1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Assembly/Writer.h" 19 #include "llvm/CodeGen/MachineConstantPool.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/DebugInfo.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/MC/MCInstrDesc.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetRegisterInfo.h" 43 using namespace llvm; 44 45 //===----------------------------------------------------------------------===// 46 // MachineOperand Implementation 47 //===----------------------------------------------------------------------===// 48 49 void MachineOperand::setReg(unsigned Reg) { 50 if (getReg() == Reg) return; // No change. 51 52 // Otherwise, we have to change the register. If this operand is embedded 53 // into a machine function, we need to update the old and new register's 54 // use/def lists. 55 if (MachineInstr *MI = getParent()) 56 if (MachineBasicBlock *MBB = MI->getParent()) 57 if (MachineFunction *MF = MBB->getParent()) { 58 MachineRegisterInfo &MRI = MF->getRegInfo(); 59 MRI.removeRegOperandFromUseList(this); 60 SmallContents.RegNo = Reg; 61 MRI.addRegOperandToUseList(this); 62 return; 63 } 64 65 // Otherwise, just change the register, no problem. :) 66 SmallContents.RegNo = Reg; 67 } 68 69 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 70 const TargetRegisterInfo &TRI) { 71 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 72 if (SubIdx && getSubReg()) 73 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 74 setReg(Reg); 75 if (SubIdx) 76 setSubReg(SubIdx); 77 } 78 79 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 80 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 81 if (getSubReg()) { 82 Reg = TRI.getSubReg(Reg, getSubReg()); 83 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 84 // That won't happen in legal code. 85 setSubReg(0); 86 } 87 setReg(Reg); 88 } 89 90 /// Change a def to a use, or a use to a def. 91 void MachineOperand::setIsDef(bool Val) { 92 assert(isReg() && "Wrong MachineOperand accessor"); 93 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 94 if (IsDef == Val) 95 return; 96 // MRI may keep uses and defs in different list positions. 97 if (MachineInstr *MI = getParent()) 98 if (MachineBasicBlock *MBB = MI->getParent()) 99 if (MachineFunction *MF = MBB->getParent()) { 100 MachineRegisterInfo &MRI = MF->getRegInfo(); 101 MRI.removeRegOperandFromUseList(this); 102 IsDef = Val; 103 MRI.addRegOperandToUseList(this); 104 return; 105 } 106 IsDef = Val; 107 } 108 109 /// ChangeToImmediate - Replace this operand with a new immediate operand of 110 /// the specified value. If an operand is known to be an immediate already, 111 /// the setImm method should be used. 112 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 113 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 114 // If this operand is currently a register operand, and if this is in a 115 // function, deregister the operand from the register's use/def list. 116 if (isReg() && isOnRegUseList()) 117 if (MachineInstr *MI = getParent()) 118 if (MachineBasicBlock *MBB = MI->getParent()) 119 if (MachineFunction *MF = MBB->getParent()) 120 MF->getRegInfo().removeRegOperandFromUseList(this); 121 122 OpKind = MO_Immediate; 123 Contents.ImmVal = ImmVal; 124 } 125 126 /// ChangeToRegister - Replace this operand with a new register operand of 127 /// the specified value. If an operand is known to be an register already, 128 /// the setReg method should be used. 129 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 130 bool isKill, bool isDead, bool isUndef, 131 bool isDebug) { 132 MachineRegisterInfo *RegInfo = 0; 133 if (MachineInstr *MI = getParent()) 134 if (MachineBasicBlock *MBB = MI->getParent()) 135 if (MachineFunction *MF = MBB->getParent()) 136 RegInfo = &MF->getRegInfo(); 137 // If this operand is already a register operand, remove it from the 138 // register's use/def lists. 139 bool WasReg = isReg(); 140 if (RegInfo && WasReg) 141 RegInfo->removeRegOperandFromUseList(this); 142 143 // Change this to a register and set the reg#. 144 OpKind = MO_Register; 145 SmallContents.RegNo = Reg; 146 SubReg_TargetFlags = 0; 147 IsDef = isDef; 148 IsImp = isImp; 149 IsKill = isKill; 150 IsDead = isDead; 151 IsUndef = isUndef; 152 IsInternalRead = false; 153 IsEarlyClobber = false; 154 IsDebug = isDebug; 155 // Ensure isOnRegUseList() returns false. 156 Contents.Reg.Prev = 0; 157 // Preserve the tie when the operand was already a register. 158 if (!WasReg) 159 TiedTo = 0; 160 161 // If this operand is embedded in a function, add the operand to the 162 // register's use/def list. 163 if (RegInfo) 164 RegInfo->addRegOperandToUseList(this); 165 } 166 167 /// isIdenticalTo - Return true if this operand is identical to the specified 168 /// operand. Note that this should stay in sync with the hash_value overload 169 /// below. 170 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 171 if (getType() != Other.getType() || 172 getTargetFlags() != Other.getTargetFlags()) 173 return false; 174 175 switch (getType()) { 176 case MachineOperand::MO_Register: 177 return getReg() == Other.getReg() && isDef() == Other.isDef() && 178 getSubReg() == Other.getSubReg(); 179 case MachineOperand::MO_Immediate: 180 return getImm() == Other.getImm(); 181 case MachineOperand::MO_CImmediate: 182 return getCImm() == Other.getCImm(); 183 case MachineOperand::MO_FPImmediate: 184 return getFPImm() == Other.getFPImm(); 185 case MachineOperand::MO_MachineBasicBlock: 186 return getMBB() == Other.getMBB(); 187 case MachineOperand::MO_FrameIndex: 188 return getIndex() == Other.getIndex(); 189 case MachineOperand::MO_ConstantPoolIndex: 190 case MachineOperand::MO_TargetIndex: 191 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 192 case MachineOperand::MO_JumpTableIndex: 193 return getIndex() == Other.getIndex(); 194 case MachineOperand::MO_GlobalAddress: 195 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 196 case MachineOperand::MO_ExternalSymbol: 197 return !strcmp(getSymbolName(), Other.getSymbolName()) && 198 getOffset() == Other.getOffset(); 199 case MachineOperand::MO_BlockAddress: 200 return getBlockAddress() == Other.getBlockAddress() && 201 getOffset() == Other.getOffset(); 202 case MO_RegisterMask: 203 return getRegMask() == Other.getRegMask(); 204 case MachineOperand::MO_MCSymbol: 205 return getMCSymbol() == Other.getMCSymbol(); 206 case MachineOperand::MO_Metadata: 207 return getMetadata() == Other.getMetadata(); 208 } 209 llvm_unreachable("Invalid machine operand type"); 210 } 211 212 // Note: this must stay exactly in sync with isIdenticalTo above. 213 hash_code llvm::hash_value(const MachineOperand &MO) { 214 switch (MO.getType()) { 215 case MachineOperand::MO_Register: 216 // Register operands don't have target flags. 217 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 218 case MachineOperand::MO_Immediate: 219 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 220 case MachineOperand::MO_CImmediate: 221 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 222 case MachineOperand::MO_FPImmediate: 223 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 224 case MachineOperand::MO_MachineBasicBlock: 225 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 226 case MachineOperand::MO_FrameIndex: 227 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 228 case MachineOperand::MO_ConstantPoolIndex: 229 case MachineOperand::MO_TargetIndex: 230 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 231 MO.getOffset()); 232 case MachineOperand::MO_JumpTableIndex: 233 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 234 case MachineOperand::MO_ExternalSymbol: 235 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 236 MO.getSymbolName()); 237 case MachineOperand::MO_GlobalAddress: 238 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 239 MO.getOffset()); 240 case MachineOperand::MO_BlockAddress: 241 return hash_combine(MO.getType(), MO.getTargetFlags(), 242 MO.getBlockAddress(), MO.getOffset()); 243 case MachineOperand::MO_RegisterMask: 244 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 245 case MachineOperand::MO_Metadata: 246 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 247 case MachineOperand::MO_MCSymbol: 248 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 249 } 250 llvm_unreachable("Invalid machine operand type"); 251 } 252 253 /// print - Print the specified machine operand. 254 /// 255 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 256 // If the instruction is embedded into a basic block, we can find the 257 // target info for the instruction. 258 if (!TM) 259 if (const MachineInstr *MI = getParent()) 260 if (const MachineBasicBlock *MBB = MI->getParent()) 261 if (const MachineFunction *MF = MBB->getParent()) 262 TM = &MF->getTarget(); 263 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 264 265 switch (getType()) { 266 case MachineOperand::MO_Register: 267 OS << PrintReg(getReg(), TRI, getSubReg()); 268 269 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 270 isInternalRead() || isEarlyClobber() || isTied()) { 271 OS << '<'; 272 bool NeedComma = false; 273 if (isDef()) { 274 if (NeedComma) OS << ','; 275 if (isEarlyClobber()) 276 OS << "earlyclobber,"; 277 if (isImplicit()) 278 OS << "imp-"; 279 OS << "def"; 280 NeedComma = true; 281 // <def,read-undef> only makes sense when getSubReg() is set. 282 // Don't clutter the output otherwise. 283 if (isUndef() && getSubReg()) 284 OS << ",read-undef"; 285 } else if (isImplicit()) { 286 OS << "imp-use"; 287 NeedComma = true; 288 } 289 290 if (isKill()) { 291 if (NeedComma) OS << ','; 292 OS << "kill"; 293 NeedComma = true; 294 } 295 if (isDead()) { 296 if (NeedComma) OS << ','; 297 OS << "dead"; 298 NeedComma = true; 299 } 300 if (isUndef() && isUse()) { 301 if (NeedComma) OS << ','; 302 OS << "undef"; 303 NeedComma = true; 304 } 305 if (isInternalRead()) { 306 if (NeedComma) OS << ','; 307 OS << "internal"; 308 NeedComma = true; 309 } 310 if (isTied()) { 311 if (NeedComma) OS << ','; 312 OS << "tied"; 313 if (TiedTo != 15) 314 OS << unsigned(TiedTo - 1); 315 NeedComma = true; 316 } 317 OS << '>'; 318 } 319 break; 320 case MachineOperand::MO_Immediate: 321 OS << getImm(); 322 break; 323 case MachineOperand::MO_CImmediate: 324 getCImm()->getValue().print(OS, false); 325 break; 326 case MachineOperand::MO_FPImmediate: 327 if (getFPImm()->getType()->isFloatTy()) 328 OS << getFPImm()->getValueAPF().convertToFloat(); 329 else 330 OS << getFPImm()->getValueAPF().convertToDouble(); 331 break; 332 case MachineOperand::MO_MachineBasicBlock: 333 OS << "<BB#" << getMBB()->getNumber() << ">"; 334 break; 335 case MachineOperand::MO_FrameIndex: 336 OS << "<fi#" << getIndex() << '>'; 337 break; 338 case MachineOperand::MO_ConstantPoolIndex: 339 OS << "<cp#" << getIndex(); 340 if (getOffset()) OS << "+" << getOffset(); 341 OS << '>'; 342 break; 343 case MachineOperand::MO_TargetIndex: 344 OS << "<ti#" << getIndex(); 345 if (getOffset()) OS << "+" << getOffset(); 346 OS << '>'; 347 break; 348 case MachineOperand::MO_JumpTableIndex: 349 OS << "<jt#" << getIndex() << '>'; 350 break; 351 case MachineOperand::MO_GlobalAddress: 352 OS << "<ga:"; 353 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 354 if (getOffset()) OS << "+" << getOffset(); 355 OS << '>'; 356 break; 357 case MachineOperand::MO_ExternalSymbol: 358 OS << "<es:" << getSymbolName(); 359 if (getOffset()) OS << "+" << getOffset(); 360 OS << '>'; 361 break; 362 case MachineOperand::MO_BlockAddress: 363 OS << '<'; 364 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 365 if (getOffset()) OS << "+" << getOffset(); 366 OS << '>'; 367 break; 368 case MachineOperand::MO_RegisterMask: 369 OS << "<regmask>"; 370 break; 371 case MachineOperand::MO_Metadata: 372 OS << '<'; 373 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 374 OS << '>'; 375 break; 376 case MachineOperand::MO_MCSymbol: 377 OS << "<MCSym=" << *getMCSymbol() << '>'; 378 break; 379 } 380 381 if (unsigned TF = getTargetFlags()) 382 OS << "[TF=" << TF << ']'; 383 } 384 385 //===----------------------------------------------------------------------===// 386 // MachineMemOperand Implementation 387 //===----------------------------------------------------------------------===// 388 389 /// getAddrSpace - Return the LLVM IR address space number that this pointer 390 /// points into. 391 unsigned MachinePointerInfo::getAddrSpace() const { 392 if (V == 0) return 0; 393 return cast<PointerType>(V->getType())->getAddressSpace(); 394 } 395 396 /// getConstantPool - Return a MachinePointerInfo record that refers to the 397 /// constant pool. 398 MachinePointerInfo MachinePointerInfo::getConstantPool() { 399 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 400 } 401 402 /// getFixedStack - Return a MachinePointerInfo record that refers to the 403 /// the specified FrameIndex. 404 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 405 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 406 } 407 408 MachinePointerInfo MachinePointerInfo::getJumpTable() { 409 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 410 } 411 412 MachinePointerInfo MachinePointerInfo::getGOT() { 413 return MachinePointerInfo(PseudoSourceValue::getGOT()); 414 } 415 416 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 417 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 418 } 419 420 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 421 uint64_t s, unsigned int a, 422 const MDNode *TBAAInfo, 423 const MDNode *Ranges) 424 : PtrInfo(ptrinfo), Size(s), 425 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 426 TBAAInfo(TBAAInfo), Ranges(Ranges) { 427 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 428 "invalid pointer value"); 429 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 430 assert((isLoad() || isStore()) && "Not a load/store!"); 431 } 432 433 /// Profile - Gather unique data for the object. 434 /// 435 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 436 ID.AddInteger(getOffset()); 437 ID.AddInteger(Size); 438 ID.AddPointer(getValue()); 439 ID.AddInteger(Flags); 440 } 441 442 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 443 // The Value and Offset may differ due to CSE. But the flags and size 444 // should be the same. 445 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 446 assert(MMO->getSize() == getSize() && "Size mismatch!"); 447 448 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 449 // Update the alignment value. 450 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 451 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 452 // Also update the base and offset, because the new alignment may 453 // not be applicable with the old ones. 454 PtrInfo = MMO->PtrInfo; 455 } 456 } 457 458 /// getAlignment - Return the minimum known alignment in bytes of the 459 /// actual memory reference. 460 uint64_t MachineMemOperand::getAlignment() const { 461 return MinAlign(getBaseAlignment(), getOffset()); 462 } 463 464 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 465 assert((MMO.isLoad() || MMO.isStore()) && 466 "SV has to be a load, store or both."); 467 468 if (MMO.isVolatile()) 469 OS << "Volatile "; 470 471 if (MMO.isLoad()) 472 OS << "LD"; 473 if (MMO.isStore()) 474 OS << "ST"; 475 OS << MMO.getSize(); 476 477 // Print the address information. 478 OS << "["; 479 if (!MMO.getValue()) 480 OS << "<unknown>"; 481 else 482 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 483 484 unsigned AS = MMO.getAddrSpace(); 485 if (AS != 0) 486 OS << "(addrspace=" << AS << ')'; 487 488 // If the alignment of the memory reference itself differs from the alignment 489 // of the base pointer, print the base alignment explicitly, next to the base 490 // pointer. 491 if (MMO.getBaseAlignment() != MMO.getAlignment()) 492 OS << "(align=" << MMO.getBaseAlignment() << ")"; 493 494 if (MMO.getOffset() != 0) 495 OS << "+" << MMO.getOffset(); 496 OS << "]"; 497 498 // Print the alignment of the reference. 499 if (MMO.getBaseAlignment() != MMO.getAlignment() || 500 MMO.getBaseAlignment() != MMO.getSize()) 501 OS << "(align=" << MMO.getAlignment() << ")"; 502 503 // Print TBAA info. 504 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 505 OS << "(tbaa="; 506 if (TBAAInfo->getNumOperands() > 0) 507 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 508 else 509 OS << "<unknown>"; 510 OS << ")"; 511 } 512 513 // Print nontemporal info. 514 if (MMO.isNonTemporal()) 515 OS << "(nontemporal)"; 516 517 return OS; 518 } 519 520 //===----------------------------------------------------------------------===// 521 // MachineInstr Implementation 522 //===----------------------------------------------------------------------===// 523 524 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 525 if (MCID->ImplicitDefs) 526 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 527 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 528 if (MCID->ImplicitUses) 529 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 530 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 531 } 532 533 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 534 /// implicit operands. It reserves space for the number of operands specified by 535 /// the MCInstrDesc. 536 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 537 const DebugLoc dl, bool NoImp) 538 : MCID(&tid), Parent(0), Operands(0), NumOperands(0), 539 Flags(0), AsmPrinterFlags(0), 540 NumMemRefs(0), MemRefs(0), debugLoc(dl) { 541 // Reserve space for the expected number of operands. 542 if (unsigned NumOps = MCID->getNumOperands() + 543 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 544 CapOperands = OperandCapacity::get(NumOps); 545 Operands = MF.allocateOperandArray(CapOperands); 546 } 547 548 if (!NoImp) 549 addImplicitDefUseOperands(MF); 550 } 551 552 /// MachineInstr ctor - Copies MachineInstr arg exactly 553 /// 554 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 555 : MCID(&MI.getDesc()), Parent(0), Operands(0), NumOperands(0), 556 Flags(0), AsmPrinterFlags(0), 557 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 558 debugLoc(MI.getDebugLoc()) { 559 CapOperands = OperandCapacity::get(MI.getNumOperands()); 560 Operands = MF.allocateOperandArray(CapOperands); 561 562 // Copy operands. 563 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 564 addOperand(MF, MI.getOperand(i)); 565 566 // Copy all the sensible flags. 567 setFlags(MI.Flags); 568 } 569 570 /// getRegInfo - If this instruction is embedded into a MachineFunction, 571 /// return the MachineRegisterInfo object for the current function, otherwise 572 /// return null. 573 MachineRegisterInfo *MachineInstr::getRegInfo() { 574 if (MachineBasicBlock *MBB = getParent()) 575 return &MBB->getParent()->getRegInfo(); 576 return 0; 577 } 578 579 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 580 /// this instruction from their respective use lists. This requires that the 581 /// operands already be on their use lists. 582 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 583 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 584 if (Operands[i].isReg()) 585 MRI.removeRegOperandFromUseList(&Operands[i]); 586 } 587 588 /// AddRegOperandsToUseLists - Add all of the register operands in 589 /// this instruction from their respective use lists. This requires that the 590 /// operands not be on their use lists yet. 591 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 592 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 593 if (Operands[i].isReg()) 594 MRI.addRegOperandToUseList(&Operands[i]); 595 } 596 597 void MachineInstr::addOperand(const MachineOperand &Op) { 598 MachineBasicBlock *MBB = getParent(); 599 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 600 MachineFunction *MF = MBB->getParent(); 601 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 602 addOperand(*MF, Op); 603 } 604 605 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 606 /// ranges. If MRI is non-null also update use-def chains. 607 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 608 unsigned NumOps, MachineRegisterInfo *MRI) { 609 if (MRI) 610 return MRI->moveOperands(Dst, Src, NumOps); 611 612 // Here it would be convenient to call memmove, so that isn't allowed because 613 // MachineOperand has a constructor and so isn't a POD type. 614 if (Dst < Src) 615 for (unsigned i = 0; i != NumOps; ++i) 616 new (Dst + i) MachineOperand(Src[i]); 617 else 618 for (unsigned i = NumOps; i ; --i) 619 new (Dst + i - 1) MachineOperand(Src[i - 1]); 620 } 621 622 /// addOperand - Add the specified operand to the instruction. If it is an 623 /// implicit operand, it is added to the end of the operand list. If it is 624 /// an explicit operand it is added at the end of the explicit operand list 625 /// (before the first implicit operand). 626 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 627 assert(MCID && "Cannot add operands before providing an instr descriptor"); 628 629 // Check if we're adding one of our existing operands. 630 if (&Op >= Operands && &Op < Operands + NumOperands) { 631 // This is unusual: MI->addOperand(MI->getOperand(i)). 632 // If adding Op requires reallocating or moving existing operands around, 633 // the Op reference could go stale. Support it by copying Op. 634 MachineOperand CopyOp(Op); 635 return addOperand(MF, CopyOp); 636 } 637 638 // Find the insert location for the new operand. Implicit registers go at 639 // the end, everything else goes before the implicit regs. 640 // 641 // FIXME: Allow mixed explicit and implicit operands on inline asm. 642 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 643 // implicit-defs, but they must not be moved around. See the FIXME in 644 // InstrEmitter.cpp. 645 unsigned OpNo = getNumOperands(); 646 bool isImpReg = Op.isReg() && Op.isImplicit(); 647 if (!isImpReg && !isInlineAsm()) { 648 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 649 --OpNo; 650 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 651 } 652 } 653 654 #ifndef NDEBUG 655 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 656 // OpNo now points as the desired insertion point. Unless this is a variadic 657 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 658 // RegMask operands go between the explicit and implicit operands. 659 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 660 OpNo < MCID->getNumOperands() || isMetaDataOp) && 661 "Trying to add an operand to a machine instr that is already done!"); 662 #endif 663 664 MachineRegisterInfo *MRI = getRegInfo(); 665 666 // Determine if the Operands array needs to be reallocated. 667 // Save the old capacity and operand array. 668 OperandCapacity OldCap = CapOperands; 669 MachineOperand *OldOperands = Operands; 670 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 671 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 672 Operands = MF.allocateOperandArray(CapOperands); 673 // Move the operands before the insertion point. 674 if (OpNo) 675 moveOperands(Operands, OldOperands, OpNo, MRI); 676 } 677 678 // Move the operands following the insertion point. 679 if (OpNo != NumOperands) 680 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 681 MRI); 682 ++NumOperands; 683 684 // Deallocate the old operand array. 685 if (OldOperands != Operands && OldOperands) 686 MF.deallocateOperandArray(OldCap, OldOperands); 687 688 // Copy Op into place. It still needs to be inserted into the MRI use lists. 689 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 690 NewMO->ParentMI = this; 691 692 // When adding a register operand, tell MRI about it. 693 if (NewMO->isReg()) { 694 // Ensure isOnRegUseList() returns false, regardless of Op's status. 695 NewMO->Contents.Reg.Prev = 0; 696 // Ignore existing ties. This is not a property that can be copied. 697 NewMO->TiedTo = 0; 698 // Add the new operand to MRI, but only for instructions in an MBB. 699 if (MRI) 700 MRI->addRegOperandToUseList(NewMO); 701 // The MCID operand information isn't accurate until we start adding 702 // explicit operands. The implicit operands are added first, then the 703 // explicits are inserted before them. 704 if (!isImpReg) { 705 // Tie uses to defs as indicated in MCInstrDesc. 706 if (NewMO->isUse()) { 707 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 708 if (DefIdx != -1) 709 tieOperands(DefIdx, OpNo); 710 } 711 // If the register operand is flagged as early, mark the operand as such. 712 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 713 NewMO->setIsEarlyClobber(true); 714 } 715 } 716 } 717 718 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 719 /// fewer operand than it started with. 720 /// 721 void MachineInstr::RemoveOperand(unsigned OpNo) { 722 assert(OpNo < getNumOperands() && "Invalid operand number"); 723 untieRegOperand(OpNo); 724 725 #ifndef NDEBUG 726 // Moving tied operands would break the ties. 727 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 728 if (Operands[i].isReg()) 729 assert(!Operands[i].isTied() && "Cannot move tied operands"); 730 #endif 731 732 MachineRegisterInfo *MRI = getRegInfo(); 733 if (MRI && Operands[OpNo].isReg()) 734 MRI->removeRegOperandFromUseList(Operands + OpNo); 735 736 // Don't call the MachineOperand destructor. A lot of this code depends on 737 // MachineOperand having a trivial destructor anyway, and adding a call here 738 // wouldn't make it 'destructor-correct'. 739 740 if (unsigned N = NumOperands - 1 - OpNo) 741 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 742 --NumOperands; 743 } 744 745 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 746 /// This function should be used only occasionally. The setMemRefs function 747 /// is the primary method for setting up a MachineInstr's MemRefs list. 748 void MachineInstr::addMemOperand(MachineFunction &MF, 749 MachineMemOperand *MO) { 750 mmo_iterator OldMemRefs = MemRefs; 751 unsigned OldNumMemRefs = NumMemRefs; 752 753 unsigned NewNum = NumMemRefs + 1; 754 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 755 756 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 757 NewMemRefs[NewNum - 1] = MO; 758 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 759 } 760 761 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 762 assert(!isBundledWithPred() && "Must be called on bundle header"); 763 for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) { 764 if (MII->getDesc().getFlags() & Mask) { 765 if (Type == AnyInBundle) 766 return true; 767 } else { 768 if (Type == AllInBundle && !MII->isBundle()) 769 return false; 770 } 771 // This was the last instruction in the bundle. 772 if (!MII->isBundledWithSucc()) 773 return Type == AllInBundle; 774 } 775 } 776 777 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 778 MICheckType Check) const { 779 // If opcodes or number of operands are not the same then the two 780 // instructions are obviously not identical. 781 if (Other->getOpcode() != getOpcode() || 782 Other->getNumOperands() != getNumOperands()) 783 return false; 784 785 if (isBundle()) { 786 // Both instructions are bundles, compare MIs inside the bundle. 787 MachineBasicBlock::const_instr_iterator I1 = *this; 788 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 789 MachineBasicBlock::const_instr_iterator I2 = *Other; 790 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 791 while (++I1 != E1 && I1->isInsideBundle()) { 792 ++I2; 793 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 794 return false; 795 } 796 } 797 798 // Check operands to make sure they match. 799 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 800 const MachineOperand &MO = getOperand(i); 801 const MachineOperand &OMO = Other->getOperand(i); 802 if (!MO.isReg()) { 803 if (!MO.isIdenticalTo(OMO)) 804 return false; 805 continue; 806 } 807 808 // Clients may or may not want to ignore defs when testing for equality. 809 // For example, machine CSE pass only cares about finding common 810 // subexpressions, so it's safe to ignore virtual register defs. 811 if (MO.isDef()) { 812 if (Check == IgnoreDefs) 813 continue; 814 else if (Check == IgnoreVRegDefs) { 815 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 816 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 817 if (MO.getReg() != OMO.getReg()) 818 return false; 819 } else { 820 if (!MO.isIdenticalTo(OMO)) 821 return false; 822 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 823 return false; 824 } 825 } else { 826 if (!MO.isIdenticalTo(OMO)) 827 return false; 828 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 829 return false; 830 } 831 } 832 // If DebugLoc does not match then two dbg.values are not identical. 833 if (isDebugValue()) 834 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 835 && getDebugLoc() != Other->getDebugLoc()) 836 return false; 837 return true; 838 } 839 840 MachineInstr *MachineInstr::removeFromParent() { 841 assert(getParent() && "Not embedded in a basic block!"); 842 return getParent()->remove(this); 843 } 844 845 MachineInstr *MachineInstr::removeFromBundle() { 846 assert(getParent() && "Not embedded in a basic block!"); 847 return getParent()->remove_instr(this); 848 } 849 850 void MachineInstr::eraseFromParent() { 851 assert(getParent() && "Not embedded in a basic block!"); 852 getParent()->erase(this); 853 } 854 855 void MachineInstr::eraseFromBundle() { 856 assert(getParent() && "Not embedded in a basic block!"); 857 getParent()->erase_instr(this); 858 } 859 860 /// getNumExplicitOperands - Returns the number of non-implicit operands. 861 /// 862 unsigned MachineInstr::getNumExplicitOperands() const { 863 unsigned NumOperands = MCID->getNumOperands(); 864 if (!MCID->isVariadic()) 865 return NumOperands; 866 867 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 868 const MachineOperand &MO = getOperand(i); 869 if (!MO.isReg() || !MO.isImplicit()) 870 NumOperands++; 871 } 872 return NumOperands; 873 } 874 875 void MachineInstr::bundleWithPred() { 876 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 877 setFlag(BundledPred); 878 MachineBasicBlock::instr_iterator Pred = this; 879 --Pred; 880 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 881 Pred->setFlag(BundledSucc); 882 } 883 884 void MachineInstr::bundleWithSucc() { 885 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 886 setFlag(BundledSucc); 887 MachineBasicBlock::instr_iterator Succ = this; 888 ++Succ; 889 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 890 Succ->setFlag(BundledPred); 891 } 892 893 void MachineInstr::unbundleFromPred() { 894 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 895 clearFlag(BundledPred); 896 MachineBasicBlock::instr_iterator Pred = this; 897 --Pred; 898 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 899 Pred->clearFlag(BundledSucc); 900 } 901 902 void MachineInstr::unbundleFromSucc() { 903 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 904 clearFlag(BundledSucc); 905 MachineBasicBlock::instr_iterator Succ = this; 906 ++Succ; 907 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 908 Succ->clearFlag(BundledPred); 909 } 910 911 bool MachineInstr::isStackAligningInlineAsm() const { 912 if (isInlineAsm()) { 913 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 914 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 915 return true; 916 } 917 return false; 918 } 919 920 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 921 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 922 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 923 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 924 } 925 926 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 927 unsigned *GroupNo) const { 928 assert(isInlineAsm() && "Expected an inline asm instruction"); 929 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 930 931 // Ignore queries about the initial operands. 932 if (OpIdx < InlineAsm::MIOp_FirstOperand) 933 return -1; 934 935 unsigned Group = 0; 936 unsigned NumOps; 937 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 938 i += NumOps) { 939 const MachineOperand &FlagMO = getOperand(i); 940 // If we reach the implicit register operands, stop looking. 941 if (!FlagMO.isImm()) 942 return -1; 943 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 944 if (i + NumOps > OpIdx) { 945 if (GroupNo) 946 *GroupNo = Group; 947 return i; 948 } 949 ++Group; 950 } 951 return -1; 952 } 953 954 const TargetRegisterClass* 955 MachineInstr::getRegClassConstraint(unsigned OpIdx, 956 const TargetInstrInfo *TII, 957 const TargetRegisterInfo *TRI) const { 958 assert(getParent() && "Can't have an MBB reference here!"); 959 assert(getParent()->getParent() && "Can't have an MF reference here!"); 960 const MachineFunction &MF = *getParent()->getParent(); 961 962 // Most opcodes have fixed constraints in their MCInstrDesc. 963 if (!isInlineAsm()) 964 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 965 966 if (!getOperand(OpIdx).isReg()) 967 return NULL; 968 969 // For tied uses on inline asm, get the constraint from the def. 970 unsigned DefIdx; 971 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 972 OpIdx = DefIdx; 973 974 // Inline asm stores register class constraints in the flag word. 975 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 976 if (FlagIdx < 0) 977 return NULL; 978 979 unsigned Flag = getOperand(FlagIdx).getImm(); 980 unsigned RCID; 981 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 982 return TRI->getRegClass(RCID); 983 984 // Assume that all registers in a memory operand are pointers. 985 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 986 return TRI->getPointerRegClass(MF); 987 988 return NULL; 989 } 990 991 /// Return the number of instructions inside the MI bundle, not counting the 992 /// header instruction. 993 unsigned MachineInstr::getBundleSize() const { 994 MachineBasicBlock::const_instr_iterator I = this; 995 unsigned Size = 0; 996 while (I->isBundledWithSucc()) 997 ++Size, ++I; 998 return Size; 999 } 1000 1001 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1002 /// the specific register or -1 if it is not found. It further tightens 1003 /// the search criteria to a use that kills the register if isKill is true. 1004 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1005 const TargetRegisterInfo *TRI) const { 1006 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1007 const MachineOperand &MO = getOperand(i); 1008 if (!MO.isReg() || !MO.isUse()) 1009 continue; 1010 unsigned MOReg = MO.getReg(); 1011 if (!MOReg) 1012 continue; 1013 if (MOReg == Reg || 1014 (TRI && 1015 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1016 TargetRegisterInfo::isPhysicalRegister(Reg) && 1017 TRI->isSubRegister(MOReg, Reg))) 1018 if (!isKill || MO.isKill()) 1019 return i; 1020 } 1021 return -1; 1022 } 1023 1024 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1025 /// indicating if this instruction reads or writes Reg. This also considers 1026 /// partial defines. 1027 std::pair<bool,bool> 1028 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1029 SmallVectorImpl<unsigned> *Ops) const { 1030 bool PartDef = false; // Partial redefine. 1031 bool FullDef = false; // Full define. 1032 bool Use = false; 1033 1034 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1035 const MachineOperand &MO = getOperand(i); 1036 if (!MO.isReg() || MO.getReg() != Reg) 1037 continue; 1038 if (Ops) 1039 Ops->push_back(i); 1040 if (MO.isUse()) 1041 Use |= !MO.isUndef(); 1042 else if (MO.getSubReg() && !MO.isUndef()) 1043 // A partial <def,undef> doesn't count as reading the register. 1044 PartDef = true; 1045 else 1046 FullDef = true; 1047 } 1048 // A partial redefine uses Reg unless there is also a full define. 1049 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1050 } 1051 1052 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1053 /// the specified register or -1 if it is not found. If isDead is true, defs 1054 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1055 /// also checks if there is a def of a super-register. 1056 int 1057 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1058 const TargetRegisterInfo *TRI) const { 1059 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1060 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1061 const MachineOperand &MO = getOperand(i); 1062 // Accept regmask operands when Overlap is set. 1063 // Ignore them when looking for a specific def operand (Overlap == false). 1064 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1065 return i; 1066 if (!MO.isReg() || !MO.isDef()) 1067 continue; 1068 unsigned MOReg = MO.getReg(); 1069 bool Found = (MOReg == Reg); 1070 if (!Found && TRI && isPhys && 1071 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1072 if (Overlap) 1073 Found = TRI->regsOverlap(MOReg, Reg); 1074 else 1075 Found = TRI->isSubRegister(MOReg, Reg); 1076 } 1077 if (Found && (!isDead || MO.isDead())) 1078 return i; 1079 } 1080 return -1; 1081 } 1082 1083 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1084 /// operand list that is used to represent the predicate. It returns -1 if 1085 /// none is found. 1086 int MachineInstr::findFirstPredOperandIdx() const { 1087 // Don't call MCID.findFirstPredOperandIdx() because this variant 1088 // is sometimes called on an instruction that's not yet complete, and 1089 // so the number of operands is less than the MCID indicates. In 1090 // particular, the PTX target does this. 1091 const MCInstrDesc &MCID = getDesc(); 1092 if (MCID.isPredicable()) { 1093 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1094 if (MCID.OpInfo[i].isPredicate()) 1095 return i; 1096 } 1097 1098 return -1; 1099 } 1100 1101 // MachineOperand::TiedTo is 4 bits wide. 1102 const unsigned TiedMax = 15; 1103 1104 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1105 /// 1106 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1107 /// field. TiedTo can have these values: 1108 /// 1109 /// 0: Operand is not tied to anything. 1110 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1111 /// TiedMax: Tied to an operand >= TiedMax-1. 1112 /// 1113 /// The tied def must be one of the first TiedMax operands on a normal 1114 /// instruction. INLINEASM instructions allow more tied defs. 1115 /// 1116 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1117 MachineOperand &DefMO = getOperand(DefIdx); 1118 MachineOperand &UseMO = getOperand(UseIdx); 1119 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1120 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1121 assert(!DefMO.isTied() && "Def is already tied to another use"); 1122 assert(!UseMO.isTied() && "Use is already tied to another def"); 1123 1124 if (DefIdx < TiedMax) 1125 UseMO.TiedTo = DefIdx + 1; 1126 else { 1127 // Inline asm can use the group descriptors to find tied operands, but on 1128 // normal instruction, the tied def must be within the first TiedMax 1129 // operands. 1130 assert(isInlineAsm() && "DefIdx out of range"); 1131 UseMO.TiedTo = TiedMax; 1132 } 1133 1134 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1135 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1136 } 1137 1138 /// Given the index of a tied register operand, find the operand it is tied to. 1139 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1140 /// which must exist. 1141 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1142 const MachineOperand &MO = getOperand(OpIdx); 1143 assert(MO.isTied() && "Operand isn't tied"); 1144 1145 // Normally TiedTo is in range. 1146 if (MO.TiedTo < TiedMax) 1147 return MO.TiedTo - 1; 1148 1149 // Uses on normal instructions can be out of range. 1150 if (!isInlineAsm()) { 1151 // Normal tied defs must be in the 0..TiedMax-1 range. 1152 if (MO.isUse()) 1153 return TiedMax - 1; 1154 // MO is a def. Search for the tied use. 1155 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1156 const MachineOperand &UseMO = getOperand(i); 1157 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1158 return i; 1159 } 1160 llvm_unreachable("Can't find tied use"); 1161 } 1162 1163 // Now deal with inline asm by parsing the operand group descriptor flags. 1164 // Find the beginning of each operand group. 1165 SmallVector<unsigned, 8> GroupIdx; 1166 unsigned OpIdxGroup = ~0u; 1167 unsigned NumOps; 1168 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1169 i += NumOps) { 1170 const MachineOperand &FlagMO = getOperand(i); 1171 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1172 unsigned CurGroup = GroupIdx.size(); 1173 GroupIdx.push_back(i); 1174 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1175 // OpIdx belongs to this operand group. 1176 if (OpIdx > i && OpIdx < i + NumOps) 1177 OpIdxGroup = CurGroup; 1178 unsigned TiedGroup; 1179 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1180 continue; 1181 // Operands in this group are tied to operands in TiedGroup which must be 1182 // earlier. Find the number of operands between the two groups. 1183 unsigned Delta = i - GroupIdx[TiedGroup]; 1184 1185 // OpIdx is a use tied to TiedGroup. 1186 if (OpIdxGroup == CurGroup) 1187 return OpIdx - Delta; 1188 1189 // OpIdx is a def tied to this use group. 1190 if (OpIdxGroup == TiedGroup) 1191 return OpIdx + Delta; 1192 } 1193 llvm_unreachable("Invalid tied operand on inline asm"); 1194 } 1195 1196 /// clearKillInfo - Clears kill flags on all operands. 1197 /// 1198 void MachineInstr::clearKillInfo() { 1199 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1200 MachineOperand &MO = getOperand(i); 1201 if (MO.isReg() && MO.isUse()) 1202 MO.setIsKill(false); 1203 } 1204 } 1205 1206 void MachineInstr::substituteRegister(unsigned FromReg, 1207 unsigned ToReg, 1208 unsigned SubIdx, 1209 const TargetRegisterInfo &RegInfo) { 1210 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1211 if (SubIdx) 1212 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1213 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1214 MachineOperand &MO = getOperand(i); 1215 if (!MO.isReg() || MO.getReg() != FromReg) 1216 continue; 1217 MO.substPhysReg(ToReg, RegInfo); 1218 } 1219 } else { 1220 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1221 MachineOperand &MO = getOperand(i); 1222 if (!MO.isReg() || MO.getReg() != FromReg) 1223 continue; 1224 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1225 } 1226 } 1227 } 1228 1229 /// isSafeToMove - Return true if it is safe to move this instruction. If 1230 /// SawStore is set to true, it means that there is a store (or call) between 1231 /// the instruction's location and its intended destination. 1232 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1233 AliasAnalysis *AA, 1234 bool &SawStore) const { 1235 // Ignore stuff that we obviously can't move. 1236 // 1237 // Treat volatile loads as stores. This is not strictly necessary for 1238 // volatiles, but it is required for atomic loads. It is not allowed to move 1239 // a load across an atomic load with Ordering > Monotonic. 1240 if (mayStore() || isCall() || 1241 (mayLoad() && hasOrderedMemoryRef())) { 1242 SawStore = true; 1243 return false; 1244 } 1245 1246 if (isLabel() || isDebugValue() || 1247 isTerminator() || hasUnmodeledSideEffects()) 1248 return false; 1249 1250 // See if this instruction does a load. If so, we have to guarantee that the 1251 // loaded value doesn't change between the load and the its intended 1252 // destination. The check for isInvariantLoad gives the targe the chance to 1253 // classify the load as always returning a constant, e.g. a constant pool 1254 // load. 1255 if (mayLoad() && !isInvariantLoad(AA)) 1256 // Otherwise, this is a real load. If there is a store between the load and 1257 // end of block, we can't move it. 1258 return !SawStore; 1259 1260 return true; 1261 } 1262 1263 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1264 /// or volatile memory reference, or if the information describing the memory 1265 /// reference is not available. Return false if it is known to have no ordered 1266 /// memory references. 1267 bool MachineInstr::hasOrderedMemoryRef() const { 1268 // An instruction known never to access memory won't have a volatile access. 1269 if (!mayStore() && 1270 !mayLoad() && 1271 !isCall() && 1272 !hasUnmodeledSideEffects()) 1273 return false; 1274 1275 // Otherwise, if the instruction has no memory reference information, 1276 // conservatively assume it wasn't preserved. 1277 if (memoperands_empty()) 1278 return true; 1279 1280 // Check the memory reference information for ordered references. 1281 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1282 if (!(*I)->isUnordered()) 1283 return true; 1284 1285 return false; 1286 } 1287 1288 /// isInvariantLoad - Return true if this instruction is loading from a 1289 /// location whose value is invariant across the function. For example, 1290 /// loading a value from the constant pool or from the argument area 1291 /// of a function if it does not change. This should only return true of 1292 /// *all* loads the instruction does are invariant (if it does multiple loads). 1293 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1294 // If the instruction doesn't load at all, it isn't an invariant load. 1295 if (!mayLoad()) 1296 return false; 1297 1298 // If the instruction has lost its memoperands, conservatively assume that 1299 // it may not be an invariant load. 1300 if (memoperands_empty()) 1301 return false; 1302 1303 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1304 1305 for (mmo_iterator I = memoperands_begin(), 1306 E = memoperands_end(); I != E; ++I) { 1307 if ((*I)->isVolatile()) return false; 1308 if ((*I)->isStore()) return false; 1309 if ((*I)->isInvariant()) return true; 1310 1311 if (const Value *V = (*I)->getValue()) { 1312 // A load from a constant PseudoSourceValue is invariant. 1313 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1314 if (PSV->isConstant(MFI)) 1315 continue; 1316 // If we have an AliasAnalysis, ask it whether the memory is constant. 1317 if (AA && AA->pointsToConstantMemory( 1318 AliasAnalysis::Location(V, (*I)->getSize(), 1319 (*I)->getTBAAInfo()))) 1320 continue; 1321 } 1322 1323 // Otherwise assume conservatively. 1324 return false; 1325 } 1326 1327 // Everything checks out. 1328 return true; 1329 } 1330 1331 /// isConstantValuePHI - If the specified instruction is a PHI that always 1332 /// merges together the same virtual register, return the register, otherwise 1333 /// return 0. 1334 unsigned MachineInstr::isConstantValuePHI() const { 1335 if (!isPHI()) 1336 return 0; 1337 assert(getNumOperands() >= 3 && 1338 "It's illegal to have a PHI without source operands"); 1339 1340 unsigned Reg = getOperand(1).getReg(); 1341 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1342 if (getOperand(i).getReg() != Reg) 1343 return 0; 1344 return Reg; 1345 } 1346 1347 bool MachineInstr::hasUnmodeledSideEffects() const { 1348 if (hasProperty(MCID::UnmodeledSideEffects)) 1349 return true; 1350 if (isInlineAsm()) { 1351 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1352 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1353 return true; 1354 } 1355 1356 return false; 1357 } 1358 1359 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1360 /// 1361 bool MachineInstr::allDefsAreDead() const { 1362 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1363 const MachineOperand &MO = getOperand(i); 1364 if (!MO.isReg() || MO.isUse()) 1365 continue; 1366 if (!MO.isDead()) 1367 return false; 1368 } 1369 return true; 1370 } 1371 1372 /// copyImplicitOps - Copy implicit register operands from specified 1373 /// instruction to this instruction. 1374 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1375 const MachineInstr *MI) { 1376 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1377 i != e; ++i) { 1378 const MachineOperand &MO = MI->getOperand(i); 1379 if (MO.isReg() && MO.isImplicit()) 1380 addOperand(MF, MO); 1381 } 1382 } 1383 1384 void MachineInstr::dump() const { 1385 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1386 dbgs() << " " << *this; 1387 #endif 1388 } 1389 1390 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1391 raw_ostream &CommentOS) { 1392 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1393 if (!DL.isUnknown()) { // Print source line info. 1394 DIScope Scope(DL.getScope(Ctx)); 1395 assert((!Scope || Scope.isScope()) && 1396 "Scope of a DebugLoc should be null or a DIScope."); 1397 // Omit the directory, because it's likely to be long and uninteresting. 1398 if (Scope) 1399 CommentOS << Scope.getFilename(); 1400 else 1401 CommentOS << "<unknown>"; 1402 CommentOS << ':' << DL.getLine(); 1403 if (DL.getCol() != 0) 1404 CommentOS << ':' << DL.getCol(); 1405 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1406 if (!InlinedAtDL.isUnknown()) { 1407 CommentOS << " @[ "; 1408 printDebugLoc(InlinedAtDL, MF, CommentOS); 1409 CommentOS << " ]"; 1410 } 1411 } 1412 } 1413 1414 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM, 1415 bool SkipOpers) const { 1416 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1417 const MachineFunction *MF = 0; 1418 const MachineRegisterInfo *MRI = 0; 1419 if (const MachineBasicBlock *MBB = getParent()) { 1420 MF = MBB->getParent(); 1421 if (!TM && MF) 1422 TM = &MF->getTarget(); 1423 if (MF) 1424 MRI = &MF->getRegInfo(); 1425 } 1426 1427 // Save a list of virtual registers. 1428 SmallVector<unsigned, 8> VirtRegs; 1429 1430 // Print explicitly defined operands on the left of an assignment syntax. 1431 unsigned StartOp = 0, e = getNumOperands(); 1432 for (; StartOp < e && getOperand(StartOp).isReg() && 1433 getOperand(StartOp).isDef() && 1434 !getOperand(StartOp).isImplicit(); 1435 ++StartOp) { 1436 if (StartOp != 0) OS << ", "; 1437 getOperand(StartOp).print(OS, TM); 1438 unsigned Reg = getOperand(StartOp).getReg(); 1439 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1440 VirtRegs.push_back(Reg); 1441 } 1442 1443 if (StartOp != 0) 1444 OS << " = "; 1445 1446 // Print the opcode name. 1447 if (TM && TM->getInstrInfo()) 1448 OS << TM->getInstrInfo()->getName(getOpcode()); 1449 else 1450 OS << "UNKNOWN"; 1451 1452 if (SkipOpers) 1453 return; 1454 1455 // Print the rest of the operands. 1456 bool OmittedAnyCallClobbers = false; 1457 bool FirstOp = true; 1458 unsigned AsmDescOp = ~0u; 1459 unsigned AsmOpCount = 0; 1460 1461 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1462 // Print asm string. 1463 OS << " "; 1464 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1465 1466 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1467 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1468 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1469 OS << " [sideeffect]"; 1470 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1471 OS << " [mayload]"; 1472 if (ExtraInfo & InlineAsm::Extra_MayStore) 1473 OS << " [maystore]"; 1474 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1475 OS << " [alignstack]"; 1476 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1477 OS << " [attdialect]"; 1478 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1479 OS << " [inteldialect]"; 1480 1481 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1482 FirstOp = false; 1483 } 1484 1485 1486 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1487 const MachineOperand &MO = getOperand(i); 1488 1489 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1490 VirtRegs.push_back(MO.getReg()); 1491 1492 // Omit call-clobbered registers which aren't used anywhere. This makes 1493 // call instructions much less noisy on targets where calls clobber lots 1494 // of registers. Don't rely on MO.isDead() because we may be called before 1495 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1496 if (MF && isCall() && 1497 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1498 unsigned Reg = MO.getReg(); 1499 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1500 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1501 if (MRI.use_empty(Reg)) { 1502 bool HasAliasLive = false; 1503 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); 1504 AI.isValid(); ++AI) { 1505 unsigned AliasReg = *AI; 1506 if (!MRI.use_empty(AliasReg)) { 1507 HasAliasLive = true; 1508 break; 1509 } 1510 } 1511 if (!HasAliasLive) { 1512 OmittedAnyCallClobbers = true; 1513 continue; 1514 } 1515 } 1516 } 1517 } 1518 1519 if (FirstOp) FirstOp = false; else OS << ","; 1520 OS << " "; 1521 if (i < getDesc().NumOperands) { 1522 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1523 if (MCOI.isPredicate()) 1524 OS << "pred:"; 1525 if (MCOI.isOptionalDef()) 1526 OS << "opt:"; 1527 } 1528 if (isDebugValue() && MO.isMetadata()) { 1529 // Pretty print DBG_VALUE instructions. 1530 const MDNode *MD = MO.getMetadata(); 1531 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1532 OS << "!\"" << MDS->getString() << '\"'; 1533 else 1534 MO.print(OS, TM); 1535 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1536 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1537 } else if (i == AsmDescOp && MO.isImm()) { 1538 // Pretty print the inline asm operand descriptor. 1539 OS << '$' << AsmOpCount++; 1540 unsigned Flag = MO.getImm(); 1541 switch (InlineAsm::getKind(Flag)) { 1542 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1543 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1544 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1545 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1546 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1547 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1548 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1549 } 1550 1551 unsigned RCID = 0; 1552 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1553 if (TM) 1554 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1555 else 1556 OS << ":RC" << RCID; 1557 } 1558 1559 unsigned TiedTo = 0; 1560 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1561 OS << " tiedto:$" << TiedTo; 1562 1563 OS << ']'; 1564 1565 // Compute the index of the next operand descriptor. 1566 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1567 } else 1568 MO.print(OS, TM); 1569 } 1570 1571 // Briefly indicate whether any call clobbers were omitted. 1572 if (OmittedAnyCallClobbers) { 1573 if (!FirstOp) OS << ","; 1574 OS << " ..."; 1575 } 1576 1577 bool HaveSemi = false; 1578 const unsigned PrintableFlags = FrameSetup; 1579 if (Flags & PrintableFlags) { 1580 if (!HaveSemi) OS << ";"; HaveSemi = true; 1581 OS << " flags: "; 1582 1583 if (Flags & FrameSetup) 1584 OS << "FrameSetup"; 1585 } 1586 1587 if (!memoperands_empty()) { 1588 if (!HaveSemi) OS << ";"; HaveSemi = true; 1589 1590 OS << " mem:"; 1591 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1592 i != e; ++i) { 1593 OS << **i; 1594 if (llvm::next(i) != e) 1595 OS << " "; 1596 } 1597 } 1598 1599 // Print the regclass of any virtual registers encountered. 1600 if (MRI && !VirtRegs.empty()) { 1601 if (!HaveSemi) OS << ";"; HaveSemi = true; 1602 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1603 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1604 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1605 for (unsigned j = i+1; j != VirtRegs.size();) { 1606 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1607 ++j; 1608 continue; 1609 } 1610 if (VirtRegs[i] != VirtRegs[j]) 1611 OS << "," << PrintReg(VirtRegs[j]); 1612 VirtRegs.erase(VirtRegs.begin()+j); 1613 } 1614 } 1615 } 1616 1617 // Print debug location information. 1618 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1619 if (!HaveSemi) OS << ";"; HaveSemi = true; 1620 DIVariable DV(getOperand(e - 1).getMetadata()); 1621 OS << " line no:" << DV.getLineNumber(); 1622 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1623 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1624 if (!InlinedAtDL.isUnknown()) { 1625 OS << " inlined @[ "; 1626 printDebugLoc(InlinedAtDL, MF, OS); 1627 OS << " ]"; 1628 } 1629 } 1630 } else if (!debugLoc.isUnknown() && MF) { 1631 if (!HaveSemi) OS << ";"; HaveSemi = true; 1632 OS << " dbg:"; 1633 printDebugLoc(debugLoc, MF, OS); 1634 } 1635 1636 OS << '\n'; 1637 } 1638 1639 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1640 const TargetRegisterInfo *RegInfo, 1641 bool AddIfNotFound) { 1642 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1643 bool hasAliases = isPhysReg && 1644 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1645 bool Found = false; 1646 SmallVector<unsigned,4> DeadOps; 1647 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1648 MachineOperand &MO = getOperand(i); 1649 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1650 continue; 1651 unsigned Reg = MO.getReg(); 1652 if (!Reg) 1653 continue; 1654 1655 if (Reg == IncomingReg) { 1656 if (!Found) { 1657 if (MO.isKill()) 1658 // The register is already marked kill. 1659 return true; 1660 if (isPhysReg && isRegTiedToDefOperand(i)) 1661 // Two-address uses of physregs must not be marked kill. 1662 return true; 1663 MO.setIsKill(); 1664 Found = true; 1665 } 1666 } else if (hasAliases && MO.isKill() && 1667 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1668 // A super-register kill already exists. 1669 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1670 return true; 1671 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1672 DeadOps.push_back(i); 1673 } 1674 } 1675 1676 // Trim unneeded kill operands. 1677 while (!DeadOps.empty()) { 1678 unsigned OpIdx = DeadOps.back(); 1679 if (getOperand(OpIdx).isImplicit()) 1680 RemoveOperand(OpIdx); 1681 else 1682 getOperand(OpIdx).setIsKill(false); 1683 DeadOps.pop_back(); 1684 } 1685 1686 // If not found, this means an alias of one of the operands is killed. Add a 1687 // new implicit operand if required. 1688 if (!Found && AddIfNotFound) { 1689 addOperand(MachineOperand::CreateReg(IncomingReg, 1690 false /*IsDef*/, 1691 true /*IsImp*/, 1692 true /*IsKill*/)); 1693 return true; 1694 } 1695 return Found; 1696 } 1697 1698 void MachineInstr::clearRegisterKills(unsigned Reg, 1699 const TargetRegisterInfo *RegInfo) { 1700 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1701 RegInfo = 0; 1702 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1703 MachineOperand &MO = getOperand(i); 1704 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1705 continue; 1706 unsigned OpReg = MO.getReg(); 1707 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1708 MO.setIsKill(false); 1709 } 1710 } 1711 1712 bool MachineInstr::addRegisterDead(unsigned Reg, 1713 const TargetRegisterInfo *RegInfo, 1714 bool AddIfNotFound) { 1715 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1716 bool hasAliases = isPhysReg && 1717 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1718 bool Found = false; 1719 SmallVector<unsigned,4> DeadOps; 1720 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1721 MachineOperand &MO = getOperand(i); 1722 if (!MO.isReg() || !MO.isDef()) 1723 continue; 1724 unsigned MOReg = MO.getReg(); 1725 if (!MOReg) 1726 continue; 1727 1728 if (MOReg == Reg) { 1729 MO.setIsDead(); 1730 Found = true; 1731 } else if (hasAliases && MO.isDead() && 1732 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1733 // There exists a super-register that's marked dead. 1734 if (RegInfo->isSuperRegister(Reg, MOReg)) 1735 return true; 1736 if (RegInfo->isSubRegister(Reg, MOReg)) 1737 DeadOps.push_back(i); 1738 } 1739 } 1740 1741 // Trim unneeded dead operands. 1742 while (!DeadOps.empty()) { 1743 unsigned OpIdx = DeadOps.back(); 1744 if (getOperand(OpIdx).isImplicit()) 1745 RemoveOperand(OpIdx); 1746 else 1747 getOperand(OpIdx).setIsDead(false); 1748 DeadOps.pop_back(); 1749 } 1750 1751 // If not found, this means an alias of one of the operands is dead. Add a 1752 // new implicit operand if required. 1753 if (Found || !AddIfNotFound) 1754 return Found; 1755 1756 addOperand(MachineOperand::CreateReg(Reg, 1757 true /*IsDef*/, 1758 true /*IsImp*/, 1759 false /*IsKill*/, 1760 true /*IsDead*/)); 1761 return true; 1762 } 1763 1764 void MachineInstr::addRegisterDefined(unsigned Reg, 1765 const TargetRegisterInfo *RegInfo) { 1766 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1767 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 1768 if (MO) 1769 return; 1770 } else { 1771 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1772 const MachineOperand &MO = getOperand(i); 1773 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1774 MO.getSubReg() == 0) 1775 return; 1776 } 1777 } 1778 addOperand(MachineOperand::CreateReg(Reg, 1779 true /*IsDef*/, 1780 true /*IsImp*/)); 1781 } 1782 1783 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1784 const TargetRegisterInfo &TRI) { 1785 bool HasRegMask = false; 1786 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1787 MachineOperand &MO = getOperand(i); 1788 if (MO.isRegMask()) { 1789 HasRegMask = true; 1790 continue; 1791 } 1792 if (!MO.isReg() || !MO.isDef()) continue; 1793 unsigned Reg = MO.getReg(); 1794 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1795 bool Dead = true; 1796 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1797 I != E; ++I) 1798 if (TRI.regsOverlap(*I, Reg)) { 1799 Dead = false; 1800 break; 1801 } 1802 // If there are no uses, including partial uses, the def is dead. 1803 if (Dead) MO.setIsDead(); 1804 } 1805 1806 // This is a call with a register mask operand. 1807 // Mask clobbers are always dead, so add defs for the non-dead defines. 1808 if (HasRegMask) 1809 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1810 I != E; ++I) 1811 addRegisterDefined(*I, &TRI); 1812 } 1813 1814 unsigned 1815 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1816 // Build up a buffer of hash code components. 1817 SmallVector<size_t, 8> HashComponents; 1818 HashComponents.reserve(MI->getNumOperands() + 1); 1819 HashComponents.push_back(MI->getOpcode()); 1820 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1821 const MachineOperand &MO = MI->getOperand(i); 1822 if (MO.isReg() && MO.isDef() && 1823 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1824 continue; // Skip virtual register defs. 1825 1826 HashComponents.push_back(hash_value(MO)); 1827 } 1828 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1829 } 1830 1831 void MachineInstr::emitError(StringRef Msg) const { 1832 // Find the source location cookie. 1833 unsigned LocCookie = 0; 1834 const MDNode *LocMD = 0; 1835 for (unsigned i = getNumOperands(); i != 0; --i) { 1836 if (getOperand(i-1).isMetadata() && 1837 (LocMD = getOperand(i-1).getMetadata()) && 1838 LocMD->getNumOperands() != 0) { 1839 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1840 LocCookie = CI->getZExtValue(); 1841 break; 1842 } 1843 } 1844 } 1845 1846 if (const MachineBasicBlock *MBB = getParent()) 1847 if (const MachineFunction *MF = MBB->getParent()) 1848 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1849 report_fatal_error(Msg); 1850 } 1851