1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineMemOperand.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/PseudoSourceValue.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/MC/MCInstrDesc.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 #include "llvm/Target/TargetSubtargetInfo.h" 43 using namespace llvm; 44 45 //===----------------------------------------------------------------------===// 46 // MachineOperand Implementation 47 //===----------------------------------------------------------------------===// 48 49 void MachineOperand::setReg(unsigned Reg) { 50 if (getReg() == Reg) return; // No change. 51 52 // Otherwise, we have to change the register. If this operand is embedded 53 // into a machine function, we need to update the old and new register's 54 // use/def lists. 55 if (MachineInstr *MI = getParent()) 56 if (MachineBasicBlock *MBB = MI->getParent()) 57 if (MachineFunction *MF = MBB->getParent()) { 58 MachineRegisterInfo &MRI = MF->getRegInfo(); 59 MRI.removeRegOperandFromUseList(this); 60 SmallContents.RegNo = Reg; 61 MRI.addRegOperandToUseList(this); 62 return; 63 } 64 65 // Otherwise, just change the register, no problem. :) 66 SmallContents.RegNo = Reg; 67 } 68 69 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 70 const TargetRegisterInfo &TRI) { 71 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 72 if (SubIdx && getSubReg()) 73 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 74 setReg(Reg); 75 if (SubIdx) 76 setSubReg(SubIdx); 77 } 78 79 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 80 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 81 if (getSubReg()) { 82 Reg = TRI.getSubReg(Reg, getSubReg()); 83 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 84 // That won't happen in legal code. 85 setSubReg(0); 86 } 87 setReg(Reg); 88 } 89 90 /// Change a def to a use, or a use to a def. 91 void MachineOperand::setIsDef(bool Val) { 92 assert(isReg() && "Wrong MachineOperand accessor"); 93 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 94 if (IsDef == Val) 95 return; 96 // MRI may keep uses and defs in different list positions. 97 if (MachineInstr *MI = getParent()) 98 if (MachineBasicBlock *MBB = MI->getParent()) 99 if (MachineFunction *MF = MBB->getParent()) { 100 MachineRegisterInfo &MRI = MF->getRegInfo(); 101 MRI.removeRegOperandFromUseList(this); 102 IsDef = Val; 103 MRI.addRegOperandToUseList(this); 104 return; 105 } 106 IsDef = Val; 107 } 108 109 // If this operand is currently a register operand, and if this is in a 110 // function, deregister the operand from the register's use/def list. 111 void MachineOperand::removeRegFromUses() { 112 if (!isReg() || !isOnRegUseList()) 113 return; 114 115 if (MachineInstr *MI = getParent()) { 116 if (MachineBasicBlock *MBB = MI->getParent()) { 117 if (MachineFunction *MF = MBB->getParent()) 118 MF->getRegInfo().removeRegOperandFromUseList(this); 119 } 120 } 121 } 122 123 /// ChangeToImmediate - Replace this operand with a new immediate operand of 124 /// the specified value. If an operand is known to be an immediate already, 125 /// the setImm method should be used. 126 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 127 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 128 129 removeRegFromUses(); 130 131 OpKind = MO_Immediate; 132 Contents.ImmVal = ImmVal; 133 } 134 135 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 136 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 137 138 removeRegFromUses(); 139 140 OpKind = MO_FPImmediate; 141 Contents.CFP = FPImm; 142 } 143 144 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 145 assert((!isReg() || !isTied()) && 146 "Cannot change a tied operand into an external symbol"); 147 148 removeRegFromUses(); 149 150 OpKind = MO_ExternalSymbol; 151 Contents.OffsetedInfo.Val.SymbolName = SymName; 152 setOffset(0); // Offset is always 0. 153 setTargetFlags(TargetFlags); 154 } 155 156 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 157 assert((!isReg() || !isTied()) && 158 "Cannot change a tied operand into an MCSymbol"); 159 160 removeRegFromUses(); 161 162 OpKind = MO_MCSymbol; 163 Contents.Sym = Sym; 164 } 165 166 /// ChangeToRegister - Replace this operand with a new register operand of 167 /// the specified value. If an operand is known to be an register already, 168 /// the setReg method should be used. 169 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 170 bool isKill, bool isDead, bool isUndef, 171 bool isDebug) { 172 MachineRegisterInfo *RegInfo = nullptr; 173 if (MachineInstr *MI = getParent()) 174 if (MachineBasicBlock *MBB = MI->getParent()) 175 if (MachineFunction *MF = MBB->getParent()) 176 RegInfo = &MF->getRegInfo(); 177 // If this operand is already a register operand, remove it from the 178 // register's use/def lists. 179 bool WasReg = isReg(); 180 if (RegInfo && WasReg) 181 RegInfo->removeRegOperandFromUseList(this); 182 183 // Change this to a register and set the reg#. 184 OpKind = MO_Register; 185 SmallContents.RegNo = Reg; 186 SubReg_TargetFlags = 0; 187 IsDef = isDef; 188 IsImp = isImp; 189 IsKill = isKill; 190 IsDead = isDead; 191 IsUndef = isUndef; 192 IsInternalRead = false; 193 IsEarlyClobber = false; 194 IsDebug = isDebug; 195 // Ensure isOnRegUseList() returns false. 196 Contents.Reg.Prev = nullptr; 197 // Preserve the tie when the operand was already a register. 198 if (!WasReg) 199 TiedTo = 0; 200 201 // If this operand is embedded in a function, add the operand to the 202 // register's use/def list. 203 if (RegInfo) 204 RegInfo->addRegOperandToUseList(this); 205 } 206 207 /// isIdenticalTo - Return true if this operand is identical to the specified 208 /// operand. Note that this should stay in sync with the hash_value overload 209 /// below. 210 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 211 if (getType() != Other.getType() || 212 getTargetFlags() != Other.getTargetFlags()) 213 return false; 214 215 switch (getType()) { 216 case MachineOperand::MO_Register: 217 return getReg() == Other.getReg() && isDef() == Other.isDef() && 218 getSubReg() == Other.getSubReg(); 219 case MachineOperand::MO_Immediate: 220 return getImm() == Other.getImm(); 221 case MachineOperand::MO_CImmediate: 222 return getCImm() == Other.getCImm(); 223 case MachineOperand::MO_FPImmediate: 224 return getFPImm() == Other.getFPImm(); 225 case MachineOperand::MO_MachineBasicBlock: 226 return getMBB() == Other.getMBB(); 227 case MachineOperand::MO_FrameIndex: 228 return getIndex() == Other.getIndex(); 229 case MachineOperand::MO_ConstantPoolIndex: 230 case MachineOperand::MO_TargetIndex: 231 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 232 case MachineOperand::MO_JumpTableIndex: 233 return getIndex() == Other.getIndex(); 234 case MachineOperand::MO_GlobalAddress: 235 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 236 case MachineOperand::MO_ExternalSymbol: 237 return !strcmp(getSymbolName(), Other.getSymbolName()) && 238 getOffset() == Other.getOffset(); 239 case MachineOperand::MO_BlockAddress: 240 return getBlockAddress() == Other.getBlockAddress() && 241 getOffset() == Other.getOffset(); 242 case MachineOperand::MO_RegisterMask: 243 case MachineOperand::MO_RegisterLiveOut: 244 return getRegMask() == Other.getRegMask(); 245 case MachineOperand::MO_MCSymbol: 246 return getMCSymbol() == Other.getMCSymbol(); 247 case MachineOperand::MO_CFIIndex: 248 return getCFIIndex() == Other.getCFIIndex(); 249 case MachineOperand::MO_Metadata: 250 return getMetadata() == Other.getMetadata(); 251 } 252 llvm_unreachable("Invalid machine operand type"); 253 } 254 255 // Note: this must stay exactly in sync with isIdenticalTo above. 256 hash_code llvm::hash_value(const MachineOperand &MO) { 257 switch (MO.getType()) { 258 case MachineOperand::MO_Register: 259 // Register operands don't have target flags. 260 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 261 case MachineOperand::MO_Immediate: 262 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 263 case MachineOperand::MO_CImmediate: 264 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 265 case MachineOperand::MO_FPImmediate: 266 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 267 case MachineOperand::MO_MachineBasicBlock: 268 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 269 case MachineOperand::MO_FrameIndex: 270 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 271 case MachineOperand::MO_ConstantPoolIndex: 272 case MachineOperand::MO_TargetIndex: 273 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 274 MO.getOffset()); 275 case MachineOperand::MO_JumpTableIndex: 276 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 277 case MachineOperand::MO_ExternalSymbol: 278 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 279 MO.getSymbolName()); 280 case MachineOperand::MO_GlobalAddress: 281 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 282 MO.getOffset()); 283 case MachineOperand::MO_BlockAddress: 284 return hash_combine(MO.getType(), MO.getTargetFlags(), 285 MO.getBlockAddress(), MO.getOffset()); 286 case MachineOperand::MO_RegisterMask: 287 case MachineOperand::MO_RegisterLiveOut: 288 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 289 case MachineOperand::MO_Metadata: 290 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 291 case MachineOperand::MO_MCSymbol: 292 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 293 case MachineOperand::MO_CFIIndex: 294 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 295 } 296 llvm_unreachable("Invalid machine operand type"); 297 } 298 299 /// print - Print the specified machine operand. 300 /// 301 void MachineOperand::print(raw_ostream &OS, 302 const TargetRegisterInfo *TRI) const { 303 switch (getType()) { 304 case MachineOperand::MO_Register: 305 OS << PrintReg(getReg(), TRI, getSubReg()); 306 307 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 308 isInternalRead() || isEarlyClobber() || isTied()) { 309 OS << '<'; 310 bool NeedComma = false; 311 if (isDef()) { 312 if (NeedComma) OS << ','; 313 if (isEarlyClobber()) 314 OS << "earlyclobber,"; 315 if (isImplicit()) 316 OS << "imp-"; 317 OS << "def"; 318 NeedComma = true; 319 // <def,read-undef> only makes sense when getSubReg() is set. 320 // Don't clutter the output otherwise. 321 if (isUndef() && getSubReg()) 322 OS << ",read-undef"; 323 } else if (isImplicit()) { 324 OS << "imp-use"; 325 NeedComma = true; 326 } 327 328 if (isKill()) { 329 if (NeedComma) OS << ','; 330 OS << "kill"; 331 NeedComma = true; 332 } 333 if (isDead()) { 334 if (NeedComma) OS << ','; 335 OS << "dead"; 336 NeedComma = true; 337 } 338 if (isUndef() && isUse()) { 339 if (NeedComma) OS << ','; 340 OS << "undef"; 341 NeedComma = true; 342 } 343 if (isInternalRead()) { 344 if (NeedComma) OS << ','; 345 OS << "internal"; 346 NeedComma = true; 347 } 348 if (isTied()) { 349 if (NeedComma) OS << ','; 350 OS << "tied"; 351 if (TiedTo != 15) 352 OS << unsigned(TiedTo - 1); 353 } 354 OS << '>'; 355 } 356 break; 357 case MachineOperand::MO_Immediate: 358 OS << getImm(); 359 break; 360 case MachineOperand::MO_CImmediate: 361 getCImm()->getValue().print(OS, false); 362 break; 363 case MachineOperand::MO_FPImmediate: 364 if (getFPImm()->getType()->isFloatTy()) 365 OS << getFPImm()->getValueAPF().convertToFloat(); 366 else 367 OS << getFPImm()->getValueAPF().convertToDouble(); 368 break; 369 case MachineOperand::MO_MachineBasicBlock: 370 OS << "<BB#" << getMBB()->getNumber() << ">"; 371 break; 372 case MachineOperand::MO_FrameIndex: 373 OS << "<fi#" << getIndex() << '>'; 374 break; 375 case MachineOperand::MO_ConstantPoolIndex: 376 OS << "<cp#" << getIndex(); 377 if (getOffset()) OS << "+" << getOffset(); 378 OS << '>'; 379 break; 380 case MachineOperand::MO_TargetIndex: 381 OS << "<ti#" << getIndex(); 382 if (getOffset()) OS << "+" << getOffset(); 383 OS << '>'; 384 break; 385 case MachineOperand::MO_JumpTableIndex: 386 OS << "<jt#" << getIndex() << '>'; 387 break; 388 case MachineOperand::MO_GlobalAddress: 389 OS << "<ga:"; 390 getGlobal()->printAsOperand(OS, /*PrintType=*/false); 391 if (getOffset()) OS << "+" << getOffset(); 392 OS << '>'; 393 break; 394 case MachineOperand::MO_ExternalSymbol: 395 OS << "<es:" << getSymbolName(); 396 if (getOffset()) OS << "+" << getOffset(); 397 OS << '>'; 398 break; 399 case MachineOperand::MO_BlockAddress: 400 OS << '<'; 401 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false); 402 if (getOffset()) OS << "+" << getOffset(); 403 OS << '>'; 404 break; 405 case MachineOperand::MO_RegisterMask: 406 OS << "<regmask>"; 407 break; 408 case MachineOperand::MO_RegisterLiveOut: 409 OS << "<regliveout>"; 410 break; 411 case MachineOperand::MO_Metadata: 412 OS << '<'; 413 getMetadata()->printAsOperand(OS); 414 OS << '>'; 415 break; 416 case MachineOperand::MO_MCSymbol: 417 OS << "<MCSym=" << *getMCSymbol() << '>'; 418 break; 419 case MachineOperand::MO_CFIIndex: 420 OS << "<call frame instruction>"; 421 break; 422 } 423 424 if (unsigned TF = getTargetFlags()) 425 OS << "[TF=" << TF << ']'; 426 } 427 428 //===----------------------------------------------------------------------===// 429 // MachineMemOperand Implementation 430 //===----------------------------------------------------------------------===// 431 432 /// getAddrSpace - Return the LLVM IR address space number that this pointer 433 /// points into. 434 unsigned MachinePointerInfo::getAddrSpace() const { 435 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 436 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 437 } 438 439 /// getConstantPool - Return a MachinePointerInfo record that refers to the 440 /// constant pool. 441 MachinePointerInfo MachinePointerInfo::getConstantPool() { 442 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 443 } 444 445 /// getFixedStack - Return a MachinePointerInfo record that refers to the 446 /// the specified FrameIndex. 447 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 448 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 449 } 450 451 MachinePointerInfo MachinePointerInfo::getJumpTable() { 452 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 453 } 454 455 MachinePointerInfo MachinePointerInfo::getGOT() { 456 return MachinePointerInfo(PseudoSourceValue::getGOT()); 457 } 458 459 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 460 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 461 } 462 463 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 464 uint64_t s, unsigned int a, 465 const AAMDNodes &AAInfo, 466 const MDNode *Ranges) 467 : PtrInfo(ptrinfo), Size(s), 468 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 469 AAInfo(AAInfo), Ranges(Ranges) { 470 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 471 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 472 "invalid pointer value"); 473 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 474 assert((isLoad() || isStore()) && "Not a load/store!"); 475 } 476 477 /// Profile - Gather unique data for the object. 478 /// 479 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 480 ID.AddInteger(getOffset()); 481 ID.AddInteger(Size); 482 ID.AddPointer(getOpaqueValue()); 483 ID.AddInteger(Flags); 484 } 485 486 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 487 // The Value and Offset may differ due to CSE. But the flags and size 488 // should be the same. 489 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 490 assert(MMO->getSize() == getSize() && "Size mismatch!"); 491 492 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 493 // Update the alignment value. 494 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 495 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 496 // Also update the base and offset, because the new alignment may 497 // not be applicable with the old ones. 498 PtrInfo = MMO->PtrInfo; 499 } 500 } 501 502 /// getAlignment - Return the minimum known alignment in bytes of the 503 /// actual memory reference. 504 uint64_t MachineMemOperand::getAlignment() const { 505 return MinAlign(getBaseAlignment(), getOffset()); 506 } 507 508 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 509 assert((MMO.isLoad() || MMO.isStore()) && 510 "SV has to be a load, store or both."); 511 512 if (MMO.isVolatile()) 513 OS << "Volatile "; 514 515 if (MMO.isLoad()) 516 OS << "LD"; 517 if (MMO.isStore()) 518 OS << "ST"; 519 OS << MMO.getSize(); 520 521 // Print the address information. 522 OS << "["; 523 if (const Value *V = MMO.getValue()) 524 V->printAsOperand(OS, /*PrintType=*/false); 525 else if (const PseudoSourceValue *PSV = MMO.getPseudoValue()) 526 PSV->printCustom(OS); 527 else 528 OS << "<unknown>"; 529 530 unsigned AS = MMO.getAddrSpace(); 531 if (AS != 0) 532 OS << "(addrspace=" << AS << ')'; 533 534 // If the alignment of the memory reference itself differs from the alignment 535 // of the base pointer, print the base alignment explicitly, next to the base 536 // pointer. 537 if (MMO.getBaseAlignment() != MMO.getAlignment()) 538 OS << "(align=" << MMO.getBaseAlignment() << ")"; 539 540 if (MMO.getOffset() != 0) 541 OS << "+" << MMO.getOffset(); 542 OS << "]"; 543 544 // Print the alignment of the reference. 545 if (MMO.getBaseAlignment() != MMO.getAlignment() || 546 MMO.getBaseAlignment() != MMO.getSize()) 547 OS << "(align=" << MMO.getAlignment() << ")"; 548 549 // Print TBAA info. 550 if (const MDNode *TBAAInfo = MMO.getAAInfo().TBAA) { 551 OS << "(tbaa="; 552 if (TBAAInfo->getNumOperands() > 0) 553 TBAAInfo->getOperand(0)->printAsOperand(OS); 554 else 555 OS << "<unknown>"; 556 OS << ")"; 557 } 558 559 // Print AA scope info. 560 if (const MDNode *ScopeInfo = MMO.getAAInfo().Scope) { 561 OS << "(alias.scope="; 562 if (ScopeInfo->getNumOperands() > 0) 563 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 564 ScopeInfo->getOperand(i)->printAsOperand(OS); 565 if (i != ie-1) 566 OS << ","; 567 } 568 else 569 OS << "<unknown>"; 570 OS << ")"; 571 } 572 573 // Print AA noalias scope info. 574 if (const MDNode *NoAliasInfo = MMO.getAAInfo().NoAlias) { 575 OS << "(noalias="; 576 if (NoAliasInfo->getNumOperands() > 0) 577 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 578 NoAliasInfo->getOperand(i)->printAsOperand(OS); 579 if (i != ie-1) 580 OS << ","; 581 } 582 else 583 OS << "<unknown>"; 584 OS << ")"; 585 } 586 587 // Print nontemporal info. 588 if (MMO.isNonTemporal()) 589 OS << "(nontemporal)"; 590 591 if (MMO.isInvariant()) 592 OS << "(invariant)"; 593 594 return OS; 595 } 596 597 //===----------------------------------------------------------------------===// 598 // MachineInstr Implementation 599 //===----------------------------------------------------------------------===// 600 601 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 602 if (MCID->ImplicitDefs) 603 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 604 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 605 if (MCID->ImplicitUses) 606 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 607 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 608 } 609 610 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 611 /// implicit operands. It reserves space for the number of operands specified by 612 /// the MCInstrDesc. 613 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 614 DebugLoc dl, bool NoImp) 615 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), 616 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), 617 debugLoc(std::move(dl)) { 618 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 619 620 // Reserve space for the expected number of operands. 621 if (unsigned NumOps = MCID->getNumOperands() + 622 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 623 CapOperands = OperandCapacity::get(NumOps); 624 Operands = MF.allocateOperandArray(CapOperands); 625 } 626 627 if (!NoImp) 628 addImplicitDefUseOperands(MF); 629 } 630 631 /// MachineInstr ctor - Copies MachineInstr arg exactly 632 /// 633 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 634 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 635 Flags(0), AsmPrinterFlags(0), 636 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 637 debugLoc(MI.getDebugLoc()) { 638 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 639 640 CapOperands = OperandCapacity::get(MI.getNumOperands()); 641 Operands = MF.allocateOperandArray(CapOperands); 642 643 // Copy operands. 644 for (const MachineOperand &MO : MI.operands()) 645 addOperand(MF, MO); 646 647 // Copy all the sensible flags. 648 setFlags(MI.Flags); 649 } 650 651 /// getRegInfo - If this instruction is embedded into a MachineFunction, 652 /// return the MachineRegisterInfo object for the current function, otherwise 653 /// return null. 654 MachineRegisterInfo *MachineInstr::getRegInfo() { 655 if (MachineBasicBlock *MBB = getParent()) 656 return &MBB->getParent()->getRegInfo(); 657 return nullptr; 658 } 659 660 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 661 /// this instruction from their respective use lists. This requires that the 662 /// operands already be on their use lists. 663 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 664 for (MachineOperand &MO : operands()) 665 if (MO.isReg()) 666 MRI.removeRegOperandFromUseList(&MO); 667 } 668 669 /// AddRegOperandsToUseLists - Add all of the register operands in 670 /// this instruction from their respective use lists. This requires that the 671 /// operands not be on their use lists yet. 672 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 673 for (MachineOperand &MO : operands()) 674 if (MO.isReg()) 675 MRI.addRegOperandToUseList(&MO); 676 } 677 678 void MachineInstr::addOperand(const MachineOperand &Op) { 679 MachineBasicBlock *MBB = getParent(); 680 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 681 MachineFunction *MF = MBB->getParent(); 682 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 683 addOperand(*MF, Op); 684 } 685 686 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 687 /// ranges. If MRI is non-null also update use-def chains. 688 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 689 unsigned NumOps, MachineRegisterInfo *MRI) { 690 if (MRI) 691 return MRI->moveOperands(Dst, Src, NumOps); 692 693 // MachineOperand is a trivially copyable type so we can just use memmove. 694 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 695 } 696 697 /// addOperand - Add the specified operand to the instruction. If it is an 698 /// implicit operand, it is added to the end of the operand list. If it is 699 /// an explicit operand it is added at the end of the explicit operand list 700 /// (before the first implicit operand). 701 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 702 assert(MCID && "Cannot add operands before providing an instr descriptor"); 703 704 // Check if we're adding one of our existing operands. 705 if (&Op >= Operands && &Op < Operands + NumOperands) { 706 // This is unusual: MI->addOperand(MI->getOperand(i)). 707 // If adding Op requires reallocating or moving existing operands around, 708 // the Op reference could go stale. Support it by copying Op. 709 MachineOperand CopyOp(Op); 710 return addOperand(MF, CopyOp); 711 } 712 713 // Find the insert location for the new operand. Implicit registers go at 714 // the end, everything else goes before the implicit regs. 715 // 716 // FIXME: Allow mixed explicit and implicit operands on inline asm. 717 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 718 // implicit-defs, but they must not be moved around. See the FIXME in 719 // InstrEmitter.cpp. 720 unsigned OpNo = getNumOperands(); 721 bool isImpReg = Op.isReg() && Op.isImplicit(); 722 if (!isImpReg && !isInlineAsm()) { 723 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 724 --OpNo; 725 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 726 } 727 } 728 729 #ifndef NDEBUG 730 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 731 // OpNo now points as the desired insertion point. Unless this is a variadic 732 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 733 // RegMask operands go between the explicit and implicit operands. 734 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 735 OpNo < MCID->getNumOperands() || isMetaDataOp) && 736 "Trying to add an operand to a machine instr that is already done!"); 737 #endif 738 739 MachineRegisterInfo *MRI = getRegInfo(); 740 741 // Determine if the Operands array needs to be reallocated. 742 // Save the old capacity and operand array. 743 OperandCapacity OldCap = CapOperands; 744 MachineOperand *OldOperands = Operands; 745 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 746 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 747 Operands = MF.allocateOperandArray(CapOperands); 748 // Move the operands before the insertion point. 749 if (OpNo) 750 moveOperands(Operands, OldOperands, OpNo, MRI); 751 } 752 753 // Move the operands following the insertion point. 754 if (OpNo != NumOperands) 755 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 756 MRI); 757 ++NumOperands; 758 759 // Deallocate the old operand array. 760 if (OldOperands != Operands && OldOperands) 761 MF.deallocateOperandArray(OldCap, OldOperands); 762 763 // Copy Op into place. It still needs to be inserted into the MRI use lists. 764 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 765 NewMO->ParentMI = this; 766 767 // When adding a register operand, tell MRI about it. 768 if (NewMO->isReg()) { 769 // Ensure isOnRegUseList() returns false, regardless of Op's status. 770 NewMO->Contents.Reg.Prev = nullptr; 771 // Ignore existing ties. This is not a property that can be copied. 772 NewMO->TiedTo = 0; 773 // Add the new operand to MRI, but only for instructions in an MBB. 774 if (MRI) 775 MRI->addRegOperandToUseList(NewMO); 776 // The MCID operand information isn't accurate until we start adding 777 // explicit operands. The implicit operands are added first, then the 778 // explicits are inserted before them. 779 if (!isImpReg) { 780 // Tie uses to defs as indicated in MCInstrDesc. 781 if (NewMO->isUse()) { 782 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 783 if (DefIdx != -1) 784 tieOperands(DefIdx, OpNo); 785 } 786 // If the register operand is flagged as early, mark the operand as such. 787 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 788 NewMO->setIsEarlyClobber(true); 789 } 790 } 791 } 792 793 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 794 /// fewer operand than it started with. 795 /// 796 void MachineInstr::RemoveOperand(unsigned OpNo) { 797 assert(OpNo < getNumOperands() && "Invalid operand number"); 798 untieRegOperand(OpNo); 799 800 #ifndef NDEBUG 801 // Moving tied operands would break the ties. 802 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 803 if (Operands[i].isReg()) 804 assert(!Operands[i].isTied() && "Cannot move tied operands"); 805 #endif 806 807 MachineRegisterInfo *MRI = getRegInfo(); 808 if (MRI && Operands[OpNo].isReg()) 809 MRI->removeRegOperandFromUseList(Operands + OpNo); 810 811 // Don't call the MachineOperand destructor. A lot of this code depends on 812 // MachineOperand having a trivial destructor anyway, and adding a call here 813 // wouldn't make it 'destructor-correct'. 814 815 if (unsigned N = NumOperands - 1 - OpNo) 816 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 817 --NumOperands; 818 } 819 820 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 821 /// This function should be used only occasionally. The setMemRefs function 822 /// is the primary method for setting up a MachineInstr's MemRefs list. 823 void MachineInstr::addMemOperand(MachineFunction &MF, 824 MachineMemOperand *MO) { 825 mmo_iterator OldMemRefs = MemRefs; 826 unsigned OldNumMemRefs = NumMemRefs; 827 828 unsigned NewNum = NumMemRefs + 1; 829 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 830 831 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 832 NewMemRefs[NewNum - 1] = MO; 833 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 834 } 835 836 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 837 assert(!isBundledWithPred() && "Must be called on bundle header"); 838 for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) { 839 if (MII->getDesc().getFlags() & Mask) { 840 if (Type == AnyInBundle) 841 return true; 842 } else { 843 if (Type == AllInBundle && !MII->isBundle()) 844 return false; 845 } 846 // This was the last instruction in the bundle. 847 if (!MII->isBundledWithSucc()) 848 return Type == AllInBundle; 849 } 850 } 851 852 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 853 MICheckType Check) const { 854 // If opcodes or number of operands are not the same then the two 855 // instructions are obviously not identical. 856 if (Other->getOpcode() != getOpcode() || 857 Other->getNumOperands() != getNumOperands()) 858 return false; 859 860 if (isBundle()) { 861 // Both instructions are bundles, compare MIs inside the bundle. 862 MachineBasicBlock::const_instr_iterator I1 = *this; 863 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 864 MachineBasicBlock::const_instr_iterator I2 = *Other; 865 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 866 while (++I1 != E1 && I1->isInsideBundle()) { 867 ++I2; 868 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 869 return false; 870 } 871 } 872 873 // Check operands to make sure they match. 874 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 875 const MachineOperand &MO = getOperand(i); 876 const MachineOperand &OMO = Other->getOperand(i); 877 if (!MO.isReg()) { 878 if (!MO.isIdenticalTo(OMO)) 879 return false; 880 continue; 881 } 882 883 // Clients may or may not want to ignore defs when testing for equality. 884 // For example, machine CSE pass only cares about finding common 885 // subexpressions, so it's safe to ignore virtual register defs. 886 if (MO.isDef()) { 887 if (Check == IgnoreDefs) 888 continue; 889 else if (Check == IgnoreVRegDefs) { 890 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 891 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 892 if (MO.getReg() != OMO.getReg()) 893 return false; 894 } else { 895 if (!MO.isIdenticalTo(OMO)) 896 return false; 897 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 898 return false; 899 } 900 } else { 901 if (!MO.isIdenticalTo(OMO)) 902 return false; 903 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 904 return false; 905 } 906 } 907 // If DebugLoc does not match then two dbg.values are not identical. 908 if (isDebugValue()) 909 if (getDebugLoc() && Other->getDebugLoc() && 910 getDebugLoc() != Other->getDebugLoc()) 911 return false; 912 return true; 913 } 914 915 MachineInstr *MachineInstr::removeFromParent() { 916 assert(getParent() && "Not embedded in a basic block!"); 917 return getParent()->remove(this); 918 } 919 920 MachineInstr *MachineInstr::removeFromBundle() { 921 assert(getParent() && "Not embedded in a basic block!"); 922 return getParent()->remove_instr(this); 923 } 924 925 void MachineInstr::eraseFromParent() { 926 assert(getParent() && "Not embedded in a basic block!"); 927 getParent()->erase(this); 928 } 929 930 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 931 assert(getParent() && "Not embedded in a basic block!"); 932 MachineBasicBlock *MBB = getParent(); 933 MachineFunction *MF = MBB->getParent(); 934 assert(MF && "Not embedded in a function!"); 935 936 MachineInstr *MI = (MachineInstr *)this; 937 MachineRegisterInfo &MRI = MF->getRegInfo(); 938 939 for (const MachineOperand &MO : MI->operands()) { 940 if (!MO.isReg() || !MO.isDef()) 941 continue; 942 unsigned Reg = MO.getReg(); 943 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 944 continue; 945 MRI.markUsesInDebugValueAsUndef(Reg); 946 } 947 MI->eraseFromParent(); 948 } 949 950 void MachineInstr::eraseFromBundle() { 951 assert(getParent() && "Not embedded in a basic block!"); 952 getParent()->erase_instr(this); 953 } 954 955 /// getNumExplicitOperands - Returns the number of non-implicit operands. 956 /// 957 unsigned MachineInstr::getNumExplicitOperands() const { 958 unsigned NumOperands = MCID->getNumOperands(); 959 if (!MCID->isVariadic()) 960 return NumOperands; 961 962 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 963 const MachineOperand &MO = getOperand(i); 964 if (!MO.isReg() || !MO.isImplicit()) 965 NumOperands++; 966 } 967 return NumOperands; 968 } 969 970 void MachineInstr::bundleWithPred() { 971 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 972 setFlag(BundledPred); 973 MachineBasicBlock::instr_iterator Pred = this; 974 --Pred; 975 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 976 Pred->setFlag(BundledSucc); 977 } 978 979 void MachineInstr::bundleWithSucc() { 980 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 981 setFlag(BundledSucc); 982 MachineBasicBlock::instr_iterator Succ = this; 983 ++Succ; 984 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 985 Succ->setFlag(BundledPred); 986 } 987 988 void MachineInstr::unbundleFromPred() { 989 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 990 clearFlag(BundledPred); 991 MachineBasicBlock::instr_iterator Pred = this; 992 --Pred; 993 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 994 Pred->clearFlag(BundledSucc); 995 } 996 997 void MachineInstr::unbundleFromSucc() { 998 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 999 clearFlag(BundledSucc); 1000 MachineBasicBlock::instr_iterator Succ = this; 1001 ++Succ; 1002 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1003 Succ->clearFlag(BundledPred); 1004 } 1005 1006 bool MachineInstr::isStackAligningInlineAsm() const { 1007 if (isInlineAsm()) { 1008 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1009 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1010 return true; 1011 } 1012 return false; 1013 } 1014 1015 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1016 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1017 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1018 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1019 } 1020 1021 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1022 unsigned *GroupNo) const { 1023 assert(isInlineAsm() && "Expected an inline asm instruction"); 1024 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1025 1026 // Ignore queries about the initial operands. 1027 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1028 return -1; 1029 1030 unsigned Group = 0; 1031 unsigned NumOps; 1032 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1033 i += NumOps) { 1034 const MachineOperand &FlagMO = getOperand(i); 1035 // If we reach the implicit register operands, stop looking. 1036 if (!FlagMO.isImm()) 1037 return -1; 1038 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1039 if (i + NumOps > OpIdx) { 1040 if (GroupNo) 1041 *GroupNo = Group; 1042 return i; 1043 } 1044 ++Group; 1045 } 1046 return -1; 1047 } 1048 1049 const TargetRegisterClass* 1050 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1051 const TargetInstrInfo *TII, 1052 const TargetRegisterInfo *TRI) const { 1053 assert(getParent() && "Can't have an MBB reference here!"); 1054 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1055 const MachineFunction &MF = *getParent()->getParent(); 1056 1057 // Most opcodes have fixed constraints in their MCInstrDesc. 1058 if (!isInlineAsm()) 1059 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1060 1061 if (!getOperand(OpIdx).isReg()) 1062 return nullptr; 1063 1064 // For tied uses on inline asm, get the constraint from the def. 1065 unsigned DefIdx; 1066 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1067 OpIdx = DefIdx; 1068 1069 // Inline asm stores register class constraints in the flag word. 1070 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1071 if (FlagIdx < 0) 1072 return nullptr; 1073 1074 unsigned Flag = getOperand(FlagIdx).getImm(); 1075 unsigned RCID; 1076 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 1077 return TRI->getRegClass(RCID); 1078 1079 // Assume that all registers in a memory operand are pointers. 1080 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1081 return TRI->getPointerRegClass(MF); 1082 1083 return nullptr; 1084 } 1085 1086 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1087 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1088 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1089 // Check every operands inside the bundle if we have 1090 // been asked to. 1091 if (ExploreBundle) 1092 for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC; 1093 ++OpndIt) 1094 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1095 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1096 else 1097 // Otherwise, just check the current operands. 1098 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1099 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1100 return CurRC; 1101 } 1102 1103 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1104 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1105 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1106 assert(CurRC && "Invalid initial register class"); 1107 // Check if Reg is constrained by some of its use/def from MI. 1108 const MachineOperand &MO = getOperand(OpIdx); 1109 if (!MO.isReg() || MO.getReg() != Reg) 1110 return CurRC; 1111 // If yes, accumulate the constraints through the operand. 1112 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1113 } 1114 1115 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1116 unsigned OpIdx, const TargetRegisterClass *CurRC, 1117 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1118 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1119 const MachineOperand &MO = getOperand(OpIdx); 1120 assert(MO.isReg() && 1121 "Cannot get register constraints for non-register operand"); 1122 assert(CurRC && "Invalid initial register class"); 1123 if (unsigned SubIdx = MO.getSubReg()) { 1124 if (OpRC) 1125 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1126 else 1127 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1128 } else if (OpRC) 1129 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1130 return CurRC; 1131 } 1132 1133 /// Return the number of instructions inside the MI bundle, not counting the 1134 /// header instruction. 1135 unsigned MachineInstr::getBundleSize() const { 1136 MachineBasicBlock::const_instr_iterator I = this; 1137 unsigned Size = 0; 1138 while (I->isBundledWithSucc()) 1139 ++Size, ++I; 1140 return Size; 1141 } 1142 1143 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1144 /// the specific register or -1 if it is not found. It further tightens 1145 /// the search criteria to a use that kills the register if isKill is true. 1146 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1147 const TargetRegisterInfo *TRI) const { 1148 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1149 const MachineOperand &MO = getOperand(i); 1150 if (!MO.isReg() || !MO.isUse()) 1151 continue; 1152 unsigned MOReg = MO.getReg(); 1153 if (!MOReg) 1154 continue; 1155 if (MOReg == Reg || 1156 (TRI && 1157 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1158 TargetRegisterInfo::isPhysicalRegister(Reg) && 1159 TRI->isSubRegister(MOReg, Reg))) 1160 if (!isKill || MO.isKill()) 1161 return i; 1162 } 1163 return -1; 1164 } 1165 1166 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1167 /// indicating if this instruction reads or writes Reg. This also considers 1168 /// partial defines. 1169 std::pair<bool,bool> 1170 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1171 SmallVectorImpl<unsigned> *Ops) const { 1172 bool PartDef = false; // Partial redefine. 1173 bool FullDef = false; // Full define. 1174 bool Use = false; 1175 1176 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1177 const MachineOperand &MO = getOperand(i); 1178 if (!MO.isReg() || MO.getReg() != Reg) 1179 continue; 1180 if (Ops) 1181 Ops->push_back(i); 1182 if (MO.isUse()) 1183 Use |= !MO.isUndef(); 1184 else if (MO.getSubReg() && !MO.isUndef()) 1185 // A partial <def,undef> doesn't count as reading the register. 1186 PartDef = true; 1187 else 1188 FullDef = true; 1189 } 1190 // A partial redefine uses Reg unless there is also a full define. 1191 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1192 } 1193 1194 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1195 /// the specified register or -1 if it is not found. If isDead is true, defs 1196 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1197 /// also checks if there is a def of a super-register. 1198 int 1199 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1200 const TargetRegisterInfo *TRI) const { 1201 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1202 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1203 const MachineOperand &MO = getOperand(i); 1204 // Accept regmask operands when Overlap is set. 1205 // Ignore them when looking for a specific def operand (Overlap == false). 1206 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1207 return i; 1208 if (!MO.isReg() || !MO.isDef()) 1209 continue; 1210 unsigned MOReg = MO.getReg(); 1211 bool Found = (MOReg == Reg); 1212 if (!Found && TRI && isPhys && 1213 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1214 if (Overlap) 1215 Found = TRI->regsOverlap(MOReg, Reg); 1216 else 1217 Found = TRI->isSubRegister(MOReg, Reg); 1218 } 1219 if (Found && (!isDead || MO.isDead())) 1220 return i; 1221 } 1222 return -1; 1223 } 1224 1225 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1226 /// operand list that is used to represent the predicate. It returns -1 if 1227 /// none is found. 1228 int MachineInstr::findFirstPredOperandIdx() const { 1229 // Don't call MCID.findFirstPredOperandIdx() because this variant 1230 // is sometimes called on an instruction that's not yet complete, and 1231 // so the number of operands is less than the MCID indicates. In 1232 // particular, the PTX target does this. 1233 const MCInstrDesc &MCID = getDesc(); 1234 if (MCID.isPredicable()) { 1235 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1236 if (MCID.OpInfo[i].isPredicate()) 1237 return i; 1238 } 1239 1240 return -1; 1241 } 1242 1243 // MachineOperand::TiedTo is 4 bits wide. 1244 const unsigned TiedMax = 15; 1245 1246 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1247 /// 1248 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1249 /// field. TiedTo can have these values: 1250 /// 1251 /// 0: Operand is not tied to anything. 1252 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1253 /// TiedMax: Tied to an operand >= TiedMax-1. 1254 /// 1255 /// The tied def must be one of the first TiedMax operands on a normal 1256 /// instruction. INLINEASM instructions allow more tied defs. 1257 /// 1258 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1259 MachineOperand &DefMO = getOperand(DefIdx); 1260 MachineOperand &UseMO = getOperand(UseIdx); 1261 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1262 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1263 assert(!DefMO.isTied() && "Def is already tied to another use"); 1264 assert(!UseMO.isTied() && "Use is already tied to another def"); 1265 1266 if (DefIdx < TiedMax) 1267 UseMO.TiedTo = DefIdx + 1; 1268 else { 1269 // Inline asm can use the group descriptors to find tied operands, but on 1270 // normal instruction, the tied def must be within the first TiedMax 1271 // operands. 1272 assert(isInlineAsm() && "DefIdx out of range"); 1273 UseMO.TiedTo = TiedMax; 1274 } 1275 1276 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1277 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1278 } 1279 1280 /// Given the index of a tied register operand, find the operand it is tied to. 1281 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1282 /// which must exist. 1283 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1284 const MachineOperand &MO = getOperand(OpIdx); 1285 assert(MO.isTied() && "Operand isn't tied"); 1286 1287 // Normally TiedTo is in range. 1288 if (MO.TiedTo < TiedMax) 1289 return MO.TiedTo - 1; 1290 1291 // Uses on normal instructions can be out of range. 1292 if (!isInlineAsm()) { 1293 // Normal tied defs must be in the 0..TiedMax-1 range. 1294 if (MO.isUse()) 1295 return TiedMax - 1; 1296 // MO is a def. Search for the tied use. 1297 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1298 const MachineOperand &UseMO = getOperand(i); 1299 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1300 return i; 1301 } 1302 llvm_unreachable("Can't find tied use"); 1303 } 1304 1305 // Now deal with inline asm by parsing the operand group descriptor flags. 1306 // Find the beginning of each operand group. 1307 SmallVector<unsigned, 8> GroupIdx; 1308 unsigned OpIdxGroup = ~0u; 1309 unsigned NumOps; 1310 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1311 i += NumOps) { 1312 const MachineOperand &FlagMO = getOperand(i); 1313 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1314 unsigned CurGroup = GroupIdx.size(); 1315 GroupIdx.push_back(i); 1316 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1317 // OpIdx belongs to this operand group. 1318 if (OpIdx > i && OpIdx < i + NumOps) 1319 OpIdxGroup = CurGroup; 1320 unsigned TiedGroup; 1321 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1322 continue; 1323 // Operands in this group are tied to operands in TiedGroup which must be 1324 // earlier. Find the number of operands between the two groups. 1325 unsigned Delta = i - GroupIdx[TiedGroup]; 1326 1327 // OpIdx is a use tied to TiedGroup. 1328 if (OpIdxGroup == CurGroup) 1329 return OpIdx - Delta; 1330 1331 // OpIdx is a def tied to this use group. 1332 if (OpIdxGroup == TiedGroup) 1333 return OpIdx + Delta; 1334 } 1335 llvm_unreachable("Invalid tied operand on inline asm"); 1336 } 1337 1338 /// clearKillInfo - Clears kill flags on all operands. 1339 /// 1340 void MachineInstr::clearKillInfo() { 1341 for (MachineOperand &MO : operands()) { 1342 if (MO.isReg() && MO.isUse()) 1343 MO.setIsKill(false); 1344 } 1345 } 1346 1347 void MachineInstr::substituteRegister(unsigned FromReg, 1348 unsigned ToReg, 1349 unsigned SubIdx, 1350 const TargetRegisterInfo &RegInfo) { 1351 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1352 if (SubIdx) 1353 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1354 for (MachineOperand &MO : operands()) { 1355 if (!MO.isReg() || MO.getReg() != FromReg) 1356 continue; 1357 MO.substPhysReg(ToReg, RegInfo); 1358 } 1359 } else { 1360 for (MachineOperand &MO : operands()) { 1361 if (!MO.isReg() || MO.getReg() != FromReg) 1362 continue; 1363 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1364 } 1365 } 1366 } 1367 1368 /// isSafeToMove - Return true if it is safe to move this instruction. If 1369 /// SawStore is set to true, it means that there is a store (or call) between 1370 /// the instruction's location and its intended destination. 1371 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1372 // Ignore stuff that we obviously can't move. 1373 // 1374 // Treat volatile loads as stores. This is not strictly necessary for 1375 // volatiles, but it is required for atomic loads. It is not allowed to move 1376 // a load across an atomic load with Ordering > Monotonic. 1377 if (mayStore() || isCall() || 1378 (mayLoad() && hasOrderedMemoryRef())) { 1379 SawStore = true; 1380 return false; 1381 } 1382 1383 if (isPosition() || isDebugValue() || isTerminator() || 1384 hasUnmodeledSideEffects()) 1385 return false; 1386 1387 // See if this instruction does a load. If so, we have to guarantee that the 1388 // loaded value doesn't change between the load and the its intended 1389 // destination. The check for isInvariantLoad gives the targe the chance to 1390 // classify the load as always returning a constant, e.g. a constant pool 1391 // load. 1392 if (mayLoad() && !isInvariantLoad(AA)) 1393 // Otherwise, this is a real load. If there is a store between the load and 1394 // end of block, we can't move it. 1395 return !SawStore; 1396 1397 return true; 1398 } 1399 1400 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1401 /// or volatile memory reference, or if the information describing the memory 1402 /// reference is not available. Return false if it is known to have no ordered 1403 /// memory references. 1404 bool MachineInstr::hasOrderedMemoryRef() const { 1405 // An instruction known never to access memory won't have a volatile access. 1406 if (!mayStore() && 1407 !mayLoad() && 1408 !isCall() && 1409 !hasUnmodeledSideEffects()) 1410 return false; 1411 1412 // Otherwise, if the instruction has no memory reference information, 1413 // conservatively assume it wasn't preserved. 1414 if (memoperands_empty()) 1415 return true; 1416 1417 // Check the memory reference information for ordered references. 1418 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1419 if (!(*I)->isUnordered()) 1420 return true; 1421 1422 return false; 1423 } 1424 1425 /// isInvariantLoad - Return true if this instruction is loading from a 1426 /// location whose value is invariant across the function. For example, 1427 /// loading a value from the constant pool or from the argument area 1428 /// of a function if it does not change. This should only return true of 1429 /// *all* loads the instruction does are invariant (if it does multiple loads). 1430 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1431 // If the instruction doesn't load at all, it isn't an invariant load. 1432 if (!mayLoad()) 1433 return false; 1434 1435 // If the instruction has lost its memoperands, conservatively assume that 1436 // it may not be an invariant load. 1437 if (memoperands_empty()) 1438 return false; 1439 1440 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1441 1442 for (mmo_iterator I = memoperands_begin(), 1443 E = memoperands_end(); I != E; ++I) { 1444 if ((*I)->isVolatile()) return false; 1445 if ((*I)->isStore()) return false; 1446 if ((*I)->isInvariant()) return true; 1447 1448 1449 // A load from a constant PseudoSourceValue is invariant. 1450 if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) 1451 if (PSV->isConstant(MFI)) 1452 continue; 1453 1454 if (const Value *V = (*I)->getValue()) { 1455 // If we have an AliasAnalysis, ask it whether the memory is constant. 1456 if (AA && 1457 AA->pointsToConstantMemory( 1458 MemoryLocation(V, (*I)->getSize(), (*I)->getAAInfo()))) 1459 continue; 1460 } 1461 1462 // Otherwise assume conservatively. 1463 return false; 1464 } 1465 1466 // Everything checks out. 1467 return true; 1468 } 1469 1470 /// isConstantValuePHI - If the specified instruction is a PHI that always 1471 /// merges together the same virtual register, return the register, otherwise 1472 /// return 0. 1473 unsigned MachineInstr::isConstantValuePHI() const { 1474 if (!isPHI()) 1475 return 0; 1476 assert(getNumOperands() >= 3 && 1477 "It's illegal to have a PHI without source operands"); 1478 1479 unsigned Reg = getOperand(1).getReg(); 1480 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1481 if (getOperand(i).getReg() != Reg) 1482 return 0; 1483 return Reg; 1484 } 1485 1486 bool MachineInstr::hasUnmodeledSideEffects() const { 1487 if (hasProperty(MCID::UnmodeledSideEffects)) 1488 return true; 1489 if (isInlineAsm()) { 1490 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1491 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1492 return true; 1493 } 1494 1495 return false; 1496 } 1497 1498 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1499 /// 1500 bool MachineInstr::allDefsAreDead() const { 1501 for (const MachineOperand &MO : operands()) { 1502 if (!MO.isReg() || MO.isUse()) 1503 continue; 1504 if (!MO.isDead()) 1505 return false; 1506 } 1507 return true; 1508 } 1509 1510 /// copyImplicitOps - Copy implicit register operands from specified 1511 /// instruction to this instruction. 1512 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1513 const MachineInstr *MI) { 1514 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1515 i != e; ++i) { 1516 const MachineOperand &MO = MI->getOperand(i); 1517 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1518 addOperand(MF, MO); 1519 } 1520 } 1521 1522 void MachineInstr::dump() const { 1523 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1524 dbgs() << " " << *this; 1525 #endif 1526 } 1527 1528 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const { 1529 // We can be a bit tidier if we know the MachineFunction. 1530 const MachineFunction *MF = nullptr; 1531 const TargetRegisterInfo *TRI = nullptr; 1532 const MachineRegisterInfo *MRI = nullptr; 1533 const TargetInstrInfo *TII = nullptr; 1534 if (const MachineBasicBlock *MBB = getParent()) { 1535 MF = MBB->getParent(); 1536 if (MF) { 1537 MRI = &MF->getRegInfo(); 1538 TRI = MF->getSubtarget().getRegisterInfo(); 1539 TII = MF->getSubtarget().getInstrInfo(); 1540 } 1541 } 1542 1543 // Save a list of virtual registers. 1544 SmallVector<unsigned, 8> VirtRegs; 1545 1546 // Print explicitly defined operands on the left of an assignment syntax. 1547 unsigned StartOp = 0, e = getNumOperands(); 1548 for (; StartOp < e && getOperand(StartOp).isReg() && 1549 getOperand(StartOp).isDef() && 1550 !getOperand(StartOp).isImplicit(); 1551 ++StartOp) { 1552 if (StartOp != 0) OS << ", "; 1553 getOperand(StartOp).print(OS, TRI); 1554 unsigned Reg = getOperand(StartOp).getReg(); 1555 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1556 VirtRegs.push_back(Reg); 1557 } 1558 1559 if (StartOp != 0) 1560 OS << " = "; 1561 1562 // Print the opcode name. 1563 if (TII) 1564 OS << TII->getName(getOpcode()); 1565 else 1566 OS << "UNKNOWN"; 1567 1568 if (SkipOpers) 1569 return; 1570 1571 // Print the rest of the operands. 1572 bool OmittedAnyCallClobbers = false; 1573 bool FirstOp = true; 1574 unsigned AsmDescOp = ~0u; 1575 unsigned AsmOpCount = 0; 1576 1577 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1578 // Print asm string. 1579 OS << " "; 1580 getOperand(InlineAsm::MIOp_AsmString).print(OS, TRI); 1581 1582 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1583 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1584 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1585 OS << " [sideeffect]"; 1586 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1587 OS << " [mayload]"; 1588 if (ExtraInfo & InlineAsm::Extra_MayStore) 1589 OS << " [maystore]"; 1590 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1591 OS << " [alignstack]"; 1592 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1593 OS << " [attdialect]"; 1594 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1595 OS << " [inteldialect]"; 1596 1597 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1598 FirstOp = false; 1599 } 1600 1601 1602 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1603 const MachineOperand &MO = getOperand(i); 1604 1605 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1606 VirtRegs.push_back(MO.getReg()); 1607 1608 // Omit call-clobbered registers which aren't used anywhere. This makes 1609 // call instructions much less noisy on targets where calls clobber lots 1610 // of registers. Don't rely on MO.isDead() because we may be called before 1611 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1612 if (MRI && isCall() && 1613 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1614 unsigned Reg = MO.getReg(); 1615 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1616 if (MRI->use_empty(Reg)) { 1617 bool HasAliasLive = false; 1618 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 1619 unsigned AliasReg = *AI; 1620 if (!MRI->use_empty(AliasReg)) { 1621 HasAliasLive = true; 1622 break; 1623 } 1624 } 1625 if (!HasAliasLive) { 1626 OmittedAnyCallClobbers = true; 1627 continue; 1628 } 1629 } 1630 } 1631 } 1632 1633 if (FirstOp) FirstOp = false; else OS << ","; 1634 OS << " "; 1635 if (i < getDesc().NumOperands) { 1636 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1637 if (MCOI.isPredicate()) 1638 OS << "pred:"; 1639 if (MCOI.isOptionalDef()) 1640 OS << "opt:"; 1641 } 1642 if (isDebugValue() && MO.isMetadata()) { 1643 // Pretty print DBG_VALUE instructions. 1644 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1645 if (DIV && !DIV->getName().empty()) 1646 OS << "!\"" << DIV->getName() << '\"'; 1647 else 1648 MO.print(OS, TRI); 1649 } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1650 OS << TRI->getSubRegIndexName(MO.getImm()); 1651 } else if (i == AsmDescOp && MO.isImm()) { 1652 // Pretty print the inline asm operand descriptor. 1653 OS << '$' << AsmOpCount++; 1654 unsigned Flag = MO.getImm(); 1655 switch (InlineAsm::getKind(Flag)) { 1656 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1657 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1658 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1659 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1660 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1661 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1662 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1663 } 1664 1665 unsigned RCID = 0; 1666 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1667 if (TRI) { 1668 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1669 } else 1670 OS << ":RC" << RCID; 1671 } 1672 1673 unsigned TiedTo = 0; 1674 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1675 OS << " tiedto:$" << TiedTo; 1676 1677 OS << ']'; 1678 1679 // Compute the index of the next operand descriptor. 1680 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1681 } else 1682 MO.print(OS, TRI); 1683 } 1684 1685 // Briefly indicate whether any call clobbers were omitted. 1686 if (OmittedAnyCallClobbers) { 1687 if (!FirstOp) OS << ","; 1688 OS << " ..."; 1689 } 1690 1691 bool HaveSemi = false; 1692 const unsigned PrintableFlags = FrameSetup; 1693 if (Flags & PrintableFlags) { 1694 if (!HaveSemi) OS << ";"; HaveSemi = true; 1695 OS << " flags: "; 1696 1697 if (Flags & FrameSetup) 1698 OS << "FrameSetup"; 1699 } 1700 1701 if (!memoperands_empty()) { 1702 if (!HaveSemi) OS << ";"; HaveSemi = true; 1703 1704 OS << " mem:"; 1705 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1706 i != e; ++i) { 1707 OS << **i; 1708 if (std::next(i) != e) 1709 OS << " "; 1710 } 1711 } 1712 1713 // Print the regclass of any virtual registers encountered. 1714 if (MRI && !VirtRegs.empty()) { 1715 if (!HaveSemi) OS << ";"; HaveSemi = true; 1716 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1717 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1718 OS << " " << TRI->getRegClassName(RC) 1719 << ':' << PrintReg(VirtRegs[i]); 1720 for (unsigned j = i+1; j != VirtRegs.size();) { 1721 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1722 ++j; 1723 continue; 1724 } 1725 if (VirtRegs[i] != VirtRegs[j]) 1726 OS << "," << PrintReg(VirtRegs[j]); 1727 VirtRegs.erase(VirtRegs.begin()+j); 1728 } 1729 } 1730 } 1731 1732 // Print debug location information. 1733 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1734 if (!HaveSemi) OS << ";"; 1735 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1736 OS << " line no:" << DV->getLine(); 1737 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1738 DebugLoc InlinedAtDL(InlinedAt); 1739 if (InlinedAtDL && MF) { 1740 OS << " inlined @[ "; 1741 InlinedAtDL.print(OS); 1742 OS << " ]"; 1743 } 1744 } 1745 if (isIndirectDebugValue()) 1746 OS << " indirect"; 1747 } else if (debugLoc && MF) { 1748 if (!HaveSemi) OS << ";"; 1749 OS << " dbg:"; 1750 debugLoc.print(OS); 1751 } 1752 1753 OS << '\n'; 1754 } 1755 1756 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1757 const TargetRegisterInfo *RegInfo, 1758 bool AddIfNotFound) { 1759 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1760 bool hasAliases = isPhysReg && 1761 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1762 bool Found = false; 1763 SmallVector<unsigned,4> DeadOps; 1764 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1765 MachineOperand &MO = getOperand(i); 1766 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1767 continue; 1768 unsigned Reg = MO.getReg(); 1769 if (!Reg) 1770 continue; 1771 1772 if (Reg == IncomingReg) { 1773 if (!Found) { 1774 if (MO.isKill()) 1775 // The register is already marked kill. 1776 return true; 1777 if (isPhysReg && isRegTiedToDefOperand(i)) 1778 // Two-address uses of physregs must not be marked kill. 1779 return true; 1780 MO.setIsKill(); 1781 Found = true; 1782 } 1783 } else if (hasAliases && MO.isKill() && 1784 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1785 // A super-register kill already exists. 1786 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1787 return true; 1788 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1789 DeadOps.push_back(i); 1790 } 1791 } 1792 1793 // Trim unneeded kill operands. 1794 while (!DeadOps.empty()) { 1795 unsigned OpIdx = DeadOps.back(); 1796 if (getOperand(OpIdx).isImplicit()) 1797 RemoveOperand(OpIdx); 1798 else 1799 getOperand(OpIdx).setIsKill(false); 1800 DeadOps.pop_back(); 1801 } 1802 1803 // If not found, this means an alias of one of the operands is killed. Add a 1804 // new implicit operand if required. 1805 if (!Found && AddIfNotFound) { 1806 addOperand(MachineOperand::CreateReg(IncomingReg, 1807 false /*IsDef*/, 1808 true /*IsImp*/, 1809 true /*IsKill*/)); 1810 return true; 1811 } 1812 return Found; 1813 } 1814 1815 void MachineInstr::clearRegisterKills(unsigned Reg, 1816 const TargetRegisterInfo *RegInfo) { 1817 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1818 RegInfo = nullptr; 1819 for (MachineOperand &MO : operands()) { 1820 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1821 continue; 1822 unsigned OpReg = MO.getReg(); 1823 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1824 MO.setIsKill(false); 1825 } 1826 } 1827 1828 bool MachineInstr::addRegisterDead(unsigned Reg, 1829 const TargetRegisterInfo *RegInfo, 1830 bool AddIfNotFound) { 1831 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1832 bool hasAliases = isPhysReg && 1833 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1834 bool Found = false; 1835 SmallVector<unsigned,4> DeadOps; 1836 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1837 MachineOperand &MO = getOperand(i); 1838 if (!MO.isReg() || !MO.isDef()) 1839 continue; 1840 unsigned MOReg = MO.getReg(); 1841 if (!MOReg) 1842 continue; 1843 1844 if (MOReg == Reg) { 1845 MO.setIsDead(); 1846 Found = true; 1847 } else if (hasAliases && MO.isDead() && 1848 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1849 // There exists a super-register that's marked dead. 1850 if (RegInfo->isSuperRegister(Reg, MOReg)) 1851 return true; 1852 if (RegInfo->isSubRegister(Reg, MOReg)) 1853 DeadOps.push_back(i); 1854 } 1855 } 1856 1857 // Trim unneeded dead operands. 1858 while (!DeadOps.empty()) { 1859 unsigned OpIdx = DeadOps.back(); 1860 if (getOperand(OpIdx).isImplicit()) 1861 RemoveOperand(OpIdx); 1862 else 1863 getOperand(OpIdx).setIsDead(false); 1864 DeadOps.pop_back(); 1865 } 1866 1867 // If not found, this means an alias of one of the operands is dead. Add a 1868 // new implicit operand if required. 1869 if (Found || !AddIfNotFound) 1870 return Found; 1871 1872 addOperand(MachineOperand::CreateReg(Reg, 1873 true /*IsDef*/, 1874 true /*IsImp*/, 1875 false /*IsKill*/, 1876 true /*IsDead*/)); 1877 return true; 1878 } 1879 1880 void MachineInstr::clearRegisterDeads(unsigned Reg) { 1881 for (MachineOperand &MO : operands()) { 1882 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 1883 continue; 1884 MO.setIsDead(false); 1885 } 1886 } 1887 1888 void MachineInstr::addRegisterDefReadUndef(unsigned Reg) { 1889 for (MachineOperand &MO : operands()) { 1890 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 1891 continue; 1892 MO.setIsUndef(); 1893 } 1894 } 1895 1896 void MachineInstr::addRegisterDefined(unsigned Reg, 1897 const TargetRegisterInfo *RegInfo) { 1898 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1899 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 1900 if (MO) 1901 return; 1902 } else { 1903 for (const MachineOperand &MO : operands()) { 1904 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1905 MO.getSubReg() == 0) 1906 return; 1907 } 1908 } 1909 addOperand(MachineOperand::CreateReg(Reg, 1910 true /*IsDef*/, 1911 true /*IsImp*/)); 1912 } 1913 1914 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1915 const TargetRegisterInfo &TRI) { 1916 bool HasRegMask = false; 1917 for (MachineOperand &MO : operands()) { 1918 if (MO.isRegMask()) { 1919 HasRegMask = true; 1920 continue; 1921 } 1922 if (!MO.isReg() || !MO.isDef()) continue; 1923 unsigned Reg = MO.getReg(); 1924 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1925 // If there are no uses, including partial uses, the def is dead. 1926 if (std::none_of(UsedRegs.begin(), UsedRegs.end(), 1927 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 1928 MO.setIsDead(); 1929 } 1930 1931 // This is a call with a register mask operand. 1932 // Mask clobbers are always dead, so add defs for the non-dead defines. 1933 if (HasRegMask) 1934 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1935 I != E; ++I) 1936 addRegisterDefined(*I, &TRI); 1937 } 1938 1939 unsigned 1940 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1941 // Build up a buffer of hash code components. 1942 SmallVector<size_t, 8> HashComponents; 1943 HashComponents.reserve(MI->getNumOperands() + 1); 1944 HashComponents.push_back(MI->getOpcode()); 1945 for (const MachineOperand &MO : MI->operands()) { 1946 if (MO.isReg() && MO.isDef() && 1947 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1948 continue; // Skip virtual register defs. 1949 1950 HashComponents.push_back(hash_value(MO)); 1951 } 1952 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1953 } 1954 1955 void MachineInstr::emitError(StringRef Msg) const { 1956 // Find the source location cookie. 1957 unsigned LocCookie = 0; 1958 const MDNode *LocMD = nullptr; 1959 for (unsigned i = getNumOperands(); i != 0; --i) { 1960 if (getOperand(i-1).isMetadata() && 1961 (LocMD = getOperand(i-1).getMetadata()) && 1962 LocMD->getNumOperands() != 0) { 1963 if (const ConstantInt *CI = 1964 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 1965 LocCookie = CI->getZExtValue(); 1966 break; 1967 } 1968 } 1969 } 1970 1971 if (const MachineBasicBlock *MBB = getParent()) 1972 if (const MachineFunction *MF = MBB->getParent()) 1973 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1974 report_fatal_error(Msg); 1975 } 1976