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections || 341 HasCFIType) { 342 Info.set<EIIK_OutOfLine>( 343 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol, 344 HeapAllocMarker, PCSections, CFIType)); 345 return; 346 } 347 348 // Otherwise store the single pointer inline. 349 if (HasPreInstrSymbol) 350 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 351 else if (HasPostInstrSymbol) 352 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 353 else 354 Info.set<EIIK_MMO>(MMOs[0]); 355 } 356 357 void MachineInstr::dropMemRefs(MachineFunction &MF) { 358 if (memoperands_empty()) 359 return; 360 361 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 362 getHeapAllocMarker(), getPCSections(), getCFIType()); 363 } 364 365 void MachineInstr::setMemRefs(MachineFunction &MF, 366 ArrayRef<MachineMemOperand *> MMOs) { 367 if (MMOs.empty()) { 368 dropMemRefs(MF); 369 return; 370 } 371 372 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 373 getHeapAllocMarker(), getPCSections(), getCFIType()); 374 } 375 376 void MachineInstr::addMemOperand(MachineFunction &MF, 377 MachineMemOperand *MO) { 378 SmallVector<MachineMemOperand *, 2> MMOs; 379 MMOs.append(memoperands_begin(), memoperands_end()); 380 MMOs.push_back(MO); 381 setMemRefs(MF, MMOs); 382 } 383 384 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 385 if (this == &MI) 386 // Nothing to do for a self-clone! 387 return; 388 389 assert(&MF == MI.getMF() && 390 "Invalid machine functions when cloning memory refrences!"); 391 // See if we can just steal the extra info already allocated for the 392 // instruction. We can do this whenever the pre- and post-instruction symbols 393 // are the same (including null). 394 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 395 getPostInstrSymbol() == MI.getPostInstrSymbol() && 396 getHeapAllocMarker() == MI.getHeapAllocMarker() && 397 getPCSections() == MI.getPCSections()) { 398 Info = MI.Info; 399 return; 400 } 401 402 // Otherwise, fall back on a copy-based clone. 403 setMemRefs(MF, MI.memoperands()); 404 } 405 406 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 407 /// identical. 408 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 409 ArrayRef<MachineMemOperand *> RHS) { 410 if (LHS.size() != RHS.size()) 411 return false; 412 413 auto LHSPointees = make_pointee_range(LHS); 414 auto RHSPointees = make_pointee_range(RHS); 415 return std::equal(LHSPointees.begin(), LHSPointees.end(), 416 RHSPointees.begin()); 417 } 418 419 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 420 ArrayRef<const MachineInstr *> MIs) { 421 // Try handling easy numbers of MIs with simpler mechanisms. 422 if (MIs.empty()) { 423 dropMemRefs(MF); 424 return; 425 } 426 if (MIs.size() == 1) { 427 cloneMemRefs(MF, *MIs[0]); 428 return; 429 } 430 // Because an empty memoperands list provides *no* information and must be 431 // handled conservatively (assuming the instruction can do anything), the only 432 // way to merge with it is to drop all other memoperands. 433 if (MIs[0]->memoperands_empty()) { 434 dropMemRefs(MF); 435 return; 436 } 437 438 // Handle the general case. 439 SmallVector<MachineMemOperand *, 2> MergedMMOs; 440 // Start with the first instruction. 441 assert(&MF == MIs[0]->getMF() && 442 "Invalid machine functions when cloning memory references!"); 443 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 444 // Now walk all the other instructions and accumulate any different MMOs. 445 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 446 assert(&MF == MI.getMF() && 447 "Invalid machine functions when cloning memory references!"); 448 449 // Skip MIs with identical operands to the first. This is a somewhat 450 // arbitrary hack but will catch common cases without being quadratic. 451 // TODO: We could fully implement merge semantics here if needed. 452 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 453 continue; 454 455 // Because an empty memoperands list provides *no* information and must be 456 // handled conservatively (assuming the instruction can do anything), the 457 // only way to merge with it is to drop all other memoperands. 458 if (MI.memoperands_empty()) { 459 dropMemRefs(MF); 460 return; 461 } 462 463 // Otherwise accumulate these into our temporary buffer of the merged state. 464 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 465 } 466 467 setMemRefs(MF, MergedMMOs); 468 } 469 470 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 471 // Do nothing if old and new symbols are the same. 472 if (Symbol == getPreInstrSymbol()) 473 return; 474 475 // If there was only one symbol and we're removing it, just clear info. 476 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 477 Info.clear(); 478 return; 479 } 480 481 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 482 getHeapAllocMarker(), getPCSections(), getCFIType()); 483 } 484 485 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 486 // Do nothing if old and new symbols are the same. 487 if (Symbol == getPostInstrSymbol()) 488 return; 489 490 // If there was only one symbol and we're removing it, just clear info. 491 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 492 Info.clear(); 493 return; 494 } 495 496 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 497 getHeapAllocMarker(), getPCSections(), getCFIType()); 498 } 499 500 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 501 // Do nothing if old and new symbols are the same. 502 if (Marker == getHeapAllocMarker()) 503 return; 504 505 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 506 Marker, getPCSections(), getCFIType()); 507 } 508 509 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) { 510 // Do nothing if old and new symbols are the same. 511 if (PCSections == getPCSections()) 512 return; 513 514 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 515 getHeapAllocMarker(), PCSections, getCFIType()); 516 } 517 518 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) { 519 // Do nothing if old and new types are the same. 520 if (Type == getCFIType()) 521 return; 522 523 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 524 getHeapAllocMarker(), getPCSections(), Type); 525 } 526 527 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 528 const MachineInstr &MI) { 529 if (this == &MI) 530 // Nothing to do for a self-clone! 531 return; 532 533 assert(&MF == MI.getMF() && 534 "Invalid machine functions when cloning instruction symbols!"); 535 536 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 537 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 538 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 539 setPCSections(MF, MI.getPCSections()); 540 } 541 542 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 543 // For now, the just return the union of the flags. If the flags get more 544 // complicated over time, we might need more logic here. 545 return getFlags() | Other.getFlags(); 546 } 547 548 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 549 uint32_t MIFlags = 0; 550 // Copy the wrapping flags. 551 if (const OverflowingBinaryOperator *OB = 552 dyn_cast<OverflowingBinaryOperator>(&I)) { 553 if (OB->hasNoSignedWrap()) 554 MIFlags |= MachineInstr::MIFlag::NoSWrap; 555 if (OB->hasNoUnsignedWrap()) 556 MIFlags |= MachineInstr::MIFlag::NoUWrap; 557 } else if (const TruncInst *TI = dyn_cast<TruncInst>(&I)) { 558 if (TI->hasNoSignedWrap()) 559 MIFlags |= MachineInstr::MIFlag::NoSWrap; 560 if (TI->hasNoUnsignedWrap()) 561 MIFlags |= MachineInstr::MIFlag::NoUWrap; 562 } 563 564 // Copy the nonneg flag. 565 if (const PossiblyNonNegInst *PNI = dyn_cast<PossiblyNonNegInst>(&I)) { 566 if (PNI->hasNonNeg()) 567 MIFlags |= MachineInstr::MIFlag::NonNeg; 568 // Copy the disjoint flag. 569 } else if (const PossiblyDisjointInst *PD = 570 dyn_cast<PossiblyDisjointInst>(&I)) { 571 if (PD->isDisjoint()) 572 MIFlags |= MachineInstr::MIFlag::Disjoint; 573 } 574 575 // Copy the exact flag. 576 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 577 if (PE->isExact()) 578 MIFlags |= MachineInstr::MIFlag::IsExact; 579 580 // Copy the fast-math flags. 581 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 582 const FastMathFlags Flags = FP->getFastMathFlags(); 583 if (Flags.noNaNs()) 584 MIFlags |= MachineInstr::MIFlag::FmNoNans; 585 if (Flags.noInfs()) 586 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 587 if (Flags.noSignedZeros()) 588 MIFlags |= MachineInstr::MIFlag::FmNsz; 589 if (Flags.allowReciprocal()) 590 MIFlags |= MachineInstr::MIFlag::FmArcp; 591 if (Flags.allowContract()) 592 MIFlags |= MachineInstr::MIFlag::FmContract; 593 if (Flags.approxFunc()) 594 MIFlags |= MachineInstr::MIFlag::FmAfn; 595 if (Flags.allowReassoc()) 596 MIFlags |= MachineInstr::MIFlag::FmReassoc; 597 } 598 599 if (I.getMetadata(LLVMContext::MD_unpredictable)) 600 MIFlags |= MachineInstr::MIFlag::Unpredictable; 601 602 return MIFlags; 603 } 604 605 void MachineInstr::copyIRFlags(const Instruction &I) { 606 Flags = copyFlagsFromInstruction(I); 607 } 608 609 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 610 assert(!isBundledWithPred() && "Must be called on bundle header"); 611 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 612 if (MII->getDesc().getFlags() & Mask) { 613 if (Type == AnyInBundle) 614 return true; 615 } else { 616 if (Type == AllInBundle && !MII->isBundle()) 617 return false; 618 } 619 // This was the last instruction in the bundle. 620 if (!MII->isBundledWithSucc()) 621 return Type == AllInBundle; 622 } 623 } 624 625 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 626 MICheckType Check) const { 627 // If opcodes or number of operands are not the same then the two 628 // instructions are obviously not identical. 629 if (Other.getOpcode() != getOpcode() || 630 Other.getNumOperands() != getNumOperands()) 631 return false; 632 633 if (isBundle()) { 634 // We have passed the test above that both instructions have the same 635 // opcode, so we know that both instructions are bundles here. Let's compare 636 // MIs inside the bundle. 637 assert(Other.isBundle() && "Expected that both instructions are bundles."); 638 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 639 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 640 // Loop until we analysed the last intruction inside at least one of the 641 // bundles. 642 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 643 ++I1; 644 ++I2; 645 if (!I1->isIdenticalTo(*I2, Check)) 646 return false; 647 } 648 // If we've reached the end of just one of the two bundles, but not both, 649 // the instructions are not identical. 650 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 651 return false; 652 } 653 654 // Check operands to make sure they match. 655 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 656 const MachineOperand &MO = getOperand(i); 657 const MachineOperand &OMO = Other.getOperand(i); 658 if (!MO.isReg()) { 659 if (!MO.isIdenticalTo(OMO)) 660 return false; 661 continue; 662 } 663 664 // Clients may or may not want to ignore defs when testing for equality. 665 // For example, machine CSE pass only cares about finding common 666 // subexpressions, so it's safe to ignore virtual register defs. 667 if (MO.isDef()) { 668 if (Check == IgnoreDefs) 669 continue; 670 else if (Check == IgnoreVRegDefs) { 671 if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual()) 672 if (!MO.isIdenticalTo(OMO)) 673 return false; 674 } else { 675 if (!MO.isIdenticalTo(OMO)) 676 return false; 677 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 678 return false; 679 } 680 } else { 681 if (!MO.isIdenticalTo(OMO)) 682 return false; 683 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 684 return false; 685 } 686 } 687 // If DebugLoc does not match then two debug instructions are not identical. 688 if (isDebugInstr()) 689 if (getDebugLoc() && Other.getDebugLoc() && 690 getDebugLoc() != Other.getDebugLoc()) 691 return false; 692 // If pre- or post-instruction symbols do not match then the two instructions 693 // are not identical. 694 if (getPreInstrSymbol() != Other.getPreInstrSymbol() || 695 getPostInstrSymbol() != Other.getPostInstrSymbol()) 696 return false; 697 // Call instructions with different CFI types are not identical. 698 if (isCall() && getCFIType() != Other.getCFIType()) 699 return false; 700 701 return true; 702 } 703 704 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const { 705 if (!isDebugValueLike() || !Other.isDebugValueLike()) 706 return false; 707 if (getDebugLoc() != Other.getDebugLoc()) 708 return false; 709 if (getDebugVariable() != Other.getDebugVariable()) 710 return false; 711 if (getNumDebugOperands() != Other.getNumDebugOperands()) 712 return false; 713 for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx) 714 if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx))) 715 return false; 716 if (!DIExpression::isEqualExpression( 717 getDebugExpression(), isIndirectDebugValue(), 718 Other.getDebugExpression(), Other.isIndirectDebugValue())) 719 return false; 720 return true; 721 } 722 723 const MachineFunction *MachineInstr::getMF() const { 724 return getParent()->getParent(); 725 } 726 727 MachineInstr *MachineInstr::removeFromParent() { 728 assert(getParent() && "Not embedded in a basic block!"); 729 return getParent()->remove(this); 730 } 731 732 MachineInstr *MachineInstr::removeFromBundle() { 733 assert(getParent() && "Not embedded in a basic block!"); 734 return getParent()->remove_instr(this); 735 } 736 737 void MachineInstr::eraseFromParent() { 738 assert(getParent() && "Not embedded in a basic block!"); 739 getParent()->erase(this); 740 } 741 742 void MachineInstr::eraseFromBundle() { 743 assert(getParent() && "Not embedded in a basic block!"); 744 getParent()->erase_instr(this); 745 } 746 747 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 748 if (!isCall(Type)) 749 return false; 750 switch (getOpcode()) { 751 case TargetOpcode::PATCHPOINT: 752 case TargetOpcode::STACKMAP: 753 case TargetOpcode::STATEPOINT: 754 case TargetOpcode::FENTRY_CALL: 755 return false; 756 } 757 return true; 758 } 759 760 bool MachineInstr::shouldUpdateCallSiteInfo() const { 761 if (isBundle()) 762 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 763 return isCandidateForCallSiteEntry(); 764 } 765 766 unsigned MachineInstr::getNumExplicitOperands() const { 767 unsigned NumOperands = MCID->getNumOperands(); 768 if (!MCID->isVariadic()) 769 return NumOperands; 770 771 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 772 const MachineOperand &MO = getOperand(I); 773 // The operands must always be in the following order: 774 // - explicit reg defs, 775 // - other explicit operands (reg uses, immediates, etc.), 776 // - implicit reg defs 777 // - implicit reg uses 778 if (MO.isReg() && MO.isImplicit()) 779 break; 780 ++NumOperands; 781 } 782 return NumOperands; 783 } 784 785 unsigned MachineInstr::getNumExplicitDefs() const { 786 unsigned NumDefs = MCID->getNumDefs(); 787 if (!MCID->isVariadic()) 788 return NumDefs; 789 790 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 791 const MachineOperand &MO = getOperand(I); 792 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 793 break; 794 ++NumDefs; 795 } 796 return NumDefs; 797 } 798 799 void MachineInstr::bundleWithPred() { 800 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 801 setFlag(BundledPred); 802 MachineBasicBlock::instr_iterator Pred = getIterator(); 803 --Pred; 804 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 805 Pred->setFlag(BundledSucc); 806 } 807 808 void MachineInstr::bundleWithSucc() { 809 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 810 setFlag(BundledSucc); 811 MachineBasicBlock::instr_iterator Succ = getIterator(); 812 ++Succ; 813 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 814 Succ->setFlag(BundledPred); 815 } 816 817 void MachineInstr::unbundleFromPred() { 818 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 819 clearFlag(BundledPred); 820 MachineBasicBlock::instr_iterator Pred = getIterator(); 821 --Pred; 822 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 823 Pred->clearFlag(BundledSucc); 824 } 825 826 void MachineInstr::unbundleFromSucc() { 827 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 828 clearFlag(BundledSucc); 829 MachineBasicBlock::instr_iterator Succ = getIterator(); 830 ++Succ; 831 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 832 Succ->clearFlag(BundledPred); 833 } 834 835 bool MachineInstr::isStackAligningInlineAsm() const { 836 if (isInlineAsm()) { 837 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 838 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 839 return true; 840 } 841 return false; 842 } 843 844 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 845 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 846 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 847 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 848 } 849 850 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 851 unsigned *GroupNo) const { 852 assert(isInlineAsm() && "Expected an inline asm instruction"); 853 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 854 855 // Ignore queries about the initial operands. 856 if (OpIdx < InlineAsm::MIOp_FirstOperand) 857 return -1; 858 859 unsigned Group = 0; 860 unsigned NumOps; 861 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 862 i += NumOps) { 863 const MachineOperand &FlagMO = getOperand(i); 864 // If we reach the implicit register operands, stop looking. 865 if (!FlagMO.isImm()) 866 return -1; 867 const InlineAsm::Flag F(FlagMO.getImm()); 868 NumOps = 1 + F.getNumOperandRegisters(); 869 if (i + NumOps > OpIdx) { 870 if (GroupNo) 871 *GroupNo = Group; 872 return i; 873 } 874 ++Group; 875 } 876 return -1; 877 } 878 879 const DILabel *MachineInstr::getDebugLabel() const { 880 assert(isDebugLabel() && "not a DBG_LABEL"); 881 return cast<DILabel>(getOperand(0).getMetadata()); 882 } 883 884 const MachineOperand &MachineInstr::getDebugVariableOp() const { 885 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 886 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 887 return getOperand(VariableOp); 888 } 889 890 MachineOperand &MachineInstr::getDebugVariableOp() { 891 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 892 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 893 return getOperand(VariableOp); 894 } 895 896 const DILocalVariable *MachineInstr::getDebugVariable() const { 897 return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); 898 } 899 900 const MachineOperand &MachineInstr::getDebugExpressionOp() const { 901 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 902 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 903 return getOperand(ExpressionOp); 904 } 905 906 MachineOperand &MachineInstr::getDebugExpressionOp() { 907 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 908 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 909 return getOperand(ExpressionOp); 910 } 911 912 const DIExpression *MachineInstr::getDebugExpression() const { 913 return cast<DIExpression>(getDebugExpressionOp().getMetadata()); 914 } 915 916 bool MachineInstr::isDebugEntryValue() const { 917 return isDebugValue() && getDebugExpression()->isEntryValue(); 918 } 919 920 const TargetRegisterClass* 921 MachineInstr::getRegClassConstraint(unsigned OpIdx, 922 const TargetInstrInfo *TII, 923 const TargetRegisterInfo *TRI) const { 924 assert(getParent() && "Can't have an MBB reference here!"); 925 assert(getMF() && "Can't have an MF reference here!"); 926 const MachineFunction &MF = *getMF(); 927 928 // Most opcodes have fixed constraints in their MCInstrDesc. 929 if (!isInlineAsm()) 930 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 931 932 if (!getOperand(OpIdx).isReg()) 933 return nullptr; 934 935 // For tied uses on inline asm, get the constraint from the def. 936 unsigned DefIdx; 937 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 938 OpIdx = DefIdx; 939 940 // Inline asm stores register class constraints in the flag word. 941 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 942 if (FlagIdx < 0) 943 return nullptr; 944 945 const InlineAsm::Flag F(getOperand(FlagIdx).getImm()); 946 unsigned RCID; 947 if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) && 948 F.hasRegClassConstraint(RCID)) 949 return TRI->getRegClass(RCID); 950 951 // Assume that all registers in a memory operand are pointers. 952 if (F.isMemKind()) 953 return TRI->getPointerRegClass(MF); 954 955 return nullptr; 956 } 957 958 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 959 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 960 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 961 // Check every operands inside the bundle if we have 962 // been asked to. 963 if (ExploreBundle) 964 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 965 ++OpndIt) 966 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 967 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 968 else 969 // Otherwise, just check the current operands. 970 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 971 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 972 return CurRC; 973 } 974 975 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 976 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 977 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 978 assert(CurRC && "Invalid initial register class"); 979 // Check if Reg is constrained by some of its use/def from MI. 980 const MachineOperand &MO = getOperand(OpIdx); 981 if (!MO.isReg() || MO.getReg() != Reg) 982 return CurRC; 983 // If yes, accumulate the constraints through the operand. 984 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 985 } 986 987 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 988 unsigned OpIdx, const TargetRegisterClass *CurRC, 989 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 990 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 991 const MachineOperand &MO = getOperand(OpIdx); 992 assert(MO.isReg() && 993 "Cannot get register constraints for non-register operand"); 994 assert(CurRC && "Invalid initial register class"); 995 if (unsigned SubIdx = MO.getSubReg()) { 996 if (OpRC) 997 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 998 else 999 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1000 } else if (OpRC) 1001 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1002 return CurRC; 1003 } 1004 1005 /// Return the number of instructions inside the MI bundle, not counting the 1006 /// header instruction. 1007 unsigned MachineInstr::getBundleSize() const { 1008 MachineBasicBlock::const_instr_iterator I = getIterator(); 1009 unsigned Size = 0; 1010 while (I->isBundledWithSucc()) { 1011 ++Size; 1012 ++I; 1013 } 1014 return Size; 1015 } 1016 1017 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1018 /// the given register (not considering sub/super-registers). 1019 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 1020 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1021 const MachineOperand &MO = getOperand(i); 1022 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1023 return true; 1024 } 1025 return false; 1026 } 1027 1028 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1029 /// the specific register or -1 if it is not found. It further tightens 1030 /// the search criteria to a use that kills the register if isKill is true. 1031 int MachineInstr::findRegisterUseOperandIdx( 1032 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1033 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1034 const MachineOperand &MO = getOperand(i); 1035 if (!MO.isReg() || !MO.isUse()) 1036 continue; 1037 Register MOReg = MO.getReg(); 1038 if (!MOReg) 1039 continue; 1040 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 1041 if (!isKill || MO.isKill()) 1042 return i; 1043 } 1044 return -1; 1045 } 1046 1047 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1048 /// indicating if this instruction reads or writes Reg. This also considers 1049 /// partial defines. 1050 std::pair<bool,bool> 1051 MachineInstr::readsWritesVirtualRegister(Register Reg, 1052 SmallVectorImpl<unsigned> *Ops) const { 1053 bool PartDef = false; // Partial redefine. 1054 bool FullDef = false; // Full define. 1055 bool Use = false; 1056 1057 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1058 const MachineOperand &MO = getOperand(i); 1059 if (!MO.isReg() || MO.getReg() != Reg) 1060 continue; 1061 if (Ops) 1062 Ops->push_back(i); 1063 if (MO.isUse()) 1064 Use |= !MO.isUndef(); 1065 else if (MO.getSubReg() && !MO.isUndef()) 1066 // A partial def undef doesn't count as reading the register. 1067 PartDef = true; 1068 else 1069 FullDef = true; 1070 } 1071 // A partial redefine uses Reg unless there is also a full define. 1072 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1073 } 1074 1075 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1076 /// the specified register or -1 if it is not found. If isDead is true, defs 1077 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1078 /// also checks if there is a def of a super-register. 1079 int 1080 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1081 const TargetRegisterInfo *TRI) const { 1082 bool isPhys = Reg.isPhysical(); 1083 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1084 const MachineOperand &MO = getOperand(i); 1085 // Accept regmask operands when Overlap is set. 1086 // Ignore them when looking for a specific def operand (Overlap == false). 1087 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1088 return i; 1089 if (!MO.isReg() || !MO.isDef()) 1090 continue; 1091 Register MOReg = MO.getReg(); 1092 bool Found = (MOReg == Reg); 1093 if (!Found && TRI && isPhys && MOReg.isPhysical()) { 1094 if (Overlap) 1095 Found = TRI->regsOverlap(MOReg, Reg); 1096 else 1097 Found = TRI->isSubRegister(MOReg, Reg); 1098 } 1099 if (Found && (!isDead || MO.isDead())) 1100 return i; 1101 } 1102 return -1; 1103 } 1104 1105 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1106 /// operand list that is used to represent the predicate. It returns -1 if 1107 /// none is found. 1108 int MachineInstr::findFirstPredOperandIdx() const { 1109 // Don't call MCID.findFirstPredOperandIdx() because this variant 1110 // is sometimes called on an instruction that's not yet complete, and 1111 // so the number of operands is less than the MCID indicates. In 1112 // particular, the PTX target does this. 1113 const MCInstrDesc &MCID = getDesc(); 1114 if (MCID.isPredicable()) { 1115 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1116 if (MCID.operands()[i].isPredicate()) 1117 return i; 1118 } 1119 1120 return -1; 1121 } 1122 1123 // MachineOperand::TiedTo is 4 bits wide. 1124 const unsigned TiedMax = 15; 1125 1126 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1127 /// 1128 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1129 /// field. TiedTo can have these values: 1130 /// 1131 /// 0: Operand is not tied to anything. 1132 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1133 /// TiedMax: Tied to an operand >= TiedMax-1. 1134 /// 1135 /// The tied def must be one of the first TiedMax operands on a normal 1136 /// instruction. INLINEASM instructions allow more tied defs. 1137 /// 1138 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1139 MachineOperand &DefMO = getOperand(DefIdx); 1140 MachineOperand &UseMO = getOperand(UseIdx); 1141 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1142 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1143 assert(!DefMO.isTied() && "Def is already tied to another use"); 1144 assert(!UseMO.isTied() && "Use is already tied to another def"); 1145 1146 if (DefIdx < TiedMax) 1147 UseMO.TiedTo = DefIdx + 1; 1148 else { 1149 // Inline asm can use the group descriptors to find tied operands, 1150 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1151 // but on normal instruction, the tied def must be within the first TiedMax 1152 // operands. 1153 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1154 "DefIdx out of range"); 1155 UseMO.TiedTo = TiedMax; 1156 } 1157 1158 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1159 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1160 } 1161 1162 /// Given the index of a tied register operand, find the operand it is tied to. 1163 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1164 /// which must exist. 1165 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1166 const MachineOperand &MO = getOperand(OpIdx); 1167 assert(MO.isTied() && "Operand isn't tied"); 1168 1169 // Normally TiedTo is in range. 1170 if (MO.TiedTo < TiedMax) 1171 return MO.TiedTo - 1; 1172 1173 // Uses on normal instructions can be out of range. 1174 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1175 // Normal tied defs must be in the 0..TiedMax-1 range. 1176 if (MO.isUse()) 1177 return TiedMax - 1; 1178 // MO is a def. Search for the tied use. 1179 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1180 const MachineOperand &UseMO = getOperand(i); 1181 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1182 return i; 1183 } 1184 llvm_unreachable("Can't find tied use"); 1185 } 1186 1187 if (getOpcode() == TargetOpcode::STATEPOINT) { 1188 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1189 // on registers. 1190 StatepointOpers SO(this); 1191 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1192 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1193 unsigned NumDefs = getNumDefs(); 1194 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1195 while (!getOperand(CurUseIdx).isReg()) 1196 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1197 if (OpIdx == CurDefIdx) 1198 return CurUseIdx; 1199 if (OpIdx == CurUseIdx) 1200 return CurDefIdx; 1201 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1202 } 1203 llvm_unreachable("Can't find tied use"); 1204 } 1205 1206 // Now deal with inline asm by parsing the operand group descriptor flags. 1207 // Find the beginning of each operand group. 1208 SmallVector<unsigned, 8> GroupIdx; 1209 unsigned OpIdxGroup = ~0u; 1210 unsigned NumOps; 1211 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1212 i += NumOps) { 1213 const MachineOperand &FlagMO = getOperand(i); 1214 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1215 unsigned CurGroup = GroupIdx.size(); 1216 GroupIdx.push_back(i); 1217 const InlineAsm::Flag F(FlagMO.getImm()); 1218 NumOps = 1 + F.getNumOperandRegisters(); 1219 // OpIdx belongs to this operand group. 1220 if (OpIdx > i && OpIdx < i + NumOps) 1221 OpIdxGroup = CurGroup; 1222 unsigned TiedGroup; 1223 if (!F.isUseOperandTiedToDef(TiedGroup)) 1224 continue; 1225 // Operands in this group are tied to operands in TiedGroup which must be 1226 // earlier. Find the number of operands between the two groups. 1227 unsigned Delta = i - GroupIdx[TiedGroup]; 1228 1229 // OpIdx is a use tied to TiedGroup. 1230 if (OpIdxGroup == CurGroup) 1231 return OpIdx - Delta; 1232 1233 // OpIdx is a def tied to this use group. 1234 if (OpIdxGroup == TiedGroup) 1235 return OpIdx + Delta; 1236 } 1237 llvm_unreachable("Invalid tied operand on inline asm"); 1238 } 1239 1240 /// clearKillInfo - Clears kill flags on all operands. 1241 /// 1242 void MachineInstr::clearKillInfo() { 1243 for (MachineOperand &MO : operands()) { 1244 if (MO.isReg() && MO.isUse()) 1245 MO.setIsKill(false); 1246 } 1247 } 1248 1249 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1250 unsigned SubIdx, 1251 const TargetRegisterInfo &RegInfo) { 1252 if (ToReg.isPhysical()) { 1253 if (SubIdx) 1254 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1255 for (MachineOperand &MO : operands()) { 1256 if (!MO.isReg() || MO.getReg() != FromReg) 1257 continue; 1258 MO.substPhysReg(ToReg, RegInfo); 1259 } 1260 } else { 1261 for (MachineOperand &MO : operands()) { 1262 if (!MO.isReg() || MO.getReg() != FromReg) 1263 continue; 1264 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1265 } 1266 } 1267 } 1268 1269 /// isSafeToMove - Return true if it is safe to move this instruction. If 1270 /// SawStore is set to true, it means that there is a store (or call) between 1271 /// the instruction's location and its intended destination. 1272 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1273 // Ignore stuff that we obviously can't move. 1274 // 1275 // Treat volatile loads as stores. This is not strictly necessary for 1276 // volatiles, but it is required for atomic loads. It is not allowed to move 1277 // a load across an atomic load with Ordering > Monotonic. 1278 if (mayStore() || isCall() || isPHI() || 1279 (mayLoad() && hasOrderedMemoryRef())) { 1280 SawStore = true; 1281 return false; 1282 } 1283 1284 if (isPosition() || isDebugInstr() || isTerminator() || 1285 mayRaiseFPException() || hasUnmodeledSideEffects() || 1286 isJumpTableDebugInfo()) 1287 return false; 1288 1289 // See if this instruction does a load. If so, we have to guarantee that the 1290 // loaded value doesn't change between the load and the its intended 1291 // destination. The check for isInvariantLoad gives the target the chance to 1292 // classify the load as always returning a constant, e.g. a constant pool 1293 // load. 1294 if (mayLoad() && !isDereferenceableInvariantLoad()) 1295 // Otherwise, this is a real load. If there is a store between the load and 1296 // end of block, we can't move it. 1297 return !SawStore; 1298 1299 return true; 1300 } 1301 1302 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1303 bool UseTBAA, const MachineMemOperand *MMOa, 1304 const MachineMemOperand *MMOb) { 1305 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1306 // operates with MachineMemOperand offset with some important assumptions: 1307 // - LLVM fundamentally assumes flat address spaces. 1308 // - MachineOperand offset can *only* result from legalization and cannot 1309 // affect queries other than the trivial case of overlap checking. 1310 // - These offsets never wrap and never step outside of allocated objects. 1311 // - There should never be any negative offsets here. 1312 // 1313 // FIXME: Modify API to hide this math from "user" 1314 // Even before we go to AA we can reason locally about some memory objects. It 1315 // can save compile time, and possibly catch some corner cases not currently 1316 // covered. 1317 1318 int64_t OffsetA = MMOa->getOffset(); 1319 int64_t OffsetB = MMOb->getOffset(); 1320 int64_t MinOffset = std::min(OffsetA, OffsetB); 1321 1322 LocationSize WidthA = MMOa->getSize(); 1323 LocationSize WidthB = MMOb->getSize(); 1324 bool KnownWidthA = WidthA.hasValue(); 1325 bool KnownWidthB = WidthB.hasValue(); 1326 bool BothMMONonScalable = !WidthA.isScalable() && !WidthB.isScalable(); 1327 1328 const Value *ValA = MMOa->getValue(); 1329 const Value *ValB = MMOb->getValue(); 1330 bool SameVal = (ValA && ValB && (ValA == ValB)); 1331 if (!SameVal) { 1332 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1333 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1334 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1335 return false; 1336 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1337 return false; 1338 if (PSVa && PSVb && (PSVa == PSVb)) 1339 SameVal = true; 1340 } 1341 1342 if (SameVal && BothMMONonScalable) { 1343 if (!KnownWidthA || !KnownWidthB) 1344 return true; 1345 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1346 int64_t LowWidth = (MinOffset == OffsetA) 1347 ? WidthA.getValue().getKnownMinValue() 1348 : WidthB.getValue().getKnownMinValue(); 1349 return (MinOffset + LowWidth > MaxOffset); 1350 } 1351 1352 if (!AA) 1353 return true; 1354 1355 if (!ValA || !ValB) 1356 return true; 1357 1358 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1359 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1360 1361 // If Scalable Location Size has non-zero offset, Width + Offset does not work 1362 // at the moment 1363 if ((WidthA.isScalable() && OffsetA > 0) || 1364 (WidthB.isScalable() && OffsetB > 0)) 1365 return true; 1366 1367 int64_t OverlapA = 1368 KnownWidthA ? WidthA.getValue().getKnownMinValue() + OffsetA - MinOffset 1369 : MemoryLocation::UnknownSize; 1370 int64_t OverlapB = 1371 KnownWidthB ? WidthB.getValue().getKnownMinValue() + OffsetB - MinOffset 1372 : MemoryLocation::UnknownSize; 1373 1374 LocationSize LocA = (WidthA.isScalable() || !KnownWidthA) 1375 ? WidthA 1376 : LocationSize::precise(OverlapA); 1377 LocationSize LocB = (WidthB.isScalable() || !KnownWidthB) 1378 ? WidthB 1379 : LocationSize::precise(OverlapB); 1380 1381 return !AA->isNoAlias( 1382 MemoryLocation(ValA, LocA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1383 MemoryLocation(ValB, LocB, UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1384 } 1385 1386 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1387 bool UseTBAA) const { 1388 const MachineFunction *MF = getMF(); 1389 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1390 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1391 1392 // Exclude call instruction which may alter the memory but can not be handled 1393 // by this function. 1394 if (isCall() || Other.isCall()) 1395 return true; 1396 1397 // If neither instruction stores to memory, they can't alias in any 1398 // meaningful way, even if they read from the same address. 1399 if (!mayStore() && !Other.mayStore()) 1400 return false; 1401 1402 // Both instructions must be memory operations to be able to alias. 1403 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1404 return false; 1405 1406 // Let the target decide if memory accesses cannot possibly overlap. 1407 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1408 return false; 1409 1410 // Memory operations without memory operands may access anything. Be 1411 // conservative and assume `MayAlias`. 1412 if (memoperands_empty() || Other.memoperands_empty()) 1413 return true; 1414 1415 // Skip if there are too many memory operands. 1416 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1417 if (NumChecks > TII->getMemOperandAACheckLimit()) 1418 return true; 1419 1420 // Check each pair of memory operands from both instructions, which can't 1421 // alias only if all pairs won't alias. 1422 for (auto *MMOa : memoperands()) 1423 for (auto *MMOb : Other.memoperands()) 1424 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1425 return true; 1426 1427 return false; 1428 } 1429 1430 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1431 /// or volatile memory reference, or if the information describing the memory 1432 /// reference is not available. Return false if it is known to have no ordered 1433 /// memory references. 1434 bool MachineInstr::hasOrderedMemoryRef() const { 1435 // An instruction known never to access memory won't have a volatile access. 1436 if (!mayStore() && 1437 !mayLoad() && 1438 !isCall() && 1439 !hasUnmodeledSideEffects()) 1440 return false; 1441 1442 // Otherwise, if the instruction has no memory reference information, 1443 // conservatively assume it wasn't preserved. 1444 if (memoperands_empty()) 1445 return true; 1446 1447 // Check if any of our memory operands are ordered. 1448 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1449 return !MMO->isUnordered(); 1450 }); 1451 } 1452 1453 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1454 /// trap and is loading from a location whose value is invariant across a run of 1455 /// this function. 1456 bool MachineInstr::isDereferenceableInvariantLoad() const { 1457 // If the instruction doesn't load at all, it isn't an invariant load. 1458 if (!mayLoad()) 1459 return false; 1460 1461 // If the instruction has lost its memoperands, conservatively assume that 1462 // it may not be an invariant load. 1463 if (memoperands_empty()) 1464 return false; 1465 1466 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1467 1468 for (MachineMemOperand *MMO : memoperands()) { 1469 if (!MMO->isUnordered()) 1470 // If the memory operand has ordering side effects, we can't move the 1471 // instruction. Such an instruction is technically an invariant load, 1472 // but the caller code would need updated to expect that. 1473 return false; 1474 if (MMO->isStore()) return false; 1475 if (MMO->isInvariant() && MMO->isDereferenceable()) 1476 continue; 1477 1478 // A load from a constant PseudoSourceValue is invariant. 1479 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 1480 if (PSV->isConstant(&MFI)) 1481 continue; 1482 } 1483 1484 // Otherwise assume conservatively. 1485 return false; 1486 } 1487 1488 // Everything checks out. 1489 return true; 1490 } 1491 1492 /// isConstantValuePHI - If the specified instruction is a PHI that always 1493 /// merges together the same virtual register, return the register, otherwise 1494 /// return 0. 1495 unsigned MachineInstr::isConstantValuePHI() const { 1496 if (!isPHI()) 1497 return 0; 1498 assert(getNumOperands() >= 3 && 1499 "It's illegal to have a PHI without source operands"); 1500 1501 Register Reg = getOperand(1).getReg(); 1502 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1503 if (getOperand(i).getReg() != Reg) 1504 return 0; 1505 return Reg; 1506 } 1507 1508 bool MachineInstr::hasUnmodeledSideEffects() const { 1509 if (hasProperty(MCID::UnmodeledSideEffects)) 1510 return true; 1511 if (isInlineAsm()) { 1512 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1513 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1514 return true; 1515 } 1516 1517 return false; 1518 } 1519 1520 bool MachineInstr::isLoadFoldBarrier() const { 1521 return mayStore() || isCall() || 1522 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1523 } 1524 1525 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1526 /// 1527 bool MachineInstr::allDefsAreDead() const { 1528 for (const MachineOperand &MO : operands()) { 1529 if (!MO.isReg() || MO.isUse()) 1530 continue; 1531 if (!MO.isDead()) 1532 return false; 1533 } 1534 return true; 1535 } 1536 1537 bool MachineInstr::allImplicitDefsAreDead() const { 1538 for (const MachineOperand &MO : implicit_operands()) { 1539 if (!MO.isReg() || MO.isUse()) 1540 continue; 1541 if (!MO.isDead()) 1542 return false; 1543 } 1544 return true; 1545 } 1546 1547 /// copyImplicitOps - Copy implicit register operands from specified 1548 /// instruction to this instruction. 1549 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1550 const MachineInstr &MI) { 1551 for (const MachineOperand &MO : 1552 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) 1553 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1554 addOperand(MF, MO); 1555 } 1556 1557 bool MachineInstr::hasComplexRegisterTies() const { 1558 const MCInstrDesc &MCID = getDesc(); 1559 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1560 return true; 1561 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1562 const auto &Operand = getOperand(I); 1563 if (!Operand.isReg() || Operand.isDef()) 1564 // Ignore the defined registers as MCID marks only the uses as tied. 1565 continue; 1566 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1567 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1568 if (ExpectedTiedIdx != TiedIdx) 1569 return true; 1570 } 1571 return false; 1572 } 1573 1574 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1575 const MachineRegisterInfo &MRI) const { 1576 const MachineOperand &Op = getOperand(OpIdx); 1577 if (!Op.isReg()) 1578 return LLT{}; 1579 1580 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1581 return MRI.getType(Op.getReg()); 1582 1583 auto &OpInfo = getDesc().operands()[OpIdx]; 1584 if (!OpInfo.isGenericType()) 1585 return MRI.getType(Op.getReg()); 1586 1587 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1588 return LLT{}; 1589 1590 LLT TypeToPrint = MRI.getType(Op.getReg()); 1591 // Don't mark the type index printed if it wasn't actually printed: maybe 1592 // another operand with the same type index has an actual type attached: 1593 if (TypeToPrint.isValid()) 1594 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1595 return TypeToPrint; 1596 } 1597 1598 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1599 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1600 dbgs() << " "; 1601 print(dbgs()); 1602 } 1603 1604 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1605 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1606 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1607 if (Depth >= MaxDepth) 1608 return; 1609 if (!AlreadySeenInstrs.insert(this).second) 1610 return; 1611 // PadToColumn always inserts at least one space. 1612 // Don't mess up the alignment if we don't want any space. 1613 if (Depth) 1614 fdbgs().PadToColumn(Depth * 2); 1615 print(fdbgs()); 1616 for (const MachineOperand &MO : operands()) { 1617 if (!MO.isReg() || MO.isDef()) 1618 continue; 1619 Register Reg = MO.getReg(); 1620 if (Reg.isPhysical()) 1621 continue; 1622 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1623 if (NewMI == nullptr) 1624 continue; 1625 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1626 } 1627 } 1628 1629 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1630 unsigned MaxDepth) const { 1631 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1632 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1633 } 1634 #endif 1635 1636 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1637 bool SkipDebugLoc, bool AddNewLine, 1638 const TargetInstrInfo *TII) const { 1639 const Module *M = nullptr; 1640 const Function *F = nullptr; 1641 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1642 F = &MF->getFunction(); 1643 M = F->getParent(); 1644 if (!TII) 1645 TII = MF->getSubtarget().getInstrInfo(); 1646 } 1647 1648 ModuleSlotTracker MST(M); 1649 if (F) 1650 MST.incorporateFunction(*F); 1651 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1652 } 1653 1654 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1655 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1656 bool AddNewLine, const TargetInstrInfo *TII) const { 1657 // We can be a bit tidier if we know the MachineFunction. 1658 const TargetRegisterInfo *TRI = nullptr; 1659 const MachineRegisterInfo *MRI = nullptr; 1660 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1661 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1662 1663 if (isCFIInstruction()) 1664 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1665 1666 SmallBitVector PrintedTypes(8); 1667 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1668 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1669 if (!ShouldPrintRegisterTies) 1670 return 0U; 1671 const MachineOperand &MO = getOperand(OpIdx); 1672 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1673 return findTiedOperandIdx(OpIdx); 1674 return 0U; 1675 }; 1676 unsigned StartOp = 0; 1677 unsigned e = getNumOperands(); 1678 1679 // Print explicitly defined operands on the left of an assignment syntax. 1680 while (StartOp < e) { 1681 const MachineOperand &MO = getOperand(StartOp); 1682 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1683 break; 1684 1685 if (StartOp != 0) 1686 OS << ", "; 1687 1688 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1689 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1690 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1691 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1692 ++StartOp; 1693 } 1694 1695 if (StartOp != 0) 1696 OS << " = "; 1697 1698 if (getFlag(MachineInstr::FrameSetup)) 1699 OS << "frame-setup "; 1700 if (getFlag(MachineInstr::FrameDestroy)) 1701 OS << "frame-destroy "; 1702 if (getFlag(MachineInstr::FmNoNans)) 1703 OS << "nnan "; 1704 if (getFlag(MachineInstr::FmNoInfs)) 1705 OS << "ninf "; 1706 if (getFlag(MachineInstr::FmNsz)) 1707 OS << "nsz "; 1708 if (getFlag(MachineInstr::FmArcp)) 1709 OS << "arcp "; 1710 if (getFlag(MachineInstr::FmContract)) 1711 OS << "contract "; 1712 if (getFlag(MachineInstr::FmAfn)) 1713 OS << "afn "; 1714 if (getFlag(MachineInstr::FmReassoc)) 1715 OS << "reassoc "; 1716 if (getFlag(MachineInstr::NoUWrap)) 1717 OS << "nuw "; 1718 if (getFlag(MachineInstr::NoSWrap)) 1719 OS << "nsw "; 1720 if (getFlag(MachineInstr::IsExact)) 1721 OS << "exact "; 1722 if (getFlag(MachineInstr::NoFPExcept)) 1723 OS << "nofpexcept "; 1724 if (getFlag(MachineInstr::NoMerge)) 1725 OS << "nomerge "; 1726 if (getFlag(MachineInstr::NonNeg)) 1727 OS << "nneg "; 1728 if (getFlag(MachineInstr::Disjoint)) 1729 OS << "disjoint "; 1730 1731 // Print the opcode name. 1732 if (TII) 1733 OS << TII->getName(getOpcode()); 1734 else 1735 OS << "UNKNOWN"; 1736 1737 if (SkipOpers) 1738 return; 1739 1740 // Print the rest of the operands. 1741 bool FirstOp = true; 1742 unsigned AsmDescOp = ~0u; 1743 unsigned AsmOpCount = 0; 1744 1745 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1746 // Print asm string. 1747 OS << " "; 1748 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1749 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1750 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1751 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1752 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1753 IntrinsicInfo); 1754 1755 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1756 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1757 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1758 OS << " [sideeffect]"; 1759 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1760 OS << " [mayload]"; 1761 if (ExtraInfo & InlineAsm::Extra_MayStore) 1762 OS << " [maystore]"; 1763 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1764 OS << " [isconvergent]"; 1765 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1766 OS << " [alignstack]"; 1767 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1768 OS << " [attdialect]"; 1769 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1770 OS << " [inteldialect]"; 1771 1772 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1773 FirstOp = false; 1774 } 1775 1776 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1777 const MachineOperand &MO = getOperand(i); 1778 1779 if (FirstOp) FirstOp = false; else OS << ","; 1780 OS << " "; 1781 1782 if (isDebugValueLike() && MO.isMetadata()) { 1783 // Pretty print DBG_VALUE* instructions. 1784 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1785 if (DIV && !DIV->getName().empty()) 1786 OS << "!\"" << DIV->getName() << '\"'; 1787 else { 1788 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1789 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1790 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1791 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1792 } 1793 } else if (isDebugLabel() && MO.isMetadata()) { 1794 // Pretty print DBG_LABEL instructions. 1795 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1796 if (DIL && !DIL->getName().empty()) 1797 OS << "\"" << DIL->getName() << '\"'; 1798 else { 1799 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1800 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1801 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1802 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1803 } 1804 } else if (i == AsmDescOp && MO.isImm()) { 1805 // Pretty print the inline asm operand descriptor. 1806 OS << '$' << AsmOpCount++; 1807 unsigned Flag = MO.getImm(); 1808 const InlineAsm::Flag F(Flag); 1809 OS << ":["; 1810 OS << F.getKindName(); 1811 1812 unsigned RCID; 1813 if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) { 1814 if (TRI) { 1815 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1816 } else 1817 OS << ":RC" << RCID; 1818 } 1819 1820 if (F.isMemKind()) { 1821 const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID(); 1822 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1823 } 1824 1825 unsigned TiedTo; 1826 if (F.isUseOperandTiedToDef(TiedTo)) 1827 OS << " tiedto:$" << TiedTo; 1828 1829 if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || 1830 F.isRegUseKind()) && 1831 F.getRegMayBeFolded()) { 1832 OS << " foldable"; 1833 } 1834 1835 OS << ']'; 1836 1837 // Compute the index of the next operand descriptor. 1838 AsmDescOp += 1 + F.getNumOperandRegisters(); 1839 } else { 1840 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1841 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1842 if (MO.isImm() && isOperandSubregIdx(i)) 1843 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1844 else 1845 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1846 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1847 } 1848 } 1849 1850 // Print any optional symbols attached to this instruction as-if they were 1851 // operands. 1852 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1853 if (!FirstOp) { 1854 FirstOp = false; 1855 OS << ','; 1856 } 1857 OS << " pre-instr-symbol "; 1858 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1859 } 1860 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1861 if (!FirstOp) { 1862 FirstOp = false; 1863 OS << ','; 1864 } 1865 OS << " post-instr-symbol "; 1866 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1867 } 1868 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1869 if (!FirstOp) { 1870 FirstOp = false; 1871 OS << ','; 1872 } 1873 OS << " heap-alloc-marker "; 1874 HeapAllocMarker->printAsOperand(OS, MST); 1875 } 1876 if (MDNode *PCSections = getPCSections()) { 1877 if (!FirstOp) { 1878 FirstOp = false; 1879 OS << ','; 1880 } 1881 OS << " pcsections "; 1882 PCSections->printAsOperand(OS, MST); 1883 } 1884 if (uint32_t CFIType = getCFIType()) { 1885 if (!FirstOp) 1886 OS << ','; 1887 OS << " cfi-type " << CFIType; 1888 } 1889 1890 if (DebugInstrNum) { 1891 if (!FirstOp) 1892 OS << ","; 1893 OS << " debug-instr-number " << DebugInstrNum; 1894 } 1895 1896 if (!SkipDebugLoc) { 1897 if (const DebugLoc &DL = getDebugLoc()) { 1898 if (!FirstOp) 1899 OS << ','; 1900 OS << " debug-location "; 1901 DL->printAsOperand(OS, MST); 1902 } 1903 } 1904 1905 if (!memoperands_empty()) { 1906 SmallVector<StringRef, 0> SSNs; 1907 const LLVMContext *Context = nullptr; 1908 std::unique_ptr<LLVMContext> CtxPtr; 1909 const MachineFrameInfo *MFI = nullptr; 1910 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1911 MFI = &MF->getFrameInfo(); 1912 Context = &MF->getFunction().getContext(); 1913 } else { 1914 CtxPtr = std::make_unique<LLVMContext>(); 1915 Context = CtxPtr.get(); 1916 } 1917 1918 OS << " :: "; 1919 bool NeedComma = false; 1920 for (const MachineMemOperand *Op : memoperands()) { 1921 if (NeedComma) 1922 OS << ", "; 1923 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1924 NeedComma = true; 1925 } 1926 } 1927 1928 if (SkipDebugLoc) 1929 return; 1930 1931 bool HaveSemi = false; 1932 1933 // Print debug location information. 1934 if (const DebugLoc &DL = getDebugLoc()) { 1935 if (!HaveSemi) { 1936 OS << ';'; 1937 HaveSemi = true; 1938 } 1939 OS << ' '; 1940 DL.print(OS); 1941 } 1942 1943 // Print extra comments for DEBUG_VALUE and friends if they are well-formed. 1944 if ((isNonListDebugValue() && getNumOperands() >= 4) || 1945 (isDebugValueList() && getNumOperands() >= 2) || 1946 (isDebugRef() && getNumOperands() >= 3)) { 1947 if (getDebugVariableOp().isMetadata()) { 1948 if (!HaveSemi) { 1949 OS << ";"; 1950 HaveSemi = true; 1951 } 1952 auto *DV = getDebugVariable(); 1953 OS << " line no:" << DV->getLine(); 1954 if (isIndirectDebugValue()) 1955 OS << " indirect"; 1956 } 1957 } 1958 // TODO: DBG_LABEL 1959 1960 if (AddNewLine) 1961 OS << '\n'; 1962 } 1963 1964 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1965 const TargetRegisterInfo *RegInfo, 1966 bool AddIfNotFound) { 1967 bool isPhysReg = IncomingReg.isPhysical(); 1968 bool hasAliases = isPhysReg && 1969 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1970 bool Found = false; 1971 SmallVector<unsigned,4> DeadOps; 1972 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1973 MachineOperand &MO = getOperand(i); 1974 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1975 continue; 1976 1977 // DEBUG_VALUE nodes do not contribute to code generation and should 1978 // always be ignored. Failure to do so may result in trying to modify 1979 // KILL flags on DEBUG_VALUE nodes. 1980 if (MO.isDebug()) 1981 continue; 1982 1983 Register Reg = MO.getReg(); 1984 if (!Reg) 1985 continue; 1986 1987 if (Reg == IncomingReg) { 1988 if (!Found) { 1989 if (MO.isKill()) 1990 // The register is already marked kill. 1991 return true; 1992 if (isPhysReg && isRegTiedToDefOperand(i)) 1993 // Two-address uses of physregs must not be marked kill. 1994 return true; 1995 MO.setIsKill(); 1996 Found = true; 1997 } 1998 } else if (hasAliases && MO.isKill() && Reg.isPhysical()) { 1999 // A super-register kill already exists. 2000 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2001 return true; 2002 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2003 DeadOps.push_back(i); 2004 } 2005 } 2006 2007 // Trim unneeded kill operands. 2008 while (!DeadOps.empty()) { 2009 unsigned OpIdx = DeadOps.back(); 2010 if (getOperand(OpIdx).isImplicit() && 2011 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2012 removeOperand(OpIdx); 2013 else 2014 getOperand(OpIdx).setIsKill(false); 2015 DeadOps.pop_back(); 2016 } 2017 2018 // If not found, this means an alias of one of the operands is killed. Add a 2019 // new implicit operand if required. 2020 if (!Found && AddIfNotFound) { 2021 addOperand(MachineOperand::CreateReg(IncomingReg, 2022 false /*IsDef*/, 2023 true /*IsImp*/, 2024 true /*IsKill*/)); 2025 return true; 2026 } 2027 return Found; 2028 } 2029 2030 void MachineInstr::clearRegisterKills(Register Reg, 2031 const TargetRegisterInfo *RegInfo) { 2032 if (!Reg.isPhysical()) 2033 RegInfo = nullptr; 2034 for (MachineOperand &MO : operands()) { 2035 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2036 continue; 2037 Register OpReg = MO.getReg(); 2038 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2039 MO.setIsKill(false); 2040 } 2041 } 2042 2043 bool MachineInstr::addRegisterDead(Register Reg, 2044 const TargetRegisterInfo *RegInfo, 2045 bool AddIfNotFound) { 2046 bool isPhysReg = Reg.isPhysical(); 2047 bool hasAliases = isPhysReg && 2048 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2049 bool Found = false; 2050 SmallVector<unsigned,4> DeadOps; 2051 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2052 MachineOperand &MO = getOperand(i); 2053 if (!MO.isReg() || !MO.isDef()) 2054 continue; 2055 Register MOReg = MO.getReg(); 2056 if (!MOReg) 2057 continue; 2058 2059 if (MOReg == Reg) { 2060 MO.setIsDead(); 2061 Found = true; 2062 } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) { 2063 // There exists a super-register that's marked dead. 2064 if (RegInfo->isSuperRegister(Reg, MOReg)) 2065 return true; 2066 if (RegInfo->isSubRegister(Reg, MOReg)) 2067 DeadOps.push_back(i); 2068 } 2069 } 2070 2071 // Trim unneeded dead operands. 2072 while (!DeadOps.empty()) { 2073 unsigned OpIdx = DeadOps.back(); 2074 if (getOperand(OpIdx).isImplicit() && 2075 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2076 removeOperand(OpIdx); 2077 else 2078 getOperand(OpIdx).setIsDead(false); 2079 DeadOps.pop_back(); 2080 } 2081 2082 // If not found, this means an alias of one of the operands is dead. Add a 2083 // new implicit operand if required. 2084 if (Found || !AddIfNotFound) 2085 return Found; 2086 2087 addOperand(MachineOperand::CreateReg(Reg, 2088 true /*IsDef*/, 2089 true /*IsImp*/, 2090 false /*IsKill*/, 2091 true /*IsDead*/)); 2092 return true; 2093 } 2094 2095 void MachineInstr::clearRegisterDeads(Register Reg) { 2096 for (MachineOperand &MO : operands()) { 2097 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2098 continue; 2099 MO.setIsDead(false); 2100 } 2101 } 2102 2103 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2104 for (MachineOperand &MO : operands()) { 2105 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2106 continue; 2107 MO.setIsUndef(IsUndef); 2108 } 2109 } 2110 2111 void MachineInstr::addRegisterDefined(Register Reg, 2112 const TargetRegisterInfo *RegInfo) { 2113 if (Reg.isPhysical()) { 2114 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 2115 if (MO) 2116 return; 2117 } else { 2118 for (const MachineOperand &MO : operands()) { 2119 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2120 MO.getSubReg() == 0) 2121 return; 2122 } 2123 } 2124 addOperand(MachineOperand::CreateReg(Reg, 2125 true /*IsDef*/, 2126 true /*IsImp*/)); 2127 } 2128 2129 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2130 const TargetRegisterInfo &TRI) { 2131 bool HasRegMask = false; 2132 for (MachineOperand &MO : operands()) { 2133 if (MO.isRegMask()) { 2134 HasRegMask = true; 2135 continue; 2136 } 2137 if (!MO.isReg() || !MO.isDef()) continue; 2138 Register Reg = MO.getReg(); 2139 if (!Reg.isPhysical()) 2140 continue; 2141 // If there are no uses, including partial uses, the def is dead. 2142 if (llvm::none_of(UsedRegs, 2143 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2144 MO.setIsDead(); 2145 } 2146 2147 // This is a call with a register mask operand. 2148 // Mask clobbers are always dead, so add defs for the non-dead defines. 2149 if (HasRegMask) 2150 for (const Register &UsedReg : UsedRegs) 2151 addRegisterDefined(UsedReg, &TRI); 2152 } 2153 2154 unsigned 2155 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2156 // Build up a buffer of hash code components. 2157 SmallVector<size_t, 16> HashComponents; 2158 HashComponents.reserve(MI->getNumOperands() + 1); 2159 HashComponents.push_back(MI->getOpcode()); 2160 for (const MachineOperand &MO : MI->operands()) { 2161 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual()) 2162 continue; // Skip virtual register defs. 2163 2164 HashComponents.push_back(hash_value(MO)); 2165 } 2166 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2167 } 2168 2169 void MachineInstr::emitError(StringRef Msg) const { 2170 // Find the source location cookie. 2171 uint64_t LocCookie = 0; 2172 const MDNode *LocMD = nullptr; 2173 for (unsigned i = getNumOperands(); i != 0; --i) { 2174 if (getOperand(i-1).isMetadata() && 2175 (LocMD = getOperand(i-1).getMetadata()) && 2176 LocMD->getNumOperands() != 0) { 2177 if (const ConstantInt *CI = 2178 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2179 LocCookie = CI->getZExtValue(); 2180 break; 2181 } 2182 } 2183 } 2184 2185 if (const MachineBasicBlock *MBB = getParent()) 2186 if (const MachineFunction *MF = MBB->getParent()) 2187 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2188 report_fatal_error(Msg); 2189 } 2190 2191 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2192 const MCInstrDesc &MCID, bool IsIndirect, 2193 Register Reg, const MDNode *Variable, 2194 const MDNode *Expr) { 2195 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2196 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2197 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2198 "Expected inlined-at fields to agree"); 2199 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); 2200 if (IsIndirect) 2201 MIB.addImm(0U); 2202 else 2203 MIB.addReg(0U); 2204 return MIB.addMetadata(Variable).addMetadata(Expr); 2205 } 2206 2207 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2208 const MCInstrDesc &MCID, bool IsIndirect, 2209 ArrayRef<MachineOperand> DebugOps, 2210 const MDNode *Variable, const MDNode *Expr) { 2211 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2212 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2213 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2214 "Expected inlined-at fields to agree"); 2215 if (MCID.Opcode == TargetOpcode::DBG_VALUE) { 2216 assert(DebugOps.size() == 1 && 2217 "DBG_VALUE must contain exactly one debug operand"); 2218 MachineOperand DebugOp = DebugOps[0]; 2219 if (DebugOp.isReg()) 2220 return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable, 2221 Expr); 2222 2223 auto MIB = BuildMI(MF, DL, MCID).add(DebugOp); 2224 if (IsIndirect) 2225 MIB.addImm(0U); 2226 else 2227 MIB.addReg(0U); 2228 return MIB.addMetadata(Variable).addMetadata(Expr); 2229 } 2230 2231 auto MIB = BuildMI(MF, DL, MCID); 2232 MIB.addMetadata(Variable).addMetadata(Expr); 2233 for (const MachineOperand &DebugOp : DebugOps) 2234 if (DebugOp.isReg()) 2235 MIB.addReg(DebugOp.getReg()); 2236 else 2237 MIB.add(DebugOp); 2238 return MIB; 2239 } 2240 2241 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2242 MachineBasicBlock::iterator I, 2243 const DebugLoc &DL, const MCInstrDesc &MCID, 2244 bool IsIndirect, Register Reg, 2245 const MDNode *Variable, const MDNode *Expr) { 2246 MachineFunction &MF = *BB.getParent(); 2247 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2248 BB.insert(I, MI); 2249 return MachineInstrBuilder(MF, MI); 2250 } 2251 2252 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2253 MachineBasicBlock::iterator I, 2254 const DebugLoc &DL, const MCInstrDesc &MCID, 2255 bool IsIndirect, 2256 ArrayRef<MachineOperand> DebugOps, 2257 const MDNode *Variable, const MDNode *Expr) { 2258 MachineFunction &MF = *BB.getParent(); 2259 MachineInstr *MI = 2260 BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr); 2261 BB.insert(I, MI); 2262 return MachineInstrBuilder(MF, *MI); 2263 } 2264 2265 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2266 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2267 static const DIExpression * 2268 computeExprForSpill(const MachineInstr &MI, 2269 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2270 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2271 "Expected inlined-at fields to agree"); 2272 2273 const DIExpression *Expr = MI.getDebugExpression(); 2274 if (MI.isIndirectDebugValue()) { 2275 assert(MI.getDebugOffset().getImm() == 0 && 2276 "DBG_VALUE with nonzero offset"); 2277 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2278 } else if (MI.isDebugValueList()) { 2279 // We will replace the spilled register with a frame index, so 2280 // immediately deref all references to the spilled register. 2281 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; 2282 for (const MachineOperand *Op : SpilledOperands) { 2283 unsigned OpIdx = MI.getDebugOperandIndex(Op); 2284 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); 2285 } 2286 } 2287 return Expr; 2288 } 2289 static const DIExpression *computeExprForSpill(const MachineInstr &MI, 2290 Register SpillReg) { 2291 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); 2292 SmallVector<const MachineOperand *> SpillOperands; 2293 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) 2294 SpillOperands.push_back(&Op); 2295 return computeExprForSpill(MI, SpillOperands); 2296 } 2297 2298 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2299 MachineBasicBlock::iterator I, 2300 const MachineInstr &Orig, 2301 int FrameIndex, Register SpillReg) { 2302 assert(!Orig.isDebugRef() && 2303 "DBG_INSTR_REF should not reference a virtual register."); 2304 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); 2305 MachineInstrBuilder NewMI = 2306 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2307 // Non-Variadic Operands: Location, Offset, Variable, Expression 2308 // Variadic Operands: Variable, Expression, Locations... 2309 if (Orig.isNonListDebugValue()) 2310 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2311 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2312 if (Orig.isDebugValueList()) { 2313 for (const MachineOperand &Op : Orig.debug_operands()) 2314 if (Op.isReg() && Op.getReg() == SpillReg) 2315 NewMI.addFrameIndex(FrameIndex); 2316 else 2317 NewMI.add(MachineOperand(Op)); 2318 } 2319 return NewMI; 2320 } 2321 MachineInstr *llvm::buildDbgValueForSpill( 2322 MachineBasicBlock &BB, MachineBasicBlock::iterator I, 2323 const MachineInstr &Orig, int FrameIndex, 2324 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2325 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); 2326 MachineInstrBuilder NewMI = 2327 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2328 // Non-Variadic Operands: Location, Offset, Variable, Expression 2329 // Variadic Operands: Variable, Expression, Locations... 2330 if (Orig.isNonListDebugValue()) 2331 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2332 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2333 if (Orig.isDebugValueList()) { 2334 for (const MachineOperand &Op : Orig.debug_operands()) 2335 if (is_contained(SpilledOperands, &Op)) 2336 NewMI.addFrameIndex(FrameIndex); 2337 else 2338 NewMI.add(MachineOperand(Op)); 2339 } 2340 return NewMI; 2341 } 2342 2343 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, 2344 Register Reg) { 2345 const DIExpression *Expr = computeExprForSpill(Orig, Reg); 2346 if (Orig.isNonListDebugValue()) 2347 Orig.getDebugOffset().ChangeToImmediate(0U); 2348 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) 2349 Op.ChangeToFrameIndex(FrameIndex); 2350 Orig.getDebugExpressionOp().setMetadata(Expr); 2351 } 2352 2353 void MachineInstr::collectDebugValues( 2354 SmallVectorImpl<MachineInstr *> &DbgValues) { 2355 MachineInstr &MI = *this; 2356 if (!MI.getOperand(0).isReg()) 2357 return; 2358 2359 MachineBasicBlock::iterator DI = MI; ++DI; 2360 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2361 DI != DE; ++DI) { 2362 if (!DI->isDebugValue()) 2363 return; 2364 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) 2365 DbgValues.push_back(&*DI); 2366 } 2367 } 2368 2369 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2370 // Collect matching debug values. 2371 SmallVector<MachineInstr *, 2> DbgValues; 2372 2373 if (!getOperand(0).isReg()) 2374 return; 2375 2376 Register DefReg = getOperand(0).getReg(); 2377 auto *MRI = getRegInfo(); 2378 for (auto &MO : MRI->use_operands(DefReg)) { 2379 auto *DI = MO.getParent(); 2380 if (!DI->isDebugValue()) 2381 continue; 2382 if (DI->hasDebugOperandForReg(DefReg)) { 2383 DbgValues.push_back(DI); 2384 } 2385 } 2386 2387 // Propagate Reg to debug value instructions. 2388 for (auto *DBI : DbgValues) 2389 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) 2390 Op.setReg(Reg); 2391 } 2392 2393 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2394 2395 static LocationSize getSpillSlotSize(const MMOList &Accesses, 2396 const MachineFrameInfo &MFI) { 2397 uint64_t Size = 0; 2398 for (const auto *A : Accesses) { 2399 if (MFI.isSpillSlotObjectIndex( 2400 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2401 ->getFrameIndex())) { 2402 LocationSize S = A->getSize(); 2403 if (!S.hasValue()) 2404 return LocationSize::beforeOrAfterPointer(); 2405 Size += S.getValue(); 2406 } 2407 } 2408 return Size; 2409 } 2410 2411 std::optional<LocationSize> 2412 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2413 int FI; 2414 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2415 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2416 if (MFI.isSpillSlotObjectIndex(FI)) 2417 return (*memoperands_begin())->getSize(); 2418 } 2419 return std::nullopt; 2420 } 2421 2422 std::optional<LocationSize> 2423 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2424 MMOList Accesses; 2425 if (TII->hasStoreToStackSlot(*this, Accesses)) 2426 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2427 return std::nullopt; 2428 } 2429 2430 std::optional<LocationSize> 2431 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2432 int FI; 2433 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2434 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2435 if (MFI.isSpillSlotObjectIndex(FI)) 2436 return (*memoperands_begin())->getSize(); 2437 } 2438 return std::nullopt; 2439 } 2440 2441 std::optional<LocationSize> 2442 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2443 MMOList Accesses; 2444 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2445 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2446 return std::nullopt; 2447 } 2448 2449 unsigned MachineInstr::getDebugInstrNum() { 2450 if (DebugInstrNum == 0) 2451 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2452 return DebugInstrNum; 2453 } 2454 2455 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { 2456 if (DebugInstrNum == 0) 2457 DebugInstrNum = MF.getNewDebugInstrNum(); 2458 return DebugInstrNum; 2459 } 2460 2461 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const { 2462 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2463 getRegInfo()->getType(getOperand(1).getReg())); 2464 } 2465 2466 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const { 2467 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2468 getRegInfo()->getType(getOperand(1).getReg()), 2469 getRegInfo()->getType(getOperand(2).getReg())); 2470 } 2471 2472 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const { 2473 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2474 getRegInfo()->getType(getOperand(1).getReg()), 2475 getRegInfo()->getType(getOperand(2).getReg()), 2476 getRegInfo()->getType(getOperand(3).getReg())); 2477 } 2478 2479 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const { 2480 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2481 getRegInfo()->getType(getOperand(1).getReg()), 2482 getRegInfo()->getType(getOperand(2).getReg()), 2483 getRegInfo()->getType(getOperand(3).getReg()), 2484 getRegInfo()->getType(getOperand(4).getReg())); 2485 } 2486 2487 std::tuple<Register, LLT, Register, LLT> 2488 MachineInstr::getFirst2RegLLTs() const { 2489 Register Reg0 = getOperand(0).getReg(); 2490 Register Reg1 = getOperand(1).getReg(); 2491 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2492 getRegInfo()->getType(Reg1)); 2493 } 2494 2495 std::tuple<Register, LLT, Register, LLT, Register, LLT> 2496 MachineInstr::getFirst3RegLLTs() const { 2497 Register Reg0 = getOperand(0).getReg(); 2498 Register Reg1 = getOperand(1).getReg(); 2499 Register Reg2 = getOperand(2).getReg(); 2500 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2501 getRegInfo()->getType(Reg1), Reg2, 2502 getRegInfo()->getType(Reg2)); 2503 } 2504 2505 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT> 2506 MachineInstr::getFirst4RegLLTs() const { 2507 Register Reg0 = getOperand(0).getReg(); 2508 Register Reg1 = getOperand(1).getReg(); 2509 Register Reg2 = getOperand(2).getReg(); 2510 Register Reg3 = getOperand(3).getReg(); 2511 return std::tuple( 2512 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2513 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3)); 2514 } 2515 2516 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register, 2517 LLT> 2518 MachineInstr::getFirst5RegLLTs() const { 2519 Register Reg0 = getOperand(0).getReg(); 2520 Register Reg1 = getOperand(1).getReg(); 2521 Register Reg2 = getOperand(2).getReg(); 2522 Register Reg3 = getOperand(3).getReg(); 2523 Register Reg4 = getOperand(4).getReg(); 2524 return std::tuple( 2525 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2526 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3), 2527 Reg4, getRegInfo()->getType(Reg4)); 2528 } 2529 2530 void MachineInstr::insert(mop_iterator InsertBefore, 2531 ArrayRef<MachineOperand> Ops) { 2532 assert(InsertBefore != nullptr && "invalid iterator"); 2533 assert(InsertBefore->getParent() == this && 2534 "iterator points to operand of other inst"); 2535 if (Ops.empty()) 2536 return; 2537 2538 // Do one pass to untie operands. 2539 SmallDenseMap<unsigned, unsigned> TiedOpIndices; 2540 for (const MachineOperand &MO : operands()) { 2541 if (MO.isReg() && MO.isTied()) { 2542 unsigned OpNo = getOperandNo(&MO); 2543 unsigned TiedTo = findTiedOperandIdx(OpNo); 2544 TiedOpIndices[OpNo] = TiedTo; 2545 untieRegOperand(OpNo); 2546 } 2547 } 2548 2549 unsigned OpIdx = getOperandNo(InsertBefore); 2550 unsigned NumOperands = getNumOperands(); 2551 unsigned OpsToMove = NumOperands - OpIdx; 2552 2553 SmallVector<MachineOperand> MovingOps; 2554 MovingOps.reserve(OpsToMove); 2555 2556 for (unsigned I = 0; I < OpsToMove; ++I) { 2557 MovingOps.emplace_back(getOperand(OpIdx)); 2558 removeOperand(OpIdx); 2559 } 2560 for (const MachineOperand &MO : Ops) 2561 addOperand(MO); 2562 for (const MachineOperand &OpMoved : MovingOps) 2563 addOperand(OpMoved); 2564 2565 // Re-tie operands. 2566 for (auto [Tie1, Tie2] : TiedOpIndices) { 2567 if (Tie1 >= OpIdx) 2568 Tie1 += Ops.size(); 2569 if (Tie2 >= OpIdx) 2570 Tie2 += Ops.size(); 2571 tieOperands(Tie1, Tie2); 2572 } 2573 } 2574 2575 bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId) const { 2576 assert(OpId && "expected non-zero operand id"); 2577 assert(isInlineAsm() && "should only be used on inline asm"); 2578 2579 if (!getOperand(OpId).isReg()) 2580 return false; 2581 2582 const MachineOperand &MD = getOperand(OpId - 1); 2583 if (!MD.isImm()) 2584 return false; 2585 2586 InlineAsm::Flag F(MD.getImm()); 2587 if (F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) 2588 return F.getRegMayBeFolded(); 2589 return false; 2590 } 2591