1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineInstrBundle.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/PseudoSourceValue.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/ModuleSlotTracker.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/MC/MCInstrDesc.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/LowLevelTypeImpl.h" 59 #include "llvm/Support/MathExtras.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetInstrInfo.h" 62 #include "llvm/Target/TargetIntrinsicInfo.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include "llvm/Target/TargetRegisterInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstddef> 69 #include <cstdint> 70 #include <cstring> 71 #include <iterator> 72 #include <utility> 73 74 using namespace llvm; 75 76 static cl::opt<bool> PrintWholeRegMask( 77 "print-whole-regmask", 78 cl::desc("Print the full contents of regmask operands in IR dumps"), 79 cl::init(true), cl::Hidden); 80 81 //===----------------------------------------------------------------------===// 82 // MachineOperand Implementation 83 //===----------------------------------------------------------------------===// 84 85 void MachineOperand::setReg(unsigned Reg) { 86 if (getReg() == Reg) return; // No change. 87 88 // Otherwise, we have to change the register. If this operand is embedded 89 // into a machine function, we need to update the old and new register's 90 // use/def lists. 91 if (MachineInstr *MI = getParent()) 92 if (MachineBasicBlock *MBB = MI->getParent()) 93 if (MachineFunction *MF = MBB->getParent()) { 94 MachineRegisterInfo &MRI = MF->getRegInfo(); 95 MRI.removeRegOperandFromUseList(this); 96 SmallContents.RegNo = Reg; 97 MRI.addRegOperandToUseList(this); 98 return; 99 } 100 101 // Otherwise, just change the register, no problem. :) 102 SmallContents.RegNo = Reg; 103 } 104 105 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 106 const TargetRegisterInfo &TRI) { 107 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 108 if (SubIdx && getSubReg()) 109 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 110 setReg(Reg); 111 if (SubIdx) 112 setSubReg(SubIdx); 113 } 114 115 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 116 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 117 if (getSubReg()) { 118 Reg = TRI.getSubReg(Reg, getSubReg()); 119 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 120 // That won't happen in legal code. 121 setSubReg(0); 122 if (isDef()) 123 setIsUndef(false); 124 } 125 setReg(Reg); 126 } 127 128 /// Change a def to a use, or a use to a def. 129 void MachineOperand::setIsDef(bool Val) { 130 assert(isReg() && "Wrong MachineOperand accessor"); 131 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 132 if (IsDef == Val) 133 return; 134 // MRI may keep uses and defs in different list positions. 135 if (MachineInstr *MI = getParent()) 136 if (MachineBasicBlock *MBB = MI->getParent()) 137 if (MachineFunction *MF = MBB->getParent()) { 138 MachineRegisterInfo &MRI = MF->getRegInfo(); 139 MRI.removeRegOperandFromUseList(this); 140 IsDef = Val; 141 MRI.addRegOperandToUseList(this); 142 return; 143 } 144 IsDef = Val; 145 } 146 147 // If this operand is currently a register operand, and if this is in a 148 // function, deregister the operand from the register's use/def list. 149 void MachineOperand::removeRegFromUses() { 150 if (!isReg() || !isOnRegUseList()) 151 return; 152 153 if (MachineInstr *MI = getParent()) { 154 if (MachineBasicBlock *MBB = MI->getParent()) { 155 if (MachineFunction *MF = MBB->getParent()) 156 MF->getRegInfo().removeRegOperandFromUseList(this); 157 } 158 } 159 } 160 161 /// ChangeToImmediate - Replace this operand with a new immediate operand of 162 /// the specified value. If an operand is known to be an immediate already, 163 /// the setImm method should be used. 164 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 165 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 166 167 removeRegFromUses(); 168 169 OpKind = MO_Immediate; 170 Contents.ImmVal = ImmVal; 171 } 172 173 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 174 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 175 176 removeRegFromUses(); 177 178 OpKind = MO_FPImmediate; 179 Contents.CFP = FPImm; 180 } 181 182 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 183 assert((!isReg() || !isTied()) && 184 "Cannot change a tied operand into an external symbol"); 185 186 removeRegFromUses(); 187 188 OpKind = MO_ExternalSymbol; 189 Contents.OffsetedInfo.Val.SymbolName = SymName; 190 setOffset(0); // Offset is always 0. 191 setTargetFlags(TargetFlags); 192 } 193 194 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 195 assert((!isReg() || !isTied()) && 196 "Cannot change a tied operand into an MCSymbol"); 197 198 removeRegFromUses(); 199 200 OpKind = MO_MCSymbol; 201 Contents.Sym = Sym; 202 } 203 204 void MachineOperand::ChangeToFrameIndex(int Idx) { 205 assert((!isReg() || !isTied()) && 206 "Cannot change a tied operand into a FrameIndex"); 207 208 removeRegFromUses(); 209 210 OpKind = MO_FrameIndex; 211 setIndex(Idx); 212 } 213 214 /// ChangeToRegister - Replace this operand with a new register operand of 215 /// the specified value. If an operand is known to be an register already, 216 /// the setReg method should be used. 217 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 218 bool isKill, bool isDead, bool isUndef, 219 bool isDebug) { 220 MachineRegisterInfo *RegInfo = nullptr; 221 if (MachineInstr *MI = getParent()) 222 if (MachineBasicBlock *MBB = MI->getParent()) 223 if (MachineFunction *MF = MBB->getParent()) 224 RegInfo = &MF->getRegInfo(); 225 // If this operand is already a register operand, remove it from the 226 // register's use/def lists. 227 bool WasReg = isReg(); 228 if (RegInfo && WasReg) 229 RegInfo->removeRegOperandFromUseList(this); 230 231 // Change this to a register and set the reg#. 232 OpKind = MO_Register; 233 SmallContents.RegNo = Reg; 234 SubReg_TargetFlags = 0; 235 IsDef = isDef; 236 IsImp = isImp; 237 IsKill = isKill; 238 IsDead = isDead; 239 IsUndef = isUndef; 240 IsInternalRead = false; 241 IsEarlyClobber = false; 242 IsDebug = isDebug; 243 // Ensure isOnRegUseList() returns false. 244 Contents.Reg.Prev = nullptr; 245 // Preserve the tie when the operand was already a register. 246 if (!WasReg) 247 TiedTo = 0; 248 249 // If this operand is embedded in a function, add the operand to the 250 // register's use/def list. 251 if (RegInfo) 252 RegInfo->addRegOperandToUseList(this); 253 } 254 255 /// isIdenticalTo - Return true if this operand is identical to the specified 256 /// operand. Note that this should stay in sync with the hash_value overload 257 /// below. 258 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 259 if (getType() != Other.getType() || 260 getTargetFlags() != Other.getTargetFlags()) 261 return false; 262 263 switch (getType()) { 264 case MachineOperand::MO_Register: 265 return getReg() == Other.getReg() && isDef() == Other.isDef() && 266 getSubReg() == Other.getSubReg(); 267 case MachineOperand::MO_Immediate: 268 return getImm() == Other.getImm(); 269 case MachineOperand::MO_CImmediate: 270 return getCImm() == Other.getCImm(); 271 case MachineOperand::MO_FPImmediate: 272 return getFPImm() == Other.getFPImm(); 273 case MachineOperand::MO_MachineBasicBlock: 274 return getMBB() == Other.getMBB(); 275 case MachineOperand::MO_FrameIndex: 276 return getIndex() == Other.getIndex(); 277 case MachineOperand::MO_ConstantPoolIndex: 278 case MachineOperand::MO_TargetIndex: 279 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 280 case MachineOperand::MO_JumpTableIndex: 281 return getIndex() == Other.getIndex(); 282 case MachineOperand::MO_GlobalAddress: 283 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 284 case MachineOperand::MO_ExternalSymbol: 285 return strcmp(getSymbolName(), Other.getSymbolName()) == 0 && 286 getOffset() == Other.getOffset(); 287 case MachineOperand::MO_BlockAddress: 288 return getBlockAddress() == Other.getBlockAddress() && 289 getOffset() == Other.getOffset(); 290 case MachineOperand::MO_RegisterMask: 291 case MachineOperand::MO_RegisterLiveOut: { 292 // Shallow compare of the two RegMasks 293 const uint32_t *RegMask = getRegMask(); 294 const uint32_t *OtherRegMask = Other.getRegMask(); 295 if (RegMask == OtherRegMask) 296 return true; 297 298 // Calculate the size of the RegMask 299 const MachineFunction *MF = getParent()->getParent()->getParent(); 300 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 301 unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32; 302 303 // Deep compare of the two RegMasks 304 return std::equal(RegMask, RegMask + RegMaskSize, OtherRegMask); 305 } 306 case MachineOperand::MO_MCSymbol: 307 return getMCSymbol() == Other.getMCSymbol(); 308 case MachineOperand::MO_CFIIndex: 309 return getCFIIndex() == Other.getCFIIndex(); 310 case MachineOperand::MO_Metadata: 311 return getMetadata() == Other.getMetadata(); 312 case MachineOperand::MO_IntrinsicID: 313 return getIntrinsicID() == Other.getIntrinsicID(); 314 case MachineOperand::MO_Predicate: 315 return getPredicate() == Other.getPredicate(); 316 } 317 llvm_unreachable("Invalid machine operand type"); 318 } 319 320 // Note: this must stay exactly in sync with isIdenticalTo above. 321 hash_code llvm::hash_value(const MachineOperand &MO) { 322 switch (MO.getType()) { 323 case MachineOperand::MO_Register: 324 // Register operands don't have target flags. 325 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 326 case MachineOperand::MO_Immediate: 327 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 328 case MachineOperand::MO_CImmediate: 329 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 330 case MachineOperand::MO_FPImmediate: 331 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 332 case MachineOperand::MO_MachineBasicBlock: 333 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 334 case MachineOperand::MO_FrameIndex: 335 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 336 case MachineOperand::MO_ConstantPoolIndex: 337 case MachineOperand::MO_TargetIndex: 338 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 339 MO.getOffset()); 340 case MachineOperand::MO_JumpTableIndex: 341 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 342 case MachineOperand::MO_ExternalSymbol: 343 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 344 MO.getSymbolName()); 345 case MachineOperand::MO_GlobalAddress: 346 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 347 MO.getOffset()); 348 case MachineOperand::MO_BlockAddress: 349 return hash_combine(MO.getType(), MO.getTargetFlags(), 350 MO.getBlockAddress(), MO.getOffset()); 351 case MachineOperand::MO_RegisterMask: 352 case MachineOperand::MO_RegisterLiveOut: 353 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 354 case MachineOperand::MO_Metadata: 355 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 356 case MachineOperand::MO_MCSymbol: 357 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 358 case MachineOperand::MO_CFIIndex: 359 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 360 case MachineOperand::MO_IntrinsicID: 361 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID()); 362 case MachineOperand::MO_Predicate: 363 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate()); 364 } 365 llvm_unreachable("Invalid machine operand type"); 366 } 367 368 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI, 369 const TargetIntrinsicInfo *IntrinsicInfo) const { 370 ModuleSlotTracker DummyMST(nullptr); 371 print(OS, DummyMST, TRI, IntrinsicInfo); 372 } 373 374 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 375 const TargetRegisterInfo *TRI, 376 const TargetIntrinsicInfo *IntrinsicInfo) const { 377 switch (getType()) { 378 case MachineOperand::MO_Register: 379 OS << PrintReg(getReg(), TRI, getSubReg()); 380 381 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 382 isInternalRead() || isEarlyClobber() || isTied()) { 383 OS << '<'; 384 bool NeedComma = false; 385 if (isDef()) { 386 if (NeedComma) OS << ','; 387 if (isEarlyClobber()) 388 OS << "earlyclobber,"; 389 if (isImplicit()) 390 OS << "imp-"; 391 OS << "def"; 392 NeedComma = true; 393 // <def,read-undef> only makes sense when getSubReg() is set. 394 // Don't clutter the output otherwise. 395 if (isUndef() && getSubReg()) 396 OS << ",read-undef"; 397 } else if (isImplicit()) { 398 OS << "imp-use"; 399 NeedComma = true; 400 } 401 402 if (isKill()) { 403 if (NeedComma) OS << ','; 404 OS << "kill"; 405 NeedComma = true; 406 } 407 if (isDead()) { 408 if (NeedComma) OS << ','; 409 OS << "dead"; 410 NeedComma = true; 411 } 412 if (isUndef() && isUse()) { 413 if (NeedComma) OS << ','; 414 OS << "undef"; 415 NeedComma = true; 416 } 417 if (isInternalRead()) { 418 if (NeedComma) OS << ','; 419 OS << "internal"; 420 NeedComma = true; 421 } 422 if (isTied()) { 423 if (NeedComma) OS << ','; 424 OS << "tied"; 425 if (TiedTo != 15) 426 OS << unsigned(TiedTo - 1); 427 } 428 OS << '>'; 429 } 430 break; 431 case MachineOperand::MO_Immediate: 432 OS << getImm(); 433 break; 434 case MachineOperand::MO_CImmediate: 435 getCImm()->getValue().print(OS, false); 436 break; 437 case MachineOperand::MO_FPImmediate: 438 if (getFPImm()->getType()->isFloatTy()) { 439 OS << getFPImm()->getValueAPF().convertToFloat(); 440 } else if (getFPImm()->getType()->isHalfTy()) { 441 APFloat APF = getFPImm()->getValueAPF(); 442 bool Unused; 443 APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused); 444 OS << "half " << APF.convertToFloat(); 445 } else if (getFPImm()->getType()->isFP128Ty()) { 446 APFloat APF = getFPImm()->getValueAPF(); 447 SmallString<16> Str; 448 getFPImm()->getValueAPF().toString(Str); 449 OS << "quad " << Str; 450 } else { 451 OS << getFPImm()->getValueAPF().convertToDouble(); 452 } 453 break; 454 case MachineOperand::MO_MachineBasicBlock: 455 OS << "<BB#" << getMBB()->getNumber() << ">"; 456 break; 457 case MachineOperand::MO_FrameIndex: 458 OS << "<fi#" << getIndex() << '>'; 459 break; 460 case MachineOperand::MO_ConstantPoolIndex: 461 OS << "<cp#" << getIndex(); 462 if (getOffset()) OS << "+" << getOffset(); 463 OS << '>'; 464 break; 465 case MachineOperand::MO_TargetIndex: 466 OS << "<ti#" << getIndex(); 467 if (getOffset()) OS << "+" << getOffset(); 468 OS << '>'; 469 break; 470 case MachineOperand::MO_JumpTableIndex: 471 OS << "<jt#" << getIndex() << '>'; 472 break; 473 case MachineOperand::MO_GlobalAddress: 474 OS << "<ga:"; 475 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 476 if (getOffset()) OS << "+" << getOffset(); 477 OS << '>'; 478 break; 479 case MachineOperand::MO_ExternalSymbol: 480 OS << "<es:" << getSymbolName(); 481 if (getOffset()) OS << "+" << getOffset(); 482 OS << '>'; 483 break; 484 case MachineOperand::MO_BlockAddress: 485 OS << '<'; 486 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 487 if (getOffset()) OS << "+" << getOffset(); 488 OS << '>'; 489 break; 490 case MachineOperand::MO_RegisterMask: { 491 unsigned NumRegsInMask = 0; 492 unsigned NumRegsEmitted = 0; 493 OS << "<regmask"; 494 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 495 unsigned MaskWord = i / 32; 496 unsigned MaskBit = i % 32; 497 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 498 if (PrintWholeRegMask || NumRegsEmitted <= 10) { 499 OS << " " << PrintReg(i, TRI); 500 NumRegsEmitted++; 501 } 502 NumRegsInMask++; 503 } 504 } 505 if (NumRegsEmitted != NumRegsInMask) 506 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 507 OS << ">"; 508 break; 509 } 510 case MachineOperand::MO_RegisterLiveOut: 511 OS << "<regliveout>"; 512 break; 513 case MachineOperand::MO_Metadata: 514 OS << '<'; 515 getMetadata()->printAsOperand(OS, MST); 516 OS << '>'; 517 break; 518 case MachineOperand::MO_MCSymbol: 519 OS << "<MCSym=" << *getMCSymbol() << '>'; 520 break; 521 case MachineOperand::MO_CFIIndex: 522 OS << "<call frame instruction>"; 523 break; 524 case MachineOperand::MO_IntrinsicID: { 525 Intrinsic::ID ID = getIntrinsicID(); 526 if (ID < Intrinsic::num_intrinsics) 527 OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>'; 528 else if (IntrinsicInfo) 529 OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>'; 530 else 531 OS << "<intrinsic:" << ID << '>'; 532 break; 533 } 534 case MachineOperand::MO_Predicate: { 535 auto Pred = static_cast<CmpInst::Predicate>(getPredicate()); 536 OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred") 537 << CmpInst::getPredicateName(Pred) << '>'; 538 break; 539 } 540 } 541 if (unsigned TF = getTargetFlags()) 542 OS << "[TF=" << TF << ']'; 543 } 544 545 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 546 LLVM_DUMP_METHOD void MachineOperand::dump() const { 547 dbgs() << *this << '\n'; 548 } 549 #endif 550 551 //===----------------------------------------------------------------------===// 552 // MachineMemOperand Implementation 553 //===----------------------------------------------------------------------===// 554 555 /// getAddrSpace - Return the LLVM IR address space number that this pointer 556 /// points into. 557 unsigned MachinePointerInfo::getAddrSpace() const { 558 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 559 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 560 } 561 562 /// isDereferenceable - Return true if V is always dereferenceable for 563 /// Offset + Size byte. 564 bool MachinePointerInfo::isDereferenceable(unsigned Size, LLVMContext &C, 565 const DataLayout &DL) const { 566 if (!V.is<const Value*>()) 567 return false; 568 569 const Value *BasePtr = V.get<const Value*>(); 570 if (BasePtr == nullptr) 571 return false; 572 573 return isDereferenceableAndAlignedPointer(BasePtr, 1, 574 APInt(DL.getPointerSize(), 575 Offset + Size), 576 DL); 577 } 578 579 /// getConstantPool - Return a MachinePointerInfo record that refers to the 580 /// constant pool. 581 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 582 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 583 } 584 585 /// getFixedStack - Return a MachinePointerInfo record that refers to the 586 /// the specified FrameIndex. 587 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 588 int FI, int64_t Offset) { 589 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 590 } 591 592 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 593 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 594 } 595 596 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 597 return MachinePointerInfo(MF.getPSVManager().getGOT()); 598 } 599 600 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 601 int64_t Offset) { 602 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); 603 } 604 605 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, 606 uint64_t s, unsigned int a, 607 const AAMDNodes &AAInfo, 608 const MDNode *Ranges, 609 SynchronizationScope SynchScope, 610 AtomicOrdering Ordering, 611 AtomicOrdering FailureOrdering) 612 : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), 613 AAInfo(AAInfo), Ranges(Ranges) { 614 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 615 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 616 "invalid pointer value"); 617 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 618 assert((isLoad() || isStore()) && "Not a load/store!"); 619 620 AtomicInfo.SynchScope = static_cast<unsigned>(SynchScope); 621 assert(getSynchScope() == SynchScope && "Value truncated"); 622 AtomicInfo.Ordering = static_cast<unsigned>(Ordering); 623 assert(getOrdering() == Ordering && "Value truncated"); 624 AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering); 625 assert(getFailureOrdering() == FailureOrdering && "Value truncated"); 626 } 627 628 /// Profile - Gather unique data for the object. 629 /// 630 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 631 ID.AddInteger(getOffset()); 632 ID.AddInteger(Size); 633 ID.AddPointer(getOpaqueValue()); 634 ID.AddInteger(getFlags()); 635 ID.AddInteger(getBaseAlignment()); 636 } 637 638 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 639 // The Value and Offset may differ due to CSE. But the flags and size 640 // should be the same. 641 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 642 assert(MMO->getSize() == getSize() && "Size mismatch!"); 643 644 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 645 // Update the alignment value. 646 BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; 647 // Also update the base and offset, because the new alignment may 648 // not be applicable with the old ones. 649 PtrInfo = MMO->PtrInfo; 650 } 651 } 652 653 /// getAlignment - Return the minimum known alignment in bytes of the 654 /// actual memory reference. 655 uint64_t MachineMemOperand::getAlignment() const { 656 return MinAlign(getBaseAlignment(), getOffset()); 657 } 658 659 void MachineMemOperand::print(raw_ostream &OS) const { 660 ModuleSlotTracker DummyMST(nullptr); 661 print(OS, DummyMST); 662 } 663 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 664 assert((isLoad() || isStore()) && 665 "SV has to be a load, store or both."); 666 667 if (isVolatile()) 668 OS << "Volatile "; 669 670 if (isLoad()) 671 OS << "LD"; 672 if (isStore()) 673 OS << "ST"; 674 OS << getSize(); 675 676 // Print the address information. 677 OS << "["; 678 if (const Value *V = getValue()) 679 V->printAsOperand(OS, /*PrintType=*/false, MST); 680 else if (const PseudoSourceValue *PSV = getPseudoValue()) 681 PSV->printCustom(OS); 682 else 683 OS << "<unknown>"; 684 685 unsigned AS = getAddrSpace(); 686 if (AS != 0) 687 OS << "(addrspace=" << AS << ')'; 688 689 // If the alignment of the memory reference itself differs from the alignment 690 // of the base pointer, print the base alignment explicitly, next to the base 691 // pointer. 692 if (getBaseAlignment() != getAlignment()) 693 OS << "(align=" << getBaseAlignment() << ")"; 694 695 if (getOffset() != 0) 696 OS << "+" << getOffset(); 697 OS << "]"; 698 699 // Print the alignment of the reference. 700 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 701 OS << "(align=" << getAlignment() << ")"; 702 703 // Print TBAA info. 704 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 705 OS << "(tbaa="; 706 if (TBAAInfo->getNumOperands() > 0) 707 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 708 else 709 OS << "<unknown>"; 710 OS << ")"; 711 } 712 713 // Print AA scope info. 714 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 715 OS << "(alias.scope="; 716 if (ScopeInfo->getNumOperands() > 0) 717 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 718 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 719 if (i != ie-1) 720 OS << ","; 721 } 722 else 723 OS << "<unknown>"; 724 OS << ")"; 725 } 726 727 // Print AA noalias scope info. 728 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 729 OS << "(noalias="; 730 if (NoAliasInfo->getNumOperands() > 0) 731 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 732 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 733 if (i != ie-1) 734 OS << ","; 735 } 736 else 737 OS << "<unknown>"; 738 OS << ")"; 739 } 740 741 if (isNonTemporal()) 742 OS << "(nontemporal)"; 743 if (isDereferenceable()) 744 OS << "(dereferenceable)"; 745 if (isInvariant()) 746 OS << "(invariant)"; 747 } 748 749 //===----------------------------------------------------------------------===// 750 // MachineInstr Implementation 751 //===----------------------------------------------------------------------===// 752 753 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 754 if (MCID->ImplicitDefs) 755 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 756 ++ImpDefs) 757 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 758 if (MCID->ImplicitUses) 759 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 760 ++ImpUses) 761 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 762 } 763 764 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 765 /// implicit operands. It reserves space for the number of operands specified by 766 /// the MCInstrDesc. 767 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 768 DebugLoc dl, bool NoImp) 769 : MCID(&tid), debugLoc(std::move(dl)) { 770 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 771 772 // Reserve space for the expected number of operands. 773 if (unsigned NumOps = MCID->getNumOperands() + 774 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 775 CapOperands = OperandCapacity::get(NumOps); 776 Operands = MF.allocateOperandArray(CapOperands); 777 } 778 779 if (!NoImp) 780 addImplicitDefUseOperands(MF); 781 } 782 783 /// MachineInstr ctor - Copies MachineInstr arg exactly 784 /// 785 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 786 : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 787 debugLoc(MI.getDebugLoc()) { 788 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 789 790 CapOperands = OperandCapacity::get(MI.getNumOperands()); 791 Operands = MF.allocateOperandArray(CapOperands); 792 793 // Copy operands. 794 for (const MachineOperand &MO : MI.operands()) 795 addOperand(MF, MO); 796 797 // Copy all the sensible flags. 798 setFlags(MI.Flags); 799 } 800 801 /// getRegInfo - If this instruction is embedded into a MachineFunction, 802 /// return the MachineRegisterInfo object for the current function, otherwise 803 /// return null. 804 MachineRegisterInfo *MachineInstr::getRegInfo() { 805 if (MachineBasicBlock *MBB = getParent()) 806 return &MBB->getParent()->getRegInfo(); 807 return nullptr; 808 } 809 810 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 811 /// this instruction from their respective use lists. This requires that the 812 /// operands already be on their use lists. 813 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 814 for (MachineOperand &MO : operands()) 815 if (MO.isReg()) 816 MRI.removeRegOperandFromUseList(&MO); 817 } 818 819 /// AddRegOperandsToUseLists - Add all of the register operands in 820 /// this instruction from their respective use lists. This requires that the 821 /// operands not be on their use lists yet. 822 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 823 for (MachineOperand &MO : operands()) 824 if (MO.isReg()) 825 MRI.addRegOperandToUseList(&MO); 826 } 827 828 void MachineInstr::addOperand(const MachineOperand &Op) { 829 MachineBasicBlock *MBB = getParent(); 830 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 831 MachineFunction *MF = MBB->getParent(); 832 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 833 addOperand(*MF, Op); 834 } 835 836 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 837 /// ranges. If MRI is non-null also update use-def chains. 838 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 839 unsigned NumOps, MachineRegisterInfo *MRI) { 840 if (MRI) 841 return MRI->moveOperands(Dst, Src, NumOps); 842 843 // MachineOperand is a trivially copyable type so we can just use memmove. 844 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 845 } 846 847 /// addOperand - Add the specified operand to the instruction. If it is an 848 /// implicit operand, it is added to the end of the operand list. If it is 849 /// an explicit operand it is added at the end of the explicit operand list 850 /// (before the first implicit operand). 851 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 852 assert(MCID && "Cannot add operands before providing an instr descriptor"); 853 854 // Check if we're adding one of our existing operands. 855 if (&Op >= Operands && &Op < Operands + NumOperands) { 856 // This is unusual: MI->addOperand(MI->getOperand(i)). 857 // If adding Op requires reallocating or moving existing operands around, 858 // the Op reference could go stale. Support it by copying Op. 859 MachineOperand CopyOp(Op); 860 return addOperand(MF, CopyOp); 861 } 862 863 // Find the insert location for the new operand. Implicit registers go at 864 // the end, everything else goes before the implicit regs. 865 // 866 // FIXME: Allow mixed explicit and implicit operands on inline asm. 867 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 868 // implicit-defs, but they must not be moved around. See the FIXME in 869 // InstrEmitter.cpp. 870 unsigned OpNo = getNumOperands(); 871 bool isImpReg = Op.isReg() && Op.isImplicit(); 872 if (!isImpReg && !isInlineAsm()) { 873 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 874 --OpNo; 875 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 876 } 877 } 878 879 #ifndef NDEBUG 880 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 881 // OpNo now points as the desired insertion point. Unless this is a variadic 882 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 883 // RegMask operands go between the explicit and implicit operands. 884 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 885 OpNo < MCID->getNumOperands() || isMetaDataOp) && 886 "Trying to add an operand to a machine instr that is already done!"); 887 #endif 888 889 MachineRegisterInfo *MRI = getRegInfo(); 890 891 // Determine if the Operands array needs to be reallocated. 892 // Save the old capacity and operand array. 893 OperandCapacity OldCap = CapOperands; 894 MachineOperand *OldOperands = Operands; 895 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 896 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 897 Operands = MF.allocateOperandArray(CapOperands); 898 // Move the operands before the insertion point. 899 if (OpNo) 900 moveOperands(Operands, OldOperands, OpNo, MRI); 901 } 902 903 // Move the operands following the insertion point. 904 if (OpNo != NumOperands) 905 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 906 MRI); 907 ++NumOperands; 908 909 // Deallocate the old operand array. 910 if (OldOperands != Operands && OldOperands) 911 MF.deallocateOperandArray(OldCap, OldOperands); 912 913 // Copy Op into place. It still needs to be inserted into the MRI use lists. 914 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 915 NewMO->ParentMI = this; 916 917 // When adding a register operand, tell MRI about it. 918 if (NewMO->isReg()) { 919 // Ensure isOnRegUseList() returns false, regardless of Op's status. 920 NewMO->Contents.Reg.Prev = nullptr; 921 // Ignore existing ties. This is not a property that can be copied. 922 NewMO->TiedTo = 0; 923 // Add the new operand to MRI, but only for instructions in an MBB. 924 if (MRI) 925 MRI->addRegOperandToUseList(NewMO); 926 // The MCID operand information isn't accurate until we start adding 927 // explicit operands. The implicit operands are added first, then the 928 // explicits are inserted before them. 929 if (!isImpReg) { 930 // Tie uses to defs as indicated in MCInstrDesc. 931 if (NewMO->isUse()) { 932 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 933 if (DefIdx != -1) 934 tieOperands(DefIdx, OpNo); 935 } 936 // If the register operand is flagged as early, mark the operand as such. 937 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 938 NewMO->setIsEarlyClobber(true); 939 } 940 } 941 } 942 943 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 944 /// fewer operand than it started with. 945 /// 946 void MachineInstr::RemoveOperand(unsigned OpNo) { 947 assert(OpNo < getNumOperands() && "Invalid operand number"); 948 untieRegOperand(OpNo); 949 950 #ifndef NDEBUG 951 // Moving tied operands would break the ties. 952 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 953 if (Operands[i].isReg()) 954 assert(!Operands[i].isTied() && "Cannot move tied operands"); 955 #endif 956 957 MachineRegisterInfo *MRI = getRegInfo(); 958 if (MRI && Operands[OpNo].isReg()) 959 MRI->removeRegOperandFromUseList(Operands + OpNo); 960 961 // Don't call the MachineOperand destructor. A lot of this code depends on 962 // MachineOperand having a trivial destructor anyway, and adding a call here 963 // wouldn't make it 'destructor-correct'. 964 965 if (unsigned N = NumOperands - 1 - OpNo) 966 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 967 --NumOperands; 968 } 969 970 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 971 /// This function should be used only occasionally. The setMemRefs function 972 /// is the primary method for setting up a MachineInstr's MemRefs list. 973 void MachineInstr::addMemOperand(MachineFunction &MF, 974 MachineMemOperand *MO) { 975 mmo_iterator OldMemRefs = MemRefs; 976 unsigned OldNumMemRefs = NumMemRefs; 977 978 unsigned NewNum = NumMemRefs + 1; 979 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 980 981 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 982 NewMemRefs[NewNum - 1] = MO; 983 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 984 } 985 986 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 987 /// identical. 988 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 989 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 990 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 991 if ((E1 - I1) != (E2 - I2)) 992 return false; 993 for (; I1 != E1; ++I1, ++I2) { 994 if (**I1 != **I2) 995 return false; 996 } 997 return true; 998 } 999 1000 std::pair<MachineInstr::mmo_iterator, unsigned> 1001 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 1002 1003 // If either of the incoming memrefs are empty, we must be conservative and 1004 // treat this as if we've exhausted our space for memrefs and dropped them. 1005 if (memoperands_empty() || Other.memoperands_empty()) 1006 return std::make_pair(nullptr, 0); 1007 1008 // If both instructions have identical memrefs, we don't need to merge them. 1009 // Since many instructions have a single memref, and we tend to merge things 1010 // like pairs of loads from the same location, this catches a large number of 1011 // cases in practice. 1012 if (hasIdenticalMMOs(*this, Other)) 1013 return std::make_pair(MemRefs, NumMemRefs); 1014 1015 // TODO: consider uniquing elements within the operand lists to reduce 1016 // space usage and fall back to conservative information less often. 1017 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 1018 1019 // If we don't have enough room to store this many memrefs, be conservative 1020 // and drop them. Otherwise, we'd fail asserts when trying to add them to 1021 // the new instruction. 1022 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 1023 return std::make_pair(nullptr, 0); 1024 1025 MachineFunction *MF = getParent()->getParent(); 1026 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 1027 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 1028 MemBegin); 1029 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 1030 MemEnd); 1031 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 1032 "missing memrefs"); 1033 1034 return std::make_pair(MemBegin, CombinedNumMemRefs); 1035 } 1036 1037 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 1038 assert(!isBundledWithPred() && "Must be called on bundle header"); 1039 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 1040 if (MII->getDesc().getFlags() & Mask) { 1041 if (Type == AnyInBundle) 1042 return true; 1043 } else { 1044 if (Type == AllInBundle && !MII->isBundle()) 1045 return false; 1046 } 1047 // This was the last instruction in the bundle. 1048 if (!MII->isBundledWithSucc()) 1049 return Type == AllInBundle; 1050 } 1051 } 1052 1053 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 1054 MICheckType Check) const { 1055 // If opcodes or number of operands are not the same then the two 1056 // instructions are obviously not identical. 1057 if (Other.getOpcode() != getOpcode() || 1058 Other.getNumOperands() != getNumOperands()) 1059 return false; 1060 1061 if (isBundle()) { 1062 // We have passed the test above that both instructions have the same 1063 // opcode, so we know that both instructions are bundles here. Let's compare 1064 // MIs inside the bundle. 1065 assert(Other.isBundle() && "Expected that both instructions are bundles."); 1066 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 1067 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 1068 // Loop until we analysed the last intruction inside at least one of the 1069 // bundles. 1070 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 1071 ++I1; 1072 ++I2; 1073 if (!I1->isIdenticalTo(*I2, Check)) 1074 return false; 1075 } 1076 // If we've reached the end of just one of the two bundles, but not both, 1077 // the instructions are not identical. 1078 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 1079 return false; 1080 } 1081 1082 // Check operands to make sure they match. 1083 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1084 const MachineOperand &MO = getOperand(i); 1085 const MachineOperand &OMO = Other.getOperand(i); 1086 if (!MO.isReg()) { 1087 if (!MO.isIdenticalTo(OMO)) 1088 return false; 1089 continue; 1090 } 1091 1092 // Clients may or may not want to ignore defs when testing for equality. 1093 // For example, machine CSE pass only cares about finding common 1094 // subexpressions, so it's safe to ignore virtual register defs. 1095 if (MO.isDef()) { 1096 if (Check == IgnoreDefs) 1097 continue; 1098 else if (Check == IgnoreVRegDefs) { 1099 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1100 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 1101 if (MO.getReg() != OMO.getReg()) 1102 return false; 1103 } else { 1104 if (!MO.isIdenticalTo(OMO)) 1105 return false; 1106 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 1107 return false; 1108 } 1109 } else { 1110 if (!MO.isIdenticalTo(OMO)) 1111 return false; 1112 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1113 return false; 1114 } 1115 } 1116 // If DebugLoc does not match then two dbg.values are not identical. 1117 if (isDebugValue()) 1118 if (getDebugLoc() && Other.getDebugLoc() && 1119 getDebugLoc() != Other.getDebugLoc()) 1120 return false; 1121 return true; 1122 } 1123 1124 MachineInstr *MachineInstr::removeFromParent() { 1125 assert(getParent() && "Not embedded in a basic block!"); 1126 return getParent()->remove(this); 1127 } 1128 1129 MachineInstr *MachineInstr::removeFromBundle() { 1130 assert(getParent() && "Not embedded in a basic block!"); 1131 return getParent()->remove_instr(this); 1132 } 1133 1134 void MachineInstr::eraseFromParent() { 1135 assert(getParent() && "Not embedded in a basic block!"); 1136 getParent()->erase(this); 1137 } 1138 1139 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1140 assert(getParent() && "Not embedded in a basic block!"); 1141 MachineBasicBlock *MBB = getParent(); 1142 MachineFunction *MF = MBB->getParent(); 1143 assert(MF && "Not embedded in a function!"); 1144 1145 MachineInstr *MI = (MachineInstr *)this; 1146 MachineRegisterInfo &MRI = MF->getRegInfo(); 1147 1148 for (const MachineOperand &MO : MI->operands()) { 1149 if (!MO.isReg() || !MO.isDef()) 1150 continue; 1151 unsigned Reg = MO.getReg(); 1152 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1153 continue; 1154 MRI.markUsesInDebugValueAsUndef(Reg); 1155 } 1156 MI->eraseFromParent(); 1157 } 1158 1159 void MachineInstr::eraseFromBundle() { 1160 assert(getParent() && "Not embedded in a basic block!"); 1161 getParent()->erase_instr(this); 1162 } 1163 1164 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1165 /// 1166 unsigned MachineInstr::getNumExplicitOperands() const { 1167 unsigned NumOperands = MCID->getNumOperands(); 1168 if (!MCID->isVariadic()) 1169 return NumOperands; 1170 1171 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1172 const MachineOperand &MO = getOperand(i); 1173 if (!MO.isReg() || !MO.isImplicit()) 1174 NumOperands++; 1175 } 1176 return NumOperands; 1177 } 1178 1179 void MachineInstr::bundleWithPred() { 1180 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1181 setFlag(BundledPred); 1182 MachineBasicBlock::instr_iterator Pred = getIterator(); 1183 --Pred; 1184 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1185 Pred->setFlag(BundledSucc); 1186 } 1187 1188 void MachineInstr::bundleWithSucc() { 1189 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1190 setFlag(BundledSucc); 1191 MachineBasicBlock::instr_iterator Succ = getIterator(); 1192 ++Succ; 1193 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1194 Succ->setFlag(BundledPred); 1195 } 1196 1197 void MachineInstr::unbundleFromPred() { 1198 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1199 clearFlag(BundledPred); 1200 MachineBasicBlock::instr_iterator Pred = getIterator(); 1201 --Pred; 1202 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1203 Pred->clearFlag(BundledSucc); 1204 } 1205 1206 void MachineInstr::unbundleFromSucc() { 1207 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1208 clearFlag(BundledSucc); 1209 MachineBasicBlock::instr_iterator Succ = getIterator(); 1210 ++Succ; 1211 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1212 Succ->clearFlag(BundledPred); 1213 } 1214 1215 bool MachineInstr::isStackAligningInlineAsm() const { 1216 if (isInlineAsm()) { 1217 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1218 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1219 return true; 1220 } 1221 return false; 1222 } 1223 1224 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1225 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1226 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1227 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1228 } 1229 1230 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1231 unsigned *GroupNo) const { 1232 assert(isInlineAsm() && "Expected an inline asm instruction"); 1233 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1234 1235 // Ignore queries about the initial operands. 1236 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1237 return -1; 1238 1239 unsigned Group = 0; 1240 unsigned NumOps; 1241 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1242 i += NumOps) { 1243 const MachineOperand &FlagMO = getOperand(i); 1244 // If we reach the implicit register operands, stop looking. 1245 if (!FlagMO.isImm()) 1246 return -1; 1247 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1248 if (i + NumOps > OpIdx) { 1249 if (GroupNo) 1250 *GroupNo = Group; 1251 return i; 1252 } 1253 ++Group; 1254 } 1255 return -1; 1256 } 1257 1258 const DILocalVariable *MachineInstr::getDebugVariable() const { 1259 assert(isDebugValue() && "not a DBG_VALUE"); 1260 return cast<DILocalVariable>(getOperand(2).getMetadata()); 1261 } 1262 1263 const DIExpression *MachineInstr::getDebugExpression() const { 1264 assert(isDebugValue() && "not a DBG_VALUE"); 1265 return cast<DIExpression>(getOperand(3).getMetadata()); 1266 } 1267 1268 const TargetRegisterClass* 1269 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1270 const TargetInstrInfo *TII, 1271 const TargetRegisterInfo *TRI) const { 1272 assert(getParent() && "Can't have an MBB reference here!"); 1273 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1274 const MachineFunction &MF = *getParent()->getParent(); 1275 1276 // Most opcodes have fixed constraints in their MCInstrDesc. 1277 if (!isInlineAsm()) 1278 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1279 1280 if (!getOperand(OpIdx).isReg()) 1281 return nullptr; 1282 1283 // For tied uses on inline asm, get the constraint from the def. 1284 unsigned DefIdx; 1285 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1286 OpIdx = DefIdx; 1287 1288 // Inline asm stores register class constraints in the flag word. 1289 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1290 if (FlagIdx < 0) 1291 return nullptr; 1292 1293 unsigned Flag = getOperand(FlagIdx).getImm(); 1294 unsigned RCID; 1295 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 1296 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 1297 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 1298 InlineAsm::hasRegClassConstraint(Flag, RCID)) 1299 return TRI->getRegClass(RCID); 1300 1301 // Assume that all registers in a memory operand are pointers. 1302 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1303 return TRI->getPointerRegClass(MF); 1304 1305 return nullptr; 1306 } 1307 1308 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1309 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1310 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1311 // Check every operands inside the bundle if we have 1312 // been asked to. 1313 if (ExploreBundle) 1314 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 1315 ++OpndIt) 1316 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1317 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1318 else 1319 // Otherwise, just check the current operands. 1320 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1321 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1322 return CurRC; 1323 } 1324 1325 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1326 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1327 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1328 assert(CurRC && "Invalid initial register class"); 1329 // Check if Reg is constrained by some of its use/def from MI. 1330 const MachineOperand &MO = getOperand(OpIdx); 1331 if (!MO.isReg() || MO.getReg() != Reg) 1332 return CurRC; 1333 // If yes, accumulate the constraints through the operand. 1334 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1335 } 1336 1337 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1338 unsigned OpIdx, const TargetRegisterClass *CurRC, 1339 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1340 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1341 const MachineOperand &MO = getOperand(OpIdx); 1342 assert(MO.isReg() && 1343 "Cannot get register constraints for non-register operand"); 1344 assert(CurRC && "Invalid initial register class"); 1345 if (unsigned SubIdx = MO.getSubReg()) { 1346 if (OpRC) 1347 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1348 else 1349 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1350 } else if (OpRC) 1351 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1352 return CurRC; 1353 } 1354 1355 /// Return the number of instructions inside the MI bundle, not counting the 1356 /// header instruction. 1357 unsigned MachineInstr::getBundleSize() const { 1358 MachineBasicBlock::const_instr_iterator I = getIterator(); 1359 unsigned Size = 0; 1360 while (I->isBundledWithSucc()) { 1361 ++Size; 1362 ++I; 1363 } 1364 return Size; 1365 } 1366 1367 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1368 /// the given register (not considering sub/super-registers). 1369 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 1370 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1371 const MachineOperand &MO = getOperand(i); 1372 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1373 return true; 1374 } 1375 return false; 1376 } 1377 1378 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1379 /// the specific register or -1 if it is not found. It further tightens 1380 /// the search criteria to a use that kills the register if isKill is true. 1381 int MachineInstr::findRegisterUseOperandIdx( 1382 unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1383 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1384 const MachineOperand &MO = getOperand(i); 1385 if (!MO.isReg() || !MO.isUse()) 1386 continue; 1387 unsigned MOReg = MO.getReg(); 1388 if (!MOReg) 1389 continue; 1390 if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && 1391 TargetRegisterInfo::isPhysicalRegister(Reg) && 1392 TRI->isSubRegister(MOReg, Reg))) 1393 if (!isKill || MO.isKill()) 1394 return i; 1395 } 1396 return -1; 1397 } 1398 1399 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1400 /// indicating if this instruction reads or writes Reg. This also considers 1401 /// partial defines. 1402 std::pair<bool,bool> 1403 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1404 SmallVectorImpl<unsigned> *Ops) const { 1405 bool PartDef = false; // Partial redefine. 1406 bool FullDef = false; // Full define. 1407 bool Use = false; 1408 1409 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1410 const MachineOperand &MO = getOperand(i); 1411 if (!MO.isReg() || MO.getReg() != Reg) 1412 continue; 1413 if (Ops) 1414 Ops->push_back(i); 1415 if (MO.isUse()) 1416 Use |= !MO.isUndef(); 1417 else if (MO.getSubReg() && !MO.isUndef()) 1418 // A partial <def,undef> doesn't count as reading the register. 1419 PartDef = true; 1420 else 1421 FullDef = true; 1422 } 1423 // A partial redefine uses Reg unless there is also a full define. 1424 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1425 } 1426 1427 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1428 /// the specified register or -1 if it is not found. If isDead is true, defs 1429 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1430 /// also checks if there is a def of a super-register. 1431 int 1432 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1433 const TargetRegisterInfo *TRI) const { 1434 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1435 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1436 const MachineOperand &MO = getOperand(i); 1437 // Accept regmask operands when Overlap is set. 1438 // Ignore them when looking for a specific def operand (Overlap == false). 1439 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1440 return i; 1441 if (!MO.isReg() || !MO.isDef()) 1442 continue; 1443 unsigned MOReg = MO.getReg(); 1444 bool Found = (MOReg == Reg); 1445 if (!Found && TRI && isPhys && 1446 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1447 if (Overlap) 1448 Found = TRI->regsOverlap(MOReg, Reg); 1449 else 1450 Found = TRI->isSubRegister(MOReg, Reg); 1451 } 1452 if (Found && (!isDead || MO.isDead())) 1453 return i; 1454 } 1455 return -1; 1456 } 1457 1458 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1459 /// operand list that is used to represent the predicate. It returns -1 if 1460 /// none is found. 1461 int MachineInstr::findFirstPredOperandIdx() const { 1462 // Don't call MCID.findFirstPredOperandIdx() because this variant 1463 // is sometimes called on an instruction that's not yet complete, and 1464 // so the number of operands is less than the MCID indicates. In 1465 // particular, the PTX target does this. 1466 const MCInstrDesc &MCID = getDesc(); 1467 if (MCID.isPredicable()) { 1468 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1469 if (MCID.OpInfo[i].isPredicate()) 1470 return i; 1471 } 1472 1473 return -1; 1474 } 1475 1476 // MachineOperand::TiedTo is 4 bits wide. 1477 const unsigned TiedMax = 15; 1478 1479 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1480 /// 1481 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1482 /// field. TiedTo can have these values: 1483 /// 1484 /// 0: Operand is not tied to anything. 1485 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1486 /// TiedMax: Tied to an operand >= TiedMax-1. 1487 /// 1488 /// The tied def must be one of the first TiedMax operands on a normal 1489 /// instruction. INLINEASM instructions allow more tied defs. 1490 /// 1491 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1492 MachineOperand &DefMO = getOperand(DefIdx); 1493 MachineOperand &UseMO = getOperand(UseIdx); 1494 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1495 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1496 assert(!DefMO.isTied() && "Def is already tied to another use"); 1497 assert(!UseMO.isTied() && "Use is already tied to another def"); 1498 1499 if (DefIdx < TiedMax) 1500 UseMO.TiedTo = DefIdx + 1; 1501 else { 1502 // Inline asm can use the group descriptors to find tied operands, but on 1503 // normal instruction, the tied def must be within the first TiedMax 1504 // operands. 1505 assert(isInlineAsm() && "DefIdx out of range"); 1506 UseMO.TiedTo = TiedMax; 1507 } 1508 1509 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1510 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1511 } 1512 1513 /// Given the index of a tied register operand, find the operand it is tied to. 1514 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1515 /// which must exist. 1516 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1517 const MachineOperand &MO = getOperand(OpIdx); 1518 assert(MO.isTied() && "Operand isn't tied"); 1519 1520 // Normally TiedTo is in range. 1521 if (MO.TiedTo < TiedMax) 1522 return MO.TiedTo - 1; 1523 1524 // Uses on normal instructions can be out of range. 1525 if (!isInlineAsm()) { 1526 // Normal tied defs must be in the 0..TiedMax-1 range. 1527 if (MO.isUse()) 1528 return TiedMax - 1; 1529 // MO is a def. Search for the tied use. 1530 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1531 const MachineOperand &UseMO = getOperand(i); 1532 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1533 return i; 1534 } 1535 llvm_unreachable("Can't find tied use"); 1536 } 1537 1538 // Now deal with inline asm by parsing the operand group descriptor flags. 1539 // Find the beginning of each operand group. 1540 SmallVector<unsigned, 8> GroupIdx; 1541 unsigned OpIdxGroup = ~0u; 1542 unsigned NumOps; 1543 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1544 i += NumOps) { 1545 const MachineOperand &FlagMO = getOperand(i); 1546 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1547 unsigned CurGroup = GroupIdx.size(); 1548 GroupIdx.push_back(i); 1549 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1550 // OpIdx belongs to this operand group. 1551 if (OpIdx > i && OpIdx < i + NumOps) 1552 OpIdxGroup = CurGroup; 1553 unsigned TiedGroup; 1554 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1555 continue; 1556 // Operands in this group are tied to operands in TiedGroup which must be 1557 // earlier. Find the number of operands between the two groups. 1558 unsigned Delta = i - GroupIdx[TiedGroup]; 1559 1560 // OpIdx is a use tied to TiedGroup. 1561 if (OpIdxGroup == CurGroup) 1562 return OpIdx - Delta; 1563 1564 // OpIdx is a def tied to this use group. 1565 if (OpIdxGroup == TiedGroup) 1566 return OpIdx + Delta; 1567 } 1568 llvm_unreachable("Invalid tied operand on inline asm"); 1569 } 1570 1571 /// clearKillInfo - Clears kill flags on all operands. 1572 /// 1573 void MachineInstr::clearKillInfo() { 1574 for (MachineOperand &MO : operands()) { 1575 if (MO.isReg() && MO.isUse()) 1576 MO.setIsKill(false); 1577 } 1578 } 1579 1580 void MachineInstr::substituteRegister(unsigned FromReg, 1581 unsigned ToReg, 1582 unsigned SubIdx, 1583 const TargetRegisterInfo &RegInfo) { 1584 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1585 if (SubIdx) 1586 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1587 for (MachineOperand &MO : operands()) { 1588 if (!MO.isReg() || MO.getReg() != FromReg) 1589 continue; 1590 MO.substPhysReg(ToReg, RegInfo); 1591 } 1592 } else { 1593 for (MachineOperand &MO : operands()) { 1594 if (!MO.isReg() || MO.getReg() != FromReg) 1595 continue; 1596 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1597 } 1598 } 1599 } 1600 1601 /// isSafeToMove - Return true if it is safe to move this instruction. If 1602 /// SawStore is set to true, it means that there is a store (or call) between 1603 /// the instruction's location and its intended destination. 1604 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1605 // Ignore stuff that we obviously can't move. 1606 // 1607 // Treat volatile loads as stores. This is not strictly necessary for 1608 // volatiles, but it is required for atomic loads. It is not allowed to move 1609 // a load across an atomic load with Ordering > Monotonic. 1610 if (mayStore() || isCall() || 1611 (mayLoad() && hasOrderedMemoryRef())) { 1612 SawStore = true; 1613 return false; 1614 } 1615 1616 if (isPosition() || isDebugValue() || isTerminator() || 1617 hasUnmodeledSideEffects()) 1618 return false; 1619 1620 // See if this instruction does a load. If so, we have to guarantee that the 1621 // loaded value doesn't change between the load and the its intended 1622 // destination. The check for isInvariantLoad gives the targe the chance to 1623 // classify the load as always returning a constant, e.g. a constant pool 1624 // load. 1625 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1626 // Otherwise, this is a real load. If there is a store between the load and 1627 // end of block, we can't move it. 1628 return !SawStore; 1629 1630 return true; 1631 } 1632 1633 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other, 1634 bool UseTBAA) { 1635 const MachineFunction *MF = getParent()->getParent(); 1636 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1637 1638 // If neither instruction stores to memory, they can't alias in any 1639 // meaningful way, even if they read from the same address. 1640 if (!mayStore() && !Other.mayStore()) 1641 return false; 1642 1643 // Let the target decide if memory accesses cannot possibly overlap. 1644 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA)) 1645 return false; 1646 1647 if (!AA) 1648 return true; 1649 1650 // FIXME: Need to handle multiple memory operands to support all targets. 1651 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1652 return true; 1653 1654 MachineMemOperand *MMOa = *memoperands_begin(); 1655 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1656 1657 if (!MMOa->getValue() || !MMOb->getValue()) 1658 return true; 1659 1660 // The following interface to AA is fashioned after DAGCombiner::isAlias 1661 // and operates with MachineMemOperand offset with some important 1662 // assumptions: 1663 // - LLVM fundamentally assumes flat address spaces. 1664 // - MachineOperand offset can *only* result from legalization and 1665 // cannot affect queries other than the trivial case of overlap 1666 // checking. 1667 // - These offsets never wrap and never step outside 1668 // of allocated objects. 1669 // - There should never be any negative offsets here. 1670 // 1671 // FIXME: Modify API to hide this math from "user" 1672 // FIXME: Even before we go to AA we can reason locally about some 1673 // memory objects. It can save compile time, and possibly catch some 1674 // corner cases not currently covered. 1675 1676 assert((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 1677 assert((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 1678 1679 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 1680 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 1681 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 1682 1683 AliasResult AAResult = 1684 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, 1685 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1686 MemoryLocation(MMOb->getValue(), Overlapb, 1687 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1688 1689 return (AAResult != NoAlias); 1690 } 1691 1692 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1693 /// or volatile memory reference, or if the information describing the memory 1694 /// reference is not available. Return false if it is known to have no ordered 1695 /// memory references. 1696 bool MachineInstr::hasOrderedMemoryRef() const { 1697 // An instruction known never to access memory won't have a volatile access. 1698 if (!mayStore() && 1699 !mayLoad() && 1700 !isCall() && 1701 !hasUnmodeledSideEffects()) 1702 return false; 1703 1704 // Otherwise, if the instruction has no memory reference information, 1705 // conservatively assume it wasn't preserved. 1706 if (memoperands_empty()) 1707 return true; 1708 1709 // Check if any of our memory operands are ordered. 1710 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1711 return !MMO->isUnordered(); 1712 }); 1713 } 1714 1715 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1716 /// trap and is loading from a location whose value is invariant across a run of 1717 /// this function. 1718 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { 1719 // If the instruction doesn't load at all, it isn't an invariant load. 1720 if (!mayLoad()) 1721 return false; 1722 1723 // If the instruction has lost its memoperands, conservatively assume that 1724 // it may not be an invariant load. 1725 if (memoperands_empty()) 1726 return false; 1727 1728 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1729 1730 for (MachineMemOperand *MMO : memoperands()) { 1731 if (MMO->isVolatile()) return false; 1732 if (MMO->isStore()) return false; 1733 if (MMO->isInvariant() && MMO->isDereferenceable()) 1734 continue; 1735 1736 // A load from a constant PseudoSourceValue is invariant. 1737 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1738 if (PSV->isConstant(&MFI)) 1739 continue; 1740 1741 if (const Value *V = MMO->getValue()) { 1742 // If we have an AliasAnalysis, ask it whether the memory is constant. 1743 if (AA && 1744 AA->pointsToConstantMemory( 1745 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1746 continue; 1747 } 1748 1749 // Otherwise assume conservatively. 1750 return false; 1751 } 1752 1753 // Everything checks out. 1754 return true; 1755 } 1756 1757 /// isConstantValuePHI - If the specified instruction is a PHI that always 1758 /// merges together the same virtual register, return the register, otherwise 1759 /// return 0. 1760 unsigned MachineInstr::isConstantValuePHI() const { 1761 if (!isPHI()) 1762 return 0; 1763 assert(getNumOperands() >= 3 && 1764 "It's illegal to have a PHI without source operands"); 1765 1766 unsigned Reg = getOperand(1).getReg(); 1767 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1768 if (getOperand(i).getReg() != Reg) 1769 return 0; 1770 return Reg; 1771 } 1772 1773 bool MachineInstr::hasUnmodeledSideEffects() const { 1774 if (hasProperty(MCID::UnmodeledSideEffects)) 1775 return true; 1776 if (isInlineAsm()) { 1777 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1778 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1779 return true; 1780 } 1781 1782 return false; 1783 } 1784 1785 bool MachineInstr::isLoadFoldBarrier() const { 1786 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1787 } 1788 1789 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1790 /// 1791 bool MachineInstr::allDefsAreDead() const { 1792 for (const MachineOperand &MO : operands()) { 1793 if (!MO.isReg() || MO.isUse()) 1794 continue; 1795 if (!MO.isDead()) 1796 return false; 1797 } 1798 return true; 1799 } 1800 1801 /// copyImplicitOps - Copy implicit register operands from specified 1802 /// instruction to this instruction. 1803 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1804 const MachineInstr &MI) { 1805 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1806 i != e; ++i) { 1807 const MachineOperand &MO = MI.getOperand(i); 1808 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1809 addOperand(MF, MO); 1810 } 1811 } 1812 1813 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1814 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1815 dbgs() << " "; 1816 print(dbgs()); 1817 } 1818 #endif 1819 1820 void MachineInstr::print(raw_ostream &OS, bool SkipOpers, bool SkipDebugLoc, 1821 const TargetInstrInfo *TII) const { 1822 const Module *M = nullptr; 1823 if (const MachineBasicBlock *MBB = getParent()) 1824 if (const MachineFunction *MF = MBB->getParent()) 1825 M = MF->getFunction()->getParent(); 1826 1827 ModuleSlotTracker MST(M); 1828 print(OS, MST, SkipOpers, SkipDebugLoc, TII); 1829 } 1830 1831 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1832 bool SkipOpers, bool SkipDebugLoc, 1833 const TargetInstrInfo *TII) const { 1834 // We can be a bit tidier if we know the MachineFunction. 1835 const MachineFunction *MF = nullptr; 1836 const TargetRegisterInfo *TRI = nullptr; 1837 const MachineRegisterInfo *MRI = nullptr; 1838 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1839 1840 if (const MachineBasicBlock *MBB = getParent()) { 1841 MF = MBB->getParent(); 1842 if (MF) { 1843 MRI = &MF->getRegInfo(); 1844 TRI = MF->getSubtarget().getRegisterInfo(); 1845 if (!TII) 1846 TII = MF->getSubtarget().getInstrInfo(); 1847 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 1848 } 1849 } 1850 1851 // Save a list of virtual registers. 1852 SmallVector<unsigned, 8> VirtRegs; 1853 1854 // Print explicitly defined operands on the left of an assignment syntax. 1855 unsigned StartOp = 0, e = getNumOperands(); 1856 for (; StartOp < e && getOperand(StartOp).isReg() && 1857 getOperand(StartOp).isDef() && 1858 !getOperand(StartOp).isImplicit(); 1859 ++StartOp) { 1860 if (StartOp != 0) OS << ", "; 1861 getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo); 1862 unsigned Reg = getOperand(StartOp).getReg(); 1863 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1864 VirtRegs.push_back(Reg); 1865 LLT Ty = MRI ? MRI->getType(Reg) : LLT{}; 1866 if (Ty.isValid()) 1867 OS << '(' << Ty << ')'; 1868 } 1869 } 1870 1871 if (StartOp != 0) 1872 OS << " = "; 1873 1874 // Print the opcode name. 1875 if (TII) 1876 OS << TII->getName(getOpcode()); 1877 else 1878 OS << "UNKNOWN"; 1879 1880 if (SkipOpers) 1881 return; 1882 1883 // Print the rest of the operands. 1884 bool FirstOp = true; 1885 unsigned AsmDescOp = ~0u; 1886 unsigned AsmOpCount = 0; 1887 1888 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1889 // Print asm string. 1890 OS << " "; 1891 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1892 1893 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1894 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1895 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1896 OS << " [sideeffect]"; 1897 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1898 OS << " [mayload]"; 1899 if (ExtraInfo & InlineAsm::Extra_MayStore) 1900 OS << " [maystore]"; 1901 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1902 OS << " [isconvergent]"; 1903 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1904 OS << " [alignstack]"; 1905 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1906 OS << " [attdialect]"; 1907 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1908 OS << " [inteldialect]"; 1909 1910 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1911 FirstOp = false; 1912 } 1913 1914 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1915 const MachineOperand &MO = getOperand(i); 1916 1917 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1918 VirtRegs.push_back(MO.getReg()); 1919 1920 if (FirstOp) FirstOp = false; else OS << ","; 1921 OS << " "; 1922 if (i < getDesc().NumOperands) { 1923 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1924 if (MCOI.isPredicate()) 1925 OS << "pred:"; 1926 if (MCOI.isOptionalDef()) 1927 OS << "opt:"; 1928 } 1929 if (isDebugValue() && MO.isMetadata()) { 1930 // Pretty print DBG_VALUE instructions. 1931 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1932 if (DIV && !DIV->getName().empty()) 1933 OS << "!\"" << DIV->getName() << '\"'; 1934 else 1935 MO.print(OS, MST, TRI); 1936 } else if (TRI && (isInsertSubreg() || isRegSequence() || 1937 (isSubregToReg() && i == 3)) && MO.isImm()) { 1938 OS << TRI->getSubRegIndexName(MO.getImm()); 1939 } else if (i == AsmDescOp && MO.isImm()) { 1940 // Pretty print the inline asm operand descriptor. 1941 OS << '$' << AsmOpCount++; 1942 unsigned Flag = MO.getImm(); 1943 switch (InlineAsm::getKind(Flag)) { 1944 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1945 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1946 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1947 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1948 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1949 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1950 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1951 } 1952 1953 unsigned RCID = 0; 1954 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1955 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1956 if (TRI) { 1957 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1958 } else 1959 OS << ":RC" << RCID; 1960 } 1961 1962 if (InlineAsm::isMemKind(Flag)) { 1963 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1964 switch (MCID) { 1965 case InlineAsm::Constraint_es: OS << ":es"; break; 1966 case InlineAsm::Constraint_i: OS << ":i"; break; 1967 case InlineAsm::Constraint_m: OS << ":m"; break; 1968 case InlineAsm::Constraint_o: OS << ":o"; break; 1969 case InlineAsm::Constraint_v: OS << ":v"; break; 1970 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1971 case InlineAsm::Constraint_R: OS << ":R"; break; 1972 case InlineAsm::Constraint_S: OS << ":S"; break; 1973 case InlineAsm::Constraint_T: OS << ":T"; break; 1974 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1975 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1976 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1977 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1978 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1979 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1980 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1981 case InlineAsm::Constraint_X: OS << ":X"; break; 1982 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1983 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1984 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1985 default: OS << ":?"; break; 1986 } 1987 } 1988 1989 unsigned TiedTo = 0; 1990 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1991 OS << " tiedto:$" << TiedTo; 1992 1993 OS << ']'; 1994 1995 // Compute the index of the next operand descriptor. 1996 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1997 } else 1998 MO.print(OS, MST, TRI); 1999 } 2000 2001 bool HaveSemi = false; 2002 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 2003 if (Flags & PrintableFlags) { 2004 if (!HaveSemi) { 2005 OS << ";"; 2006 HaveSemi = true; 2007 } 2008 OS << " flags: "; 2009 2010 if (Flags & FrameSetup) 2011 OS << "FrameSetup"; 2012 2013 if (Flags & FrameDestroy) 2014 OS << "FrameDestroy"; 2015 } 2016 2017 if (!memoperands_empty()) { 2018 if (!HaveSemi) { 2019 OS << ";"; 2020 HaveSemi = true; 2021 } 2022 2023 OS << " mem:"; 2024 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 2025 i != e; ++i) { 2026 (*i)->print(OS, MST); 2027 if (std::next(i) != e) 2028 OS << " "; 2029 } 2030 } 2031 2032 // Print the regclass of any virtual registers encountered. 2033 if (MRI && !VirtRegs.empty()) { 2034 if (!HaveSemi) { 2035 OS << ";"; 2036 HaveSemi = true; 2037 } 2038 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 2039 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); 2040 if (!RC) 2041 continue; 2042 // Generic virtual registers do not have register classes. 2043 if (RC.is<const RegisterBank *>()) 2044 OS << " " << RC.get<const RegisterBank *>()->getName(); 2045 else 2046 OS << " " 2047 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); 2048 OS << ':' << PrintReg(VirtRegs[i]); 2049 for (unsigned j = i+1; j != VirtRegs.size();) { 2050 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { 2051 ++j; 2052 continue; 2053 } 2054 if (VirtRegs[i] != VirtRegs[j]) 2055 OS << "," << PrintReg(VirtRegs[j]); 2056 VirtRegs.erase(VirtRegs.begin()+j); 2057 } 2058 } 2059 } 2060 2061 // Print debug location information. 2062 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 2063 if (!HaveSemi) 2064 OS << ";"; 2065 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 2066 OS << " line no:" << DV->getLine(); 2067 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 2068 DebugLoc InlinedAtDL(InlinedAt); 2069 if (InlinedAtDL && MF) { 2070 OS << " inlined @[ "; 2071 InlinedAtDL.print(OS); 2072 OS << " ]"; 2073 } 2074 } 2075 if (isIndirectDebugValue()) 2076 OS << " indirect"; 2077 } else if (SkipDebugLoc) { 2078 return; 2079 } else if (debugLoc && MF) { 2080 if (!HaveSemi) 2081 OS << ";"; 2082 OS << " dbg:"; 2083 debugLoc.print(OS); 2084 } 2085 2086 OS << '\n'; 2087 } 2088 2089 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 2090 const TargetRegisterInfo *RegInfo, 2091 bool AddIfNotFound) { 2092 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 2093 bool hasAliases = isPhysReg && 2094 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 2095 bool Found = false; 2096 SmallVector<unsigned,4> DeadOps; 2097 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2098 MachineOperand &MO = getOperand(i); 2099 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2100 continue; 2101 2102 // DEBUG_VALUE nodes do not contribute to code generation and should 2103 // always be ignored. Failure to do so may result in trying to modify 2104 // KILL flags on DEBUG_VALUE nodes. 2105 if (MO.isDebug()) 2106 continue; 2107 2108 unsigned Reg = MO.getReg(); 2109 if (!Reg) 2110 continue; 2111 2112 if (Reg == IncomingReg) { 2113 if (!Found) { 2114 if (MO.isKill()) 2115 // The register is already marked kill. 2116 return true; 2117 if (isPhysReg && isRegTiedToDefOperand(i)) 2118 // Two-address uses of physregs must not be marked kill. 2119 return true; 2120 MO.setIsKill(); 2121 Found = true; 2122 } 2123 } else if (hasAliases && MO.isKill() && 2124 TargetRegisterInfo::isPhysicalRegister(Reg)) { 2125 // A super-register kill already exists. 2126 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2127 return true; 2128 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2129 DeadOps.push_back(i); 2130 } 2131 } 2132 2133 // Trim unneeded kill operands. 2134 while (!DeadOps.empty()) { 2135 unsigned OpIdx = DeadOps.back(); 2136 if (getOperand(OpIdx).isImplicit()) 2137 RemoveOperand(OpIdx); 2138 else 2139 getOperand(OpIdx).setIsKill(false); 2140 DeadOps.pop_back(); 2141 } 2142 2143 // If not found, this means an alias of one of the operands is killed. Add a 2144 // new implicit operand if required. 2145 if (!Found && AddIfNotFound) { 2146 addOperand(MachineOperand::CreateReg(IncomingReg, 2147 false /*IsDef*/, 2148 true /*IsImp*/, 2149 true /*IsKill*/)); 2150 return true; 2151 } 2152 return Found; 2153 } 2154 2155 void MachineInstr::clearRegisterKills(unsigned Reg, 2156 const TargetRegisterInfo *RegInfo) { 2157 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 2158 RegInfo = nullptr; 2159 for (MachineOperand &MO : operands()) { 2160 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2161 continue; 2162 unsigned OpReg = MO.getReg(); 2163 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2164 MO.setIsKill(false); 2165 } 2166 } 2167 2168 bool MachineInstr::addRegisterDead(unsigned Reg, 2169 const TargetRegisterInfo *RegInfo, 2170 bool AddIfNotFound) { 2171 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 2172 bool hasAliases = isPhysReg && 2173 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2174 bool Found = false; 2175 SmallVector<unsigned,4> DeadOps; 2176 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2177 MachineOperand &MO = getOperand(i); 2178 if (!MO.isReg() || !MO.isDef()) 2179 continue; 2180 unsigned MOReg = MO.getReg(); 2181 if (!MOReg) 2182 continue; 2183 2184 if (MOReg == Reg) { 2185 MO.setIsDead(); 2186 Found = true; 2187 } else if (hasAliases && MO.isDead() && 2188 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 2189 // There exists a super-register that's marked dead. 2190 if (RegInfo->isSuperRegister(Reg, MOReg)) 2191 return true; 2192 if (RegInfo->isSubRegister(Reg, MOReg)) 2193 DeadOps.push_back(i); 2194 } 2195 } 2196 2197 // Trim unneeded dead operands. 2198 while (!DeadOps.empty()) { 2199 unsigned OpIdx = DeadOps.back(); 2200 if (getOperand(OpIdx).isImplicit()) 2201 RemoveOperand(OpIdx); 2202 else 2203 getOperand(OpIdx).setIsDead(false); 2204 DeadOps.pop_back(); 2205 } 2206 2207 // If not found, this means an alias of one of the operands is dead. Add a 2208 // new implicit operand if required. 2209 if (Found || !AddIfNotFound) 2210 return Found; 2211 2212 addOperand(MachineOperand::CreateReg(Reg, 2213 true /*IsDef*/, 2214 true /*IsImp*/, 2215 false /*IsKill*/, 2216 true /*IsDead*/)); 2217 return true; 2218 } 2219 2220 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2221 for (MachineOperand &MO : operands()) { 2222 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2223 continue; 2224 MO.setIsDead(false); 2225 } 2226 } 2227 2228 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2229 for (MachineOperand &MO : operands()) { 2230 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2231 continue; 2232 MO.setIsUndef(IsUndef); 2233 } 2234 } 2235 2236 void MachineInstr::addRegisterDefined(unsigned Reg, 2237 const TargetRegisterInfo *RegInfo) { 2238 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2239 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2240 if (MO) 2241 return; 2242 } else { 2243 for (const MachineOperand &MO : operands()) { 2244 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2245 MO.getSubReg() == 0) 2246 return; 2247 } 2248 } 2249 addOperand(MachineOperand::CreateReg(Reg, 2250 true /*IsDef*/, 2251 true /*IsImp*/)); 2252 } 2253 2254 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2255 const TargetRegisterInfo &TRI) { 2256 bool HasRegMask = false; 2257 for (MachineOperand &MO : operands()) { 2258 if (MO.isRegMask()) { 2259 HasRegMask = true; 2260 continue; 2261 } 2262 if (!MO.isReg() || !MO.isDef()) continue; 2263 unsigned Reg = MO.getReg(); 2264 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2265 // If there are no uses, including partial uses, the def is dead. 2266 if (llvm::none_of(UsedRegs, 2267 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2268 MO.setIsDead(); 2269 } 2270 2271 // This is a call with a register mask operand. 2272 // Mask clobbers are always dead, so add defs for the non-dead defines. 2273 if (HasRegMask) 2274 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2275 I != E; ++I) 2276 addRegisterDefined(*I, &TRI); 2277 } 2278 2279 unsigned 2280 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2281 // Build up a buffer of hash code components. 2282 SmallVector<size_t, 8> HashComponents; 2283 HashComponents.reserve(MI->getNumOperands() + 1); 2284 HashComponents.push_back(MI->getOpcode()); 2285 for (const MachineOperand &MO : MI->operands()) { 2286 if (MO.isReg() && MO.isDef() && 2287 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2288 continue; // Skip virtual register defs. 2289 2290 HashComponents.push_back(hash_value(MO)); 2291 } 2292 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2293 } 2294 2295 void MachineInstr::emitError(StringRef Msg) const { 2296 // Find the source location cookie. 2297 unsigned LocCookie = 0; 2298 const MDNode *LocMD = nullptr; 2299 for (unsigned i = getNumOperands(); i != 0; --i) { 2300 if (getOperand(i-1).isMetadata() && 2301 (LocMD = getOperand(i-1).getMetadata()) && 2302 LocMD->getNumOperands() != 0) { 2303 if (const ConstantInt *CI = 2304 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2305 LocCookie = CI->getZExtValue(); 2306 break; 2307 } 2308 } 2309 } 2310 2311 if (const MachineBasicBlock *MBB = getParent()) 2312 if (const MachineFunction *MF = MBB->getParent()) 2313 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2314 report_fatal_error(Msg); 2315 } 2316 2317 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2318 const MCInstrDesc &MCID, bool IsIndirect, 2319 unsigned Reg, unsigned Offset, 2320 const MDNode *Variable, const MDNode *Expr) { 2321 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2322 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2323 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2324 "Expected inlined-at fields to agree"); 2325 if (IsIndirect) 2326 return BuildMI(MF, DL, MCID) 2327 .addReg(Reg, RegState::Debug) 2328 .addImm(Offset) 2329 .addMetadata(Variable) 2330 .addMetadata(Expr); 2331 else { 2332 assert(Offset == 0 && "A direct address cannot have an offset."); 2333 return BuildMI(MF, DL, MCID) 2334 .addReg(Reg, RegState::Debug) 2335 .addReg(0U, RegState::Debug) 2336 .addMetadata(Variable) 2337 .addMetadata(Expr); 2338 } 2339 } 2340 2341 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2342 MachineBasicBlock::iterator I, 2343 const DebugLoc &DL, const MCInstrDesc &MCID, 2344 bool IsIndirect, unsigned Reg, 2345 unsigned Offset, const MDNode *Variable, 2346 const MDNode *Expr) { 2347 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2348 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2349 MachineFunction &MF = *BB.getParent(); 2350 MachineInstr *MI = 2351 BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr); 2352 BB.insert(I, MI); 2353 return MachineInstrBuilder(MF, MI); 2354 } 2355 2356 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2357 MachineBasicBlock::iterator I, 2358 const MachineInstr &Orig, 2359 int FrameIndex) { 2360 const MDNode *Var = Orig.getDebugVariable(); 2361 const auto *Expr = cast_or_null<DIExpression>(Orig.getDebugExpression()); 2362 bool IsIndirect = Orig.isIndirectDebugValue(); 2363 uint64_t Offset = IsIndirect ? Orig.getOperand(1).getImm() : 0; 2364 DebugLoc DL = Orig.getDebugLoc(); 2365 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 2366 "Expected inlined-at fields to agree"); 2367 // If the DBG_VALUE already was a memory location, add an extra 2368 // DW_OP_deref. Otherwise just turning this from a register into a 2369 // memory/indirect location is sufficient. 2370 if (IsIndirect) 2371 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 2372 return BuildMI(BB, I, DL, Orig.getDesc()) 2373 .addFrameIndex(FrameIndex) 2374 .addImm(Offset) 2375 .addMetadata(Var) 2376 .addMetadata(Expr); 2377 } 2378