xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 7f230feeeac8a67b335f52bd2e900a05c6098f20)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallBitVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSlotTracker.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/MC/MCInstrDesc.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/FormattedStream.h"
53 #include "llvm/Support/LowLevelTypeImpl.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstdint>
59 #include <cstring>
60 #include <utility>
61 
62 using namespace llvm;
63 
64 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
65   if (const MachineBasicBlock *MBB = MI.getParent())
66     if (const MachineFunction *MF = MBB->getParent())
67       return MF;
68   return nullptr;
69 }
70 
71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
72 // it.
73 static void tryToGetTargetInfo(const MachineInstr &MI,
74                                const TargetRegisterInfo *&TRI,
75                                const MachineRegisterInfo *&MRI,
76                                const TargetIntrinsicInfo *&IntrinsicInfo,
77                                const TargetInstrInfo *&TII) {
78 
79   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
80     TRI = MF->getSubtarget().getRegisterInfo();
81     MRI = &MF->getRegInfo();
82     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
83     TII = MF->getSubtarget().getInstrInfo();
84   }
85 }
86 
87 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
88   if (MCID->ImplicitDefs)
89     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
90            ++ImpDefs)
91       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
92   if (MCID->ImplicitUses)
93     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
94            ++ImpUses)
95       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
96 }
97 
98 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
99 /// implicit operands. It reserves space for the number of operands specified by
100 /// the MCInstrDesc.
101 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
102                            DebugLoc DL, bool NoImp)
103     : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) {
104   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
105 
106   // Reserve space for the expected number of operands.
107   if (unsigned NumOps = MCID->getNumOperands() +
108     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
109     CapOperands = OperandCapacity::get(NumOps);
110     Operands = MF.allocateOperandArray(CapOperands);
111   }
112 
113   if (!NoImp)
114     addImplicitDefUseOperands(MF);
115 }
116 
117 /// MachineInstr ctor - Copies MachineInstr arg exactly.
118 /// Does not copy the number from debug instruction numbering, to preserve
119 /// uniqueness.
120 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
121     : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()),
122       DebugInstrNum(0) {
123   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
124 
125   CapOperands = OperandCapacity::get(MI.getNumOperands());
126   Operands = MF.allocateOperandArray(CapOperands);
127 
128   // Copy operands.
129   for (const MachineOperand &MO : MI.operands())
130     addOperand(MF, MO);
131 
132   // Copy all the sensible flags.
133   setFlags(MI.Flags);
134 }
135 
136 void MachineInstr::moveBefore(MachineInstr *MovePos) {
137   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
138 }
139 
140 /// getRegInfo - If this instruction is embedded into a MachineFunction,
141 /// return the MachineRegisterInfo object for the current function, otherwise
142 /// return null.
143 MachineRegisterInfo *MachineInstr::getRegInfo() {
144   if (MachineBasicBlock *MBB = getParent())
145     return &MBB->getParent()->getRegInfo();
146   return nullptr;
147 }
148 
149 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
150 /// this instruction from their respective use lists.  This requires that the
151 /// operands already be on their use lists.
152 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
153   for (MachineOperand &MO : operands())
154     if (MO.isReg())
155       MRI.removeRegOperandFromUseList(&MO);
156 }
157 
158 /// AddRegOperandsToUseLists - Add all of the register operands in
159 /// this instruction from their respective use lists.  This requires that the
160 /// operands not be on their use lists yet.
161 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
162   for (MachineOperand &MO : operands())
163     if (MO.isReg())
164       MRI.addRegOperandToUseList(&MO);
165 }
166 
167 void MachineInstr::addOperand(const MachineOperand &Op) {
168   MachineBasicBlock *MBB = getParent();
169   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
170   MachineFunction *MF = MBB->getParent();
171   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
172   addOperand(*MF, Op);
173 }
174 
175 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
176 /// ranges. If MRI is non-null also update use-def chains.
177 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
178                          unsigned NumOps, MachineRegisterInfo *MRI) {
179   if (MRI)
180     return MRI->moveOperands(Dst, Src, NumOps);
181   // MachineOperand is a trivially copyable type so we can just use memmove.
182   assert(Dst && Src && "Unknown operands");
183   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
184 }
185 
186 /// addOperand - Add the specified operand to the instruction.  If it is an
187 /// implicit operand, it is added to the end of the operand list.  If it is
188 /// an explicit operand it is added at the end of the explicit operand list
189 /// (before the first implicit operand).
190 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
191   assert(MCID && "Cannot add operands before providing an instr descriptor");
192 
193   // Check if we're adding one of our existing operands.
194   if (&Op >= Operands && &Op < Operands + NumOperands) {
195     // This is unusual: MI->addOperand(MI->getOperand(i)).
196     // If adding Op requires reallocating or moving existing operands around,
197     // the Op reference could go stale. Support it by copying Op.
198     MachineOperand CopyOp(Op);
199     return addOperand(MF, CopyOp);
200   }
201 
202   // Find the insert location for the new operand.  Implicit registers go at
203   // the end, everything else goes before the implicit regs.
204   //
205   // FIXME: Allow mixed explicit and implicit operands on inline asm.
206   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
207   // implicit-defs, but they must not be moved around.  See the FIXME in
208   // InstrEmitter.cpp.
209   unsigned OpNo = getNumOperands();
210   bool isImpReg = Op.isReg() && Op.isImplicit();
211   if (!isImpReg && !isInlineAsm()) {
212     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
213       --OpNo;
214       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
215     }
216   }
217 
218   // OpNo now points as the desired insertion point.  Unless this is a variadic
219   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
220   // RegMask operands go between the explicit and implicit operands.
221   assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() ||
222           Op.isValidExcessOperand()) &&
223          "Trying to add an operand to a machine instr that is already done!");
224 
225   MachineRegisterInfo *MRI = getRegInfo();
226 
227   // Determine if the Operands array needs to be reallocated.
228   // Save the old capacity and operand array.
229   OperandCapacity OldCap = CapOperands;
230   MachineOperand *OldOperands = Operands;
231   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
232     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
233     Operands = MF.allocateOperandArray(CapOperands);
234     // Move the operands before the insertion point.
235     if (OpNo)
236       moveOperands(Operands, OldOperands, OpNo, MRI);
237   }
238 
239   // Move the operands following the insertion point.
240   if (OpNo != NumOperands)
241     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
242                  MRI);
243   ++NumOperands;
244 
245   // Deallocate the old operand array.
246   if (OldOperands != Operands && OldOperands)
247     MF.deallocateOperandArray(OldCap, OldOperands);
248 
249   // Copy Op into place. It still needs to be inserted into the MRI use lists.
250   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
251   NewMO->ParentMI = this;
252 
253   // When adding a register operand, tell MRI about it.
254   if (NewMO->isReg()) {
255     // Ensure isOnRegUseList() returns false, regardless of Op's status.
256     NewMO->Contents.Reg.Prev = nullptr;
257     // Ignore existing ties. This is not a property that can be copied.
258     NewMO->TiedTo = 0;
259     // Add the new operand to MRI, but only for instructions in an MBB.
260     if (MRI)
261       MRI->addRegOperandToUseList(NewMO);
262     // The MCID operand information isn't accurate until we start adding
263     // explicit operands. The implicit operands are added first, then the
264     // explicits are inserted before them.
265     if (!isImpReg) {
266       // Tie uses to defs as indicated in MCInstrDesc.
267       if (NewMO->isUse()) {
268         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
269         if (DefIdx != -1)
270           tieOperands(DefIdx, OpNo);
271       }
272       // If the register operand is flagged as early, mark the operand as such.
273       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
274         NewMO->setIsEarlyClobber(true);
275     }
276     // Ensure debug instructions set debug flag on register uses.
277     if (NewMO->isUse() && isDebugInstr())
278       NewMO->setIsDebug();
279   }
280 }
281 
282 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
283 /// fewer operand than it started with.
284 ///
285 void MachineInstr::RemoveOperand(unsigned OpNo) {
286   assert(OpNo < getNumOperands() && "Invalid operand number");
287   untieRegOperand(OpNo);
288 
289 #ifndef NDEBUG
290   // Moving tied operands would break the ties.
291   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
292     if (Operands[i].isReg())
293       assert(!Operands[i].isTied() && "Cannot move tied operands");
294 #endif
295 
296   MachineRegisterInfo *MRI = getRegInfo();
297   if (MRI && Operands[OpNo].isReg())
298     MRI->removeRegOperandFromUseList(Operands + OpNo);
299 
300   // Don't call the MachineOperand destructor. A lot of this code depends on
301   // MachineOperand having a trivial destructor anyway, and adding a call here
302   // wouldn't make it 'destructor-correct'.
303 
304   if (unsigned N = NumOperands - 1 - OpNo)
305     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
306   --NumOperands;
307 }
308 
309 void MachineInstr::setExtraInfo(MachineFunction &MF,
310                                 ArrayRef<MachineMemOperand *> MMOs,
311                                 MCSymbol *PreInstrSymbol,
312                                 MCSymbol *PostInstrSymbol,
313                                 MDNode *HeapAllocMarker) {
314   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
315   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
316   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
317   int NumPointers =
318       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
319 
320   // Drop all extra info if there is none.
321   if (NumPointers <= 0) {
322     Info.clear();
323     return;
324   }
325 
326   // If more than one pointer, then store out of line. Store heap alloc markers
327   // out of line because PointerSumType cannot hold more than 4 tag types with
328   // 32-bit pointers.
329   // FIXME: Maybe we should make the symbols in the extra info mutable?
330   else if (NumPointers > 1 || HasHeapAllocMarker) {
331     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
332         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
333     return;
334   }
335 
336   // Otherwise store the single pointer inline.
337   if (HasPreInstrSymbol)
338     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
339   else if (HasPostInstrSymbol)
340     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
341   else
342     Info.set<EIIK_MMO>(MMOs[0]);
343 }
344 
345 void MachineInstr::dropMemRefs(MachineFunction &MF) {
346   if (memoperands_empty())
347     return;
348 
349   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
350                getHeapAllocMarker());
351 }
352 
353 void MachineInstr::setMemRefs(MachineFunction &MF,
354                               ArrayRef<MachineMemOperand *> MMOs) {
355   if (MMOs.empty()) {
356     dropMemRefs(MF);
357     return;
358   }
359 
360   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
361                getHeapAllocMarker());
362 }
363 
364 void MachineInstr::addMemOperand(MachineFunction &MF,
365                                  MachineMemOperand *MO) {
366   SmallVector<MachineMemOperand *, 2> MMOs;
367   MMOs.append(memoperands_begin(), memoperands_end());
368   MMOs.push_back(MO);
369   setMemRefs(MF, MMOs);
370 }
371 
372 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
373   if (this == &MI)
374     // Nothing to do for a self-clone!
375     return;
376 
377   assert(&MF == MI.getMF() &&
378          "Invalid machine functions when cloning memory refrences!");
379   // See if we can just steal the extra info already allocated for the
380   // instruction. We can do this whenever the pre- and post-instruction symbols
381   // are the same (including null).
382   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
383       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
384       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
385     Info = MI.Info;
386     return;
387   }
388 
389   // Otherwise, fall back on a copy-based clone.
390   setMemRefs(MF, MI.memoperands());
391 }
392 
393 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
394 /// identical.
395 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
396                              ArrayRef<MachineMemOperand *> RHS) {
397   if (LHS.size() != RHS.size())
398     return false;
399 
400   auto LHSPointees = make_pointee_range(LHS);
401   auto RHSPointees = make_pointee_range(RHS);
402   return std::equal(LHSPointees.begin(), LHSPointees.end(),
403                     RHSPointees.begin());
404 }
405 
406 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
407                                       ArrayRef<const MachineInstr *> MIs) {
408   // Try handling easy numbers of MIs with simpler mechanisms.
409   if (MIs.empty()) {
410     dropMemRefs(MF);
411     return;
412   }
413   if (MIs.size() == 1) {
414     cloneMemRefs(MF, *MIs[0]);
415     return;
416   }
417   // Because an empty memoperands list provides *no* information and must be
418   // handled conservatively (assuming the instruction can do anything), the only
419   // way to merge with it is to drop all other memoperands.
420   if (MIs[0]->memoperands_empty()) {
421     dropMemRefs(MF);
422     return;
423   }
424 
425   // Handle the general case.
426   SmallVector<MachineMemOperand *, 2> MergedMMOs;
427   // Start with the first instruction.
428   assert(&MF == MIs[0]->getMF() &&
429          "Invalid machine functions when cloning memory references!");
430   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
431   // Now walk all the other instructions and accumulate any different MMOs.
432   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
433     assert(&MF == MI.getMF() &&
434            "Invalid machine functions when cloning memory references!");
435 
436     // Skip MIs with identical operands to the first. This is a somewhat
437     // arbitrary hack but will catch common cases without being quadratic.
438     // TODO: We could fully implement merge semantics here if needed.
439     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
440       continue;
441 
442     // Because an empty memoperands list provides *no* information and must be
443     // handled conservatively (assuming the instruction can do anything), the
444     // only way to merge with it is to drop all other memoperands.
445     if (MI.memoperands_empty()) {
446       dropMemRefs(MF);
447       return;
448     }
449 
450     // Otherwise accumulate these into our temporary buffer of the merged state.
451     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
452   }
453 
454   setMemRefs(MF, MergedMMOs);
455 }
456 
457 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
458   // Do nothing if old and new symbols are the same.
459   if (Symbol == getPreInstrSymbol())
460     return;
461 
462   // If there was only one symbol and we're removing it, just clear info.
463   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
464     Info.clear();
465     return;
466   }
467 
468   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
469                getHeapAllocMarker());
470 }
471 
472 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
473   // Do nothing if old and new symbols are the same.
474   if (Symbol == getPostInstrSymbol())
475     return;
476 
477   // If there was only one symbol and we're removing it, just clear info.
478   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
479     Info.clear();
480     return;
481   }
482 
483   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
484                getHeapAllocMarker());
485 }
486 
487 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
488   // Do nothing if old and new symbols are the same.
489   if (Marker == getHeapAllocMarker())
490     return;
491 
492   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
493                Marker);
494 }
495 
496 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
497                                      const MachineInstr &MI) {
498   if (this == &MI)
499     // Nothing to do for a self-clone!
500     return;
501 
502   assert(&MF == MI.getMF() &&
503          "Invalid machine functions when cloning instruction symbols!");
504 
505   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
506   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
507   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
508 }
509 
510 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
511   // For now, the just return the union of the flags. If the flags get more
512   // complicated over time, we might need more logic here.
513   return getFlags() | Other.getFlags();
514 }
515 
516 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
517   uint16_t MIFlags = 0;
518   // Copy the wrapping flags.
519   if (const OverflowingBinaryOperator *OB =
520           dyn_cast<OverflowingBinaryOperator>(&I)) {
521     if (OB->hasNoSignedWrap())
522       MIFlags |= MachineInstr::MIFlag::NoSWrap;
523     if (OB->hasNoUnsignedWrap())
524       MIFlags |= MachineInstr::MIFlag::NoUWrap;
525   }
526 
527   // Copy the exact flag.
528   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
529     if (PE->isExact())
530       MIFlags |= MachineInstr::MIFlag::IsExact;
531 
532   // Copy the fast-math flags.
533   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
534     const FastMathFlags Flags = FP->getFastMathFlags();
535     if (Flags.noNaNs())
536       MIFlags |= MachineInstr::MIFlag::FmNoNans;
537     if (Flags.noInfs())
538       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
539     if (Flags.noSignedZeros())
540       MIFlags |= MachineInstr::MIFlag::FmNsz;
541     if (Flags.allowReciprocal())
542       MIFlags |= MachineInstr::MIFlag::FmArcp;
543     if (Flags.allowContract())
544       MIFlags |= MachineInstr::MIFlag::FmContract;
545     if (Flags.approxFunc())
546       MIFlags |= MachineInstr::MIFlag::FmAfn;
547     if (Flags.allowReassoc())
548       MIFlags |= MachineInstr::MIFlag::FmReassoc;
549   }
550 
551   return MIFlags;
552 }
553 
554 void MachineInstr::copyIRFlags(const Instruction &I) {
555   Flags = copyFlagsFromInstruction(I);
556 }
557 
558 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
559   assert(!isBundledWithPred() && "Must be called on bundle header");
560   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
561     if (MII->getDesc().getFlags() & Mask) {
562       if (Type == AnyInBundle)
563         return true;
564     } else {
565       if (Type == AllInBundle && !MII->isBundle())
566         return false;
567     }
568     // This was the last instruction in the bundle.
569     if (!MII->isBundledWithSucc())
570       return Type == AllInBundle;
571   }
572 }
573 
574 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
575                                  MICheckType Check) const {
576   // If opcodes or number of operands are not the same then the two
577   // instructions are obviously not identical.
578   if (Other.getOpcode() != getOpcode() ||
579       Other.getNumOperands() != getNumOperands())
580     return false;
581 
582   if (isBundle()) {
583     // We have passed the test above that both instructions have the same
584     // opcode, so we know that both instructions are bundles here. Let's compare
585     // MIs inside the bundle.
586     assert(Other.isBundle() && "Expected that both instructions are bundles.");
587     MachineBasicBlock::const_instr_iterator I1 = getIterator();
588     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
589     // Loop until we analysed the last intruction inside at least one of the
590     // bundles.
591     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
592       ++I1;
593       ++I2;
594       if (!I1->isIdenticalTo(*I2, Check))
595         return false;
596     }
597     // If we've reached the end of just one of the two bundles, but not both,
598     // the instructions are not identical.
599     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
600       return false;
601   }
602 
603   // Check operands to make sure they match.
604   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
605     const MachineOperand &MO = getOperand(i);
606     const MachineOperand &OMO = Other.getOperand(i);
607     if (!MO.isReg()) {
608       if (!MO.isIdenticalTo(OMO))
609         return false;
610       continue;
611     }
612 
613     // Clients may or may not want to ignore defs when testing for equality.
614     // For example, machine CSE pass only cares about finding common
615     // subexpressions, so it's safe to ignore virtual register defs.
616     if (MO.isDef()) {
617       if (Check == IgnoreDefs)
618         continue;
619       else if (Check == IgnoreVRegDefs) {
620         if (!Register::isVirtualRegister(MO.getReg()) ||
621             !Register::isVirtualRegister(OMO.getReg()))
622           if (!MO.isIdenticalTo(OMO))
623             return false;
624       } else {
625         if (!MO.isIdenticalTo(OMO))
626           return false;
627         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
628           return false;
629       }
630     } else {
631       if (!MO.isIdenticalTo(OMO))
632         return false;
633       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
634         return false;
635     }
636   }
637   // If DebugLoc does not match then two debug instructions are not identical.
638   if (isDebugInstr())
639     if (getDebugLoc() && Other.getDebugLoc() &&
640         getDebugLoc() != Other.getDebugLoc())
641       return false;
642   return true;
643 }
644 
645 const MachineFunction *MachineInstr::getMF() const {
646   return getParent()->getParent();
647 }
648 
649 MachineInstr *MachineInstr::removeFromParent() {
650   assert(getParent() && "Not embedded in a basic block!");
651   return getParent()->remove(this);
652 }
653 
654 MachineInstr *MachineInstr::removeFromBundle() {
655   assert(getParent() && "Not embedded in a basic block!");
656   return getParent()->remove_instr(this);
657 }
658 
659 void MachineInstr::eraseFromParent() {
660   assert(getParent() && "Not embedded in a basic block!");
661   getParent()->erase(this);
662 }
663 
664 void MachineInstr::eraseFromBundle() {
665   assert(getParent() && "Not embedded in a basic block!");
666   getParent()->erase_instr(this);
667 }
668 
669 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
670   if (!isCall(Type))
671     return false;
672   switch (getOpcode()) {
673   case TargetOpcode::PATCHPOINT:
674   case TargetOpcode::STACKMAP:
675   case TargetOpcode::STATEPOINT:
676   case TargetOpcode::FENTRY_CALL:
677     return false;
678   }
679   return true;
680 }
681 
682 bool MachineInstr::shouldUpdateCallSiteInfo() const {
683   if (isBundle())
684     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
685   return isCandidateForCallSiteEntry();
686 }
687 
688 unsigned MachineInstr::getNumExplicitOperands() const {
689   unsigned NumOperands = MCID->getNumOperands();
690   if (!MCID->isVariadic())
691     return NumOperands;
692 
693   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
694     const MachineOperand &MO = getOperand(I);
695     // The operands must always be in the following order:
696     // - explicit reg defs,
697     // - other explicit operands (reg uses, immediates, etc.),
698     // - implicit reg defs
699     // - implicit reg uses
700     if (MO.isReg() && MO.isImplicit())
701       break;
702     ++NumOperands;
703   }
704   return NumOperands;
705 }
706 
707 unsigned MachineInstr::getNumExplicitDefs() const {
708   unsigned NumDefs = MCID->getNumDefs();
709   if (!MCID->isVariadic())
710     return NumDefs;
711 
712   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
713     const MachineOperand &MO = getOperand(I);
714     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
715       break;
716     ++NumDefs;
717   }
718   return NumDefs;
719 }
720 
721 void MachineInstr::bundleWithPred() {
722   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
723   setFlag(BundledPred);
724   MachineBasicBlock::instr_iterator Pred = getIterator();
725   --Pred;
726   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
727   Pred->setFlag(BundledSucc);
728 }
729 
730 void MachineInstr::bundleWithSucc() {
731   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
732   setFlag(BundledSucc);
733   MachineBasicBlock::instr_iterator Succ = getIterator();
734   ++Succ;
735   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
736   Succ->setFlag(BundledPred);
737 }
738 
739 void MachineInstr::unbundleFromPred() {
740   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
741   clearFlag(BundledPred);
742   MachineBasicBlock::instr_iterator Pred = getIterator();
743   --Pred;
744   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
745   Pred->clearFlag(BundledSucc);
746 }
747 
748 void MachineInstr::unbundleFromSucc() {
749   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
750   clearFlag(BundledSucc);
751   MachineBasicBlock::instr_iterator Succ = getIterator();
752   ++Succ;
753   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
754   Succ->clearFlag(BundledPred);
755 }
756 
757 bool MachineInstr::isStackAligningInlineAsm() const {
758   if (isInlineAsm()) {
759     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
760     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
761       return true;
762   }
763   return false;
764 }
765 
766 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
767   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
768   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
769   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
770 }
771 
772 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
773                                        unsigned *GroupNo) const {
774   assert(isInlineAsm() && "Expected an inline asm instruction");
775   assert(OpIdx < getNumOperands() && "OpIdx out of range");
776 
777   // Ignore queries about the initial operands.
778   if (OpIdx < InlineAsm::MIOp_FirstOperand)
779     return -1;
780 
781   unsigned Group = 0;
782   unsigned NumOps;
783   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
784        i += NumOps) {
785     const MachineOperand &FlagMO = getOperand(i);
786     // If we reach the implicit register operands, stop looking.
787     if (!FlagMO.isImm())
788       return -1;
789     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
790     if (i + NumOps > OpIdx) {
791       if (GroupNo)
792         *GroupNo = Group;
793       return i;
794     }
795     ++Group;
796   }
797   return -1;
798 }
799 
800 const DILabel *MachineInstr::getDebugLabel() const {
801   assert(isDebugLabel() && "not a DBG_LABEL");
802   return cast<DILabel>(getOperand(0).getMetadata());
803 }
804 
805 const MachineOperand &MachineInstr::getDebugVariableOp() const {
806   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
807   unsigned VariableOp = isDebugValueList() ? 0 : 2;
808   return getOperand(VariableOp);
809 }
810 
811 MachineOperand &MachineInstr::getDebugVariableOp() {
812   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
813   unsigned VariableOp = isDebugValueList() ? 0 : 2;
814   return getOperand(VariableOp);
815 }
816 
817 const DILocalVariable *MachineInstr::getDebugVariable() const {
818   return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
819 }
820 
821 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
822   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
823   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
824   return getOperand(ExpressionOp);
825 }
826 
827 MachineOperand &MachineInstr::getDebugExpressionOp() {
828   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
829   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
830   return getOperand(ExpressionOp);
831 }
832 
833 const DIExpression *MachineInstr::getDebugExpression() const {
834   return cast<DIExpression>(getDebugExpressionOp().getMetadata());
835 }
836 
837 bool MachineInstr::isDebugEntryValue() const {
838   return isDebugValue() && getDebugExpression()->isEntryValue();
839 }
840 
841 const TargetRegisterClass*
842 MachineInstr::getRegClassConstraint(unsigned OpIdx,
843                                     const TargetInstrInfo *TII,
844                                     const TargetRegisterInfo *TRI) const {
845   assert(getParent() && "Can't have an MBB reference here!");
846   assert(getMF() && "Can't have an MF reference here!");
847   const MachineFunction &MF = *getMF();
848 
849   // Most opcodes have fixed constraints in their MCInstrDesc.
850   if (!isInlineAsm())
851     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
852 
853   if (!getOperand(OpIdx).isReg())
854     return nullptr;
855 
856   // For tied uses on inline asm, get the constraint from the def.
857   unsigned DefIdx;
858   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
859     OpIdx = DefIdx;
860 
861   // Inline asm stores register class constraints in the flag word.
862   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
863   if (FlagIdx < 0)
864     return nullptr;
865 
866   unsigned Flag = getOperand(FlagIdx).getImm();
867   unsigned RCID;
868   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
869        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
870        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
871       InlineAsm::hasRegClassConstraint(Flag, RCID))
872     return TRI->getRegClass(RCID);
873 
874   // Assume that all registers in a memory operand are pointers.
875   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
876     return TRI->getPointerRegClass(MF);
877 
878   return nullptr;
879 }
880 
881 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
882     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
883     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
884   // Check every operands inside the bundle if we have
885   // been asked to.
886   if (ExploreBundle)
887     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
888          ++OpndIt)
889       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
890           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
891   else
892     // Otherwise, just check the current operands.
893     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
894       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
895   return CurRC;
896 }
897 
898 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
899     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
900     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
901   assert(CurRC && "Invalid initial register class");
902   // Check if Reg is constrained by some of its use/def from MI.
903   const MachineOperand &MO = getOperand(OpIdx);
904   if (!MO.isReg() || MO.getReg() != Reg)
905     return CurRC;
906   // If yes, accumulate the constraints through the operand.
907   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
908 }
909 
910 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
911     unsigned OpIdx, const TargetRegisterClass *CurRC,
912     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
913   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
914   const MachineOperand &MO = getOperand(OpIdx);
915   assert(MO.isReg() &&
916          "Cannot get register constraints for non-register operand");
917   assert(CurRC && "Invalid initial register class");
918   if (unsigned SubIdx = MO.getSubReg()) {
919     if (OpRC)
920       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
921     else
922       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
923   } else if (OpRC)
924     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
925   return CurRC;
926 }
927 
928 /// Return the number of instructions inside the MI bundle, not counting the
929 /// header instruction.
930 unsigned MachineInstr::getBundleSize() const {
931   MachineBasicBlock::const_instr_iterator I = getIterator();
932   unsigned Size = 0;
933   while (I->isBundledWithSucc()) {
934     ++Size;
935     ++I;
936   }
937   return Size;
938 }
939 
940 /// Returns true if the MachineInstr has an implicit-use operand of exactly
941 /// the given register (not considering sub/super-registers).
942 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
943   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
944     const MachineOperand &MO = getOperand(i);
945     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
946       return true;
947   }
948   return false;
949 }
950 
951 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
952 /// the specific register or -1 if it is not found. It further tightens
953 /// the search criteria to a use that kills the register if isKill is true.
954 int MachineInstr::findRegisterUseOperandIdx(
955     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
956   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
957     const MachineOperand &MO = getOperand(i);
958     if (!MO.isReg() || !MO.isUse())
959       continue;
960     Register MOReg = MO.getReg();
961     if (!MOReg)
962       continue;
963     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
964       if (!isKill || MO.isKill())
965         return i;
966   }
967   return -1;
968 }
969 
970 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
971 /// indicating if this instruction reads or writes Reg. This also considers
972 /// partial defines.
973 std::pair<bool,bool>
974 MachineInstr::readsWritesVirtualRegister(Register Reg,
975                                          SmallVectorImpl<unsigned> *Ops) const {
976   bool PartDef = false; // Partial redefine.
977   bool FullDef = false; // Full define.
978   bool Use = false;
979 
980   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
981     const MachineOperand &MO = getOperand(i);
982     if (!MO.isReg() || MO.getReg() != Reg)
983       continue;
984     if (Ops)
985       Ops->push_back(i);
986     if (MO.isUse())
987       Use |= !MO.isUndef();
988     else if (MO.getSubReg() && !MO.isUndef())
989       // A partial def undef doesn't count as reading the register.
990       PartDef = true;
991     else
992       FullDef = true;
993   }
994   // A partial redefine uses Reg unless there is also a full define.
995   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
996 }
997 
998 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
999 /// the specified register or -1 if it is not found. If isDead is true, defs
1000 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1001 /// also checks if there is a def of a super-register.
1002 int
1003 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1004                                         const TargetRegisterInfo *TRI) const {
1005   bool isPhys = Register::isPhysicalRegister(Reg);
1006   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1007     const MachineOperand &MO = getOperand(i);
1008     // Accept regmask operands when Overlap is set.
1009     // Ignore them when looking for a specific def operand (Overlap == false).
1010     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1011       return i;
1012     if (!MO.isReg() || !MO.isDef())
1013       continue;
1014     Register MOReg = MO.getReg();
1015     bool Found = (MOReg == Reg);
1016     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1017       if (Overlap)
1018         Found = TRI->regsOverlap(MOReg, Reg);
1019       else
1020         Found = TRI->isSubRegister(MOReg, Reg);
1021     }
1022     if (Found && (!isDead || MO.isDead()))
1023       return i;
1024   }
1025   return -1;
1026 }
1027 
1028 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1029 /// operand list that is used to represent the predicate. It returns -1 if
1030 /// none is found.
1031 int MachineInstr::findFirstPredOperandIdx() const {
1032   // Don't call MCID.findFirstPredOperandIdx() because this variant
1033   // is sometimes called on an instruction that's not yet complete, and
1034   // so the number of operands is less than the MCID indicates. In
1035   // particular, the PTX target does this.
1036   const MCInstrDesc &MCID = getDesc();
1037   if (MCID.isPredicable()) {
1038     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1039       if (MCID.OpInfo[i].isPredicate())
1040         return i;
1041   }
1042 
1043   return -1;
1044 }
1045 
1046 // MachineOperand::TiedTo is 4 bits wide.
1047 const unsigned TiedMax = 15;
1048 
1049 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1050 ///
1051 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1052 /// field. TiedTo can have these values:
1053 ///
1054 /// 0:              Operand is not tied to anything.
1055 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1056 /// TiedMax:        Tied to an operand >= TiedMax-1.
1057 ///
1058 /// The tied def must be one of the first TiedMax operands on a normal
1059 /// instruction. INLINEASM instructions allow more tied defs.
1060 ///
1061 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1062   MachineOperand &DefMO = getOperand(DefIdx);
1063   MachineOperand &UseMO = getOperand(UseIdx);
1064   assert(DefMO.isDef() && "DefIdx must be a def operand");
1065   assert(UseMO.isUse() && "UseIdx must be a use operand");
1066   assert(!DefMO.isTied() && "Def is already tied to another use");
1067   assert(!UseMO.isTied() && "Use is already tied to another def");
1068 
1069   if (DefIdx < TiedMax)
1070     UseMO.TiedTo = DefIdx + 1;
1071   else {
1072     // Inline asm can use the group descriptors to find tied operands,
1073     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1074     // but on normal instruction, the tied def must be within the first TiedMax
1075     // operands.
1076     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1077            "DefIdx out of range");
1078     UseMO.TiedTo = TiedMax;
1079   }
1080 
1081   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1082   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1083 }
1084 
1085 /// Given the index of a tied register operand, find the operand it is tied to.
1086 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1087 /// which must exist.
1088 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1089   const MachineOperand &MO = getOperand(OpIdx);
1090   assert(MO.isTied() && "Operand isn't tied");
1091 
1092   // Normally TiedTo is in range.
1093   if (MO.TiedTo < TiedMax)
1094     return MO.TiedTo - 1;
1095 
1096   // Uses on normal instructions can be out of range.
1097   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1098     // Normal tied defs must be in the 0..TiedMax-1 range.
1099     if (MO.isUse())
1100       return TiedMax - 1;
1101     // MO is a def. Search for the tied use.
1102     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1103       const MachineOperand &UseMO = getOperand(i);
1104       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1105         return i;
1106     }
1107     llvm_unreachable("Can't find tied use");
1108   }
1109 
1110   if (getOpcode() == TargetOpcode::STATEPOINT) {
1111     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1112     // on registers.
1113     StatepointOpers SO(this);
1114     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1115     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1116     unsigned NumDefs = getNumDefs();
1117     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1118       while (!getOperand(CurUseIdx).isReg())
1119         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1120       if (OpIdx == CurDefIdx)
1121         return CurUseIdx;
1122       if (OpIdx == CurUseIdx)
1123         return CurDefIdx;
1124       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1125     }
1126     llvm_unreachable("Can't find tied use");
1127   }
1128 
1129   // Now deal with inline asm by parsing the operand group descriptor flags.
1130   // Find the beginning of each operand group.
1131   SmallVector<unsigned, 8> GroupIdx;
1132   unsigned OpIdxGroup = ~0u;
1133   unsigned NumOps;
1134   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1135        i += NumOps) {
1136     const MachineOperand &FlagMO = getOperand(i);
1137     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1138     unsigned CurGroup = GroupIdx.size();
1139     GroupIdx.push_back(i);
1140     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1141     // OpIdx belongs to this operand group.
1142     if (OpIdx > i && OpIdx < i + NumOps)
1143       OpIdxGroup = CurGroup;
1144     unsigned TiedGroup;
1145     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1146       continue;
1147     // Operands in this group are tied to operands in TiedGroup which must be
1148     // earlier. Find the number of operands between the two groups.
1149     unsigned Delta = i - GroupIdx[TiedGroup];
1150 
1151     // OpIdx is a use tied to TiedGroup.
1152     if (OpIdxGroup == CurGroup)
1153       return OpIdx - Delta;
1154 
1155     // OpIdx is a def tied to this use group.
1156     if (OpIdxGroup == TiedGroup)
1157       return OpIdx + Delta;
1158   }
1159   llvm_unreachable("Invalid tied operand on inline asm");
1160 }
1161 
1162 /// clearKillInfo - Clears kill flags on all operands.
1163 ///
1164 void MachineInstr::clearKillInfo() {
1165   for (MachineOperand &MO : operands()) {
1166     if (MO.isReg() && MO.isUse())
1167       MO.setIsKill(false);
1168   }
1169 }
1170 
1171 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1172                                       unsigned SubIdx,
1173                                       const TargetRegisterInfo &RegInfo) {
1174   if (Register::isPhysicalRegister(ToReg)) {
1175     if (SubIdx)
1176       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1177     for (MachineOperand &MO : operands()) {
1178       if (!MO.isReg() || MO.getReg() != FromReg)
1179         continue;
1180       MO.substPhysReg(ToReg, RegInfo);
1181     }
1182   } else {
1183     for (MachineOperand &MO : operands()) {
1184       if (!MO.isReg() || MO.getReg() != FromReg)
1185         continue;
1186       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1187     }
1188   }
1189 }
1190 
1191 /// isSafeToMove - Return true if it is safe to move this instruction. If
1192 /// SawStore is set to true, it means that there is a store (or call) between
1193 /// the instruction's location and its intended destination.
1194 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1195   // Ignore stuff that we obviously can't move.
1196   //
1197   // Treat volatile loads as stores. This is not strictly necessary for
1198   // volatiles, but it is required for atomic loads. It is not allowed to move
1199   // a load across an atomic load with Ordering > Monotonic.
1200   if (mayStore() || isCall() || isPHI() ||
1201       (mayLoad() && hasOrderedMemoryRef())) {
1202     SawStore = true;
1203     return false;
1204   }
1205 
1206   if (isPosition() || isDebugInstr() || isTerminator() ||
1207       mayRaiseFPException() || hasUnmodeledSideEffects())
1208     return false;
1209 
1210   // See if this instruction does a load.  If so, we have to guarantee that the
1211   // loaded value doesn't change between the load and the its intended
1212   // destination. The check for isInvariantLoad gives the target the chance to
1213   // classify the load as always returning a constant, e.g. a constant pool
1214   // load.
1215   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1216     // Otherwise, this is a real load.  If there is a store between the load and
1217     // end of block, we can't move it.
1218     return !SawStore;
1219 
1220   return true;
1221 }
1222 
1223 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1224                                  bool UseTBAA, const MachineMemOperand *MMOa,
1225                                  const MachineMemOperand *MMOb) {
1226   // The following interface to AA is fashioned after DAGCombiner::isAlias and
1227   // operates with MachineMemOperand offset with some important assumptions:
1228   //   - LLVM fundamentally assumes flat address spaces.
1229   //   - MachineOperand offset can *only* result from legalization and cannot
1230   //     affect queries other than the trivial case of overlap checking.
1231   //   - These offsets never wrap and never step outside of allocated objects.
1232   //   - There should never be any negative offsets here.
1233   //
1234   // FIXME: Modify API to hide this math from "user"
1235   // Even before we go to AA we can reason locally about some memory objects. It
1236   // can save compile time, and possibly catch some corner cases not currently
1237   // covered.
1238 
1239   int64_t OffsetA = MMOa->getOffset();
1240   int64_t OffsetB = MMOb->getOffset();
1241   int64_t MinOffset = std::min(OffsetA, OffsetB);
1242 
1243   uint64_t WidthA = MMOa->getSize();
1244   uint64_t WidthB = MMOb->getSize();
1245   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1246   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1247 
1248   const Value *ValA = MMOa->getValue();
1249   const Value *ValB = MMOb->getValue();
1250   bool SameVal = (ValA && ValB && (ValA == ValB));
1251   if (!SameVal) {
1252     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1253     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1254     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1255       return false;
1256     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1257       return false;
1258     if (PSVa && PSVb && (PSVa == PSVb))
1259       SameVal = true;
1260   }
1261 
1262   if (SameVal) {
1263     if (!KnownWidthA || !KnownWidthB)
1264       return true;
1265     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1266     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1267     return (MinOffset + LowWidth > MaxOffset);
1268   }
1269 
1270   if (!AA)
1271     return true;
1272 
1273   if (!ValA || !ValB)
1274     return true;
1275 
1276   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1277   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1278 
1279   int64_t OverlapA =
1280       KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1281   int64_t OverlapB =
1282       KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1283 
1284   return !AA->isNoAlias(
1285       MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1286       MemoryLocation(ValB, OverlapB,
1287                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1288 }
1289 
1290 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1291                             bool UseTBAA) const {
1292   const MachineFunction *MF = getMF();
1293   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1294   const MachineFrameInfo &MFI = MF->getFrameInfo();
1295 
1296   // Exclude call instruction which may alter the memory but can not be handled
1297   // by this function.
1298   if (isCall() || Other.isCall())
1299     return true;
1300 
1301   // If neither instruction stores to memory, they can't alias in any
1302   // meaningful way, even if they read from the same address.
1303   if (!mayStore() && !Other.mayStore())
1304     return false;
1305 
1306   // Both instructions must be memory operations to be able to alias.
1307   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1308     return false;
1309 
1310   // Let the target decide if memory accesses cannot possibly overlap.
1311   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1312     return false;
1313 
1314   // Memory operations without memory operands may access anything. Be
1315   // conservative and assume `MayAlias`.
1316   if (memoperands_empty() || Other.memoperands_empty())
1317     return true;
1318 
1319   // Skip if there are too many memory operands.
1320   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1321   if (NumChecks > TII->getMemOperandAACheckLimit())
1322     return true;
1323 
1324   // Check each pair of memory operands from both instructions, which can't
1325   // alias only if all pairs won't alias.
1326   for (auto *MMOa : memoperands())
1327     for (auto *MMOb : Other.memoperands())
1328       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1329         return true;
1330 
1331   return false;
1332 }
1333 
1334 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1335 /// or volatile memory reference, or if the information describing the memory
1336 /// reference is not available. Return false if it is known to have no ordered
1337 /// memory references.
1338 bool MachineInstr::hasOrderedMemoryRef() const {
1339   // An instruction known never to access memory won't have a volatile access.
1340   if (!mayStore() &&
1341       !mayLoad() &&
1342       !isCall() &&
1343       !hasUnmodeledSideEffects())
1344     return false;
1345 
1346   // Otherwise, if the instruction has no memory reference information,
1347   // conservatively assume it wasn't preserved.
1348   if (memoperands_empty())
1349     return true;
1350 
1351   // Check if any of our memory operands are ordered.
1352   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1353     return !MMO->isUnordered();
1354   });
1355 }
1356 
1357 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1358 /// trap and is loading from a location whose value is invariant across a run of
1359 /// this function.
1360 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1361   // If the instruction doesn't load at all, it isn't an invariant load.
1362   if (!mayLoad())
1363     return false;
1364 
1365   // If the instruction has lost its memoperands, conservatively assume that
1366   // it may not be an invariant load.
1367   if (memoperands_empty())
1368     return false;
1369 
1370   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1371 
1372   for (MachineMemOperand *MMO : memoperands()) {
1373     if (!MMO->isUnordered())
1374       // If the memory operand has ordering side effects, we can't move the
1375       // instruction.  Such an instruction is technically an invariant load,
1376       // but the caller code would need updated to expect that.
1377       return false;
1378     if (MMO->isStore()) return false;
1379     if (MMO->isInvariant() && MMO->isDereferenceable())
1380       continue;
1381 
1382     // A load from a constant PseudoSourceValue is invariant.
1383     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1384       if (PSV->isConstant(&MFI))
1385         continue;
1386 
1387     if (const Value *V = MMO->getValue()) {
1388       // If we have an AliasAnalysis, ask it whether the memory is constant.
1389       if (AA &&
1390           AA->pointsToConstantMemory(
1391               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1392         continue;
1393     }
1394 
1395     // Otherwise assume conservatively.
1396     return false;
1397   }
1398 
1399   // Everything checks out.
1400   return true;
1401 }
1402 
1403 /// isConstantValuePHI - If the specified instruction is a PHI that always
1404 /// merges together the same virtual register, return the register, otherwise
1405 /// return 0.
1406 unsigned MachineInstr::isConstantValuePHI() const {
1407   if (!isPHI())
1408     return 0;
1409   assert(getNumOperands() >= 3 &&
1410          "It's illegal to have a PHI without source operands");
1411 
1412   Register Reg = getOperand(1).getReg();
1413   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1414     if (getOperand(i).getReg() != Reg)
1415       return 0;
1416   return Reg;
1417 }
1418 
1419 bool MachineInstr::hasUnmodeledSideEffects() const {
1420   if (hasProperty(MCID::UnmodeledSideEffects))
1421     return true;
1422   if (isInlineAsm()) {
1423     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1424     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1425       return true;
1426   }
1427 
1428   return false;
1429 }
1430 
1431 bool MachineInstr::isLoadFoldBarrier() const {
1432   return mayStore() || isCall() ||
1433          (hasUnmodeledSideEffects() && !isPseudoProbe());
1434 }
1435 
1436 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1437 ///
1438 bool MachineInstr::allDefsAreDead() const {
1439   for (const MachineOperand &MO : operands()) {
1440     if (!MO.isReg() || MO.isUse())
1441       continue;
1442     if (!MO.isDead())
1443       return false;
1444   }
1445   return true;
1446 }
1447 
1448 /// copyImplicitOps - Copy implicit register operands from specified
1449 /// instruction to this instruction.
1450 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1451                                    const MachineInstr &MI) {
1452   for (const MachineOperand &MO :
1453        llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1454     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1455       addOperand(MF, MO);
1456 }
1457 
1458 bool MachineInstr::hasComplexRegisterTies() const {
1459   const MCInstrDesc &MCID = getDesc();
1460   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1461     return true;
1462   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1463     const auto &Operand = getOperand(I);
1464     if (!Operand.isReg() || Operand.isDef())
1465       // Ignore the defined registers as MCID marks only the uses as tied.
1466       continue;
1467     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1468     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1469     if (ExpectedTiedIdx != TiedIdx)
1470       return true;
1471   }
1472   return false;
1473 }
1474 
1475 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1476                                  const MachineRegisterInfo &MRI) const {
1477   const MachineOperand &Op = getOperand(OpIdx);
1478   if (!Op.isReg())
1479     return LLT{};
1480 
1481   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1482     return MRI.getType(Op.getReg());
1483 
1484   auto &OpInfo = getDesc().OpInfo[OpIdx];
1485   if (!OpInfo.isGenericType())
1486     return MRI.getType(Op.getReg());
1487 
1488   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1489     return LLT{};
1490 
1491   LLT TypeToPrint = MRI.getType(Op.getReg());
1492   // Don't mark the type index printed if it wasn't actually printed: maybe
1493   // another operand with the same type index has an actual type attached:
1494   if (TypeToPrint.isValid())
1495     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1496   return TypeToPrint;
1497 }
1498 
1499 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1500 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1501   dbgs() << "  ";
1502   print(dbgs());
1503 }
1504 
1505 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1506     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1507     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1508   if (Depth >= MaxDepth)
1509     return;
1510   if (!AlreadySeenInstrs.insert(this).second)
1511     return;
1512   // PadToColumn always inserts at least one space.
1513   // Don't mess up the alignment if we don't want any space.
1514   if (Depth)
1515     fdbgs().PadToColumn(Depth * 2);
1516   print(fdbgs());
1517   for (const MachineOperand &MO : operands()) {
1518     if (!MO.isReg() || MO.isDef())
1519       continue;
1520     Register Reg = MO.getReg();
1521     if (Reg.isPhysical())
1522       continue;
1523     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1524     if (NewMI == nullptr)
1525       continue;
1526     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1527   }
1528 }
1529 
1530 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1531                                           unsigned MaxDepth) const {
1532   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1533   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1534 }
1535 #endif
1536 
1537 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1538                          bool SkipDebugLoc, bool AddNewLine,
1539                          const TargetInstrInfo *TII) const {
1540   const Module *M = nullptr;
1541   const Function *F = nullptr;
1542   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1543     F = &MF->getFunction();
1544     M = F->getParent();
1545     if (!TII)
1546       TII = MF->getSubtarget().getInstrInfo();
1547   }
1548 
1549   ModuleSlotTracker MST(M);
1550   if (F)
1551     MST.incorporateFunction(*F);
1552   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1553 }
1554 
1555 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1556                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1557                          bool AddNewLine, const TargetInstrInfo *TII) const {
1558   // We can be a bit tidier if we know the MachineFunction.
1559   const TargetRegisterInfo *TRI = nullptr;
1560   const MachineRegisterInfo *MRI = nullptr;
1561   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1562   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1563 
1564   if (isCFIInstruction())
1565     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1566 
1567   SmallBitVector PrintedTypes(8);
1568   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1569   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1570     if (!ShouldPrintRegisterTies)
1571       return 0U;
1572     const MachineOperand &MO = getOperand(OpIdx);
1573     if (MO.isReg() && MO.isTied() && !MO.isDef())
1574       return findTiedOperandIdx(OpIdx);
1575     return 0U;
1576   };
1577   unsigned StartOp = 0;
1578   unsigned e = getNumOperands();
1579 
1580   // Print explicitly defined operands on the left of an assignment syntax.
1581   while (StartOp < e) {
1582     const MachineOperand &MO = getOperand(StartOp);
1583     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1584       break;
1585 
1586     if (StartOp != 0)
1587       OS << ", ";
1588 
1589     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1590     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1591     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1592              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1593     ++StartOp;
1594   }
1595 
1596   if (StartOp != 0)
1597     OS << " = ";
1598 
1599   if (getFlag(MachineInstr::FrameSetup))
1600     OS << "frame-setup ";
1601   if (getFlag(MachineInstr::FrameDestroy))
1602     OS << "frame-destroy ";
1603   if (getFlag(MachineInstr::FmNoNans))
1604     OS << "nnan ";
1605   if (getFlag(MachineInstr::FmNoInfs))
1606     OS << "ninf ";
1607   if (getFlag(MachineInstr::FmNsz))
1608     OS << "nsz ";
1609   if (getFlag(MachineInstr::FmArcp))
1610     OS << "arcp ";
1611   if (getFlag(MachineInstr::FmContract))
1612     OS << "contract ";
1613   if (getFlag(MachineInstr::FmAfn))
1614     OS << "afn ";
1615   if (getFlag(MachineInstr::FmReassoc))
1616     OS << "reassoc ";
1617   if (getFlag(MachineInstr::NoUWrap))
1618     OS << "nuw ";
1619   if (getFlag(MachineInstr::NoSWrap))
1620     OS << "nsw ";
1621   if (getFlag(MachineInstr::IsExact))
1622     OS << "exact ";
1623   if (getFlag(MachineInstr::NoFPExcept))
1624     OS << "nofpexcept ";
1625   if (getFlag(MachineInstr::NoMerge))
1626     OS << "nomerge ";
1627 
1628   // Print the opcode name.
1629   if (TII)
1630     OS << TII->getName(getOpcode());
1631   else
1632     OS << "UNKNOWN";
1633 
1634   if (SkipOpers)
1635     return;
1636 
1637   // Print the rest of the operands.
1638   bool FirstOp = true;
1639   unsigned AsmDescOp = ~0u;
1640   unsigned AsmOpCount = 0;
1641 
1642   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1643     // Print asm string.
1644     OS << " ";
1645     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1646     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1647     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1648     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1649                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1650                             IntrinsicInfo);
1651 
1652     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1653     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1654     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1655       OS << " [sideeffect]";
1656     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1657       OS << " [mayload]";
1658     if (ExtraInfo & InlineAsm::Extra_MayStore)
1659       OS << " [maystore]";
1660     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1661       OS << " [isconvergent]";
1662     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1663       OS << " [alignstack]";
1664     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1665       OS << " [attdialect]";
1666     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1667       OS << " [inteldialect]";
1668 
1669     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1670     FirstOp = false;
1671   }
1672 
1673   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1674     const MachineOperand &MO = getOperand(i);
1675 
1676     if (FirstOp) FirstOp = false; else OS << ",";
1677     OS << " ";
1678 
1679     if (isDebugValue() && MO.isMetadata()) {
1680       // Pretty print DBG_VALUE* instructions.
1681       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1682       if (DIV && !DIV->getName().empty())
1683         OS << "!\"" << DIV->getName() << '\"';
1684       else {
1685         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1686         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1687         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1688                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1689       }
1690     } else if (isDebugLabel() && MO.isMetadata()) {
1691       // Pretty print DBG_LABEL instructions.
1692       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1693       if (DIL && !DIL->getName().empty())
1694         OS << "\"" << DIL->getName() << '\"';
1695       else {
1696         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1697         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1698         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1699                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1700       }
1701     } else if (i == AsmDescOp && MO.isImm()) {
1702       // Pretty print the inline asm operand descriptor.
1703       OS << '$' << AsmOpCount++;
1704       unsigned Flag = MO.getImm();
1705       OS << ":[";
1706       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1707 
1708       unsigned RCID = 0;
1709       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1710           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1711         if (TRI) {
1712           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1713         } else
1714           OS << ":RC" << RCID;
1715       }
1716 
1717       if (InlineAsm::isMemKind(Flag)) {
1718         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1719         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1720       }
1721 
1722       unsigned TiedTo = 0;
1723       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1724         OS << " tiedto:$" << TiedTo;
1725 
1726       OS << ']';
1727 
1728       // Compute the index of the next operand descriptor.
1729       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1730     } else {
1731       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1732       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1733       if (MO.isImm() && isOperandSubregIdx(i))
1734         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1735       else
1736         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1737                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1738     }
1739   }
1740 
1741   // Print any optional symbols attached to this instruction as-if they were
1742   // operands.
1743   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1744     if (!FirstOp) {
1745       FirstOp = false;
1746       OS << ',';
1747     }
1748     OS << " pre-instr-symbol ";
1749     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1750   }
1751   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1752     if (!FirstOp) {
1753       FirstOp = false;
1754       OS << ',';
1755     }
1756     OS << " post-instr-symbol ";
1757     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1758   }
1759   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1760     if (!FirstOp) {
1761       FirstOp = false;
1762       OS << ',';
1763     }
1764     OS << " heap-alloc-marker ";
1765     HeapAllocMarker->printAsOperand(OS, MST);
1766   }
1767 
1768   if (DebugInstrNum) {
1769     if (!FirstOp)
1770       OS << ",";
1771     OS << " debug-instr-number " << DebugInstrNum;
1772   }
1773 
1774   if (!SkipDebugLoc) {
1775     if (const DebugLoc &DL = getDebugLoc()) {
1776       if (!FirstOp)
1777         OS << ',';
1778       OS << " debug-location ";
1779       DL->printAsOperand(OS, MST);
1780     }
1781   }
1782 
1783   if (!memoperands_empty()) {
1784     SmallVector<StringRef, 0> SSNs;
1785     const LLVMContext *Context = nullptr;
1786     std::unique_ptr<LLVMContext> CtxPtr;
1787     const MachineFrameInfo *MFI = nullptr;
1788     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1789       MFI = &MF->getFrameInfo();
1790       Context = &MF->getFunction().getContext();
1791     } else {
1792       CtxPtr = std::make_unique<LLVMContext>();
1793       Context = CtxPtr.get();
1794     }
1795 
1796     OS << " :: ";
1797     bool NeedComma = false;
1798     for (const MachineMemOperand *Op : memoperands()) {
1799       if (NeedComma)
1800         OS << ", ";
1801       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1802       NeedComma = true;
1803     }
1804   }
1805 
1806   if (SkipDebugLoc)
1807     return;
1808 
1809   bool HaveSemi = false;
1810 
1811   // Print debug location information.
1812   if (const DebugLoc &DL = getDebugLoc()) {
1813     if (!HaveSemi) {
1814       OS << ';';
1815       HaveSemi = true;
1816     }
1817     OS << ' ';
1818     DL.print(OS);
1819   }
1820 
1821   // Print extra comments for DEBUG_VALUE.
1822   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1823     if (!HaveSemi) {
1824       OS << ";";
1825       HaveSemi = true;
1826     }
1827     auto *DV = getDebugVariable();
1828     OS << " line no:" <<  DV->getLine();
1829     if (isIndirectDebugValue())
1830       OS << " indirect";
1831   }
1832   // TODO: DBG_LABEL
1833 
1834   if (AddNewLine)
1835     OS << '\n';
1836 }
1837 
1838 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1839                                      const TargetRegisterInfo *RegInfo,
1840                                      bool AddIfNotFound) {
1841   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1842   bool hasAliases = isPhysReg &&
1843     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1844   bool Found = false;
1845   SmallVector<unsigned,4> DeadOps;
1846   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1847     MachineOperand &MO = getOperand(i);
1848     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1849       continue;
1850 
1851     // DEBUG_VALUE nodes do not contribute to code generation and should
1852     // always be ignored. Failure to do so may result in trying to modify
1853     // KILL flags on DEBUG_VALUE nodes.
1854     if (MO.isDebug())
1855       continue;
1856 
1857     Register Reg = MO.getReg();
1858     if (!Reg)
1859       continue;
1860 
1861     if (Reg == IncomingReg) {
1862       if (!Found) {
1863         if (MO.isKill())
1864           // The register is already marked kill.
1865           return true;
1866         if (isPhysReg && isRegTiedToDefOperand(i))
1867           // Two-address uses of physregs must not be marked kill.
1868           return true;
1869         MO.setIsKill();
1870         Found = true;
1871       }
1872     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1873       // A super-register kill already exists.
1874       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1875         return true;
1876       if (RegInfo->isSubRegister(IncomingReg, Reg))
1877         DeadOps.push_back(i);
1878     }
1879   }
1880 
1881   // Trim unneeded kill operands.
1882   while (!DeadOps.empty()) {
1883     unsigned OpIdx = DeadOps.back();
1884     if (getOperand(OpIdx).isImplicit() &&
1885         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1886       RemoveOperand(OpIdx);
1887     else
1888       getOperand(OpIdx).setIsKill(false);
1889     DeadOps.pop_back();
1890   }
1891 
1892   // If not found, this means an alias of one of the operands is killed. Add a
1893   // new implicit operand if required.
1894   if (!Found && AddIfNotFound) {
1895     addOperand(MachineOperand::CreateReg(IncomingReg,
1896                                          false /*IsDef*/,
1897                                          true  /*IsImp*/,
1898                                          true  /*IsKill*/));
1899     return true;
1900   }
1901   return Found;
1902 }
1903 
1904 void MachineInstr::clearRegisterKills(Register Reg,
1905                                       const TargetRegisterInfo *RegInfo) {
1906   if (!Register::isPhysicalRegister(Reg))
1907     RegInfo = nullptr;
1908   for (MachineOperand &MO : operands()) {
1909     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1910       continue;
1911     Register OpReg = MO.getReg();
1912     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1913       MO.setIsKill(false);
1914   }
1915 }
1916 
1917 bool MachineInstr::addRegisterDead(Register Reg,
1918                                    const TargetRegisterInfo *RegInfo,
1919                                    bool AddIfNotFound) {
1920   bool isPhysReg = Register::isPhysicalRegister(Reg);
1921   bool hasAliases = isPhysReg &&
1922     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1923   bool Found = false;
1924   SmallVector<unsigned,4> DeadOps;
1925   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1926     MachineOperand &MO = getOperand(i);
1927     if (!MO.isReg() || !MO.isDef())
1928       continue;
1929     Register MOReg = MO.getReg();
1930     if (!MOReg)
1931       continue;
1932 
1933     if (MOReg == Reg) {
1934       MO.setIsDead();
1935       Found = true;
1936     } else if (hasAliases && MO.isDead() &&
1937                Register::isPhysicalRegister(MOReg)) {
1938       // There exists a super-register that's marked dead.
1939       if (RegInfo->isSuperRegister(Reg, MOReg))
1940         return true;
1941       if (RegInfo->isSubRegister(Reg, MOReg))
1942         DeadOps.push_back(i);
1943     }
1944   }
1945 
1946   // Trim unneeded dead operands.
1947   while (!DeadOps.empty()) {
1948     unsigned OpIdx = DeadOps.back();
1949     if (getOperand(OpIdx).isImplicit() &&
1950         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1951       RemoveOperand(OpIdx);
1952     else
1953       getOperand(OpIdx).setIsDead(false);
1954     DeadOps.pop_back();
1955   }
1956 
1957   // If not found, this means an alias of one of the operands is dead. Add a
1958   // new implicit operand if required.
1959   if (Found || !AddIfNotFound)
1960     return Found;
1961 
1962   addOperand(MachineOperand::CreateReg(Reg,
1963                                        true  /*IsDef*/,
1964                                        true  /*IsImp*/,
1965                                        false /*IsKill*/,
1966                                        true  /*IsDead*/));
1967   return true;
1968 }
1969 
1970 void MachineInstr::clearRegisterDeads(Register Reg) {
1971   for (MachineOperand &MO : operands()) {
1972     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1973       continue;
1974     MO.setIsDead(false);
1975   }
1976 }
1977 
1978 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
1979   for (MachineOperand &MO : operands()) {
1980     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1981       continue;
1982     MO.setIsUndef(IsUndef);
1983   }
1984 }
1985 
1986 void MachineInstr::addRegisterDefined(Register Reg,
1987                                       const TargetRegisterInfo *RegInfo) {
1988   if (Register::isPhysicalRegister(Reg)) {
1989     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
1990     if (MO)
1991       return;
1992   } else {
1993     for (const MachineOperand &MO : operands()) {
1994       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1995           MO.getSubReg() == 0)
1996         return;
1997     }
1998   }
1999   addOperand(MachineOperand::CreateReg(Reg,
2000                                        true  /*IsDef*/,
2001                                        true  /*IsImp*/));
2002 }
2003 
2004 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2005                                          const TargetRegisterInfo &TRI) {
2006   bool HasRegMask = false;
2007   for (MachineOperand &MO : operands()) {
2008     if (MO.isRegMask()) {
2009       HasRegMask = true;
2010       continue;
2011     }
2012     if (!MO.isReg() || !MO.isDef()) continue;
2013     Register Reg = MO.getReg();
2014     if (!Reg.isPhysical())
2015       continue;
2016     // If there are no uses, including partial uses, the def is dead.
2017     if (llvm::none_of(UsedRegs,
2018                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2019       MO.setIsDead();
2020   }
2021 
2022   // This is a call with a register mask operand.
2023   // Mask clobbers are always dead, so add defs for the non-dead defines.
2024   if (HasRegMask)
2025     for (const Register &UsedReg : UsedRegs)
2026       addRegisterDefined(UsedReg, &TRI);
2027 }
2028 
2029 unsigned
2030 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2031   // Build up a buffer of hash code components.
2032   SmallVector<size_t, 16> HashComponents;
2033   HashComponents.reserve(MI->getNumOperands() + 1);
2034   HashComponents.push_back(MI->getOpcode());
2035   for (const MachineOperand &MO : MI->operands()) {
2036     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2037       continue;  // Skip virtual register defs.
2038 
2039     HashComponents.push_back(hash_value(MO));
2040   }
2041   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2042 }
2043 
2044 void MachineInstr::emitError(StringRef Msg) const {
2045   // Find the source location cookie.
2046   uint64_t LocCookie = 0;
2047   const MDNode *LocMD = nullptr;
2048   for (unsigned i = getNumOperands(); i != 0; --i) {
2049     if (getOperand(i-1).isMetadata() &&
2050         (LocMD = getOperand(i-1).getMetadata()) &&
2051         LocMD->getNumOperands() != 0) {
2052       if (const ConstantInt *CI =
2053               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2054         LocCookie = CI->getZExtValue();
2055         break;
2056       }
2057     }
2058   }
2059 
2060   if (const MachineBasicBlock *MBB = getParent())
2061     if (const MachineFunction *MF = MBB->getParent())
2062       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2063   report_fatal_error(Msg);
2064 }
2065 
2066 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2067                                   const MCInstrDesc &MCID, bool IsIndirect,
2068                                   Register Reg, const MDNode *Variable,
2069                                   const MDNode *Expr) {
2070   assert(isa<DILocalVariable>(Variable) && "not a variable");
2071   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2072   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2073          "Expected inlined-at fields to agree");
2074   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2075   if (IsIndirect)
2076     MIB.addImm(0U);
2077   else
2078     MIB.addReg(0U);
2079   return MIB.addMetadata(Variable).addMetadata(Expr);
2080 }
2081 
2082 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2083                                   const MCInstrDesc &MCID, bool IsIndirect,
2084                                   const MachineOperand &MO,
2085                                   const MDNode *Variable, const MDNode *Expr) {
2086   assert(isa<DILocalVariable>(Variable) && "not a variable");
2087   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2088   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2089          "Expected inlined-at fields to agree");
2090   if (MO.isReg())
2091     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2092 
2093   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2094   if (IsIndirect)
2095     MIB.addImm(0U);
2096   else
2097     MIB.addReg(0U);
2098   return MIB.addMetadata(Variable).addMetadata(Expr);
2099 }
2100 
2101 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2102                                   const MCInstrDesc &MCID, bool IsIndirect,
2103                                   ArrayRef<MachineOperand> MOs,
2104                                   const MDNode *Variable, const MDNode *Expr) {
2105   assert(isa<DILocalVariable>(Variable) && "not a variable");
2106   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2107   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2108          "Expected inlined-at fields to agree");
2109   if (MCID.Opcode == TargetOpcode::DBG_VALUE)
2110     return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr);
2111 
2112   auto MIB = BuildMI(MF, DL, MCID);
2113   MIB.addMetadata(Variable).addMetadata(Expr);
2114   for (const MachineOperand &MO : MOs)
2115     if (MO.isReg())
2116       MIB.addReg(MO.getReg());
2117     else
2118       MIB.add(MO);
2119   return MIB;
2120 }
2121 
2122 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2123                                   MachineBasicBlock::iterator I,
2124                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2125                                   bool IsIndirect, Register Reg,
2126                                   const MDNode *Variable, const MDNode *Expr) {
2127   MachineFunction &MF = *BB.getParent();
2128   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2129   BB.insert(I, MI);
2130   return MachineInstrBuilder(MF, MI);
2131 }
2132 
2133 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2134                                   MachineBasicBlock::iterator I,
2135                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2136                                   bool IsIndirect, MachineOperand &MO,
2137                                   const MDNode *Variable, const MDNode *Expr) {
2138   MachineFunction &MF = *BB.getParent();
2139   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2140   BB.insert(I, MI);
2141   return MachineInstrBuilder(MF, *MI);
2142 }
2143 
2144 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2145                                   MachineBasicBlock::iterator I,
2146                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2147                                   bool IsIndirect, ArrayRef<MachineOperand> MOs,
2148                                   const MDNode *Variable, const MDNode *Expr) {
2149   MachineFunction &MF = *BB.getParent();
2150   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr);
2151   BB.insert(I, MI);
2152   return MachineInstrBuilder(MF, *MI);
2153 }
2154 
2155 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2156 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2157 static const DIExpression *
2158 computeExprForSpill(const MachineInstr &MI,
2159                     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2160   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2161          "Expected inlined-at fields to agree");
2162 
2163   const DIExpression *Expr = MI.getDebugExpression();
2164   if (MI.isIndirectDebugValue()) {
2165     assert(MI.getDebugOffset().getImm() == 0 &&
2166            "DBG_VALUE with nonzero offset");
2167     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2168   } else if (MI.isDebugValueList()) {
2169     // We will replace the spilled register with a frame index, so
2170     // immediately deref all references to the spilled register.
2171     std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2172     for (const MachineOperand *Op : SpilledOperands) {
2173       unsigned OpIdx = MI.getDebugOperandIndex(Op);
2174       Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2175     }
2176   }
2177   return Expr;
2178 }
2179 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2180                                                Register SpillReg) {
2181   assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2182   SmallVector<const MachineOperand *> SpillOperands;
2183   for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2184     SpillOperands.push_back(&Op);
2185   return computeExprForSpill(MI, SpillOperands);
2186 }
2187 
2188 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2189                                           MachineBasicBlock::iterator I,
2190                                           const MachineInstr &Orig,
2191                                           int FrameIndex, Register SpillReg) {
2192   const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2193   MachineInstrBuilder NewMI =
2194       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2195   // Non-Variadic Operands: Location, Offset, Variable, Expression
2196   // Variadic Operands:     Variable, Expression, Locations...
2197   if (Orig.isNonListDebugValue())
2198     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2199   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2200   if (Orig.isDebugValueList()) {
2201     for (const MachineOperand &Op : Orig.debug_operands())
2202       if (Op.isReg() && Op.getReg() == SpillReg)
2203         NewMI.addFrameIndex(FrameIndex);
2204       else
2205         NewMI.add(MachineOperand(Op));
2206   }
2207   return NewMI;
2208 }
2209 MachineInstr *llvm::buildDbgValueForSpill(
2210     MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2211     const MachineInstr &Orig, int FrameIndex,
2212     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2213   const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2214   MachineInstrBuilder NewMI =
2215       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2216   // Non-Variadic Operands: Location, Offset, Variable, Expression
2217   // Variadic Operands:     Variable, Expression, Locations...
2218   if (Orig.isNonListDebugValue())
2219     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2220   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2221   if (Orig.isDebugValueList()) {
2222     for (const MachineOperand &Op : Orig.debug_operands())
2223       if (is_contained(SpilledOperands, &Op))
2224         NewMI.addFrameIndex(FrameIndex);
2225       else
2226         NewMI.add(MachineOperand(Op));
2227   }
2228   return NewMI;
2229 }
2230 
2231 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2232                                   Register Reg) {
2233   const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2234   if (Orig.isNonListDebugValue())
2235     Orig.getDebugOffset().ChangeToImmediate(0U);
2236   for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2237     Op.ChangeToFrameIndex(FrameIndex);
2238   Orig.getDebugExpressionOp().setMetadata(Expr);
2239 }
2240 
2241 void MachineInstr::collectDebugValues(
2242                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2243   MachineInstr &MI = *this;
2244   if (!MI.getOperand(0).isReg())
2245     return;
2246 
2247   MachineBasicBlock::iterator DI = MI; ++DI;
2248   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2249        DI != DE; ++DI) {
2250     if (!DI->isDebugValue())
2251       return;
2252     if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2253       DbgValues.push_back(&*DI);
2254   }
2255 }
2256 
2257 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2258   // Collect matching debug values.
2259   SmallVector<MachineInstr *, 2> DbgValues;
2260 
2261   if (!getOperand(0).isReg())
2262     return;
2263 
2264   Register DefReg = getOperand(0).getReg();
2265   auto *MRI = getRegInfo();
2266   for (auto &MO : MRI->use_operands(DefReg)) {
2267     auto *DI = MO.getParent();
2268     if (!DI->isDebugValue())
2269       continue;
2270     if (DI->hasDebugOperandForReg(DefReg)) {
2271       DbgValues.push_back(DI);
2272     }
2273   }
2274 
2275   // Propagate Reg to debug value instructions.
2276   for (auto *DBI : DbgValues)
2277     for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2278       Op.setReg(Reg);
2279 }
2280 
2281 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2282 
2283 static unsigned getSpillSlotSize(const MMOList &Accesses,
2284                                  const MachineFrameInfo &MFI) {
2285   unsigned Size = 0;
2286   for (auto A : Accesses)
2287     if (MFI.isSpillSlotObjectIndex(
2288             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2289                 ->getFrameIndex()))
2290       Size += A->getSize();
2291   return Size;
2292 }
2293 
2294 Optional<unsigned>
2295 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2296   int FI;
2297   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2298     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2299     if (MFI.isSpillSlotObjectIndex(FI))
2300       return (*memoperands_begin())->getSize();
2301   }
2302   return None;
2303 }
2304 
2305 Optional<unsigned>
2306 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2307   MMOList Accesses;
2308   if (TII->hasStoreToStackSlot(*this, Accesses))
2309     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2310   return None;
2311 }
2312 
2313 Optional<unsigned>
2314 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2315   int FI;
2316   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2317     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2318     if (MFI.isSpillSlotObjectIndex(FI))
2319       return (*memoperands_begin())->getSize();
2320   }
2321   return None;
2322 }
2323 
2324 Optional<unsigned>
2325 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2326   MMOList Accesses;
2327   if (TII->hasLoadFromStackSlot(*this, Accesses))
2328     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2329   return None;
2330 }
2331 
2332 unsigned MachineInstr::getDebugInstrNum() {
2333   if (DebugInstrNum == 0)
2334     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2335   return DebugInstrNum;
2336 }
2337 
2338 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2339   if (DebugInstrNum == 0)
2340     DebugInstrNum = MF.getNewDebugInstrNum();
2341   return DebugInstrNum;
2342 }
2343