1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Assembly/Writer.h" 19 #include "llvm/CodeGen/MachineConstantPool.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/DebugInfo.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/MC/MCInstrDesc.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetRegisterInfo.h" 43 using namespace llvm; 44 45 //===----------------------------------------------------------------------===// 46 // MachineOperand Implementation 47 //===----------------------------------------------------------------------===// 48 49 void MachineOperand::setReg(unsigned Reg) { 50 if (getReg() == Reg) return; // No change. 51 52 // Otherwise, we have to change the register. If this operand is embedded 53 // into a machine function, we need to update the old and new register's 54 // use/def lists. 55 if (MachineInstr *MI = getParent()) 56 if (MachineBasicBlock *MBB = MI->getParent()) 57 if (MachineFunction *MF = MBB->getParent()) { 58 MachineRegisterInfo &MRI = MF->getRegInfo(); 59 MRI.removeRegOperandFromUseList(this); 60 SmallContents.RegNo = Reg; 61 MRI.addRegOperandToUseList(this); 62 return; 63 } 64 65 // Otherwise, just change the register, no problem. :) 66 SmallContents.RegNo = Reg; 67 } 68 69 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 70 const TargetRegisterInfo &TRI) { 71 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 72 if (SubIdx && getSubReg()) 73 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 74 setReg(Reg); 75 if (SubIdx) 76 setSubReg(SubIdx); 77 } 78 79 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 80 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 81 if (getSubReg()) { 82 Reg = TRI.getSubReg(Reg, getSubReg()); 83 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 84 // That won't happen in legal code. 85 setSubReg(0); 86 } 87 setReg(Reg); 88 } 89 90 /// Change a def to a use, or a use to a def. 91 void MachineOperand::setIsDef(bool Val) { 92 assert(isReg() && "Wrong MachineOperand accessor"); 93 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 94 if (IsDef == Val) 95 return; 96 // MRI may keep uses and defs in different list positions. 97 if (MachineInstr *MI = getParent()) 98 if (MachineBasicBlock *MBB = MI->getParent()) 99 if (MachineFunction *MF = MBB->getParent()) { 100 MachineRegisterInfo &MRI = MF->getRegInfo(); 101 MRI.removeRegOperandFromUseList(this); 102 IsDef = Val; 103 MRI.addRegOperandToUseList(this); 104 return; 105 } 106 IsDef = Val; 107 } 108 109 /// ChangeToImmediate - Replace this operand with a new immediate operand of 110 /// the specified value. If an operand is known to be an immediate already, 111 /// the setImm method should be used. 112 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 113 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 114 // If this operand is currently a register operand, and if this is in a 115 // function, deregister the operand from the register's use/def list. 116 if (isReg() && isOnRegUseList()) 117 if (MachineInstr *MI = getParent()) 118 if (MachineBasicBlock *MBB = MI->getParent()) 119 if (MachineFunction *MF = MBB->getParent()) 120 MF->getRegInfo().removeRegOperandFromUseList(this); 121 122 OpKind = MO_Immediate; 123 Contents.ImmVal = ImmVal; 124 } 125 126 /// ChangeToRegister - Replace this operand with a new register operand of 127 /// the specified value. If an operand is known to be an register already, 128 /// the setReg method should be used. 129 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 130 bool isKill, bool isDead, bool isUndef, 131 bool isDebug) { 132 MachineRegisterInfo *RegInfo = 0; 133 if (MachineInstr *MI = getParent()) 134 if (MachineBasicBlock *MBB = MI->getParent()) 135 if (MachineFunction *MF = MBB->getParent()) 136 RegInfo = &MF->getRegInfo(); 137 // If this operand is already a register operand, remove it from the 138 // register's use/def lists. 139 bool WasReg = isReg(); 140 if (RegInfo && WasReg) 141 RegInfo->removeRegOperandFromUseList(this); 142 143 // Change this to a register and set the reg#. 144 OpKind = MO_Register; 145 SmallContents.RegNo = Reg; 146 SubReg = 0; 147 IsDef = isDef; 148 IsImp = isImp; 149 IsKill = isKill; 150 IsDead = isDead; 151 IsUndef = isUndef; 152 IsInternalRead = false; 153 IsEarlyClobber = false; 154 IsDebug = isDebug; 155 // Ensure isOnRegUseList() returns false. 156 Contents.Reg.Prev = 0; 157 // Preserve the tie when the operand was already a register. 158 if (!WasReg) 159 TiedTo = 0; 160 161 // If this operand is embedded in a function, add the operand to the 162 // register's use/def list. 163 if (RegInfo) 164 RegInfo->addRegOperandToUseList(this); 165 } 166 167 /// isIdenticalTo - Return true if this operand is identical to the specified 168 /// operand. Note that this should stay in sync with the hash_value overload 169 /// below. 170 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 171 if (getType() != Other.getType() || 172 getTargetFlags() != Other.getTargetFlags()) 173 return false; 174 175 switch (getType()) { 176 case MachineOperand::MO_Register: 177 return getReg() == Other.getReg() && isDef() == Other.isDef() && 178 getSubReg() == Other.getSubReg(); 179 case MachineOperand::MO_Immediate: 180 return getImm() == Other.getImm(); 181 case MachineOperand::MO_CImmediate: 182 return getCImm() == Other.getCImm(); 183 case MachineOperand::MO_FPImmediate: 184 return getFPImm() == Other.getFPImm(); 185 case MachineOperand::MO_MachineBasicBlock: 186 return getMBB() == Other.getMBB(); 187 case MachineOperand::MO_FrameIndex: 188 return getIndex() == Other.getIndex(); 189 case MachineOperand::MO_ConstantPoolIndex: 190 case MachineOperand::MO_TargetIndex: 191 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 192 case MachineOperand::MO_JumpTableIndex: 193 return getIndex() == Other.getIndex(); 194 case MachineOperand::MO_GlobalAddress: 195 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 196 case MachineOperand::MO_ExternalSymbol: 197 return !strcmp(getSymbolName(), Other.getSymbolName()) && 198 getOffset() == Other.getOffset(); 199 case MachineOperand::MO_BlockAddress: 200 return getBlockAddress() == Other.getBlockAddress() && 201 getOffset() == Other.getOffset(); 202 case MO_RegisterMask: 203 return getRegMask() == Other.getRegMask(); 204 case MachineOperand::MO_MCSymbol: 205 return getMCSymbol() == Other.getMCSymbol(); 206 case MachineOperand::MO_Metadata: 207 return getMetadata() == Other.getMetadata(); 208 } 209 llvm_unreachable("Invalid machine operand type"); 210 } 211 212 // Note: this must stay exactly in sync with isIdenticalTo above. 213 hash_code llvm::hash_value(const MachineOperand &MO) { 214 switch (MO.getType()) { 215 case MachineOperand::MO_Register: 216 // Register operands don't have target flags. 217 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 218 case MachineOperand::MO_Immediate: 219 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 220 case MachineOperand::MO_CImmediate: 221 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 222 case MachineOperand::MO_FPImmediate: 223 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 224 case MachineOperand::MO_MachineBasicBlock: 225 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 226 case MachineOperand::MO_FrameIndex: 227 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 228 case MachineOperand::MO_ConstantPoolIndex: 229 case MachineOperand::MO_TargetIndex: 230 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 231 MO.getOffset()); 232 case MachineOperand::MO_JumpTableIndex: 233 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 234 case MachineOperand::MO_ExternalSymbol: 235 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 236 MO.getSymbolName()); 237 case MachineOperand::MO_GlobalAddress: 238 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 239 MO.getOffset()); 240 case MachineOperand::MO_BlockAddress: 241 return hash_combine(MO.getType(), MO.getTargetFlags(), 242 MO.getBlockAddress(), MO.getOffset()); 243 case MachineOperand::MO_RegisterMask: 244 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 245 case MachineOperand::MO_Metadata: 246 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 247 case MachineOperand::MO_MCSymbol: 248 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 249 } 250 llvm_unreachable("Invalid machine operand type"); 251 } 252 253 /// print - Print the specified machine operand. 254 /// 255 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 256 // If the instruction is embedded into a basic block, we can find the 257 // target info for the instruction. 258 if (!TM) 259 if (const MachineInstr *MI = getParent()) 260 if (const MachineBasicBlock *MBB = MI->getParent()) 261 if (const MachineFunction *MF = MBB->getParent()) 262 TM = &MF->getTarget(); 263 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 264 265 switch (getType()) { 266 case MachineOperand::MO_Register: 267 OS << PrintReg(getReg(), TRI, getSubReg()); 268 269 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 270 isInternalRead() || isEarlyClobber() || isTied()) { 271 OS << '<'; 272 bool NeedComma = false; 273 if (isDef()) { 274 if (NeedComma) OS << ','; 275 if (isEarlyClobber()) 276 OS << "earlyclobber,"; 277 if (isImplicit()) 278 OS << "imp-"; 279 OS << "def"; 280 NeedComma = true; 281 // <def,read-undef> only makes sense when getSubReg() is set. 282 // Don't clutter the output otherwise. 283 if (isUndef() && getSubReg()) 284 OS << ",read-undef"; 285 } else if (isImplicit()) { 286 OS << "imp-use"; 287 NeedComma = true; 288 } 289 290 if (isKill()) { 291 if (NeedComma) OS << ','; 292 OS << "kill"; 293 NeedComma = true; 294 } 295 if (isDead()) { 296 if (NeedComma) OS << ','; 297 OS << "dead"; 298 NeedComma = true; 299 } 300 if (isUndef() && isUse()) { 301 if (NeedComma) OS << ','; 302 OS << "undef"; 303 NeedComma = true; 304 } 305 if (isInternalRead()) { 306 if (NeedComma) OS << ','; 307 OS << "internal"; 308 NeedComma = true; 309 } 310 if (isTied()) { 311 if (NeedComma) OS << ','; 312 OS << "tied"; 313 if (TiedTo != 15) 314 OS << unsigned(TiedTo - 1); 315 NeedComma = true; 316 } 317 OS << '>'; 318 } 319 break; 320 case MachineOperand::MO_Immediate: 321 OS << getImm(); 322 break; 323 case MachineOperand::MO_CImmediate: 324 getCImm()->getValue().print(OS, false); 325 break; 326 case MachineOperand::MO_FPImmediate: 327 if (getFPImm()->getType()->isFloatTy()) 328 OS << getFPImm()->getValueAPF().convertToFloat(); 329 else 330 OS << getFPImm()->getValueAPF().convertToDouble(); 331 break; 332 case MachineOperand::MO_MachineBasicBlock: 333 OS << "<BB#" << getMBB()->getNumber() << ">"; 334 break; 335 case MachineOperand::MO_FrameIndex: 336 OS << "<fi#" << getIndex() << '>'; 337 break; 338 case MachineOperand::MO_ConstantPoolIndex: 339 OS << "<cp#" << getIndex(); 340 if (getOffset()) OS << "+" << getOffset(); 341 OS << '>'; 342 break; 343 case MachineOperand::MO_TargetIndex: 344 OS << "<ti#" << getIndex(); 345 if (getOffset()) OS << "+" << getOffset(); 346 OS << '>'; 347 break; 348 case MachineOperand::MO_JumpTableIndex: 349 OS << "<jt#" << getIndex() << '>'; 350 break; 351 case MachineOperand::MO_GlobalAddress: 352 OS << "<ga:"; 353 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 354 if (getOffset()) OS << "+" << getOffset(); 355 OS << '>'; 356 break; 357 case MachineOperand::MO_ExternalSymbol: 358 OS << "<es:" << getSymbolName(); 359 if (getOffset()) OS << "+" << getOffset(); 360 OS << '>'; 361 break; 362 case MachineOperand::MO_BlockAddress: 363 OS << '<'; 364 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 365 if (getOffset()) OS << "+" << getOffset(); 366 OS << '>'; 367 break; 368 case MachineOperand::MO_RegisterMask: 369 OS << "<regmask>"; 370 break; 371 case MachineOperand::MO_Metadata: 372 OS << '<'; 373 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 374 OS << '>'; 375 break; 376 case MachineOperand::MO_MCSymbol: 377 OS << "<MCSym=" << *getMCSymbol() << '>'; 378 break; 379 } 380 381 if (unsigned TF = getTargetFlags()) 382 OS << "[TF=" << TF << ']'; 383 } 384 385 //===----------------------------------------------------------------------===// 386 // MachineMemOperand Implementation 387 //===----------------------------------------------------------------------===// 388 389 /// getAddrSpace - Return the LLVM IR address space number that this pointer 390 /// points into. 391 unsigned MachinePointerInfo::getAddrSpace() const { 392 if (V == 0) return 0; 393 return cast<PointerType>(V->getType())->getAddressSpace(); 394 } 395 396 /// getConstantPool - Return a MachinePointerInfo record that refers to the 397 /// constant pool. 398 MachinePointerInfo MachinePointerInfo::getConstantPool() { 399 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 400 } 401 402 /// getFixedStack - Return a MachinePointerInfo record that refers to the 403 /// the specified FrameIndex. 404 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 405 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 406 } 407 408 MachinePointerInfo MachinePointerInfo::getJumpTable() { 409 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 410 } 411 412 MachinePointerInfo MachinePointerInfo::getGOT() { 413 return MachinePointerInfo(PseudoSourceValue::getGOT()); 414 } 415 416 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 417 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 418 } 419 420 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 421 uint64_t s, unsigned int a, 422 const MDNode *TBAAInfo, 423 const MDNode *Ranges) 424 : PtrInfo(ptrinfo), Size(s), 425 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 426 TBAAInfo(TBAAInfo), Ranges(Ranges) { 427 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 428 "invalid pointer value"); 429 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 430 assert((isLoad() || isStore()) && "Not a load/store!"); 431 } 432 433 /// Profile - Gather unique data for the object. 434 /// 435 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 436 ID.AddInteger(getOffset()); 437 ID.AddInteger(Size); 438 ID.AddPointer(getValue()); 439 ID.AddInteger(Flags); 440 } 441 442 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 443 // The Value and Offset may differ due to CSE. But the flags and size 444 // should be the same. 445 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 446 assert(MMO->getSize() == getSize() && "Size mismatch!"); 447 448 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 449 // Update the alignment value. 450 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 451 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 452 // Also update the base and offset, because the new alignment may 453 // not be applicable with the old ones. 454 PtrInfo = MMO->PtrInfo; 455 } 456 } 457 458 /// getAlignment - Return the minimum known alignment in bytes of the 459 /// actual memory reference. 460 uint64_t MachineMemOperand::getAlignment() const { 461 return MinAlign(getBaseAlignment(), getOffset()); 462 } 463 464 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 465 assert((MMO.isLoad() || MMO.isStore()) && 466 "SV has to be a load, store or both."); 467 468 if (MMO.isVolatile()) 469 OS << "Volatile "; 470 471 if (MMO.isLoad()) 472 OS << "LD"; 473 if (MMO.isStore()) 474 OS << "ST"; 475 OS << MMO.getSize(); 476 477 // Print the address information. 478 OS << "["; 479 if (!MMO.getValue()) 480 OS << "<unknown>"; 481 else 482 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 483 484 // If the alignment of the memory reference itself differs from the alignment 485 // of the base pointer, print the base alignment explicitly, next to the base 486 // pointer. 487 if (MMO.getBaseAlignment() != MMO.getAlignment()) 488 OS << "(align=" << MMO.getBaseAlignment() << ")"; 489 490 if (MMO.getOffset() != 0) 491 OS << "+" << MMO.getOffset(); 492 OS << "]"; 493 494 // Print the alignment of the reference. 495 if (MMO.getBaseAlignment() != MMO.getAlignment() || 496 MMO.getBaseAlignment() != MMO.getSize()) 497 OS << "(align=" << MMO.getAlignment() << ")"; 498 499 // Print TBAA info. 500 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 501 OS << "(tbaa="; 502 if (TBAAInfo->getNumOperands() > 0) 503 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 504 else 505 OS << "<unknown>"; 506 OS << ")"; 507 } 508 509 // Print nontemporal info. 510 if (MMO.isNonTemporal()) 511 OS << "(nontemporal)"; 512 513 return OS; 514 } 515 516 //===----------------------------------------------------------------------===// 517 // MachineInstr Implementation 518 //===----------------------------------------------------------------------===// 519 520 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 521 if (MCID->ImplicitDefs) 522 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 523 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 524 if (MCID->ImplicitUses) 525 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 526 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 527 } 528 529 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 530 /// implicit operands. It reserves space for the number of operands specified by 531 /// the MCInstrDesc. 532 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 533 const DebugLoc dl, bool NoImp) 534 : MCID(&tid), Parent(0), Operands(0), NumOperands(0), 535 Flags(0), AsmPrinterFlags(0), 536 NumMemRefs(0), MemRefs(0), debugLoc(dl) { 537 // Reserve space for the expected number of operands. 538 if (unsigned NumOps = MCID->getNumOperands() + 539 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 540 CapOperands = OperandCapacity::get(NumOps); 541 Operands = MF.allocateOperandArray(CapOperands); 542 } 543 544 if (!NoImp) 545 addImplicitDefUseOperands(MF); 546 } 547 548 /// MachineInstr ctor - Copies MachineInstr arg exactly 549 /// 550 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 551 : MCID(&MI.getDesc()), Parent(0), Operands(0), NumOperands(0), 552 Flags(0), AsmPrinterFlags(0), 553 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 554 debugLoc(MI.getDebugLoc()) { 555 CapOperands = OperandCapacity::get(MI.getNumOperands()); 556 Operands = MF.allocateOperandArray(CapOperands); 557 558 // Copy operands. 559 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 560 addOperand(MF, MI.getOperand(i)); 561 562 // Copy all the sensible flags. 563 setFlags(MI.Flags); 564 } 565 566 /// getRegInfo - If this instruction is embedded into a MachineFunction, 567 /// return the MachineRegisterInfo object for the current function, otherwise 568 /// return null. 569 MachineRegisterInfo *MachineInstr::getRegInfo() { 570 if (MachineBasicBlock *MBB = getParent()) 571 return &MBB->getParent()->getRegInfo(); 572 return 0; 573 } 574 575 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 576 /// this instruction from their respective use lists. This requires that the 577 /// operands already be on their use lists. 578 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 579 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 580 if (Operands[i].isReg()) 581 MRI.removeRegOperandFromUseList(&Operands[i]); 582 } 583 584 /// AddRegOperandsToUseLists - Add all of the register operands in 585 /// this instruction from their respective use lists. This requires that the 586 /// operands not be on their use lists yet. 587 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 588 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 589 if (Operands[i].isReg()) 590 MRI.addRegOperandToUseList(&Operands[i]); 591 } 592 593 void MachineInstr::addOperand(const MachineOperand &Op) { 594 MachineBasicBlock *MBB = getParent(); 595 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 596 MachineFunction *MF = MBB->getParent(); 597 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 598 addOperand(*MF, Op); 599 } 600 601 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 602 /// ranges. If MRI is non-null also update use-def chains. 603 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 604 unsigned NumOps, MachineRegisterInfo *MRI) { 605 if (MRI) 606 return MRI->moveOperands(Dst, Src, NumOps); 607 608 // Here it would be convenient to call memmove, so that isn't allowed because 609 // MachineOperand has a constructor and so isn't a POD type. 610 if (Dst < Src) 611 for (unsigned i = 0; i != NumOps; ++i) 612 new (Dst + i) MachineOperand(Src[i]); 613 else 614 for (unsigned i = NumOps; i ; --i) 615 new (Dst + i - 1) MachineOperand(Src[i - 1]); 616 } 617 618 /// addOperand - Add the specified operand to the instruction. If it is an 619 /// implicit operand, it is added to the end of the operand list. If it is 620 /// an explicit operand it is added at the end of the explicit operand list 621 /// (before the first implicit operand). 622 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 623 assert(MCID && "Cannot add operands before providing an instr descriptor"); 624 625 // Check if we're adding one of our existing operands. 626 if (&Op >= Operands && &Op < Operands + NumOperands) { 627 // This is unusual: MI->addOperand(MI->getOperand(i)). 628 // If adding Op requires reallocating or moving existing operands around, 629 // the Op reference could go stale. Support it by copying Op. 630 MachineOperand CopyOp(Op); 631 return addOperand(MF, CopyOp); 632 } 633 634 // Find the insert location for the new operand. Implicit registers go at 635 // the end, everything else goes before the implicit regs. 636 // 637 // FIXME: Allow mixed explicit and implicit operands on inline asm. 638 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 639 // implicit-defs, but they must not be moved around. See the FIXME in 640 // InstrEmitter.cpp. 641 unsigned OpNo = getNumOperands(); 642 bool isImpReg = Op.isReg() && Op.isImplicit(); 643 if (!isImpReg && !isInlineAsm()) { 644 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 645 --OpNo; 646 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 647 } 648 } 649 650 // OpNo now points as the desired insertion point. Unless this is a variadic 651 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 652 // RegMask operands go between the explicit and implicit operands. 653 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 654 OpNo < MCID->getNumOperands()) && 655 "Trying to add an operand to a machine instr that is already done!"); 656 657 MachineRegisterInfo *MRI = getRegInfo(); 658 659 // Determine if the Operands array needs to be reallocated. 660 // Save the old capacity and operand array. 661 OperandCapacity OldCap = CapOperands; 662 MachineOperand *OldOperands = Operands; 663 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 664 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 665 Operands = MF.allocateOperandArray(CapOperands); 666 // Move the operands before the insertion point. 667 if (OpNo) 668 moveOperands(Operands, OldOperands, OpNo, MRI); 669 } 670 671 // Move the operands following the insertion point. 672 if (OpNo != NumOperands) 673 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 674 MRI); 675 ++NumOperands; 676 677 // Deallocate the old operand array. 678 if (OldOperands != Operands && OldOperands) 679 MF.deallocateOperandArray(OldCap, OldOperands); 680 681 // Copy Op into place. It still needs to be inserted into the MRI use lists. 682 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 683 NewMO->ParentMI = this; 684 685 // When adding a register operand, tell MRI about it. 686 if (NewMO->isReg()) { 687 // Ensure isOnRegUseList() returns false, regardless of Op's status. 688 NewMO->Contents.Reg.Prev = 0; 689 // Ignore existing ties. This is not a property that can be copied. 690 NewMO->TiedTo = 0; 691 // Add the new operand to MRI, but only for instructions in an MBB. 692 if (MRI) 693 MRI->addRegOperandToUseList(NewMO); 694 // The MCID operand information isn't accurate until we start adding 695 // explicit operands. The implicit operands are added first, then the 696 // explicits are inserted before them. 697 if (!isImpReg) { 698 // Tie uses to defs as indicated in MCInstrDesc. 699 if (NewMO->isUse()) { 700 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 701 if (DefIdx != -1) 702 tieOperands(DefIdx, OpNo); 703 } 704 // If the register operand is flagged as early, mark the operand as such. 705 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 706 NewMO->setIsEarlyClobber(true); 707 } 708 } 709 } 710 711 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 712 /// fewer operand than it started with. 713 /// 714 void MachineInstr::RemoveOperand(unsigned OpNo) { 715 assert(OpNo < getNumOperands() && "Invalid operand number"); 716 untieRegOperand(OpNo); 717 718 #ifndef NDEBUG 719 // Moving tied operands would break the ties. 720 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 721 if (Operands[i].isReg()) 722 assert(!Operands[i].isTied() && "Cannot move tied operands"); 723 #endif 724 725 MachineRegisterInfo *MRI = getRegInfo(); 726 if (MRI && Operands[OpNo].isReg()) 727 MRI->removeRegOperandFromUseList(Operands + OpNo); 728 729 // Don't call the MachineOperand destructor. A lot of this code depends on 730 // MachineOperand having a trivial destructor anyway, and adding a call here 731 // wouldn't make it 'destructor-correct'. 732 733 if (unsigned N = NumOperands - 1 - OpNo) 734 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 735 --NumOperands; 736 } 737 738 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 739 /// This function should be used only occasionally. The setMemRefs function 740 /// is the primary method for setting up a MachineInstr's MemRefs list. 741 void MachineInstr::addMemOperand(MachineFunction &MF, 742 MachineMemOperand *MO) { 743 mmo_iterator OldMemRefs = MemRefs; 744 unsigned OldNumMemRefs = NumMemRefs; 745 746 unsigned NewNum = NumMemRefs + 1; 747 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 748 749 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 750 NewMemRefs[NewNum - 1] = MO; 751 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 752 } 753 754 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 755 const MachineBasicBlock *MBB = getParent(); 756 MachineBasicBlock::const_instr_iterator MII = *this; ++MII; 757 while (MII != MBB->end() && MII->isInsideBundle()) { 758 if (MII->getDesc().getFlags() & Mask) { 759 if (Type == AnyInBundle) 760 return true; 761 } else { 762 if (Type == AllInBundle) 763 return false; 764 } 765 ++MII; 766 } 767 768 return Type == AllInBundle; 769 } 770 771 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 772 MICheckType Check) const { 773 // If opcodes or number of operands are not the same then the two 774 // instructions are obviously not identical. 775 if (Other->getOpcode() != getOpcode() || 776 Other->getNumOperands() != getNumOperands()) 777 return false; 778 779 if (isBundle()) { 780 // Both instructions are bundles, compare MIs inside the bundle. 781 MachineBasicBlock::const_instr_iterator I1 = *this; 782 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 783 MachineBasicBlock::const_instr_iterator I2 = *Other; 784 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 785 while (++I1 != E1 && I1->isInsideBundle()) { 786 ++I2; 787 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 788 return false; 789 } 790 } 791 792 // Check operands to make sure they match. 793 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 794 const MachineOperand &MO = getOperand(i); 795 const MachineOperand &OMO = Other->getOperand(i); 796 if (!MO.isReg()) { 797 if (!MO.isIdenticalTo(OMO)) 798 return false; 799 continue; 800 } 801 802 // Clients may or may not want to ignore defs when testing for equality. 803 // For example, machine CSE pass only cares about finding common 804 // subexpressions, so it's safe to ignore virtual register defs. 805 if (MO.isDef()) { 806 if (Check == IgnoreDefs) 807 continue; 808 else if (Check == IgnoreVRegDefs) { 809 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 810 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 811 if (MO.getReg() != OMO.getReg()) 812 return false; 813 } else { 814 if (!MO.isIdenticalTo(OMO)) 815 return false; 816 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 817 return false; 818 } 819 } else { 820 if (!MO.isIdenticalTo(OMO)) 821 return false; 822 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 823 return false; 824 } 825 } 826 // If DebugLoc does not match then two dbg.values are not identical. 827 if (isDebugValue()) 828 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 829 && getDebugLoc() != Other->getDebugLoc()) 830 return false; 831 return true; 832 } 833 834 MachineInstr *MachineInstr::removeFromParent() { 835 assert(getParent() && "Not embedded in a basic block!"); 836 return getParent()->remove(this); 837 } 838 839 MachineInstr *MachineInstr::removeFromBundle() { 840 assert(getParent() && "Not embedded in a basic block!"); 841 return getParent()->remove_instr(this); 842 } 843 844 void MachineInstr::eraseFromParent() { 845 assert(getParent() && "Not embedded in a basic block!"); 846 getParent()->erase(this); 847 } 848 849 void MachineInstr::eraseFromBundle() { 850 assert(getParent() && "Not embedded in a basic block!"); 851 getParent()->erase_instr(this); 852 } 853 854 /// getNumExplicitOperands - Returns the number of non-implicit operands. 855 /// 856 unsigned MachineInstr::getNumExplicitOperands() const { 857 unsigned NumOperands = MCID->getNumOperands(); 858 if (!MCID->isVariadic()) 859 return NumOperands; 860 861 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 862 const MachineOperand &MO = getOperand(i); 863 if (!MO.isReg() || !MO.isImplicit()) 864 NumOperands++; 865 } 866 return NumOperands; 867 } 868 869 void MachineInstr::bundleWithPred() { 870 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 871 setFlag(BundledPred); 872 MachineBasicBlock::instr_iterator Pred = this; 873 --Pred; 874 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 875 Pred->setFlag(BundledSucc); 876 } 877 878 void MachineInstr::bundleWithSucc() { 879 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 880 setFlag(BundledSucc); 881 MachineBasicBlock::instr_iterator Succ = this; 882 ++Succ; 883 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 884 Succ->setFlag(BundledPred); 885 } 886 887 void MachineInstr::unbundleFromPred() { 888 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 889 clearFlag(BundledPred); 890 MachineBasicBlock::instr_iterator Pred = this; 891 --Pred; 892 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 893 Pred->clearFlag(BundledSucc); 894 } 895 896 void MachineInstr::unbundleFromSucc() { 897 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 898 clearFlag(BundledSucc); 899 MachineBasicBlock::instr_iterator Succ = this; 900 --Succ; 901 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 902 Succ->clearFlag(BundledPred); 903 } 904 905 bool MachineInstr::isStackAligningInlineAsm() const { 906 if (isInlineAsm()) { 907 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 908 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 909 return true; 910 } 911 return false; 912 } 913 914 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 915 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 916 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 917 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 918 } 919 920 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 921 unsigned *GroupNo) const { 922 assert(isInlineAsm() && "Expected an inline asm instruction"); 923 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 924 925 // Ignore queries about the initial operands. 926 if (OpIdx < InlineAsm::MIOp_FirstOperand) 927 return -1; 928 929 unsigned Group = 0; 930 unsigned NumOps; 931 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 932 i += NumOps) { 933 const MachineOperand &FlagMO = getOperand(i); 934 // If we reach the implicit register operands, stop looking. 935 if (!FlagMO.isImm()) 936 return -1; 937 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 938 if (i + NumOps > OpIdx) { 939 if (GroupNo) 940 *GroupNo = Group; 941 return i; 942 } 943 ++Group; 944 } 945 return -1; 946 } 947 948 const TargetRegisterClass* 949 MachineInstr::getRegClassConstraint(unsigned OpIdx, 950 const TargetInstrInfo *TII, 951 const TargetRegisterInfo *TRI) const { 952 assert(getParent() && "Can't have an MBB reference here!"); 953 assert(getParent()->getParent() && "Can't have an MF reference here!"); 954 const MachineFunction &MF = *getParent()->getParent(); 955 956 // Most opcodes have fixed constraints in their MCInstrDesc. 957 if (!isInlineAsm()) 958 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 959 960 if (!getOperand(OpIdx).isReg()) 961 return NULL; 962 963 // For tied uses on inline asm, get the constraint from the def. 964 unsigned DefIdx; 965 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 966 OpIdx = DefIdx; 967 968 // Inline asm stores register class constraints in the flag word. 969 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 970 if (FlagIdx < 0) 971 return NULL; 972 973 unsigned Flag = getOperand(FlagIdx).getImm(); 974 unsigned RCID; 975 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 976 return TRI->getRegClass(RCID); 977 978 // Assume that all registers in a memory operand are pointers. 979 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 980 return TRI->getPointerRegClass(MF); 981 982 return NULL; 983 } 984 985 /// getBundleSize - Return the number of instructions inside the MI bundle. 986 unsigned MachineInstr::getBundleSize() const { 987 assert(isBundle() && "Expecting a bundle"); 988 989 const MachineBasicBlock *MBB = getParent(); 990 MachineBasicBlock::const_instr_iterator I = *this, E = MBB->instr_end(); 991 unsigned Size = 0; 992 while ((++I != E) && I->isInsideBundle()) { 993 ++Size; 994 } 995 assert(Size > 1 && "Malformed bundle"); 996 997 return Size; 998 } 999 1000 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1001 /// the specific register or -1 if it is not found. It further tightens 1002 /// the search criteria to a use that kills the register if isKill is true. 1003 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1004 const TargetRegisterInfo *TRI) const { 1005 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1006 const MachineOperand &MO = getOperand(i); 1007 if (!MO.isReg() || !MO.isUse()) 1008 continue; 1009 unsigned MOReg = MO.getReg(); 1010 if (!MOReg) 1011 continue; 1012 if (MOReg == Reg || 1013 (TRI && 1014 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1015 TargetRegisterInfo::isPhysicalRegister(Reg) && 1016 TRI->isSubRegister(MOReg, Reg))) 1017 if (!isKill || MO.isKill()) 1018 return i; 1019 } 1020 return -1; 1021 } 1022 1023 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1024 /// indicating if this instruction reads or writes Reg. This also considers 1025 /// partial defines. 1026 std::pair<bool,bool> 1027 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1028 SmallVectorImpl<unsigned> *Ops) const { 1029 bool PartDef = false; // Partial redefine. 1030 bool FullDef = false; // Full define. 1031 bool Use = false; 1032 1033 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1034 const MachineOperand &MO = getOperand(i); 1035 if (!MO.isReg() || MO.getReg() != Reg) 1036 continue; 1037 if (Ops) 1038 Ops->push_back(i); 1039 if (MO.isUse()) 1040 Use |= !MO.isUndef(); 1041 else if (MO.getSubReg() && !MO.isUndef()) 1042 // A partial <def,undef> doesn't count as reading the register. 1043 PartDef = true; 1044 else 1045 FullDef = true; 1046 } 1047 // A partial redefine uses Reg unless there is also a full define. 1048 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1049 } 1050 1051 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1052 /// the specified register or -1 if it is not found. If isDead is true, defs 1053 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1054 /// also checks if there is a def of a super-register. 1055 int 1056 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1057 const TargetRegisterInfo *TRI) const { 1058 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1059 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1060 const MachineOperand &MO = getOperand(i); 1061 // Accept regmask operands when Overlap is set. 1062 // Ignore them when looking for a specific def operand (Overlap == false). 1063 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1064 return i; 1065 if (!MO.isReg() || !MO.isDef()) 1066 continue; 1067 unsigned MOReg = MO.getReg(); 1068 bool Found = (MOReg == Reg); 1069 if (!Found && TRI && isPhys && 1070 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1071 if (Overlap) 1072 Found = TRI->regsOverlap(MOReg, Reg); 1073 else 1074 Found = TRI->isSubRegister(MOReg, Reg); 1075 } 1076 if (Found && (!isDead || MO.isDead())) 1077 return i; 1078 } 1079 return -1; 1080 } 1081 1082 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1083 /// operand list that is used to represent the predicate. It returns -1 if 1084 /// none is found. 1085 int MachineInstr::findFirstPredOperandIdx() const { 1086 // Don't call MCID.findFirstPredOperandIdx() because this variant 1087 // is sometimes called on an instruction that's not yet complete, and 1088 // so the number of operands is less than the MCID indicates. In 1089 // particular, the PTX target does this. 1090 const MCInstrDesc &MCID = getDesc(); 1091 if (MCID.isPredicable()) { 1092 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1093 if (MCID.OpInfo[i].isPredicate()) 1094 return i; 1095 } 1096 1097 return -1; 1098 } 1099 1100 // MachineOperand::TiedTo is 4 bits wide. 1101 const unsigned TiedMax = 15; 1102 1103 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1104 /// 1105 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1106 /// field. TiedTo can have these values: 1107 /// 1108 /// 0: Operand is not tied to anything. 1109 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1110 /// TiedMax: Tied to an operand >= TiedMax-1. 1111 /// 1112 /// The tied def must be one of the first TiedMax operands on a normal 1113 /// instruction. INLINEASM instructions allow more tied defs. 1114 /// 1115 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1116 MachineOperand &DefMO = getOperand(DefIdx); 1117 MachineOperand &UseMO = getOperand(UseIdx); 1118 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1119 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1120 assert(!DefMO.isTied() && "Def is already tied to another use"); 1121 assert(!UseMO.isTied() && "Use is already tied to another def"); 1122 1123 if (DefIdx < TiedMax) 1124 UseMO.TiedTo = DefIdx + 1; 1125 else { 1126 // Inline asm can use the group descriptors to find tied operands, but on 1127 // normal instruction, the tied def must be within the first TiedMax 1128 // operands. 1129 assert(isInlineAsm() && "DefIdx out of range"); 1130 UseMO.TiedTo = TiedMax; 1131 } 1132 1133 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1134 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1135 } 1136 1137 /// Given the index of a tied register operand, find the operand it is tied to. 1138 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1139 /// which must exist. 1140 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1141 const MachineOperand &MO = getOperand(OpIdx); 1142 assert(MO.isTied() && "Operand isn't tied"); 1143 1144 // Normally TiedTo is in range. 1145 if (MO.TiedTo < TiedMax) 1146 return MO.TiedTo - 1; 1147 1148 // Uses on normal instructions can be out of range. 1149 if (!isInlineAsm()) { 1150 // Normal tied defs must be in the 0..TiedMax-1 range. 1151 if (MO.isUse()) 1152 return TiedMax - 1; 1153 // MO is a def. Search for the tied use. 1154 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1155 const MachineOperand &UseMO = getOperand(i); 1156 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1157 return i; 1158 } 1159 llvm_unreachable("Can't find tied use"); 1160 } 1161 1162 // Now deal with inline asm by parsing the operand group descriptor flags. 1163 // Find the beginning of each operand group. 1164 SmallVector<unsigned, 8> GroupIdx; 1165 unsigned OpIdxGroup = ~0u; 1166 unsigned NumOps; 1167 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1168 i += NumOps) { 1169 const MachineOperand &FlagMO = getOperand(i); 1170 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1171 unsigned CurGroup = GroupIdx.size(); 1172 GroupIdx.push_back(i); 1173 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1174 // OpIdx belongs to this operand group. 1175 if (OpIdx > i && OpIdx < i + NumOps) 1176 OpIdxGroup = CurGroup; 1177 unsigned TiedGroup; 1178 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1179 continue; 1180 // Operands in this group are tied to operands in TiedGroup which must be 1181 // earlier. Find the number of operands between the two groups. 1182 unsigned Delta = i - GroupIdx[TiedGroup]; 1183 1184 // OpIdx is a use tied to TiedGroup. 1185 if (OpIdxGroup == CurGroup) 1186 return OpIdx - Delta; 1187 1188 // OpIdx is a def tied to this use group. 1189 if (OpIdxGroup == TiedGroup) 1190 return OpIdx + Delta; 1191 } 1192 llvm_unreachable("Invalid tied operand on inline asm"); 1193 } 1194 1195 /// clearKillInfo - Clears kill flags on all operands. 1196 /// 1197 void MachineInstr::clearKillInfo() { 1198 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1199 MachineOperand &MO = getOperand(i); 1200 if (MO.isReg() && MO.isUse()) 1201 MO.setIsKill(false); 1202 } 1203 } 1204 1205 void MachineInstr::substituteRegister(unsigned FromReg, 1206 unsigned ToReg, 1207 unsigned SubIdx, 1208 const TargetRegisterInfo &RegInfo) { 1209 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1210 if (SubIdx) 1211 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1212 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1213 MachineOperand &MO = getOperand(i); 1214 if (!MO.isReg() || MO.getReg() != FromReg) 1215 continue; 1216 MO.substPhysReg(ToReg, RegInfo); 1217 } 1218 } else { 1219 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1220 MachineOperand &MO = getOperand(i); 1221 if (!MO.isReg() || MO.getReg() != FromReg) 1222 continue; 1223 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1224 } 1225 } 1226 } 1227 1228 /// isSafeToMove - Return true if it is safe to move this instruction. If 1229 /// SawStore is set to true, it means that there is a store (or call) between 1230 /// the instruction's location and its intended destination. 1231 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1232 AliasAnalysis *AA, 1233 bool &SawStore) const { 1234 // Ignore stuff that we obviously can't move. 1235 // 1236 // Treat volatile loads as stores. This is not strictly necessary for 1237 // volatiles, but it is required for atomic loads. It is not allowed to move 1238 // a load across an atomic load with Ordering > Monotonic. 1239 if (mayStore() || isCall() || 1240 (mayLoad() && hasOrderedMemoryRef())) { 1241 SawStore = true; 1242 return false; 1243 } 1244 1245 if (isLabel() || isDebugValue() || 1246 isTerminator() || hasUnmodeledSideEffects()) 1247 return false; 1248 1249 // See if this instruction does a load. If so, we have to guarantee that the 1250 // loaded value doesn't change between the load and the its intended 1251 // destination. The check for isInvariantLoad gives the targe the chance to 1252 // classify the load as always returning a constant, e.g. a constant pool 1253 // load. 1254 if (mayLoad() && !isInvariantLoad(AA)) 1255 // Otherwise, this is a real load. If there is a store between the load and 1256 // end of block, we can't move it. 1257 return !SawStore; 1258 1259 return true; 1260 } 1261 1262 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1263 /// instruction which defined the specified register instead of copying it. 1264 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1265 AliasAnalysis *AA, 1266 unsigned DstReg) const { 1267 bool SawStore = false; 1268 if (!TII->isTriviallyReMaterializable(this, AA) || 1269 !isSafeToMove(TII, AA, SawStore)) 1270 return false; 1271 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1272 const MachineOperand &MO = getOperand(i); 1273 if (!MO.isReg()) 1274 continue; 1275 // FIXME: For now, do not remat any instruction with register operands. 1276 // Later on, we can loosen the restriction is the register operands have 1277 // not been modified between the def and use. Note, this is different from 1278 // MachineSink because the code is no longer in two-address form (at least 1279 // partially). 1280 if (MO.isUse()) 1281 return false; 1282 else if (!MO.isDead() && MO.getReg() != DstReg) 1283 return false; 1284 } 1285 return true; 1286 } 1287 1288 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1289 /// or volatile memory reference, or if the information describing the memory 1290 /// reference is not available. Return false if it is known to have no ordered 1291 /// memory references. 1292 bool MachineInstr::hasOrderedMemoryRef() const { 1293 // An instruction known never to access memory won't have a volatile access. 1294 if (!mayStore() && 1295 !mayLoad() && 1296 !isCall() && 1297 !hasUnmodeledSideEffects()) 1298 return false; 1299 1300 // Otherwise, if the instruction has no memory reference information, 1301 // conservatively assume it wasn't preserved. 1302 if (memoperands_empty()) 1303 return true; 1304 1305 // Check the memory reference information for ordered references. 1306 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1307 if (!(*I)->isUnordered()) 1308 return true; 1309 1310 return false; 1311 } 1312 1313 /// isInvariantLoad - Return true if this instruction is loading from a 1314 /// location whose value is invariant across the function. For example, 1315 /// loading a value from the constant pool or from the argument area 1316 /// of a function if it does not change. This should only return true of 1317 /// *all* loads the instruction does are invariant (if it does multiple loads). 1318 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1319 // If the instruction doesn't load at all, it isn't an invariant load. 1320 if (!mayLoad()) 1321 return false; 1322 1323 // If the instruction has lost its memoperands, conservatively assume that 1324 // it may not be an invariant load. 1325 if (memoperands_empty()) 1326 return false; 1327 1328 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1329 1330 for (mmo_iterator I = memoperands_begin(), 1331 E = memoperands_end(); I != E; ++I) { 1332 if ((*I)->isVolatile()) return false; 1333 if ((*I)->isStore()) return false; 1334 if ((*I)->isInvariant()) return true; 1335 1336 if (const Value *V = (*I)->getValue()) { 1337 // A load from a constant PseudoSourceValue is invariant. 1338 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1339 if (PSV->isConstant(MFI)) 1340 continue; 1341 // If we have an AliasAnalysis, ask it whether the memory is constant. 1342 if (AA && AA->pointsToConstantMemory( 1343 AliasAnalysis::Location(V, (*I)->getSize(), 1344 (*I)->getTBAAInfo()))) 1345 continue; 1346 } 1347 1348 // Otherwise assume conservatively. 1349 return false; 1350 } 1351 1352 // Everything checks out. 1353 return true; 1354 } 1355 1356 /// isConstantValuePHI - If the specified instruction is a PHI that always 1357 /// merges together the same virtual register, return the register, otherwise 1358 /// return 0. 1359 unsigned MachineInstr::isConstantValuePHI() const { 1360 if (!isPHI()) 1361 return 0; 1362 assert(getNumOperands() >= 3 && 1363 "It's illegal to have a PHI without source operands"); 1364 1365 unsigned Reg = getOperand(1).getReg(); 1366 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1367 if (getOperand(i).getReg() != Reg) 1368 return 0; 1369 return Reg; 1370 } 1371 1372 bool MachineInstr::hasUnmodeledSideEffects() const { 1373 if (hasProperty(MCID::UnmodeledSideEffects)) 1374 return true; 1375 if (isInlineAsm()) { 1376 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1377 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1378 return true; 1379 } 1380 1381 return false; 1382 } 1383 1384 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1385 /// 1386 bool MachineInstr::allDefsAreDead() const { 1387 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1388 const MachineOperand &MO = getOperand(i); 1389 if (!MO.isReg() || MO.isUse()) 1390 continue; 1391 if (!MO.isDead()) 1392 return false; 1393 } 1394 return true; 1395 } 1396 1397 /// copyImplicitOps - Copy implicit register operands from specified 1398 /// instruction to this instruction. 1399 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1400 const MachineInstr *MI) { 1401 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1402 i != e; ++i) { 1403 const MachineOperand &MO = MI->getOperand(i); 1404 if (MO.isReg() && MO.isImplicit()) 1405 addOperand(MF, MO); 1406 } 1407 } 1408 1409 void MachineInstr::dump() const { 1410 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1411 dbgs() << " " << *this; 1412 #endif 1413 } 1414 1415 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1416 raw_ostream &CommentOS) { 1417 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1418 if (!DL.isUnknown()) { // Print source line info. 1419 DIScope Scope(DL.getScope(Ctx)); 1420 // Omit the directory, because it's likely to be long and uninteresting. 1421 if (Scope.Verify()) 1422 CommentOS << Scope.getFilename(); 1423 else 1424 CommentOS << "<unknown>"; 1425 CommentOS << ':' << DL.getLine(); 1426 if (DL.getCol() != 0) 1427 CommentOS << ':' << DL.getCol(); 1428 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1429 if (!InlinedAtDL.isUnknown()) { 1430 CommentOS << " @[ "; 1431 printDebugLoc(InlinedAtDL, MF, CommentOS); 1432 CommentOS << " ]"; 1433 } 1434 } 1435 } 1436 1437 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1438 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1439 const MachineFunction *MF = 0; 1440 const MachineRegisterInfo *MRI = 0; 1441 if (const MachineBasicBlock *MBB = getParent()) { 1442 MF = MBB->getParent(); 1443 if (!TM && MF) 1444 TM = &MF->getTarget(); 1445 if (MF) 1446 MRI = &MF->getRegInfo(); 1447 } 1448 1449 // Save a list of virtual registers. 1450 SmallVector<unsigned, 8> VirtRegs; 1451 1452 // Print explicitly defined operands on the left of an assignment syntax. 1453 unsigned StartOp = 0, e = getNumOperands(); 1454 for (; StartOp < e && getOperand(StartOp).isReg() && 1455 getOperand(StartOp).isDef() && 1456 !getOperand(StartOp).isImplicit(); 1457 ++StartOp) { 1458 if (StartOp != 0) OS << ", "; 1459 getOperand(StartOp).print(OS, TM); 1460 unsigned Reg = getOperand(StartOp).getReg(); 1461 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1462 VirtRegs.push_back(Reg); 1463 } 1464 1465 if (StartOp != 0) 1466 OS << " = "; 1467 1468 // Print the opcode name. 1469 if (TM && TM->getInstrInfo()) 1470 OS << TM->getInstrInfo()->getName(getOpcode()); 1471 else 1472 OS << "UNKNOWN"; 1473 1474 // Print the rest of the operands. 1475 bool OmittedAnyCallClobbers = false; 1476 bool FirstOp = true; 1477 unsigned AsmDescOp = ~0u; 1478 unsigned AsmOpCount = 0; 1479 1480 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1481 // Print asm string. 1482 OS << " "; 1483 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1484 1485 // Print HasSideEffects, IsAlignStack 1486 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1487 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1488 OS << " [sideeffect]"; 1489 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1490 OS << " [alignstack]"; 1491 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1492 OS << " [attdialect]"; 1493 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1494 OS << " [inteldialect]"; 1495 1496 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1497 FirstOp = false; 1498 } 1499 1500 1501 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1502 const MachineOperand &MO = getOperand(i); 1503 1504 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1505 VirtRegs.push_back(MO.getReg()); 1506 1507 // Omit call-clobbered registers which aren't used anywhere. This makes 1508 // call instructions much less noisy on targets where calls clobber lots 1509 // of registers. Don't rely on MO.isDead() because we may be called before 1510 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1511 if (MF && isCall() && 1512 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1513 unsigned Reg = MO.getReg(); 1514 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1515 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1516 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1517 bool HasAliasLive = false; 1518 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); 1519 AI.isValid(); ++AI) { 1520 unsigned AliasReg = *AI; 1521 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1522 HasAliasLive = true; 1523 break; 1524 } 1525 } 1526 if (!HasAliasLive) { 1527 OmittedAnyCallClobbers = true; 1528 continue; 1529 } 1530 } 1531 } 1532 } 1533 1534 if (FirstOp) FirstOp = false; else OS << ","; 1535 OS << " "; 1536 if (i < getDesc().NumOperands) { 1537 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1538 if (MCOI.isPredicate()) 1539 OS << "pred:"; 1540 if (MCOI.isOptionalDef()) 1541 OS << "opt:"; 1542 } 1543 if (isDebugValue() && MO.isMetadata()) { 1544 // Pretty print DBG_VALUE instructions. 1545 const MDNode *MD = MO.getMetadata(); 1546 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1547 OS << "!\"" << MDS->getString() << '\"'; 1548 else 1549 MO.print(OS, TM); 1550 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1551 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1552 } else if (i == AsmDescOp && MO.isImm()) { 1553 // Pretty print the inline asm operand descriptor. 1554 OS << '$' << AsmOpCount++; 1555 unsigned Flag = MO.getImm(); 1556 switch (InlineAsm::getKind(Flag)) { 1557 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1558 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1559 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1560 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1561 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1562 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1563 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1564 } 1565 1566 unsigned RCID = 0; 1567 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1568 if (TM) 1569 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1570 else 1571 OS << ":RC" << RCID; 1572 } 1573 1574 unsigned TiedTo = 0; 1575 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1576 OS << " tiedto:$" << TiedTo; 1577 1578 OS << ']'; 1579 1580 // Compute the index of the next operand descriptor. 1581 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1582 } else 1583 MO.print(OS, TM); 1584 } 1585 1586 // Briefly indicate whether any call clobbers were omitted. 1587 if (OmittedAnyCallClobbers) { 1588 if (!FirstOp) OS << ","; 1589 OS << " ..."; 1590 } 1591 1592 bool HaveSemi = false; 1593 if (Flags) { 1594 if (!HaveSemi) OS << ";"; HaveSemi = true; 1595 OS << " flags: "; 1596 1597 if (Flags & FrameSetup) 1598 OS << "FrameSetup"; 1599 } 1600 1601 if (!memoperands_empty()) { 1602 if (!HaveSemi) OS << ";"; HaveSemi = true; 1603 1604 OS << " mem:"; 1605 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1606 i != e; ++i) { 1607 OS << **i; 1608 if (llvm::next(i) != e) 1609 OS << " "; 1610 } 1611 } 1612 1613 // Print the regclass of any virtual registers encountered. 1614 if (MRI && !VirtRegs.empty()) { 1615 if (!HaveSemi) OS << ";"; HaveSemi = true; 1616 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1617 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1618 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1619 for (unsigned j = i+1; j != VirtRegs.size();) { 1620 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1621 ++j; 1622 continue; 1623 } 1624 if (VirtRegs[i] != VirtRegs[j]) 1625 OS << "," << PrintReg(VirtRegs[j]); 1626 VirtRegs.erase(VirtRegs.begin()+j); 1627 } 1628 } 1629 } 1630 1631 // Print debug location information. 1632 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1633 if (!HaveSemi) OS << ";"; HaveSemi = true; 1634 DIVariable DV(getOperand(e - 1).getMetadata()); 1635 OS << " line no:" << DV.getLineNumber(); 1636 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1637 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1638 if (!InlinedAtDL.isUnknown()) { 1639 OS << " inlined @[ "; 1640 printDebugLoc(InlinedAtDL, MF, OS); 1641 OS << " ]"; 1642 } 1643 } 1644 } else if (!debugLoc.isUnknown() && MF) { 1645 if (!HaveSemi) OS << ";"; HaveSemi = true; 1646 OS << " dbg:"; 1647 printDebugLoc(debugLoc, MF, OS); 1648 } 1649 1650 OS << '\n'; 1651 } 1652 1653 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1654 const TargetRegisterInfo *RegInfo, 1655 bool AddIfNotFound) { 1656 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1657 bool hasAliases = isPhysReg && 1658 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1659 bool Found = false; 1660 SmallVector<unsigned,4> DeadOps; 1661 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1662 MachineOperand &MO = getOperand(i); 1663 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1664 continue; 1665 unsigned Reg = MO.getReg(); 1666 if (!Reg) 1667 continue; 1668 1669 if (Reg == IncomingReg) { 1670 if (!Found) { 1671 if (MO.isKill()) 1672 // The register is already marked kill. 1673 return true; 1674 if (isPhysReg && isRegTiedToDefOperand(i)) 1675 // Two-address uses of physregs must not be marked kill. 1676 return true; 1677 MO.setIsKill(); 1678 Found = true; 1679 } 1680 } else if (hasAliases && MO.isKill() && 1681 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1682 // A super-register kill already exists. 1683 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1684 return true; 1685 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1686 DeadOps.push_back(i); 1687 } 1688 } 1689 1690 // Trim unneeded kill operands. 1691 while (!DeadOps.empty()) { 1692 unsigned OpIdx = DeadOps.back(); 1693 if (getOperand(OpIdx).isImplicit()) 1694 RemoveOperand(OpIdx); 1695 else 1696 getOperand(OpIdx).setIsKill(false); 1697 DeadOps.pop_back(); 1698 } 1699 1700 // If not found, this means an alias of one of the operands is killed. Add a 1701 // new implicit operand if required. 1702 if (!Found && AddIfNotFound) { 1703 addOperand(MachineOperand::CreateReg(IncomingReg, 1704 false /*IsDef*/, 1705 true /*IsImp*/, 1706 true /*IsKill*/)); 1707 return true; 1708 } 1709 return Found; 1710 } 1711 1712 void MachineInstr::clearRegisterKills(unsigned Reg, 1713 const TargetRegisterInfo *RegInfo) { 1714 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1715 RegInfo = 0; 1716 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1717 MachineOperand &MO = getOperand(i); 1718 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1719 continue; 1720 unsigned OpReg = MO.getReg(); 1721 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1722 MO.setIsKill(false); 1723 } 1724 } 1725 1726 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1727 const TargetRegisterInfo *RegInfo, 1728 bool AddIfNotFound) { 1729 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1730 bool hasAliases = isPhysReg && 1731 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1732 bool Found = false; 1733 SmallVector<unsigned,4> DeadOps; 1734 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1735 MachineOperand &MO = getOperand(i); 1736 if (!MO.isReg() || !MO.isDef()) 1737 continue; 1738 unsigned Reg = MO.getReg(); 1739 if (!Reg) 1740 continue; 1741 1742 if (Reg == IncomingReg) { 1743 MO.setIsDead(); 1744 Found = true; 1745 } else if (hasAliases && MO.isDead() && 1746 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1747 // There exists a super-register that's marked dead. 1748 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1749 return true; 1750 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1751 DeadOps.push_back(i); 1752 } 1753 } 1754 1755 // Trim unneeded dead operands. 1756 while (!DeadOps.empty()) { 1757 unsigned OpIdx = DeadOps.back(); 1758 if (getOperand(OpIdx).isImplicit()) 1759 RemoveOperand(OpIdx); 1760 else 1761 getOperand(OpIdx).setIsDead(false); 1762 DeadOps.pop_back(); 1763 } 1764 1765 // If not found, this means an alias of one of the operands is dead. Add a 1766 // new implicit operand if required. 1767 if (Found || !AddIfNotFound) 1768 return Found; 1769 1770 addOperand(MachineOperand::CreateReg(IncomingReg, 1771 true /*IsDef*/, 1772 true /*IsImp*/, 1773 false /*IsKill*/, 1774 true /*IsDead*/)); 1775 return true; 1776 } 1777 1778 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1779 const TargetRegisterInfo *RegInfo) { 1780 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1781 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1782 if (MO) 1783 return; 1784 } else { 1785 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1786 const MachineOperand &MO = getOperand(i); 1787 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1788 MO.getSubReg() == 0) 1789 return; 1790 } 1791 } 1792 addOperand(MachineOperand::CreateReg(IncomingReg, 1793 true /*IsDef*/, 1794 true /*IsImp*/)); 1795 } 1796 1797 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1798 const TargetRegisterInfo &TRI) { 1799 bool HasRegMask = false; 1800 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1801 MachineOperand &MO = getOperand(i); 1802 if (MO.isRegMask()) { 1803 HasRegMask = true; 1804 continue; 1805 } 1806 if (!MO.isReg() || !MO.isDef()) continue; 1807 unsigned Reg = MO.getReg(); 1808 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1809 bool Dead = true; 1810 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1811 I != E; ++I) 1812 if (TRI.regsOverlap(*I, Reg)) { 1813 Dead = false; 1814 break; 1815 } 1816 // If there are no uses, including partial uses, the def is dead. 1817 if (Dead) MO.setIsDead(); 1818 } 1819 1820 // This is a call with a register mask operand. 1821 // Mask clobbers are always dead, so add defs for the non-dead defines. 1822 if (HasRegMask) 1823 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1824 I != E; ++I) 1825 addRegisterDefined(*I, &TRI); 1826 } 1827 1828 unsigned 1829 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1830 // Build up a buffer of hash code components. 1831 SmallVector<size_t, 8> HashComponents; 1832 HashComponents.reserve(MI->getNumOperands() + 1); 1833 HashComponents.push_back(MI->getOpcode()); 1834 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1835 const MachineOperand &MO = MI->getOperand(i); 1836 if (MO.isReg() && MO.isDef() && 1837 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1838 continue; // Skip virtual register defs. 1839 1840 HashComponents.push_back(hash_value(MO)); 1841 } 1842 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1843 } 1844 1845 void MachineInstr::emitError(StringRef Msg) const { 1846 // Find the source location cookie. 1847 unsigned LocCookie = 0; 1848 const MDNode *LocMD = 0; 1849 for (unsigned i = getNumOperands(); i != 0; --i) { 1850 if (getOperand(i-1).isMetadata() && 1851 (LocMD = getOperand(i-1).getMetadata()) && 1852 LocMD->getNumOperands() != 0) { 1853 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1854 LocCookie = CI->getZExtValue(); 1855 break; 1856 } 1857 } 1858 } 1859 1860 if (const MachineBasicBlock *MBB = getParent()) 1861 if (const MachineFunction *MF = MBB->getParent()) 1862 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1863 report_fatal_error(Msg); 1864 } 1865