1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/Constants.h" 16 #include "llvm/DebugInfo.h" 17 #include "llvm/Function.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/LLVMContext.h" 20 #include "llvm/Metadata.h" 21 #include "llvm/Module.h" 22 #include "llvm/Type.h" 23 #include "llvm/Value.h" 24 #include "llvm/Assembly/Writer.h" 25 #include "llvm/CodeGen/MachineConstantPool.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCSymbol.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/LeakDetector.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/ADT/FoldingSet.h" 43 #include "llvm/ADT/Hashing.h" 44 using namespace llvm; 45 46 //===----------------------------------------------------------------------===// 47 // MachineOperand Implementation 48 //===----------------------------------------------------------------------===// 49 50 void MachineOperand::setReg(unsigned Reg) { 51 if (getReg() == Reg) return; // No change. 52 53 // Otherwise, we have to change the register. If this operand is embedded 54 // into a machine function, we need to update the old and new register's 55 // use/def lists. 56 if (MachineInstr *MI = getParent()) 57 if (MachineBasicBlock *MBB = MI->getParent()) 58 if (MachineFunction *MF = MBB->getParent()) { 59 MachineRegisterInfo &MRI = MF->getRegInfo(); 60 MRI.removeRegOperandFromUseList(this); 61 SmallContents.RegNo = Reg; 62 MRI.addRegOperandToUseList(this); 63 return; 64 } 65 66 // Otherwise, just change the register, no problem. :) 67 SmallContents.RegNo = Reg; 68 } 69 70 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 71 const TargetRegisterInfo &TRI) { 72 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 73 if (SubIdx && getSubReg()) 74 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 75 setReg(Reg); 76 if (SubIdx) 77 setSubReg(SubIdx); 78 } 79 80 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 82 if (getSubReg()) { 83 Reg = TRI.getSubReg(Reg, getSubReg()); 84 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 85 // That won't happen in legal code. 86 setSubReg(0); 87 } 88 setReg(Reg); 89 } 90 91 /// Change a def to a use, or a use to a def. 92 void MachineOperand::setIsDef(bool Val) { 93 assert(isReg() && "Wrong MachineOperand accessor"); 94 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 95 if (IsDef == Val) 96 return; 97 // MRI may keep uses and defs in different list positions. 98 if (MachineInstr *MI = getParent()) 99 if (MachineBasicBlock *MBB = MI->getParent()) 100 if (MachineFunction *MF = MBB->getParent()) { 101 MachineRegisterInfo &MRI = MF->getRegInfo(); 102 MRI.removeRegOperandFromUseList(this); 103 IsDef = Val; 104 MRI.addRegOperandToUseList(this); 105 return; 106 } 107 IsDef = Val; 108 } 109 110 /// ChangeToImmediate - Replace this operand with a new immediate operand of 111 /// the specified value. If an operand is known to be an immediate already, 112 /// the setImm method should be used. 113 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 114 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 115 // If this operand is currently a register operand, and if this is in a 116 // function, deregister the operand from the register's use/def list. 117 if (isReg() && isOnRegUseList()) 118 if (MachineInstr *MI = getParent()) 119 if (MachineBasicBlock *MBB = MI->getParent()) 120 if (MachineFunction *MF = MBB->getParent()) 121 MF->getRegInfo().removeRegOperandFromUseList(this); 122 123 OpKind = MO_Immediate; 124 Contents.ImmVal = ImmVal; 125 } 126 127 /// ChangeToRegister - Replace this operand with a new register operand of 128 /// the specified value. If an operand is known to be an register already, 129 /// the setReg method should be used. 130 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 131 bool isKill, bool isDead, bool isUndef, 132 bool isDebug) { 133 MachineRegisterInfo *RegInfo = 0; 134 if (MachineInstr *MI = getParent()) 135 if (MachineBasicBlock *MBB = MI->getParent()) 136 if (MachineFunction *MF = MBB->getParent()) 137 RegInfo = &MF->getRegInfo(); 138 // If this operand is already a register operand, remove it from the 139 // register's use/def lists. 140 bool WasReg = isReg(); 141 if (RegInfo && WasReg) 142 RegInfo->removeRegOperandFromUseList(this); 143 144 // Change this to a register and set the reg#. 145 OpKind = MO_Register; 146 SmallContents.RegNo = Reg; 147 SubReg = 0; 148 IsDef = isDef; 149 IsImp = isImp; 150 IsKill = isKill; 151 IsDead = isDead; 152 IsUndef = isUndef; 153 IsInternalRead = false; 154 IsEarlyClobber = false; 155 IsDebug = isDebug; 156 // Ensure isOnRegUseList() returns false. 157 Contents.Reg.Prev = 0; 158 // Preserve the tie bit when the operand was already a register. 159 if (!WasReg) 160 IsTied = false; 161 162 // If this operand is embedded in a function, add the operand to the 163 // register's use/def list. 164 if (RegInfo) 165 RegInfo->addRegOperandToUseList(this); 166 } 167 168 /// isIdenticalTo - Return true if this operand is identical to the specified 169 /// operand. Note that this should stay in sync with the hash_value overload 170 /// below. 171 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 172 if (getType() != Other.getType() || 173 getTargetFlags() != Other.getTargetFlags()) 174 return false; 175 176 switch (getType()) { 177 case MachineOperand::MO_Register: 178 return getReg() == Other.getReg() && isDef() == Other.isDef() && 179 getSubReg() == Other.getSubReg(); 180 case MachineOperand::MO_Immediate: 181 return getImm() == Other.getImm(); 182 case MachineOperand::MO_CImmediate: 183 return getCImm() == Other.getCImm(); 184 case MachineOperand::MO_FPImmediate: 185 return getFPImm() == Other.getFPImm(); 186 case MachineOperand::MO_MachineBasicBlock: 187 return getMBB() == Other.getMBB(); 188 case MachineOperand::MO_FrameIndex: 189 return getIndex() == Other.getIndex(); 190 case MachineOperand::MO_ConstantPoolIndex: 191 case MachineOperand::MO_TargetIndex: 192 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 193 case MachineOperand::MO_JumpTableIndex: 194 return getIndex() == Other.getIndex(); 195 case MachineOperand::MO_GlobalAddress: 196 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 197 case MachineOperand::MO_ExternalSymbol: 198 return !strcmp(getSymbolName(), Other.getSymbolName()) && 199 getOffset() == Other.getOffset(); 200 case MachineOperand::MO_BlockAddress: 201 return getBlockAddress() == Other.getBlockAddress(); 202 case MO_RegisterMask: 203 return getRegMask() == Other.getRegMask(); 204 case MachineOperand::MO_MCSymbol: 205 return getMCSymbol() == Other.getMCSymbol(); 206 case MachineOperand::MO_Metadata: 207 return getMetadata() == Other.getMetadata(); 208 } 209 llvm_unreachable("Invalid machine operand type"); 210 } 211 212 // Note: this must stay exactly in sync with isIdenticalTo above. 213 hash_code llvm::hash_value(const MachineOperand &MO) { 214 switch (MO.getType()) { 215 case MachineOperand::MO_Register: 216 // Register operands don't have target flags. 217 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 218 case MachineOperand::MO_Immediate: 219 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 220 case MachineOperand::MO_CImmediate: 221 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 222 case MachineOperand::MO_FPImmediate: 223 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 224 case MachineOperand::MO_MachineBasicBlock: 225 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 226 case MachineOperand::MO_FrameIndex: 227 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 228 case MachineOperand::MO_ConstantPoolIndex: 229 case MachineOperand::MO_TargetIndex: 230 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 231 MO.getOffset()); 232 case MachineOperand::MO_JumpTableIndex: 233 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 234 case MachineOperand::MO_ExternalSymbol: 235 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 236 MO.getSymbolName()); 237 case MachineOperand::MO_GlobalAddress: 238 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 239 MO.getOffset()); 240 case MachineOperand::MO_BlockAddress: 241 return hash_combine(MO.getType(), MO.getTargetFlags(), 242 MO.getBlockAddress()); 243 case MachineOperand::MO_RegisterMask: 244 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 245 case MachineOperand::MO_Metadata: 246 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 247 case MachineOperand::MO_MCSymbol: 248 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 249 } 250 llvm_unreachable("Invalid machine operand type"); 251 } 252 253 /// print - Print the specified machine operand. 254 /// 255 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 256 // If the instruction is embedded into a basic block, we can find the 257 // target info for the instruction. 258 if (!TM) 259 if (const MachineInstr *MI = getParent()) 260 if (const MachineBasicBlock *MBB = MI->getParent()) 261 if (const MachineFunction *MF = MBB->getParent()) 262 TM = &MF->getTarget(); 263 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 264 265 switch (getType()) { 266 case MachineOperand::MO_Register: 267 OS << PrintReg(getReg(), TRI, getSubReg()); 268 269 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 270 isInternalRead() || isEarlyClobber() || isTied()) { 271 OS << '<'; 272 bool NeedComma = false; 273 if (isDef()) { 274 if (NeedComma) OS << ','; 275 if (isEarlyClobber()) 276 OS << "earlyclobber,"; 277 if (isImplicit()) 278 OS << "imp-"; 279 OS << "def"; 280 NeedComma = true; 281 // <def,read-undef> only makes sense when getSubReg() is set. 282 // Don't clutter the output otherwise. 283 if (isUndef() && getSubReg()) 284 OS << ",read-undef"; 285 } else if (isImplicit()) { 286 OS << "imp-use"; 287 NeedComma = true; 288 } 289 290 if (isKill()) { 291 if (NeedComma) OS << ','; 292 OS << "kill"; 293 NeedComma = true; 294 } 295 if (isDead()) { 296 if (NeedComma) OS << ','; 297 OS << "dead"; 298 NeedComma = true; 299 } 300 if (isUndef() && isUse()) { 301 if (NeedComma) OS << ','; 302 OS << "undef"; 303 NeedComma = true; 304 } 305 if (isInternalRead()) { 306 if (NeedComma) OS << ','; 307 OS << "internal"; 308 NeedComma = true; 309 } 310 if (isTied()) { 311 if (NeedComma) OS << ','; 312 OS << "tied"; 313 NeedComma = true; 314 } 315 OS << '>'; 316 } 317 break; 318 case MachineOperand::MO_Immediate: 319 OS << getImm(); 320 break; 321 case MachineOperand::MO_CImmediate: 322 getCImm()->getValue().print(OS, false); 323 break; 324 case MachineOperand::MO_FPImmediate: 325 if (getFPImm()->getType()->isFloatTy()) 326 OS << getFPImm()->getValueAPF().convertToFloat(); 327 else 328 OS << getFPImm()->getValueAPF().convertToDouble(); 329 break; 330 case MachineOperand::MO_MachineBasicBlock: 331 OS << "<BB#" << getMBB()->getNumber() << ">"; 332 break; 333 case MachineOperand::MO_FrameIndex: 334 OS << "<fi#" << getIndex() << '>'; 335 break; 336 case MachineOperand::MO_ConstantPoolIndex: 337 OS << "<cp#" << getIndex(); 338 if (getOffset()) OS << "+" << getOffset(); 339 OS << '>'; 340 break; 341 case MachineOperand::MO_TargetIndex: 342 OS << "<ti#" << getIndex(); 343 if (getOffset()) OS << "+" << getOffset(); 344 OS << '>'; 345 break; 346 case MachineOperand::MO_JumpTableIndex: 347 OS << "<jt#" << getIndex() << '>'; 348 break; 349 case MachineOperand::MO_GlobalAddress: 350 OS << "<ga:"; 351 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 352 if (getOffset()) OS << "+" << getOffset(); 353 OS << '>'; 354 break; 355 case MachineOperand::MO_ExternalSymbol: 356 OS << "<es:" << getSymbolName(); 357 if (getOffset()) OS << "+" << getOffset(); 358 OS << '>'; 359 break; 360 case MachineOperand::MO_BlockAddress: 361 OS << '<'; 362 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 363 OS << '>'; 364 break; 365 case MachineOperand::MO_RegisterMask: 366 OS << "<regmask>"; 367 break; 368 case MachineOperand::MO_Metadata: 369 OS << '<'; 370 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 371 OS << '>'; 372 break; 373 case MachineOperand::MO_MCSymbol: 374 OS << "<MCSym=" << *getMCSymbol() << '>'; 375 break; 376 } 377 378 if (unsigned TF = getTargetFlags()) 379 OS << "[TF=" << TF << ']'; 380 } 381 382 //===----------------------------------------------------------------------===// 383 // MachineMemOperand Implementation 384 //===----------------------------------------------------------------------===// 385 386 /// getAddrSpace - Return the LLVM IR address space number that this pointer 387 /// points into. 388 unsigned MachinePointerInfo::getAddrSpace() const { 389 if (V == 0) return 0; 390 return cast<PointerType>(V->getType())->getAddressSpace(); 391 } 392 393 /// getConstantPool - Return a MachinePointerInfo record that refers to the 394 /// constant pool. 395 MachinePointerInfo MachinePointerInfo::getConstantPool() { 396 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 397 } 398 399 /// getFixedStack - Return a MachinePointerInfo record that refers to the 400 /// the specified FrameIndex. 401 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 402 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 403 } 404 405 MachinePointerInfo MachinePointerInfo::getJumpTable() { 406 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 407 } 408 409 MachinePointerInfo MachinePointerInfo::getGOT() { 410 return MachinePointerInfo(PseudoSourceValue::getGOT()); 411 } 412 413 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 414 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 415 } 416 417 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 418 uint64_t s, unsigned int a, 419 const MDNode *TBAAInfo, 420 const MDNode *Ranges) 421 : PtrInfo(ptrinfo), Size(s), 422 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 423 TBAAInfo(TBAAInfo), Ranges(Ranges) { 424 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 425 "invalid pointer value"); 426 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 427 assert((isLoad() || isStore()) && "Not a load/store!"); 428 } 429 430 /// Profile - Gather unique data for the object. 431 /// 432 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 433 ID.AddInteger(getOffset()); 434 ID.AddInteger(Size); 435 ID.AddPointer(getValue()); 436 ID.AddInteger(Flags); 437 } 438 439 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 440 // The Value and Offset may differ due to CSE. But the flags and size 441 // should be the same. 442 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 443 assert(MMO->getSize() == getSize() && "Size mismatch!"); 444 445 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 446 // Update the alignment value. 447 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 448 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 449 // Also update the base and offset, because the new alignment may 450 // not be applicable with the old ones. 451 PtrInfo = MMO->PtrInfo; 452 } 453 } 454 455 /// getAlignment - Return the minimum known alignment in bytes of the 456 /// actual memory reference. 457 uint64_t MachineMemOperand::getAlignment() const { 458 return MinAlign(getBaseAlignment(), getOffset()); 459 } 460 461 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 462 assert((MMO.isLoad() || MMO.isStore()) && 463 "SV has to be a load, store or both."); 464 465 if (MMO.isVolatile()) 466 OS << "Volatile "; 467 468 if (MMO.isLoad()) 469 OS << "LD"; 470 if (MMO.isStore()) 471 OS << "ST"; 472 OS << MMO.getSize(); 473 474 // Print the address information. 475 OS << "["; 476 if (!MMO.getValue()) 477 OS << "<unknown>"; 478 else 479 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 480 481 // If the alignment of the memory reference itself differs from the alignment 482 // of the base pointer, print the base alignment explicitly, next to the base 483 // pointer. 484 if (MMO.getBaseAlignment() != MMO.getAlignment()) 485 OS << "(align=" << MMO.getBaseAlignment() << ")"; 486 487 if (MMO.getOffset() != 0) 488 OS << "+" << MMO.getOffset(); 489 OS << "]"; 490 491 // Print the alignment of the reference. 492 if (MMO.getBaseAlignment() != MMO.getAlignment() || 493 MMO.getBaseAlignment() != MMO.getSize()) 494 OS << "(align=" << MMO.getAlignment() << ")"; 495 496 // Print TBAA info. 497 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 498 OS << "(tbaa="; 499 if (TBAAInfo->getNumOperands() > 0) 500 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 501 else 502 OS << "<unknown>"; 503 OS << ")"; 504 } 505 506 // Print nontemporal info. 507 if (MMO.isNonTemporal()) 508 OS << "(nontemporal)"; 509 510 return OS; 511 } 512 513 //===----------------------------------------------------------------------===// 514 // MachineInstr Implementation 515 //===----------------------------------------------------------------------===// 516 517 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with 518 /// MCID NULL and no operands. 519 MachineInstr::MachineInstr() 520 : MCID(0), Flags(0), AsmPrinterFlags(0), 521 NumMemRefs(0), MemRefs(0), 522 Parent(0) { 523 // Make sure that we get added to a machine basicblock 524 LeakDetector::addGarbageObject(this); 525 } 526 527 void MachineInstr::addImplicitDefUseOperands() { 528 if (MCID->ImplicitDefs) 529 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 530 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 531 if (MCID->ImplicitUses) 532 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 533 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 534 } 535 536 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 537 /// implicit operands. It reserves space for the number of operands specified by 538 /// the MCInstrDesc. 539 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp) 540 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 541 NumMemRefs(0), MemRefs(0), Parent(0) { 542 unsigned NumImplicitOps = 0; 543 if (!NoImp) 544 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 545 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 546 if (!NoImp) 547 addImplicitDefUseOperands(); 548 // Make sure that we get added to a machine basicblock 549 LeakDetector::addGarbageObject(this); 550 } 551 552 /// MachineInstr ctor - As above, but with a DebugLoc. 553 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl, 554 bool NoImp) 555 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 556 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { 557 unsigned NumImplicitOps = 0; 558 if (!NoImp) 559 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 560 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 561 if (!NoImp) 562 addImplicitDefUseOperands(); 563 // Make sure that we get added to a machine basicblock 564 LeakDetector::addGarbageObject(this); 565 } 566 567 /// MachineInstr ctor - Work exactly the same as the ctor two above, except 568 /// that the MachineInstr is created and added to the end of the specified 569 /// basic block. 570 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid) 571 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 572 NumMemRefs(0), MemRefs(0), Parent(0) { 573 assert(MBB && "Cannot use inserting ctor with null basic block!"); 574 unsigned NumImplicitOps = 575 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 576 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 577 addImplicitDefUseOperands(); 578 // Make sure that we get added to a machine basicblock 579 LeakDetector::addGarbageObject(this); 580 MBB->push_back(this); // Add instruction to end of basic block! 581 } 582 583 /// MachineInstr ctor - As above, but with a DebugLoc. 584 /// 585 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 586 const MCInstrDesc &tid) 587 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 588 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { 589 assert(MBB && "Cannot use inserting ctor with null basic block!"); 590 unsigned NumImplicitOps = 591 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 592 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 593 addImplicitDefUseOperands(); 594 // Make sure that we get added to a machine basicblock 595 LeakDetector::addGarbageObject(this); 596 MBB->push_back(this); // Add instruction to end of basic block! 597 } 598 599 /// MachineInstr ctor - Copies MachineInstr arg exactly 600 /// 601 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 602 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0), 603 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 604 Parent(0), debugLoc(MI.getDebugLoc()) { 605 Operands.reserve(MI.getNumOperands()); 606 607 // Add operands 608 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 609 addOperand(MI.getOperand(i)); 610 611 // Copy all the flags. 612 Flags = MI.Flags; 613 614 // Set parent to null. 615 Parent = 0; 616 617 LeakDetector::addGarbageObject(this); 618 } 619 620 MachineInstr::~MachineInstr() { 621 LeakDetector::removeGarbageObject(this); 622 #ifndef NDEBUG 623 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 624 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 625 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 626 "Reg operand def/use list corrupted"); 627 } 628 #endif 629 } 630 631 /// getRegInfo - If this instruction is embedded into a MachineFunction, 632 /// return the MachineRegisterInfo object for the current function, otherwise 633 /// return null. 634 MachineRegisterInfo *MachineInstr::getRegInfo() { 635 if (MachineBasicBlock *MBB = getParent()) 636 return &MBB->getParent()->getRegInfo(); 637 return 0; 638 } 639 640 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 641 /// this instruction from their respective use lists. This requires that the 642 /// operands already be on their use lists. 643 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 644 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 645 if (Operands[i].isReg()) 646 MRI.removeRegOperandFromUseList(&Operands[i]); 647 } 648 649 /// AddRegOperandsToUseLists - Add all of the register operands in 650 /// this instruction from their respective use lists. This requires that the 651 /// operands not be on their use lists yet. 652 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 653 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 654 if (Operands[i].isReg()) 655 MRI.addRegOperandToUseList(&Operands[i]); 656 } 657 658 /// addOperand - Add the specified operand to the instruction. If it is an 659 /// implicit operand, it is added to the end of the operand list. If it is 660 /// an explicit operand it is added at the end of the explicit operand list 661 /// (before the first implicit operand). 662 void MachineInstr::addOperand(const MachineOperand &Op) { 663 assert(MCID && "Cannot add operands before providing an instr descriptor"); 664 bool isImpReg = Op.isReg() && Op.isImplicit(); 665 MachineRegisterInfo *RegInfo = getRegInfo(); 666 667 // If the Operands backing store is reallocated, all register operands must 668 // be removed and re-added to RegInfo. It is storing pointers to operands. 669 bool Reallocate = RegInfo && 670 !Operands.empty() && Operands.size() == Operands.capacity(); 671 672 // Find the insert location for the new operand. Implicit registers go at 673 // the end, everything goes before the implicit regs. 674 unsigned OpNo = Operands.size(); 675 676 // Remove all the implicit operands from RegInfo if they need to be shifted. 677 // FIXME: Allow mixed explicit and implicit operands on inline asm. 678 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 679 // implicit-defs, but they must not be moved around. See the FIXME in 680 // InstrEmitter.cpp. 681 if (!isImpReg && !isInlineAsm()) { 682 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 683 --OpNo; 684 if (RegInfo) 685 RegInfo->removeRegOperandFromUseList(&Operands[OpNo]); 686 } 687 } 688 689 // OpNo now points as the desired insertion point. Unless this is a variadic 690 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 691 // RegMask operands go between the explicit and implicit operands. 692 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 693 OpNo < MCID->getNumOperands()) && 694 "Trying to add an operand to a machine instr that is already done!"); 695 696 // All operands from OpNo have been removed from RegInfo. If the Operands 697 // backing store needs to be reallocated, we also need to remove any other 698 // register operands. 699 if (Reallocate) 700 for (unsigned i = 0; i != OpNo; ++i) 701 if (Operands[i].isReg()) 702 RegInfo->removeRegOperandFromUseList(&Operands[i]); 703 704 // Insert the new operand at OpNo. 705 Operands.insert(Operands.begin() + OpNo, Op); 706 Operands[OpNo].ParentMI = this; 707 708 // The Operands backing store has now been reallocated, so we can re-add the 709 // operands before OpNo. 710 if (Reallocate) 711 for (unsigned i = 0; i != OpNo; ++i) 712 if (Operands[i].isReg()) 713 RegInfo->addRegOperandToUseList(&Operands[i]); 714 715 // When adding a register operand, tell RegInfo about it. 716 if (Operands[OpNo].isReg()) { 717 // Ensure isOnRegUseList() returns false, regardless of Op's status. 718 Operands[OpNo].Contents.Reg.Prev = 0; 719 // Ignore existing IsTied bit. This is not a property that can be copied. 720 Operands[OpNo].IsTied = false; 721 // Add the new operand to RegInfo. 722 if (RegInfo) 723 RegInfo->addRegOperandToUseList(&Operands[OpNo]); 724 // The MCID operand information isn't accurate until we start adding 725 // explicit operands. The implicit operands are added first, then the 726 // explicits are inserted before them. 727 if (!isImpReg) { 728 // Set the IsTied bit if MC indicates this use is tied to a def. 729 if (Operands[OpNo].isUse()) { 730 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 731 if (DefIdx != -1) 732 tieOperands(DefIdx, OpNo); 733 } 734 // If the register operand is flagged as early, mark the operand as such. 735 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 736 Operands[OpNo].setIsEarlyClobber(true); 737 } 738 } 739 740 // Re-add all the implicit ops. 741 if (RegInfo) { 742 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) { 743 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 744 RegInfo->addRegOperandToUseList(&Operands[i]); 745 } 746 } 747 } 748 749 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 750 /// fewer operand than it started with. 751 /// 752 void MachineInstr::RemoveOperand(unsigned OpNo) { 753 assert(OpNo < Operands.size() && "Invalid operand number"); 754 untieRegOperand(OpNo); 755 MachineRegisterInfo *RegInfo = getRegInfo(); 756 757 // Special case removing the last one. 758 if (OpNo == Operands.size()-1) { 759 // If needed, remove from the reg def/use list. 760 if (RegInfo && Operands.back().isReg() && Operands.back().isOnRegUseList()) 761 RegInfo->removeRegOperandFromUseList(&Operands.back()); 762 763 Operands.pop_back(); 764 return; 765 } 766 767 // Otherwise, we are removing an interior operand. If we have reginfo to 768 // update, remove all operands that will be shifted down from their reg lists, 769 // move everything down, then re-add them. 770 if (RegInfo) { 771 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 772 if (Operands[i].isReg()) 773 RegInfo->removeRegOperandFromUseList(&Operands[i]); 774 } 775 } 776 777 Operands.erase(Operands.begin()+OpNo); 778 779 if (RegInfo) { 780 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 781 if (Operands[i].isReg()) 782 RegInfo->addRegOperandToUseList(&Operands[i]); 783 } 784 } 785 } 786 787 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 788 /// This function should be used only occasionally. The setMemRefs function 789 /// is the primary method for setting up a MachineInstr's MemRefs list. 790 void MachineInstr::addMemOperand(MachineFunction &MF, 791 MachineMemOperand *MO) { 792 mmo_iterator OldMemRefs = MemRefs; 793 uint16_t OldNumMemRefs = NumMemRefs; 794 795 uint16_t NewNum = NumMemRefs + 1; 796 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 797 798 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 799 NewMemRefs[NewNum - 1] = MO; 800 801 MemRefs = NewMemRefs; 802 NumMemRefs = NewNum; 803 } 804 805 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 806 const MachineBasicBlock *MBB = getParent(); 807 MachineBasicBlock::const_instr_iterator MII = *this; ++MII; 808 while (MII != MBB->end() && MII->isInsideBundle()) { 809 if (MII->getDesc().getFlags() & Mask) { 810 if (Type == AnyInBundle) 811 return true; 812 } else { 813 if (Type == AllInBundle) 814 return false; 815 } 816 ++MII; 817 } 818 819 return Type == AllInBundle; 820 } 821 822 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 823 MICheckType Check) const { 824 // If opcodes or number of operands are not the same then the two 825 // instructions are obviously not identical. 826 if (Other->getOpcode() != getOpcode() || 827 Other->getNumOperands() != getNumOperands()) 828 return false; 829 830 if (isBundle()) { 831 // Both instructions are bundles, compare MIs inside the bundle. 832 MachineBasicBlock::const_instr_iterator I1 = *this; 833 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 834 MachineBasicBlock::const_instr_iterator I2 = *Other; 835 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 836 while (++I1 != E1 && I1->isInsideBundle()) { 837 ++I2; 838 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 839 return false; 840 } 841 } 842 843 // Check operands to make sure they match. 844 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 845 const MachineOperand &MO = getOperand(i); 846 const MachineOperand &OMO = Other->getOperand(i); 847 if (!MO.isReg()) { 848 if (!MO.isIdenticalTo(OMO)) 849 return false; 850 continue; 851 } 852 853 // Clients may or may not want to ignore defs when testing for equality. 854 // For example, machine CSE pass only cares about finding common 855 // subexpressions, so it's safe to ignore virtual register defs. 856 if (MO.isDef()) { 857 if (Check == IgnoreDefs) 858 continue; 859 else if (Check == IgnoreVRegDefs) { 860 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 861 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 862 if (MO.getReg() != OMO.getReg()) 863 return false; 864 } else { 865 if (!MO.isIdenticalTo(OMO)) 866 return false; 867 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 868 return false; 869 } 870 } else { 871 if (!MO.isIdenticalTo(OMO)) 872 return false; 873 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 874 return false; 875 } 876 } 877 // If DebugLoc does not match then two dbg.values are not identical. 878 if (isDebugValue()) 879 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 880 && getDebugLoc() != Other->getDebugLoc()) 881 return false; 882 return true; 883 } 884 885 /// removeFromParent - This method unlinks 'this' from the containing basic 886 /// block, and returns it, but does not delete it. 887 MachineInstr *MachineInstr::removeFromParent() { 888 assert(getParent() && "Not embedded in a basic block!"); 889 890 // If it's a bundle then remove the MIs inside the bundle as well. 891 if (isBundle()) { 892 MachineBasicBlock *MBB = getParent(); 893 MachineBasicBlock::instr_iterator MII = *this; ++MII; 894 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 895 while (MII != E && MII->isInsideBundle()) { 896 MachineInstr *MI = &*MII; 897 ++MII; 898 MBB->remove(MI); 899 } 900 } 901 getParent()->remove(this); 902 return this; 903 } 904 905 906 /// eraseFromParent - This method unlinks 'this' from the containing basic 907 /// block, and deletes it. 908 void MachineInstr::eraseFromParent() { 909 assert(getParent() && "Not embedded in a basic block!"); 910 // If it's a bundle then remove the MIs inside the bundle as well. 911 if (isBundle()) { 912 MachineBasicBlock *MBB = getParent(); 913 MachineBasicBlock::instr_iterator MII = *this; ++MII; 914 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 915 while (MII != E && MII->isInsideBundle()) { 916 MachineInstr *MI = &*MII; 917 ++MII; 918 MBB->erase(MI); 919 } 920 } 921 // Erase the individual instruction, which may itself be inside a bundle. 922 getParent()->erase_instr(this); 923 } 924 925 926 /// getNumExplicitOperands - Returns the number of non-implicit operands. 927 /// 928 unsigned MachineInstr::getNumExplicitOperands() const { 929 unsigned NumOperands = MCID->getNumOperands(); 930 if (!MCID->isVariadic()) 931 return NumOperands; 932 933 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 934 const MachineOperand &MO = getOperand(i); 935 if (!MO.isReg() || !MO.isImplicit()) 936 NumOperands++; 937 } 938 return NumOperands; 939 } 940 941 /// isBundled - Return true if this instruction part of a bundle. This is true 942 /// if either itself or its following instruction is marked "InsideBundle". 943 bool MachineInstr::isBundled() const { 944 if (isInsideBundle()) 945 return true; 946 MachineBasicBlock::const_instr_iterator nextMI = this; 947 ++nextMI; 948 return nextMI != Parent->instr_end() && nextMI->isInsideBundle(); 949 } 950 951 bool MachineInstr::isStackAligningInlineAsm() const { 952 if (isInlineAsm()) { 953 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 954 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 955 return true; 956 } 957 return false; 958 } 959 960 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 961 unsigned *GroupNo) const { 962 assert(isInlineAsm() && "Expected an inline asm instruction"); 963 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 964 965 // Ignore queries about the initial operands. 966 if (OpIdx < InlineAsm::MIOp_FirstOperand) 967 return -1; 968 969 unsigned Group = 0; 970 unsigned NumOps; 971 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 972 i += NumOps) { 973 const MachineOperand &FlagMO = getOperand(i); 974 // If we reach the implicit register operands, stop looking. 975 if (!FlagMO.isImm()) 976 return -1; 977 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 978 if (i + NumOps > OpIdx) { 979 if (GroupNo) 980 *GroupNo = Group; 981 return i; 982 } 983 ++Group; 984 } 985 return -1; 986 } 987 988 const TargetRegisterClass* 989 MachineInstr::getRegClassConstraint(unsigned OpIdx, 990 const TargetInstrInfo *TII, 991 const TargetRegisterInfo *TRI) const { 992 assert(getParent() && "Can't have an MBB reference here!"); 993 assert(getParent()->getParent() && "Can't have an MF reference here!"); 994 const MachineFunction &MF = *getParent()->getParent(); 995 996 // Most opcodes have fixed constraints in their MCInstrDesc. 997 if (!isInlineAsm()) 998 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 999 1000 if (!getOperand(OpIdx).isReg()) 1001 return NULL; 1002 1003 // For tied uses on inline asm, get the constraint from the def. 1004 unsigned DefIdx; 1005 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1006 OpIdx = DefIdx; 1007 1008 // Inline asm stores register class constraints in the flag word. 1009 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1010 if (FlagIdx < 0) 1011 return NULL; 1012 1013 unsigned Flag = getOperand(FlagIdx).getImm(); 1014 unsigned RCID; 1015 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 1016 return TRI->getRegClass(RCID); 1017 1018 // Assume that all registers in a memory operand are pointers. 1019 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1020 return TRI->getPointerRegClass(MF); 1021 1022 return NULL; 1023 } 1024 1025 /// getBundleSize - Return the number of instructions inside the MI bundle. 1026 unsigned MachineInstr::getBundleSize() const { 1027 assert(isBundle() && "Expecting a bundle"); 1028 1029 MachineBasicBlock::const_instr_iterator I = *this; 1030 unsigned Size = 0; 1031 while ((++I)->isInsideBundle()) { 1032 ++Size; 1033 } 1034 assert(Size > 1 && "Malformed bundle"); 1035 1036 return Size; 1037 } 1038 1039 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1040 /// the specific register or -1 if it is not found. It further tightens 1041 /// the search criteria to a use that kills the register if isKill is true. 1042 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1043 const TargetRegisterInfo *TRI) const { 1044 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1045 const MachineOperand &MO = getOperand(i); 1046 if (!MO.isReg() || !MO.isUse()) 1047 continue; 1048 unsigned MOReg = MO.getReg(); 1049 if (!MOReg) 1050 continue; 1051 if (MOReg == Reg || 1052 (TRI && 1053 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1054 TargetRegisterInfo::isPhysicalRegister(Reg) && 1055 TRI->isSubRegister(MOReg, Reg))) 1056 if (!isKill || MO.isKill()) 1057 return i; 1058 } 1059 return -1; 1060 } 1061 1062 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1063 /// indicating if this instruction reads or writes Reg. This also considers 1064 /// partial defines. 1065 std::pair<bool,bool> 1066 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1067 SmallVectorImpl<unsigned> *Ops) const { 1068 bool PartDef = false; // Partial redefine. 1069 bool FullDef = false; // Full define. 1070 bool Use = false; 1071 1072 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1073 const MachineOperand &MO = getOperand(i); 1074 if (!MO.isReg() || MO.getReg() != Reg) 1075 continue; 1076 if (Ops) 1077 Ops->push_back(i); 1078 if (MO.isUse()) 1079 Use |= !MO.isUndef(); 1080 else if (MO.getSubReg() && !MO.isUndef()) 1081 // A partial <def,undef> doesn't count as reading the register. 1082 PartDef = true; 1083 else 1084 FullDef = true; 1085 } 1086 // A partial redefine uses Reg unless there is also a full define. 1087 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1088 } 1089 1090 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1091 /// the specified register or -1 if it is not found. If isDead is true, defs 1092 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1093 /// also checks if there is a def of a super-register. 1094 int 1095 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1096 const TargetRegisterInfo *TRI) const { 1097 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1098 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1099 const MachineOperand &MO = getOperand(i); 1100 // Accept regmask operands when Overlap is set. 1101 // Ignore them when looking for a specific def operand (Overlap == false). 1102 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1103 return i; 1104 if (!MO.isReg() || !MO.isDef()) 1105 continue; 1106 unsigned MOReg = MO.getReg(); 1107 bool Found = (MOReg == Reg); 1108 if (!Found && TRI && isPhys && 1109 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1110 if (Overlap) 1111 Found = TRI->regsOverlap(MOReg, Reg); 1112 else 1113 Found = TRI->isSubRegister(MOReg, Reg); 1114 } 1115 if (Found && (!isDead || MO.isDead())) 1116 return i; 1117 } 1118 return -1; 1119 } 1120 1121 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1122 /// operand list that is used to represent the predicate. It returns -1 if 1123 /// none is found. 1124 int MachineInstr::findFirstPredOperandIdx() const { 1125 // Don't call MCID.findFirstPredOperandIdx() because this variant 1126 // is sometimes called on an instruction that's not yet complete, and 1127 // so the number of operands is less than the MCID indicates. In 1128 // particular, the PTX target does this. 1129 const MCInstrDesc &MCID = getDesc(); 1130 if (MCID.isPredicable()) { 1131 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1132 if (MCID.OpInfo[i].isPredicate()) 1133 return i; 1134 } 1135 1136 return -1; 1137 } 1138 1139 /// Mark operands at DefIdx and UseIdx as tied to each other. 1140 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1141 assert(DefIdx < UseIdx && "Tied defs must precede the use"); 1142 MachineOperand &DefMO = getOperand(DefIdx); 1143 MachineOperand &UseMO = getOperand(UseIdx); 1144 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1145 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1146 assert(!DefMO.isTied() && "Def is already tied to another use"); 1147 assert(!UseMO.isTied() && "Use is already tied to another def"); 1148 1149 DefMO.IsTied = true; 1150 UseMO.IsTied = true; 1151 } 1152 1153 /// Given the index of a tied register operand, find the operand it is tied to. 1154 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1155 /// which must exist. 1156 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1157 // It doesn't usually happen, but an instruction can have multiple pairs of 1158 // tied operands. 1159 SmallVector<unsigned, 4> Uses, Defs; 1160 unsigned PairNo = ~0u; 1161 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1162 const MachineOperand &MO = getOperand(i); 1163 if (!MO.isReg() || !MO.isTied()) 1164 continue; 1165 if (MO.isUse()) { 1166 if (i == OpIdx) 1167 PairNo = Uses.size(); 1168 Uses.push_back(i); 1169 } else { 1170 if (i == OpIdx) 1171 PairNo = Defs.size(); 1172 Defs.push_back(i); 1173 } 1174 } 1175 // For each tied use there must be a tied def and vice versa. 1176 assert(Uses.size() == Defs.size() && "Tied uses and defs don't match"); 1177 assert(PairNo < Uses.size() && "OpIdx must be a tied register operand"); 1178 1179 // Find the matching operand. 1180 return (getOperand(OpIdx).isDef() ? Uses : Defs)[PairNo]; 1181 } 1182 1183 /// isRegTiedToUseOperand - Given the index of a register def operand, 1184 /// check if the register def is tied to a source operand, due to either 1185 /// two-address elimination or inline assembly constraints. Returns the 1186 /// first tied use operand index by reference is UseOpIdx is not null. 1187 bool MachineInstr:: 1188 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 1189 if (isInlineAsm()) { 1190 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand); 1191 const MachineOperand &MO = getOperand(DefOpIdx); 1192 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 1193 return false; 1194 // Determine the actual operand index that corresponds to this index. 1195 unsigned DefNo = 0; 1196 int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo); 1197 if (FlagIdx < 0) 1198 return false; 1199 1200 // Which part of the group is DefOpIdx? 1201 unsigned DefPart = DefOpIdx - (FlagIdx + 1); 1202 1203 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); 1204 i != e; ++i) { 1205 const MachineOperand &FMO = getOperand(i); 1206 if (!FMO.isImm()) 1207 continue; 1208 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 1209 continue; 1210 unsigned Idx; 1211 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 1212 Idx == DefNo) { 1213 if (UseOpIdx) 1214 *UseOpIdx = (unsigned)i + 1 + DefPart; 1215 return true; 1216 } 1217 } 1218 return false; 1219 } 1220 1221 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 1222 const MCInstrDesc &MCID = getDesc(); 1223 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 1224 const MachineOperand &MO = getOperand(i); 1225 if (MO.isReg() && MO.isUse() && 1226 MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) { 1227 if (UseOpIdx) 1228 *UseOpIdx = (unsigned)i; 1229 return true; 1230 } 1231 } 1232 return false; 1233 } 1234 1235 /// isRegTiedToDefOperand - Return true if the operand of the specified index 1236 /// is a register use and it is tied to an def operand. It also returns the def 1237 /// operand index by reference. 1238 bool MachineInstr:: 1239 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 1240 if (isInlineAsm()) { 1241 const MachineOperand &MO = getOperand(UseOpIdx); 1242 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 1243 return false; 1244 1245 // Find the flag operand corresponding to UseOpIdx 1246 int FlagIdx = findInlineAsmFlagIdx(UseOpIdx); 1247 if (FlagIdx < 0) 1248 return false; 1249 1250 const MachineOperand &UFMO = getOperand(FlagIdx); 1251 unsigned DefNo; 1252 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 1253 if (!DefOpIdx) 1254 return true; 1255 1256 unsigned DefIdx = InlineAsm::MIOp_FirstOperand; 1257 // Remember to adjust the index. First operand is asm string, second is 1258 // the HasSideEffects and AlignStack bits, then there is a flag for each. 1259 while (DefNo) { 1260 const MachineOperand &FMO = getOperand(DefIdx); 1261 assert(FMO.isImm()); 1262 // Skip over this def. 1263 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 1264 --DefNo; 1265 } 1266 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 1267 return true; 1268 } 1269 return false; 1270 } 1271 1272 const MCInstrDesc &MCID = getDesc(); 1273 if (UseOpIdx >= MCID.getNumOperands()) 1274 return false; 1275 const MachineOperand &MO = getOperand(UseOpIdx); 1276 if (!MO.isReg() || !MO.isUse()) 1277 return false; 1278 int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO); 1279 if (DefIdx == -1) 1280 return false; 1281 if (DefOpIdx) 1282 *DefOpIdx = (unsigned)DefIdx; 1283 return true; 1284 } 1285 1286 /// clearKillInfo - Clears kill flags on all operands. 1287 /// 1288 void MachineInstr::clearKillInfo() { 1289 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1290 MachineOperand &MO = getOperand(i); 1291 if (MO.isReg() && MO.isUse()) 1292 MO.setIsKill(false); 1293 } 1294 } 1295 1296 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1297 /// 1298 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1299 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1300 const MachineOperand &MO = MI->getOperand(i); 1301 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1302 continue; 1303 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1304 MachineOperand &MOp = getOperand(j); 1305 if (!MOp.isIdenticalTo(MO)) 1306 continue; 1307 if (MO.isKill()) 1308 MOp.setIsKill(); 1309 else 1310 MOp.setIsDead(); 1311 break; 1312 } 1313 } 1314 } 1315 1316 /// copyPredicates - Copies predicate operand(s) from MI. 1317 void MachineInstr::copyPredicates(const MachineInstr *MI) { 1318 assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles"); 1319 1320 const MCInstrDesc &MCID = MI->getDesc(); 1321 if (!MCID.isPredicable()) 1322 return; 1323 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1324 if (MCID.OpInfo[i].isPredicate()) { 1325 // Predicated operands must be last operands. 1326 addOperand(MI->getOperand(i)); 1327 } 1328 } 1329 } 1330 1331 void MachineInstr::substituteRegister(unsigned FromReg, 1332 unsigned ToReg, 1333 unsigned SubIdx, 1334 const TargetRegisterInfo &RegInfo) { 1335 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1336 if (SubIdx) 1337 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1338 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1339 MachineOperand &MO = getOperand(i); 1340 if (!MO.isReg() || MO.getReg() != FromReg) 1341 continue; 1342 MO.substPhysReg(ToReg, RegInfo); 1343 } 1344 } else { 1345 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1346 MachineOperand &MO = getOperand(i); 1347 if (!MO.isReg() || MO.getReg() != FromReg) 1348 continue; 1349 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1350 } 1351 } 1352 } 1353 1354 /// isSafeToMove - Return true if it is safe to move this instruction. If 1355 /// SawStore is set to true, it means that there is a store (or call) between 1356 /// the instruction's location and its intended destination. 1357 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1358 AliasAnalysis *AA, 1359 bool &SawStore) const { 1360 // Ignore stuff that we obviously can't move. 1361 // 1362 // Treat volatile loads as stores. This is not strictly necessary for 1363 // volatiles, but it is required for atomic loads. It is now allowed to move 1364 // a load across an atomic load with Ordering > Monotonic. 1365 if (mayStore() || isCall() || 1366 (mayLoad() && hasOrderedMemoryRef())) { 1367 SawStore = true; 1368 return false; 1369 } 1370 1371 if (isLabel() || isDebugValue() || 1372 isTerminator() || hasUnmodeledSideEffects()) 1373 return false; 1374 1375 // See if this instruction does a load. If so, we have to guarantee that the 1376 // loaded value doesn't change between the load and the its intended 1377 // destination. The check for isInvariantLoad gives the targe the chance to 1378 // classify the load as always returning a constant, e.g. a constant pool 1379 // load. 1380 if (mayLoad() && !isInvariantLoad(AA)) 1381 // Otherwise, this is a real load. If there is a store between the load and 1382 // end of block, we can't move it. 1383 return !SawStore; 1384 1385 return true; 1386 } 1387 1388 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1389 /// instruction which defined the specified register instead of copying it. 1390 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1391 AliasAnalysis *AA, 1392 unsigned DstReg) const { 1393 bool SawStore = false; 1394 if (!TII->isTriviallyReMaterializable(this, AA) || 1395 !isSafeToMove(TII, AA, SawStore)) 1396 return false; 1397 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1398 const MachineOperand &MO = getOperand(i); 1399 if (!MO.isReg()) 1400 continue; 1401 // FIXME: For now, do not remat any instruction with register operands. 1402 // Later on, we can loosen the restriction is the register operands have 1403 // not been modified between the def and use. Note, this is different from 1404 // MachineSink because the code is no longer in two-address form (at least 1405 // partially). 1406 if (MO.isUse()) 1407 return false; 1408 else if (!MO.isDead() && MO.getReg() != DstReg) 1409 return false; 1410 } 1411 return true; 1412 } 1413 1414 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1415 /// or volatile memory reference, or if the information describing the memory 1416 /// reference is not available. Return false if it is known to have no ordered 1417 /// memory references. 1418 bool MachineInstr::hasOrderedMemoryRef() const { 1419 // An instruction known never to access memory won't have a volatile access. 1420 if (!mayStore() && 1421 !mayLoad() && 1422 !isCall() && 1423 !hasUnmodeledSideEffects()) 1424 return false; 1425 1426 // Otherwise, if the instruction has no memory reference information, 1427 // conservatively assume it wasn't preserved. 1428 if (memoperands_empty()) 1429 return true; 1430 1431 // Check the memory reference information for ordered references. 1432 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1433 if (!(*I)->isUnordered()) 1434 return true; 1435 1436 return false; 1437 } 1438 1439 /// isInvariantLoad - Return true if this instruction is loading from a 1440 /// location whose value is invariant across the function. For example, 1441 /// loading a value from the constant pool or from the argument area 1442 /// of a function if it does not change. This should only return true of 1443 /// *all* loads the instruction does are invariant (if it does multiple loads). 1444 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1445 // If the instruction doesn't load at all, it isn't an invariant load. 1446 if (!mayLoad()) 1447 return false; 1448 1449 // If the instruction has lost its memoperands, conservatively assume that 1450 // it may not be an invariant load. 1451 if (memoperands_empty()) 1452 return false; 1453 1454 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1455 1456 for (mmo_iterator I = memoperands_begin(), 1457 E = memoperands_end(); I != E; ++I) { 1458 if ((*I)->isVolatile()) return false; 1459 if ((*I)->isStore()) return false; 1460 if ((*I)->isInvariant()) return true; 1461 1462 if (const Value *V = (*I)->getValue()) { 1463 // A load from a constant PseudoSourceValue is invariant. 1464 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1465 if (PSV->isConstant(MFI)) 1466 continue; 1467 // If we have an AliasAnalysis, ask it whether the memory is constant. 1468 if (AA && AA->pointsToConstantMemory( 1469 AliasAnalysis::Location(V, (*I)->getSize(), 1470 (*I)->getTBAAInfo()))) 1471 continue; 1472 } 1473 1474 // Otherwise assume conservatively. 1475 return false; 1476 } 1477 1478 // Everything checks out. 1479 return true; 1480 } 1481 1482 /// isConstantValuePHI - If the specified instruction is a PHI that always 1483 /// merges together the same virtual register, return the register, otherwise 1484 /// return 0. 1485 unsigned MachineInstr::isConstantValuePHI() const { 1486 if (!isPHI()) 1487 return 0; 1488 assert(getNumOperands() >= 3 && 1489 "It's illegal to have a PHI without source operands"); 1490 1491 unsigned Reg = getOperand(1).getReg(); 1492 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1493 if (getOperand(i).getReg() != Reg) 1494 return 0; 1495 return Reg; 1496 } 1497 1498 bool MachineInstr::hasUnmodeledSideEffects() const { 1499 if (hasProperty(MCID::UnmodeledSideEffects)) 1500 return true; 1501 if (isInlineAsm()) { 1502 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1503 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1504 return true; 1505 } 1506 1507 return false; 1508 } 1509 1510 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1511 /// 1512 bool MachineInstr::allDefsAreDead() const { 1513 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1514 const MachineOperand &MO = getOperand(i); 1515 if (!MO.isReg() || MO.isUse()) 1516 continue; 1517 if (!MO.isDead()) 1518 return false; 1519 } 1520 return true; 1521 } 1522 1523 /// copyImplicitOps - Copy implicit register operands from specified 1524 /// instruction to this instruction. 1525 void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1526 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1527 i != e; ++i) { 1528 const MachineOperand &MO = MI->getOperand(i); 1529 if (MO.isReg() && MO.isImplicit()) 1530 addOperand(MO); 1531 } 1532 } 1533 1534 void MachineInstr::dump() const { 1535 dbgs() << " " << *this; 1536 } 1537 1538 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1539 raw_ostream &CommentOS) { 1540 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1541 if (!DL.isUnknown()) { // Print source line info. 1542 DIScope Scope(DL.getScope(Ctx)); 1543 // Omit the directory, because it's likely to be long and uninteresting. 1544 if (Scope.Verify()) 1545 CommentOS << Scope.getFilename(); 1546 else 1547 CommentOS << "<unknown>"; 1548 CommentOS << ':' << DL.getLine(); 1549 if (DL.getCol() != 0) 1550 CommentOS << ':' << DL.getCol(); 1551 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1552 if (!InlinedAtDL.isUnknown()) { 1553 CommentOS << " @[ "; 1554 printDebugLoc(InlinedAtDL, MF, CommentOS); 1555 CommentOS << " ]"; 1556 } 1557 } 1558 } 1559 1560 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1561 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1562 const MachineFunction *MF = 0; 1563 const MachineRegisterInfo *MRI = 0; 1564 if (const MachineBasicBlock *MBB = getParent()) { 1565 MF = MBB->getParent(); 1566 if (!TM && MF) 1567 TM = &MF->getTarget(); 1568 if (MF) 1569 MRI = &MF->getRegInfo(); 1570 } 1571 1572 // Save a list of virtual registers. 1573 SmallVector<unsigned, 8> VirtRegs; 1574 1575 // Print explicitly defined operands on the left of an assignment syntax. 1576 unsigned StartOp = 0, e = getNumOperands(); 1577 for (; StartOp < e && getOperand(StartOp).isReg() && 1578 getOperand(StartOp).isDef() && 1579 !getOperand(StartOp).isImplicit(); 1580 ++StartOp) { 1581 if (StartOp != 0) OS << ", "; 1582 getOperand(StartOp).print(OS, TM); 1583 unsigned Reg = getOperand(StartOp).getReg(); 1584 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1585 VirtRegs.push_back(Reg); 1586 } 1587 1588 if (StartOp != 0) 1589 OS << " = "; 1590 1591 // Print the opcode name. 1592 if (TM && TM->getInstrInfo()) 1593 OS << TM->getInstrInfo()->getName(getOpcode()); 1594 else 1595 OS << "UNKNOWN"; 1596 1597 // Print the rest of the operands. 1598 bool OmittedAnyCallClobbers = false; 1599 bool FirstOp = true; 1600 unsigned AsmDescOp = ~0u; 1601 unsigned AsmOpCount = 0; 1602 1603 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1604 // Print asm string. 1605 OS << " "; 1606 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1607 1608 // Print HasSideEffects, IsAlignStack 1609 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1610 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1611 OS << " [sideeffect]"; 1612 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1613 OS << " [alignstack]"; 1614 1615 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1616 FirstOp = false; 1617 } 1618 1619 1620 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1621 const MachineOperand &MO = getOperand(i); 1622 1623 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1624 VirtRegs.push_back(MO.getReg()); 1625 1626 // Omit call-clobbered registers which aren't used anywhere. This makes 1627 // call instructions much less noisy on targets where calls clobber lots 1628 // of registers. Don't rely on MO.isDead() because we may be called before 1629 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1630 if (MF && isCall() && 1631 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1632 unsigned Reg = MO.getReg(); 1633 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1634 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1635 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1636 bool HasAliasLive = false; 1637 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); 1638 AI.isValid(); ++AI) { 1639 unsigned AliasReg = *AI; 1640 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1641 HasAliasLive = true; 1642 break; 1643 } 1644 } 1645 if (!HasAliasLive) { 1646 OmittedAnyCallClobbers = true; 1647 continue; 1648 } 1649 } 1650 } 1651 } 1652 1653 if (FirstOp) FirstOp = false; else OS << ","; 1654 OS << " "; 1655 if (i < getDesc().NumOperands) { 1656 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1657 if (MCOI.isPredicate()) 1658 OS << "pred:"; 1659 if (MCOI.isOptionalDef()) 1660 OS << "opt:"; 1661 } 1662 if (isDebugValue() && MO.isMetadata()) { 1663 // Pretty print DBG_VALUE instructions. 1664 const MDNode *MD = MO.getMetadata(); 1665 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1666 OS << "!\"" << MDS->getString() << '\"'; 1667 else 1668 MO.print(OS, TM); 1669 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1670 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1671 } else if (i == AsmDescOp && MO.isImm()) { 1672 // Pretty print the inline asm operand descriptor. 1673 OS << '$' << AsmOpCount++; 1674 unsigned Flag = MO.getImm(); 1675 switch (InlineAsm::getKind(Flag)) { 1676 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1677 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1678 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1679 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1680 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1681 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1682 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1683 } 1684 1685 unsigned RCID = 0; 1686 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1687 if (TM) 1688 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1689 else 1690 OS << ":RC" << RCID; 1691 } 1692 1693 unsigned TiedTo = 0; 1694 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1695 OS << " tiedto:$" << TiedTo; 1696 1697 OS << ']'; 1698 1699 // Compute the index of the next operand descriptor. 1700 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1701 } else 1702 MO.print(OS, TM); 1703 } 1704 1705 // Briefly indicate whether any call clobbers were omitted. 1706 if (OmittedAnyCallClobbers) { 1707 if (!FirstOp) OS << ","; 1708 OS << " ..."; 1709 } 1710 1711 bool HaveSemi = false; 1712 if (Flags) { 1713 if (!HaveSemi) OS << ";"; HaveSemi = true; 1714 OS << " flags: "; 1715 1716 if (Flags & FrameSetup) 1717 OS << "FrameSetup"; 1718 } 1719 1720 if (!memoperands_empty()) { 1721 if (!HaveSemi) OS << ";"; HaveSemi = true; 1722 1723 OS << " mem:"; 1724 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1725 i != e; ++i) { 1726 OS << **i; 1727 if (llvm::next(i) != e) 1728 OS << " "; 1729 } 1730 } 1731 1732 // Print the regclass of any virtual registers encountered. 1733 if (MRI && !VirtRegs.empty()) { 1734 if (!HaveSemi) OS << ";"; HaveSemi = true; 1735 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1736 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1737 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1738 for (unsigned j = i+1; j != VirtRegs.size();) { 1739 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1740 ++j; 1741 continue; 1742 } 1743 if (VirtRegs[i] != VirtRegs[j]) 1744 OS << "," << PrintReg(VirtRegs[j]); 1745 VirtRegs.erase(VirtRegs.begin()+j); 1746 } 1747 } 1748 } 1749 1750 // Print debug location information. 1751 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1752 if (!HaveSemi) OS << ";"; HaveSemi = true; 1753 DIVariable DV(getOperand(e - 1).getMetadata()); 1754 OS << " line no:" << DV.getLineNumber(); 1755 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1756 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1757 if (!InlinedAtDL.isUnknown()) { 1758 OS << " inlined @[ "; 1759 printDebugLoc(InlinedAtDL, MF, OS); 1760 OS << " ]"; 1761 } 1762 } 1763 } else if (!debugLoc.isUnknown() && MF) { 1764 if (!HaveSemi) OS << ";"; HaveSemi = true; 1765 OS << " dbg:"; 1766 printDebugLoc(debugLoc, MF, OS); 1767 } 1768 1769 OS << '\n'; 1770 } 1771 1772 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1773 const TargetRegisterInfo *RegInfo, 1774 bool AddIfNotFound) { 1775 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1776 bool hasAliases = isPhysReg && 1777 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1778 bool Found = false; 1779 SmallVector<unsigned,4> DeadOps; 1780 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1781 MachineOperand &MO = getOperand(i); 1782 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1783 continue; 1784 unsigned Reg = MO.getReg(); 1785 if (!Reg) 1786 continue; 1787 1788 if (Reg == IncomingReg) { 1789 if (!Found) { 1790 if (MO.isKill()) 1791 // The register is already marked kill. 1792 return true; 1793 if (isPhysReg && isRegTiedToDefOperand(i)) 1794 // Two-address uses of physregs must not be marked kill. 1795 return true; 1796 MO.setIsKill(); 1797 Found = true; 1798 } 1799 } else if (hasAliases && MO.isKill() && 1800 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1801 // A super-register kill already exists. 1802 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1803 return true; 1804 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1805 DeadOps.push_back(i); 1806 } 1807 } 1808 1809 // Trim unneeded kill operands. 1810 while (!DeadOps.empty()) { 1811 unsigned OpIdx = DeadOps.back(); 1812 if (getOperand(OpIdx).isImplicit()) 1813 RemoveOperand(OpIdx); 1814 else 1815 getOperand(OpIdx).setIsKill(false); 1816 DeadOps.pop_back(); 1817 } 1818 1819 // If not found, this means an alias of one of the operands is killed. Add a 1820 // new implicit operand if required. 1821 if (!Found && AddIfNotFound) { 1822 addOperand(MachineOperand::CreateReg(IncomingReg, 1823 false /*IsDef*/, 1824 true /*IsImp*/, 1825 true /*IsKill*/)); 1826 return true; 1827 } 1828 return Found; 1829 } 1830 1831 void MachineInstr::clearRegisterKills(unsigned Reg, 1832 const TargetRegisterInfo *RegInfo) { 1833 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1834 RegInfo = 0; 1835 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1836 MachineOperand &MO = getOperand(i); 1837 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1838 continue; 1839 unsigned OpReg = MO.getReg(); 1840 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1841 MO.setIsKill(false); 1842 } 1843 } 1844 1845 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1846 const TargetRegisterInfo *RegInfo, 1847 bool AddIfNotFound) { 1848 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1849 bool hasAliases = isPhysReg && 1850 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1851 bool Found = false; 1852 SmallVector<unsigned,4> DeadOps; 1853 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1854 MachineOperand &MO = getOperand(i); 1855 if (!MO.isReg() || !MO.isDef()) 1856 continue; 1857 unsigned Reg = MO.getReg(); 1858 if (!Reg) 1859 continue; 1860 1861 if (Reg == IncomingReg) { 1862 MO.setIsDead(); 1863 Found = true; 1864 } else if (hasAliases && MO.isDead() && 1865 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1866 // There exists a super-register that's marked dead. 1867 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1868 return true; 1869 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1870 DeadOps.push_back(i); 1871 } 1872 } 1873 1874 // Trim unneeded dead operands. 1875 while (!DeadOps.empty()) { 1876 unsigned OpIdx = DeadOps.back(); 1877 if (getOperand(OpIdx).isImplicit()) 1878 RemoveOperand(OpIdx); 1879 else 1880 getOperand(OpIdx).setIsDead(false); 1881 DeadOps.pop_back(); 1882 } 1883 1884 // If not found, this means an alias of one of the operands is dead. Add a 1885 // new implicit operand if required. 1886 if (Found || !AddIfNotFound) 1887 return Found; 1888 1889 addOperand(MachineOperand::CreateReg(IncomingReg, 1890 true /*IsDef*/, 1891 true /*IsImp*/, 1892 false /*IsKill*/, 1893 true /*IsDead*/)); 1894 return true; 1895 } 1896 1897 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1898 const TargetRegisterInfo *RegInfo) { 1899 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1900 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1901 if (MO) 1902 return; 1903 } else { 1904 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1905 const MachineOperand &MO = getOperand(i); 1906 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1907 MO.getSubReg() == 0) 1908 return; 1909 } 1910 } 1911 addOperand(MachineOperand::CreateReg(IncomingReg, 1912 true /*IsDef*/, 1913 true /*IsImp*/)); 1914 } 1915 1916 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1917 const TargetRegisterInfo &TRI) { 1918 bool HasRegMask = false; 1919 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1920 MachineOperand &MO = getOperand(i); 1921 if (MO.isRegMask()) { 1922 HasRegMask = true; 1923 continue; 1924 } 1925 if (!MO.isReg() || !MO.isDef()) continue; 1926 unsigned Reg = MO.getReg(); 1927 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1928 bool Dead = true; 1929 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1930 I != E; ++I) 1931 if (TRI.regsOverlap(*I, Reg)) { 1932 Dead = false; 1933 break; 1934 } 1935 // If there are no uses, including partial uses, the def is dead. 1936 if (Dead) MO.setIsDead(); 1937 } 1938 1939 // This is a call with a register mask operand. 1940 // Mask clobbers are always dead, so add defs for the non-dead defines. 1941 if (HasRegMask) 1942 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1943 I != E; ++I) 1944 addRegisterDefined(*I, &TRI); 1945 } 1946 1947 unsigned 1948 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1949 // Build up a buffer of hash code components. 1950 SmallVector<size_t, 8> HashComponents; 1951 HashComponents.reserve(MI->getNumOperands() + 1); 1952 HashComponents.push_back(MI->getOpcode()); 1953 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1954 const MachineOperand &MO = MI->getOperand(i); 1955 if (MO.isReg() && MO.isDef() && 1956 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1957 continue; // Skip virtual register defs. 1958 1959 HashComponents.push_back(hash_value(MO)); 1960 } 1961 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1962 } 1963 1964 void MachineInstr::emitError(StringRef Msg) const { 1965 // Find the source location cookie. 1966 unsigned LocCookie = 0; 1967 const MDNode *LocMD = 0; 1968 for (unsigned i = getNumOperands(); i != 0; --i) { 1969 if (getOperand(i-1).isMetadata() && 1970 (LocMD = getOperand(i-1).getMetadata()) && 1971 LocMD->getNumOperands() != 0) { 1972 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1973 LocCookie = CI->getZExtValue(); 1974 break; 1975 } 1976 } 1977 } 1978 1979 if (const MachineBasicBlock *MBB = getParent()) 1980 if (const MachineFunction *MF = MBB->getParent()) 1981 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1982 report_fatal_error(Msg); 1983 } 1984