1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/Hashing.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallBitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/MemoryLocation.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/PseudoSourceValue.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/ModuleSlotTracker.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/MC/MCInstrDesc.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/FormattedStream.h" 53 #include "llvm/Support/LowLevelTypeImpl.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstdint> 59 #include <cstring> 60 #include <utility> 61 62 using namespace llvm; 63 64 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 65 if (const MachineBasicBlock *MBB = MI.getParent()) 66 if (const MachineFunction *MF = MBB->getParent()) 67 return MF; 68 return nullptr; 69 } 70 71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 72 // it. 73 static void tryToGetTargetInfo(const MachineInstr &MI, 74 const TargetRegisterInfo *&TRI, 75 const MachineRegisterInfo *&MRI, 76 const TargetIntrinsicInfo *&IntrinsicInfo, 77 const TargetInstrInfo *&TII) { 78 79 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 80 TRI = MF->getSubtarget().getRegisterInfo(); 81 MRI = &MF->getRegInfo(); 82 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 83 TII = MF->getSubtarget().getInstrInfo(); 84 } 85 } 86 87 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 88 if (MCID->ImplicitDefs) 89 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 90 ++ImpDefs) 91 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 92 if (MCID->ImplicitUses) 93 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 94 ++ImpUses) 95 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 96 } 97 98 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 99 /// implicit operands. It reserves space for the number of operands specified by 100 /// the MCInstrDesc. 101 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, 102 DebugLoc DL, bool NoImp) 103 : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) { 104 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 105 106 // Reserve space for the expected number of operands. 107 if (unsigned NumOps = MCID->getNumOperands() + 108 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 109 CapOperands = OperandCapacity::get(NumOps); 110 Operands = MF.allocateOperandArray(CapOperands); 111 } 112 113 if (!NoImp) 114 addImplicitDefUseOperands(MF); 115 } 116 117 /// MachineInstr ctor - Copies MachineInstr arg exactly. 118 /// Does not copy the number from debug instruction numbering, to preserve 119 /// uniqueness. 120 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 121 : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()), 122 DebugInstrNum(0) { 123 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 124 125 CapOperands = OperandCapacity::get(MI.getNumOperands()); 126 Operands = MF.allocateOperandArray(CapOperands); 127 128 // Copy operands. 129 for (const MachineOperand &MO : MI.operands()) 130 addOperand(MF, MO); 131 132 // Replicate ties between the operands, which addOperand was not 133 // able to do reliably. 134 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 135 MachineOperand &NewMO = getOperand(i); 136 const MachineOperand &OrigMO = MI.getOperand(i); 137 NewMO.TiedTo = OrigMO.TiedTo; 138 } 139 140 // Copy all the sensible flags. 141 setFlags(MI.Flags); 142 } 143 144 void MachineInstr::moveBefore(MachineInstr *MovePos) { 145 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 146 } 147 148 /// getRegInfo - If this instruction is embedded into a MachineFunction, 149 /// return the MachineRegisterInfo object for the current function, otherwise 150 /// return null. 151 MachineRegisterInfo *MachineInstr::getRegInfo() { 152 if (MachineBasicBlock *MBB = getParent()) 153 return &MBB->getParent()->getRegInfo(); 154 return nullptr; 155 } 156 157 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 158 for (MachineOperand &MO : operands()) 159 if (MO.isReg()) 160 MRI.removeRegOperandFromUseList(&MO); 161 } 162 163 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) { 164 for (MachineOperand &MO : operands()) 165 if (MO.isReg()) 166 MRI.addRegOperandToUseList(&MO); 167 } 168 169 void MachineInstr::addOperand(const MachineOperand &Op) { 170 MachineBasicBlock *MBB = getParent(); 171 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 172 MachineFunction *MF = MBB->getParent(); 173 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 174 addOperand(*MF, Op); 175 } 176 177 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 178 /// ranges. If MRI is non-null also update use-def chains. 179 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 180 unsigned NumOps, MachineRegisterInfo *MRI) { 181 if (MRI) 182 return MRI->moveOperands(Dst, Src, NumOps); 183 // MachineOperand is a trivially copyable type so we can just use memmove. 184 assert(Dst && Src && "Unknown operands"); 185 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 186 } 187 188 /// addOperand - Add the specified operand to the instruction. If it is an 189 /// implicit operand, it is added to the end of the operand list. If it is 190 /// an explicit operand it is added at the end of the explicit operand list 191 /// (before the first implicit operand). 192 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 193 assert(MCID && "Cannot add operands before providing an instr descriptor"); 194 195 // Check if we're adding one of our existing operands. 196 if (&Op >= Operands && &Op < Operands + NumOperands) { 197 // This is unusual: MI->addOperand(MI->getOperand(i)). 198 // If adding Op requires reallocating or moving existing operands around, 199 // the Op reference could go stale. Support it by copying Op. 200 MachineOperand CopyOp(Op); 201 return addOperand(MF, CopyOp); 202 } 203 204 // Find the insert location for the new operand. Implicit registers go at 205 // the end, everything else goes before the implicit regs. 206 // 207 // FIXME: Allow mixed explicit and implicit operands on inline asm. 208 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 209 // implicit-defs, but they must not be moved around. See the FIXME in 210 // InstrEmitter.cpp. 211 unsigned OpNo = getNumOperands(); 212 bool isImpReg = Op.isReg() && Op.isImplicit(); 213 if (!isImpReg && !isInlineAsm()) { 214 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 215 --OpNo; 216 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 217 } 218 } 219 220 // OpNo now points as the desired insertion point. Unless this is a variadic 221 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 222 // RegMask operands go between the explicit and implicit operands. 223 assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() || 224 Op.isValidExcessOperand()) && 225 "Trying to add an operand to a machine instr that is already done!"); 226 227 MachineRegisterInfo *MRI = getRegInfo(); 228 229 // Determine if the Operands array needs to be reallocated. 230 // Save the old capacity and operand array. 231 OperandCapacity OldCap = CapOperands; 232 MachineOperand *OldOperands = Operands; 233 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 234 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 235 Operands = MF.allocateOperandArray(CapOperands); 236 // Move the operands before the insertion point. 237 if (OpNo) 238 moveOperands(Operands, OldOperands, OpNo, MRI); 239 } 240 241 // Move the operands following the insertion point. 242 if (OpNo != NumOperands) 243 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 244 MRI); 245 ++NumOperands; 246 247 // Deallocate the old operand array. 248 if (OldOperands != Operands && OldOperands) 249 MF.deallocateOperandArray(OldCap, OldOperands); 250 251 // Copy Op into place. It still needs to be inserted into the MRI use lists. 252 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 253 NewMO->ParentMI = this; 254 255 // When adding a register operand, tell MRI about it. 256 if (NewMO->isReg()) { 257 // Ensure isOnRegUseList() returns false, regardless of Op's status. 258 NewMO->Contents.Reg.Prev = nullptr; 259 // Ignore existing ties. This is not a property that can be copied. 260 NewMO->TiedTo = 0; 261 // Add the new operand to MRI, but only for instructions in an MBB. 262 if (MRI) 263 MRI->addRegOperandToUseList(NewMO); 264 // The MCID operand information isn't accurate until we start adding 265 // explicit operands. The implicit operands are added first, then the 266 // explicits are inserted before them. 267 if (!isImpReg) { 268 // Tie uses to defs as indicated in MCInstrDesc. 269 if (NewMO->isUse()) { 270 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 271 if (DefIdx != -1) 272 tieOperands(DefIdx, OpNo); 273 } 274 // If the register operand is flagged as early, mark the operand as such. 275 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 276 NewMO->setIsEarlyClobber(true); 277 } 278 // Ensure debug instructions set debug flag on register uses. 279 if (NewMO->isUse() && isDebugInstr()) 280 NewMO->setIsDebug(); 281 } 282 } 283 284 void MachineInstr::removeOperand(unsigned OpNo) { 285 assert(OpNo < getNumOperands() && "Invalid operand number"); 286 untieRegOperand(OpNo); 287 288 #ifndef NDEBUG 289 // Moving tied operands would break the ties. 290 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 291 if (Operands[i].isReg()) 292 assert(!Operands[i].isTied() && "Cannot move tied operands"); 293 #endif 294 295 MachineRegisterInfo *MRI = getRegInfo(); 296 if (MRI && Operands[OpNo].isReg()) 297 MRI->removeRegOperandFromUseList(Operands + OpNo); 298 299 // Don't call the MachineOperand destructor. A lot of this code depends on 300 // MachineOperand having a trivial destructor anyway, and adding a call here 301 // wouldn't make it 'destructor-correct'. 302 303 if (unsigned N = NumOperands - 1 - OpNo) 304 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 305 --NumOperands; 306 } 307 308 void MachineInstr::setExtraInfo(MachineFunction &MF, 309 ArrayRef<MachineMemOperand *> MMOs, 310 MCSymbol *PreInstrSymbol, 311 MCSymbol *PostInstrSymbol, 312 MDNode *HeapAllocMarker, MDNode *PCSections, 313 uint32_t CFIType) { 314 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 315 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 316 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 317 bool HasPCSections = PCSections != nullptr; 318 bool HasCFIType = CFIType != 0; 319 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + 320 HasHeapAllocMarker + HasPCSections + HasCFIType; 321 322 // Drop all extra info if there is none. 323 if (NumPointers <= 0) { 324 Info.clear(); 325 return; 326 } 327 328 // If more than one pointer, then store out of line. Store heap alloc markers 329 // out of line because PointerSumType cannot hold more than 4 tag types with 330 // 32-bit pointers. 331 // FIXME: Maybe we should make the symbols in the extra info mutable? 332 else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections || 333 HasCFIType) { 334 Info.set<EIIK_OutOfLine>( 335 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol, 336 HeapAllocMarker, PCSections, CFIType)); 337 return; 338 } 339 340 // Otherwise store the single pointer inline. 341 if (HasPreInstrSymbol) 342 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 343 else if (HasPostInstrSymbol) 344 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 345 else 346 Info.set<EIIK_MMO>(MMOs[0]); 347 } 348 349 void MachineInstr::dropMemRefs(MachineFunction &MF) { 350 if (memoperands_empty()) 351 return; 352 353 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 354 getHeapAllocMarker(), getPCSections(), getCFIType()); 355 } 356 357 void MachineInstr::setMemRefs(MachineFunction &MF, 358 ArrayRef<MachineMemOperand *> MMOs) { 359 if (MMOs.empty()) { 360 dropMemRefs(MF); 361 return; 362 } 363 364 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 365 getHeapAllocMarker(), getPCSections(), getCFIType()); 366 } 367 368 void MachineInstr::addMemOperand(MachineFunction &MF, 369 MachineMemOperand *MO) { 370 SmallVector<MachineMemOperand *, 2> MMOs; 371 MMOs.append(memoperands_begin(), memoperands_end()); 372 MMOs.push_back(MO); 373 setMemRefs(MF, MMOs); 374 } 375 376 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 377 if (this == &MI) 378 // Nothing to do for a self-clone! 379 return; 380 381 assert(&MF == MI.getMF() && 382 "Invalid machine functions when cloning memory refrences!"); 383 // See if we can just steal the extra info already allocated for the 384 // instruction. We can do this whenever the pre- and post-instruction symbols 385 // are the same (including null). 386 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 387 getPostInstrSymbol() == MI.getPostInstrSymbol() && 388 getHeapAllocMarker() == MI.getHeapAllocMarker() && 389 getPCSections() == MI.getPCSections()) { 390 Info = MI.Info; 391 return; 392 } 393 394 // Otherwise, fall back on a copy-based clone. 395 setMemRefs(MF, MI.memoperands()); 396 } 397 398 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 399 /// identical. 400 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 401 ArrayRef<MachineMemOperand *> RHS) { 402 if (LHS.size() != RHS.size()) 403 return false; 404 405 auto LHSPointees = make_pointee_range(LHS); 406 auto RHSPointees = make_pointee_range(RHS); 407 return std::equal(LHSPointees.begin(), LHSPointees.end(), 408 RHSPointees.begin()); 409 } 410 411 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 412 ArrayRef<const MachineInstr *> MIs) { 413 // Try handling easy numbers of MIs with simpler mechanisms. 414 if (MIs.empty()) { 415 dropMemRefs(MF); 416 return; 417 } 418 if (MIs.size() == 1) { 419 cloneMemRefs(MF, *MIs[0]); 420 return; 421 } 422 // Because an empty memoperands list provides *no* information and must be 423 // handled conservatively (assuming the instruction can do anything), the only 424 // way to merge with it is to drop all other memoperands. 425 if (MIs[0]->memoperands_empty()) { 426 dropMemRefs(MF); 427 return; 428 } 429 430 // Handle the general case. 431 SmallVector<MachineMemOperand *, 2> MergedMMOs; 432 // Start with the first instruction. 433 assert(&MF == MIs[0]->getMF() && 434 "Invalid machine functions when cloning memory references!"); 435 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 436 // Now walk all the other instructions and accumulate any different MMOs. 437 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 438 assert(&MF == MI.getMF() && 439 "Invalid machine functions when cloning memory references!"); 440 441 // Skip MIs with identical operands to the first. This is a somewhat 442 // arbitrary hack but will catch common cases without being quadratic. 443 // TODO: We could fully implement merge semantics here if needed. 444 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 445 continue; 446 447 // Because an empty memoperands list provides *no* information and must be 448 // handled conservatively (assuming the instruction can do anything), the 449 // only way to merge with it is to drop all other memoperands. 450 if (MI.memoperands_empty()) { 451 dropMemRefs(MF); 452 return; 453 } 454 455 // Otherwise accumulate these into our temporary buffer of the merged state. 456 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 457 } 458 459 setMemRefs(MF, MergedMMOs); 460 } 461 462 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 463 // Do nothing if old and new symbols are the same. 464 if (Symbol == getPreInstrSymbol()) 465 return; 466 467 // If there was only one symbol and we're removing it, just clear info. 468 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 469 Info.clear(); 470 return; 471 } 472 473 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 474 getHeapAllocMarker(), getPCSections(), getCFIType()); 475 } 476 477 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 478 // Do nothing if old and new symbols are the same. 479 if (Symbol == getPostInstrSymbol()) 480 return; 481 482 // If there was only one symbol and we're removing it, just clear info. 483 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 484 Info.clear(); 485 return; 486 } 487 488 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 489 getHeapAllocMarker(), getPCSections(), getCFIType()); 490 } 491 492 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 493 // Do nothing if old and new symbols are the same. 494 if (Marker == getHeapAllocMarker()) 495 return; 496 497 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 498 Marker, getPCSections(), getCFIType()); 499 } 500 501 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) { 502 // Do nothing if old and new symbols are the same. 503 if (PCSections == getPCSections()) 504 return; 505 506 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 507 getHeapAllocMarker(), PCSections, getCFIType()); 508 } 509 510 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) { 511 // Do nothing if old and new types are the same. 512 if (Type == getCFIType()) 513 return; 514 515 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 516 getHeapAllocMarker(), getPCSections(), Type); 517 } 518 519 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 520 const MachineInstr &MI) { 521 if (this == &MI) 522 // Nothing to do for a self-clone! 523 return; 524 525 assert(&MF == MI.getMF() && 526 "Invalid machine functions when cloning instruction symbols!"); 527 528 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 529 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 530 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 531 setPCSections(MF, MI.getPCSections()); 532 } 533 534 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 535 // For now, the just return the union of the flags. If the flags get more 536 // complicated over time, we might need more logic here. 537 return getFlags() | Other.getFlags(); 538 } 539 540 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 541 uint16_t MIFlags = 0; 542 // Copy the wrapping flags. 543 if (const OverflowingBinaryOperator *OB = 544 dyn_cast<OverflowingBinaryOperator>(&I)) { 545 if (OB->hasNoSignedWrap()) 546 MIFlags |= MachineInstr::MIFlag::NoSWrap; 547 if (OB->hasNoUnsignedWrap()) 548 MIFlags |= MachineInstr::MIFlag::NoUWrap; 549 } 550 551 // Copy the exact flag. 552 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 553 if (PE->isExact()) 554 MIFlags |= MachineInstr::MIFlag::IsExact; 555 556 // Copy the fast-math flags. 557 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 558 const FastMathFlags Flags = FP->getFastMathFlags(); 559 if (Flags.noNaNs()) 560 MIFlags |= MachineInstr::MIFlag::FmNoNans; 561 if (Flags.noInfs()) 562 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 563 if (Flags.noSignedZeros()) 564 MIFlags |= MachineInstr::MIFlag::FmNsz; 565 if (Flags.allowReciprocal()) 566 MIFlags |= MachineInstr::MIFlag::FmArcp; 567 if (Flags.allowContract()) 568 MIFlags |= MachineInstr::MIFlag::FmContract; 569 if (Flags.approxFunc()) 570 MIFlags |= MachineInstr::MIFlag::FmAfn; 571 if (Flags.allowReassoc()) 572 MIFlags |= MachineInstr::MIFlag::FmReassoc; 573 } 574 575 return MIFlags; 576 } 577 578 void MachineInstr::copyIRFlags(const Instruction &I) { 579 Flags = copyFlagsFromInstruction(I); 580 } 581 582 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 583 assert(!isBundledWithPred() && "Must be called on bundle header"); 584 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 585 if (MII->getDesc().getFlags() & Mask) { 586 if (Type == AnyInBundle) 587 return true; 588 } else { 589 if (Type == AllInBundle && !MII->isBundle()) 590 return false; 591 } 592 // This was the last instruction in the bundle. 593 if (!MII->isBundledWithSucc()) 594 return Type == AllInBundle; 595 } 596 } 597 598 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 599 MICheckType Check) const { 600 // If opcodes or number of operands are not the same then the two 601 // instructions are obviously not identical. 602 if (Other.getOpcode() != getOpcode() || 603 Other.getNumOperands() != getNumOperands()) 604 return false; 605 606 if (isBundle()) { 607 // We have passed the test above that both instructions have the same 608 // opcode, so we know that both instructions are bundles here. Let's compare 609 // MIs inside the bundle. 610 assert(Other.isBundle() && "Expected that both instructions are bundles."); 611 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 612 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 613 // Loop until we analysed the last intruction inside at least one of the 614 // bundles. 615 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 616 ++I1; 617 ++I2; 618 if (!I1->isIdenticalTo(*I2, Check)) 619 return false; 620 } 621 // If we've reached the end of just one of the two bundles, but not both, 622 // the instructions are not identical. 623 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 624 return false; 625 } 626 627 // Check operands to make sure they match. 628 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 629 const MachineOperand &MO = getOperand(i); 630 const MachineOperand &OMO = Other.getOperand(i); 631 if (!MO.isReg()) { 632 if (!MO.isIdenticalTo(OMO)) 633 return false; 634 continue; 635 } 636 637 // Clients may or may not want to ignore defs when testing for equality. 638 // For example, machine CSE pass only cares about finding common 639 // subexpressions, so it's safe to ignore virtual register defs. 640 if (MO.isDef()) { 641 if (Check == IgnoreDefs) 642 continue; 643 else if (Check == IgnoreVRegDefs) { 644 if (!Register::isVirtualRegister(MO.getReg()) || 645 !Register::isVirtualRegister(OMO.getReg())) 646 if (!MO.isIdenticalTo(OMO)) 647 return false; 648 } else { 649 if (!MO.isIdenticalTo(OMO)) 650 return false; 651 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 652 return false; 653 } 654 } else { 655 if (!MO.isIdenticalTo(OMO)) 656 return false; 657 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 658 return false; 659 } 660 } 661 // If DebugLoc does not match then two debug instructions are not identical. 662 if (isDebugInstr()) 663 if (getDebugLoc() && Other.getDebugLoc() && 664 getDebugLoc() != Other.getDebugLoc()) 665 return false; 666 // If pre- or post-instruction symbols do not match then the two instructions 667 // are not identical. 668 if (getPreInstrSymbol() != Other.getPreInstrSymbol() || 669 getPostInstrSymbol() != Other.getPostInstrSymbol()) 670 return false; 671 // Call instructions with different CFI types are not identical. 672 if (isCall() && getCFIType() != Other.getCFIType()) 673 return false; 674 675 return true; 676 } 677 678 const MachineFunction *MachineInstr::getMF() const { 679 return getParent()->getParent(); 680 } 681 682 MachineInstr *MachineInstr::removeFromParent() { 683 assert(getParent() && "Not embedded in a basic block!"); 684 return getParent()->remove(this); 685 } 686 687 MachineInstr *MachineInstr::removeFromBundle() { 688 assert(getParent() && "Not embedded in a basic block!"); 689 return getParent()->remove_instr(this); 690 } 691 692 void MachineInstr::eraseFromParent() { 693 assert(getParent() && "Not embedded in a basic block!"); 694 getParent()->erase(this); 695 } 696 697 void MachineInstr::eraseFromBundle() { 698 assert(getParent() && "Not embedded in a basic block!"); 699 getParent()->erase_instr(this); 700 } 701 702 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 703 if (!isCall(Type)) 704 return false; 705 switch (getOpcode()) { 706 case TargetOpcode::PATCHPOINT: 707 case TargetOpcode::STACKMAP: 708 case TargetOpcode::STATEPOINT: 709 case TargetOpcode::FENTRY_CALL: 710 return false; 711 } 712 return true; 713 } 714 715 bool MachineInstr::shouldUpdateCallSiteInfo() const { 716 if (isBundle()) 717 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 718 return isCandidateForCallSiteEntry(); 719 } 720 721 unsigned MachineInstr::getNumExplicitOperands() const { 722 unsigned NumOperands = MCID->getNumOperands(); 723 if (!MCID->isVariadic()) 724 return NumOperands; 725 726 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 727 const MachineOperand &MO = getOperand(I); 728 // The operands must always be in the following order: 729 // - explicit reg defs, 730 // - other explicit operands (reg uses, immediates, etc.), 731 // - implicit reg defs 732 // - implicit reg uses 733 if (MO.isReg() && MO.isImplicit()) 734 break; 735 ++NumOperands; 736 } 737 return NumOperands; 738 } 739 740 unsigned MachineInstr::getNumExplicitDefs() const { 741 unsigned NumDefs = MCID->getNumDefs(); 742 if (!MCID->isVariadic()) 743 return NumDefs; 744 745 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 746 const MachineOperand &MO = getOperand(I); 747 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 748 break; 749 ++NumDefs; 750 } 751 return NumDefs; 752 } 753 754 void MachineInstr::bundleWithPred() { 755 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 756 setFlag(BundledPred); 757 MachineBasicBlock::instr_iterator Pred = getIterator(); 758 --Pred; 759 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 760 Pred->setFlag(BundledSucc); 761 } 762 763 void MachineInstr::bundleWithSucc() { 764 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 765 setFlag(BundledSucc); 766 MachineBasicBlock::instr_iterator Succ = getIterator(); 767 ++Succ; 768 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 769 Succ->setFlag(BundledPred); 770 } 771 772 void MachineInstr::unbundleFromPred() { 773 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 774 clearFlag(BundledPred); 775 MachineBasicBlock::instr_iterator Pred = getIterator(); 776 --Pred; 777 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 778 Pred->clearFlag(BundledSucc); 779 } 780 781 void MachineInstr::unbundleFromSucc() { 782 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 783 clearFlag(BundledSucc); 784 MachineBasicBlock::instr_iterator Succ = getIterator(); 785 ++Succ; 786 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 787 Succ->clearFlag(BundledPred); 788 } 789 790 bool MachineInstr::isStackAligningInlineAsm() const { 791 if (isInlineAsm()) { 792 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 793 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 794 return true; 795 } 796 return false; 797 } 798 799 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 800 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 801 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 802 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 803 } 804 805 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 806 unsigned *GroupNo) const { 807 assert(isInlineAsm() && "Expected an inline asm instruction"); 808 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 809 810 // Ignore queries about the initial operands. 811 if (OpIdx < InlineAsm::MIOp_FirstOperand) 812 return -1; 813 814 unsigned Group = 0; 815 unsigned NumOps; 816 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 817 i += NumOps) { 818 const MachineOperand &FlagMO = getOperand(i); 819 // If we reach the implicit register operands, stop looking. 820 if (!FlagMO.isImm()) 821 return -1; 822 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 823 if (i + NumOps > OpIdx) { 824 if (GroupNo) 825 *GroupNo = Group; 826 return i; 827 } 828 ++Group; 829 } 830 return -1; 831 } 832 833 const DILabel *MachineInstr::getDebugLabel() const { 834 assert(isDebugLabel() && "not a DBG_LABEL"); 835 return cast<DILabel>(getOperand(0).getMetadata()); 836 } 837 838 const MachineOperand &MachineInstr::getDebugVariableOp() const { 839 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 840 unsigned VariableOp = isDebugValueList() ? 0 : 2; 841 return getOperand(VariableOp); 842 } 843 844 MachineOperand &MachineInstr::getDebugVariableOp() { 845 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 846 unsigned VariableOp = isDebugValueList() ? 0 : 2; 847 return getOperand(VariableOp); 848 } 849 850 const DILocalVariable *MachineInstr::getDebugVariable() const { 851 return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); 852 } 853 854 const MachineOperand &MachineInstr::getDebugExpressionOp() const { 855 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 856 unsigned ExpressionOp = isDebugValueList() ? 1 : 3; 857 return getOperand(ExpressionOp); 858 } 859 860 MachineOperand &MachineInstr::getDebugExpressionOp() { 861 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 862 unsigned ExpressionOp = isDebugValueList() ? 1 : 3; 863 return getOperand(ExpressionOp); 864 } 865 866 const DIExpression *MachineInstr::getDebugExpression() const { 867 return cast<DIExpression>(getDebugExpressionOp().getMetadata()); 868 } 869 870 bool MachineInstr::isDebugEntryValue() const { 871 return isDebugValue() && getDebugExpression()->isEntryValue(); 872 } 873 874 const TargetRegisterClass* 875 MachineInstr::getRegClassConstraint(unsigned OpIdx, 876 const TargetInstrInfo *TII, 877 const TargetRegisterInfo *TRI) const { 878 assert(getParent() && "Can't have an MBB reference here!"); 879 assert(getMF() && "Can't have an MF reference here!"); 880 const MachineFunction &MF = *getMF(); 881 882 // Most opcodes have fixed constraints in their MCInstrDesc. 883 if (!isInlineAsm()) 884 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 885 886 if (!getOperand(OpIdx).isReg()) 887 return nullptr; 888 889 // For tied uses on inline asm, get the constraint from the def. 890 unsigned DefIdx; 891 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 892 OpIdx = DefIdx; 893 894 // Inline asm stores register class constraints in the flag word. 895 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 896 if (FlagIdx < 0) 897 return nullptr; 898 899 unsigned Flag = getOperand(FlagIdx).getImm(); 900 unsigned RCID; 901 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 902 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 903 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 904 InlineAsm::hasRegClassConstraint(Flag, RCID)) 905 return TRI->getRegClass(RCID); 906 907 // Assume that all registers in a memory operand are pointers. 908 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 909 return TRI->getPointerRegClass(MF); 910 911 return nullptr; 912 } 913 914 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 915 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 916 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 917 // Check every operands inside the bundle if we have 918 // been asked to. 919 if (ExploreBundle) 920 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 921 ++OpndIt) 922 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 923 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 924 else 925 // Otherwise, just check the current operands. 926 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 927 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 928 return CurRC; 929 } 930 931 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 932 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 933 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 934 assert(CurRC && "Invalid initial register class"); 935 // Check if Reg is constrained by some of its use/def from MI. 936 const MachineOperand &MO = getOperand(OpIdx); 937 if (!MO.isReg() || MO.getReg() != Reg) 938 return CurRC; 939 // If yes, accumulate the constraints through the operand. 940 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 941 } 942 943 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 944 unsigned OpIdx, const TargetRegisterClass *CurRC, 945 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 946 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 947 const MachineOperand &MO = getOperand(OpIdx); 948 assert(MO.isReg() && 949 "Cannot get register constraints for non-register operand"); 950 assert(CurRC && "Invalid initial register class"); 951 if (unsigned SubIdx = MO.getSubReg()) { 952 if (OpRC) 953 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 954 else 955 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 956 } else if (OpRC) 957 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 958 return CurRC; 959 } 960 961 /// Return the number of instructions inside the MI bundle, not counting the 962 /// header instruction. 963 unsigned MachineInstr::getBundleSize() const { 964 MachineBasicBlock::const_instr_iterator I = getIterator(); 965 unsigned Size = 0; 966 while (I->isBundledWithSucc()) { 967 ++Size; 968 ++I; 969 } 970 return Size; 971 } 972 973 /// Returns true if the MachineInstr has an implicit-use operand of exactly 974 /// the given register (not considering sub/super-registers). 975 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 976 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 977 const MachineOperand &MO = getOperand(i); 978 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 979 return true; 980 } 981 return false; 982 } 983 984 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 985 /// the specific register or -1 if it is not found. It further tightens 986 /// the search criteria to a use that kills the register if isKill is true. 987 int MachineInstr::findRegisterUseOperandIdx( 988 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 989 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 990 const MachineOperand &MO = getOperand(i); 991 if (!MO.isReg() || !MO.isUse()) 992 continue; 993 Register MOReg = MO.getReg(); 994 if (!MOReg) 995 continue; 996 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 997 if (!isKill || MO.isKill()) 998 return i; 999 } 1000 return -1; 1001 } 1002 1003 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1004 /// indicating if this instruction reads or writes Reg. This also considers 1005 /// partial defines. 1006 std::pair<bool,bool> 1007 MachineInstr::readsWritesVirtualRegister(Register Reg, 1008 SmallVectorImpl<unsigned> *Ops) const { 1009 bool PartDef = false; // Partial redefine. 1010 bool FullDef = false; // Full define. 1011 bool Use = false; 1012 1013 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1014 const MachineOperand &MO = getOperand(i); 1015 if (!MO.isReg() || MO.getReg() != Reg) 1016 continue; 1017 if (Ops) 1018 Ops->push_back(i); 1019 if (MO.isUse()) 1020 Use |= !MO.isUndef(); 1021 else if (MO.getSubReg() && !MO.isUndef()) 1022 // A partial def undef doesn't count as reading the register. 1023 PartDef = true; 1024 else 1025 FullDef = true; 1026 } 1027 // A partial redefine uses Reg unless there is also a full define. 1028 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1029 } 1030 1031 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1032 /// the specified register or -1 if it is not found. If isDead is true, defs 1033 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1034 /// also checks if there is a def of a super-register. 1035 int 1036 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1037 const TargetRegisterInfo *TRI) const { 1038 bool isPhys = Register::isPhysicalRegister(Reg); 1039 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1040 const MachineOperand &MO = getOperand(i); 1041 // Accept regmask operands when Overlap is set. 1042 // Ignore them when looking for a specific def operand (Overlap == false). 1043 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1044 return i; 1045 if (!MO.isReg() || !MO.isDef()) 1046 continue; 1047 Register MOReg = MO.getReg(); 1048 bool Found = (MOReg == Reg); 1049 if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { 1050 if (Overlap) 1051 Found = TRI->regsOverlap(MOReg, Reg); 1052 else 1053 Found = TRI->isSubRegister(MOReg, Reg); 1054 } 1055 if (Found && (!isDead || MO.isDead())) 1056 return i; 1057 } 1058 return -1; 1059 } 1060 1061 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1062 /// operand list that is used to represent the predicate. It returns -1 if 1063 /// none is found. 1064 int MachineInstr::findFirstPredOperandIdx() const { 1065 // Don't call MCID.findFirstPredOperandIdx() because this variant 1066 // is sometimes called on an instruction that's not yet complete, and 1067 // so the number of operands is less than the MCID indicates. In 1068 // particular, the PTX target does this. 1069 const MCInstrDesc &MCID = getDesc(); 1070 if (MCID.isPredicable()) { 1071 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1072 if (MCID.OpInfo[i].isPredicate()) 1073 return i; 1074 } 1075 1076 return -1; 1077 } 1078 1079 // MachineOperand::TiedTo is 4 bits wide. 1080 const unsigned TiedMax = 15; 1081 1082 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1083 /// 1084 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1085 /// field. TiedTo can have these values: 1086 /// 1087 /// 0: Operand is not tied to anything. 1088 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1089 /// TiedMax: Tied to an operand >= TiedMax-1. 1090 /// 1091 /// The tied def must be one of the first TiedMax operands on a normal 1092 /// instruction. INLINEASM instructions allow more tied defs. 1093 /// 1094 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1095 MachineOperand &DefMO = getOperand(DefIdx); 1096 MachineOperand &UseMO = getOperand(UseIdx); 1097 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1098 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1099 assert(!DefMO.isTied() && "Def is already tied to another use"); 1100 assert(!UseMO.isTied() && "Use is already tied to another def"); 1101 1102 if (DefIdx < TiedMax) 1103 UseMO.TiedTo = DefIdx + 1; 1104 else { 1105 // Inline asm can use the group descriptors to find tied operands, 1106 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1107 // but on normal instruction, the tied def must be within the first TiedMax 1108 // operands. 1109 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1110 "DefIdx out of range"); 1111 UseMO.TiedTo = TiedMax; 1112 } 1113 1114 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1115 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1116 } 1117 1118 /// Given the index of a tied register operand, find the operand it is tied to. 1119 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1120 /// which must exist. 1121 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1122 const MachineOperand &MO = getOperand(OpIdx); 1123 assert(MO.isTied() && "Operand isn't tied"); 1124 1125 // Normally TiedTo is in range. 1126 if (MO.TiedTo < TiedMax) 1127 return MO.TiedTo - 1; 1128 1129 // Uses on normal instructions can be out of range. 1130 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1131 // Normal tied defs must be in the 0..TiedMax-1 range. 1132 if (MO.isUse()) 1133 return TiedMax - 1; 1134 // MO is a def. Search for the tied use. 1135 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1136 const MachineOperand &UseMO = getOperand(i); 1137 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1138 return i; 1139 } 1140 llvm_unreachable("Can't find tied use"); 1141 } 1142 1143 if (getOpcode() == TargetOpcode::STATEPOINT) { 1144 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1145 // on registers. 1146 StatepointOpers SO(this); 1147 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1148 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1149 unsigned NumDefs = getNumDefs(); 1150 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1151 while (!getOperand(CurUseIdx).isReg()) 1152 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1153 if (OpIdx == CurDefIdx) 1154 return CurUseIdx; 1155 if (OpIdx == CurUseIdx) 1156 return CurDefIdx; 1157 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1158 } 1159 llvm_unreachable("Can't find tied use"); 1160 } 1161 1162 // Now deal with inline asm by parsing the operand group descriptor flags. 1163 // Find the beginning of each operand group. 1164 SmallVector<unsigned, 8> GroupIdx; 1165 unsigned OpIdxGroup = ~0u; 1166 unsigned NumOps; 1167 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1168 i += NumOps) { 1169 const MachineOperand &FlagMO = getOperand(i); 1170 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1171 unsigned CurGroup = GroupIdx.size(); 1172 GroupIdx.push_back(i); 1173 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1174 // OpIdx belongs to this operand group. 1175 if (OpIdx > i && OpIdx < i + NumOps) 1176 OpIdxGroup = CurGroup; 1177 unsigned TiedGroup; 1178 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1179 continue; 1180 // Operands in this group are tied to operands in TiedGroup which must be 1181 // earlier. Find the number of operands between the two groups. 1182 unsigned Delta = i - GroupIdx[TiedGroup]; 1183 1184 // OpIdx is a use tied to TiedGroup. 1185 if (OpIdxGroup == CurGroup) 1186 return OpIdx - Delta; 1187 1188 // OpIdx is a def tied to this use group. 1189 if (OpIdxGroup == TiedGroup) 1190 return OpIdx + Delta; 1191 } 1192 llvm_unreachable("Invalid tied operand on inline asm"); 1193 } 1194 1195 /// clearKillInfo - Clears kill flags on all operands. 1196 /// 1197 void MachineInstr::clearKillInfo() { 1198 for (MachineOperand &MO : operands()) { 1199 if (MO.isReg() && MO.isUse()) 1200 MO.setIsKill(false); 1201 } 1202 } 1203 1204 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1205 unsigned SubIdx, 1206 const TargetRegisterInfo &RegInfo) { 1207 if (Register::isPhysicalRegister(ToReg)) { 1208 if (SubIdx) 1209 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1210 for (MachineOperand &MO : operands()) { 1211 if (!MO.isReg() || MO.getReg() != FromReg) 1212 continue; 1213 MO.substPhysReg(ToReg, RegInfo); 1214 } 1215 } else { 1216 for (MachineOperand &MO : operands()) { 1217 if (!MO.isReg() || MO.getReg() != FromReg) 1218 continue; 1219 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1220 } 1221 } 1222 } 1223 1224 /// isSafeToMove - Return true if it is safe to move this instruction. If 1225 /// SawStore is set to true, it means that there is a store (or call) between 1226 /// the instruction's location and its intended destination. 1227 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1228 // Ignore stuff that we obviously can't move. 1229 // 1230 // Treat volatile loads as stores. This is not strictly necessary for 1231 // volatiles, but it is required for atomic loads. It is not allowed to move 1232 // a load across an atomic load with Ordering > Monotonic. 1233 if (mayStore() || isCall() || isPHI() || 1234 (mayLoad() && hasOrderedMemoryRef())) { 1235 SawStore = true; 1236 return false; 1237 } 1238 1239 if (isPosition() || isDebugInstr() || isTerminator() || 1240 mayRaiseFPException() || hasUnmodeledSideEffects()) 1241 return false; 1242 1243 // See if this instruction does a load. If so, we have to guarantee that the 1244 // loaded value doesn't change between the load and the its intended 1245 // destination. The check for isInvariantLoad gives the target the chance to 1246 // classify the load as always returning a constant, e.g. a constant pool 1247 // load. 1248 if (mayLoad() && !isDereferenceableInvariantLoad()) 1249 // Otherwise, this is a real load. If there is a store between the load and 1250 // end of block, we can't move it. 1251 return !SawStore; 1252 1253 return true; 1254 } 1255 1256 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1257 bool UseTBAA, const MachineMemOperand *MMOa, 1258 const MachineMemOperand *MMOb) { 1259 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1260 // operates with MachineMemOperand offset with some important assumptions: 1261 // - LLVM fundamentally assumes flat address spaces. 1262 // - MachineOperand offset can *only* result from legalization and cannot 1263 // affect queries other than the trivial case of overlap checking. 1264 // - These offsets never wrap and never step outside of allocated objects. 1265 // - There should never be any negative offsets here. 1266 // 1267 // FIXME: Modify API to hide this math from "user" 1268 // Even before we go to AA we can reason locally about some memory objects. It 1269 // can save compile time, and possibly catch some corner cases not currently 1270 // covered. 1271 1272 int64_t OffsetA = MMOa->getOffset(); 1273 int64_t OffsetB = MMOb->getOffset(); 1274 int64_t MinOffset = std::min(OffsetA, OffsetB); 1275 1276 uint64_t WidthA = MMOa->getSize(); 1277 uint64_t WidthB = MMOb->getSize(); 1278 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1279 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1280 1281 const Value *ValA = MMOa->getValue(); 1282 const Value *ValB = MMOb->getValue(); 1283 bool SameVal = (ValA && ValB && (ValA == ValB)); 1284 if (!SameVal) { 1285 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1286 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1287 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1288 return false; 1289 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1290 return false; 1291 if (PSVa && PSVb && (PSVa == PSVb)) 1292 SameVal = true; 1293 } 1294 1295 if (SameVal) { 1296 if (!KnownWidthA || !KnownWidthB) 1297 return true; 1298 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1299 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1300 return (MinOffset + LowWidth > MaxOffset); 1301 } 1302 1303 if (!AA) 1304 return true; 1305 1306 if (!ValA || !ValB) 1307 return true; 1308 1309 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1310 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1311 1312 int64_t OverlapA = 1313 KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize; 1314 int64_t OverlapB = 1315 KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize; 1316 1317 return !AA->isNoAlias( 1318 MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1319 MemoryLocation(ValB, OverlapB, 1320 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1321 } 1322 1323 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1324 bool UseTBAA) const { 1325 const MachineFunction *MF = getMF(); 1326 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1327 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1328 1329 // Exclude call instruction which may alter the memory but can not be handled 1330 // by this function. 1331 if (isCall() || Other.isCall()) 1332 return true; 1333 1334 // If neither instruction stores to memory, they can't alias in any 1335 // meaningful way, even if they read from the same address. 1336 if (!mayStore() && !Other.mayStore()) 1337 return false; 1338 1339 // Both instructions must be memory operations to be able to alias. 1340 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1341 return false; 1342 1343 // Let the target decide if memory accesses cannot possibly overlap. 1344 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1345 return false; 1346 1347 // Memory operations without memory operands may access anything. Be 1348 // conservative and assume `MayAlias`. 1349 if (memoperands_empty() || Other.memoperands_empty()) 1350 return true; 1351 1352 // Skip if there are too many memory operands. 1353 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1354 if (NumChecks > TII->getMemOperandAACheckLimit()) 1355 return true; 1356 1357 // Check each pair of memory operands from both instructions, which can't 1358 // alias only if all pairs won't alias. 1359 for (auto *MMOa : memoperands()) 1360 for (auto *MMOb : Other.memoperands()) 1361 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1362 return true; 1363 1364 return false; 1365 } 1366 1367 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1368 /// or volatile memory reference, or if the information describing the memory 1369 /// reference is not available. Return false if it is known to have no ordered 1370 /// memory references. 1371 bool MachineInstr::hasOrderedMemoryRef() const { 1372 // An instruction known never to access memory won't have a volatile access. 1373 if (!mayStore() && 1374 !mayLoad() && 1375 !isCall() && 1376 !hasUnmodeledSideEffects()) 1377 return false; 1378 1379 // Otherwise, if the instruction has no memory reference information, 1380 // conservatively assume it wasn't preserved. 1381 if (memoperands_empty()) 1382 return true; 1383 1384 // Check if any of our memory operands are ordered. 1385 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1386 return !MMO->isUnordered(); 1387 }); 1388 } 1389 1390 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1391 /// trap and is loading from a location whose value is invariant across a run of 1392 /// this function. 1393 bool MachineInstr::isDereferenceableInvariantLoad() const { 1394 // If the instruction doesn't load at all, it isn't an invariant load. 1395 if (!mayLoad()) 1396 return false; 1397 1398 // If the instruction has lost its memoperands, conservatively assume that 1399 // it may not be an invariant load. 1400 if (memoperands_empty()) 1401 return false; 1402 1403 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1404 1405 for (MachineMemOperand *MMO : memoperands()) { 1406 if (!MMO->isUnordered()) 1407 // If the memory operand has ordering side effects, we can't move the 1408 // instruction. Such an instruction is technically an invariant load, 1409 // but the caller code would need updated to expect that. 1410 return false; 1411 if (MMO->isStore()) return false; 1412 if (MMO->isInvariant() && MMO->isDereferenceable()) 1413 continue; 1414 1415 // A load from a constant PseudoSourceValue is invariant. 1416 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 1417 if (PSV->isConstant(&MFI)) 1418 continue; 1419 } 1420 1421 // Otherwise assume conservatively. 1422 return false; 1423 } 1424 1425 // Everything checks out. 1426 return true; 1427 } 1428 1429 /// isConstantValuePHI - If the specified instruction is a PHI that always 1430 /// merges together the same virtual register, return the register, otherwise 1431 /// return 0. 1432 unsigned MachineInstr::isConstantValuePHI() const { 1433 if (!isPHI()) 1434 return 0; 1435 assert(getNumOperands() >= 3 && 1436 "It's illegal to have a PHI without source operands"); 1437 1438 Register Reg = getOperand(1).getReg(); 1439 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1440 if (getOperand(i).getReg() != Reg) 1441 return 0; 1442 return Reg; 1443 } 1444 1445 bool MachineInstr::hasUnmodeledSideEffects() const { 1446 if (hasProperty(MCID::UnmodeledSideEffects)) 1447 return true; 1448 if (isInlineAsm()) { 1449 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1450 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1451 return true; 1452 } 1453 1454 return false; 1455 } 1456 1457 bool MachineInstr::isLoadFoldBarrier() const { 1458 return mayStore() || isCall() || 1459 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1460 } 1461 1462 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1463 /// 1464 bool MachineInstr::allDefsAreDead() const { 1465 for (const MachineOperand &MO : operands()) { 1466 if (!MO.isReg() || MO.isUse()) 1467 continue; 1468 if (!MO.isDead()) 1469 return false; 1470 } 1471 return true; 1472 } 1473 1474 /// copyImplicitOps - Copy implicit register operands from specified 1475 /// instruction to this instruction. 1476 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1477 const MachineInstr &MI) { 1478 for (const MachineOperand &MO : 1479 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) 1480 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1481 addOperand(MF, MO); 1482 } 1483 1484 bool MachineInstr::hasComplexRegisterTies() const { 1485 const MCInstrDesc &MCID = getDesc(); 1486 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1487 return true; 1488 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1489 const auto &Operand = getOperand(I); 1490 if (!Operand.isReg() || Operand.isDef()) 1491 // Ignore the defined registers as MCID marks only the uses as tied. 1492 continue; 1493 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1494 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1495 if (ExpectedTiedIdx != TiedIdx) 1496 return true; 1497 } 1498 return false; 1499 } 1500 1501 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1502 const MachineRegisterInfo &MRI) const { 1503 const MachineOperand &Op = getOperand(OpIdx); 1504 if (!Op.isReg()) 1505 return LLT{}; 1506 1507 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1508 return MRI.getType(Op.getReg()); 1509 1510 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1511 if (!OpInfo.isGenericType()) 1512 return MRI.getType(Op.getReg()); 1513 1514 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1515 return LLT{}; 1516 1517 LLT TypeToPrint = MRI.getType(Op.getReg()); 1518 // Don't mark the type index printed if it wasn't actually printed: maybe 1519 // another operand with the same type index has an actual type attached: 1520 if (TypeToPrint.isValid()) 1521 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1522 return TypeToPrint; 1523 } 1524 1525 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1526 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1527 dbgs() << " "; 1528 print(dbgs()); 1529 } 1530 1531 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1532 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1533 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1534 if (Depth >= MaxDepth) 1535 return; 1536 if (!AlreadySeenInstrs.insert(this).second) 1537 return; 1538 // PadToColumn always inserts at least one space. 1539 // Don't mess up the alignment if we don't want any space. 1540 if (Depth) 1541 fdbgs().PadToColumn(Depth * 2); 1542 print(fdbgs()); 1543 for (const MachineOperand &MO : operands()) { 1544 if (!MO.isReg() || MO.isDef()) 1545 continue; 1546 Register Reg = MO.getReg(); 1547 if (Reg.isPhysical()) 1548 continue; 1549 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1550 if (NewMI == nullptr) 1551 continue; 1552 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1553 } 1554 } 1555 1556 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1557 unsigned MaxDepth) const { 1558 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1559 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1560 } 1561 #endif 1562 1563 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1564 bool SkipDebugLoc, bool AddNewLine, 1565 const TargetInstrInfo *TII) const { 1566 const Module *M = nullptr; 1567 const Function *F = nullptr; 1568 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1569 F = &MF->getFunction(); 1570 M = F->getParent(); 1571 if (!TII) 1572 TII = MF->getSubtarget().getInstrInfo(); 1573 } 1574 1575 ModuleSlotTracker MST(M); 1576 if (F) 1577 MST.incorporateFunction(*F); 1578 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1579 } 1580 1581 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1582 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1583 bool AddNewLine, const TargetInstrInfo *TII) const { 1584 // We can be a bit tidier if we know the MachineFunction. 1585 const TargetRegisterInfo *TRI = nullptr; 1586 const MachineRegisterInfo *MRI = nullptr; 1587 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1588 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1589 1590 if (isCFIInstruction()) 1591 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1592 1593 SmallBitVector PrintedTypes(8); 1594 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1595 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1596 if (!ShouldPrintRegisterTies) 1597 return 0U; 1598 const MachineOperand &MO = getOperand(OpIdx); 1599 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1600 return findTiedOperandIdx(OpIdx); 1601 return 0U; 1602 }; 1603 unsigned StartOp = 0; 1604 unsigned e = getNumOperands(); 1605 1606 // Print explicitly defined operands on the left of an assignment syntax. 1607 while (StartOp < e) { 1608 const MachineOperand &MO = getOperand(StartOp); 1609 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1610 break; 1611 1612 if (StartOp != 0) 1613 OS << ", "; 1614 1615 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1616 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1617 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1618 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1619 ++StartOp; 1620 } 1621 1622 if (StartOp != 0) 1623 OS << " = "; 1624 1625 if (getFlag(MachineInstr::FrameSetup)) 1626 OS << "frame-setup "; 1627 if (getFlag(MachineInstr::FrameDestroy)) 1628 OS << "frame-destroy "; 1629 if (getFlag(MachineInstr::FmNoNans)) 1630 OS << "nnan "; 1631 if (getFlag(MachineInstr::FmNoInfs)) 1632 OS << "ninf "; 1633 if (getFlag(MachineInstr::FmNsz)) 1634 OS << "nsz "; 1635 if (getFlag(MachineInstr::FmArcp)) 1636 OS << "arcp "; 1637 if (getFlag(MachineInstr::FmContract)) 1638 OS << "contract "; 1639 if (getFlag(MachineInstr::FmAfn)) 1640 OS << "afn "; 1641 if (getFlag(MachineInstr::FmReassoc)) 1642 OS << "reassoc "; 1643 if (getFlag(MachineInstr::NoUWrap)) 1644 OS << "nuw "; 1645 if (getFlag(MachineInstr::NoSWrap)) 1646 OS << "nsw "; 1647 if (getFlag(MachineInstr::IsExact)) 1648 OS << "exact "; 1649 if (getFlag(MachineInstr::NoFPExcept)) 1650 OS << "nofpexcept "; 1651 if (getFlag(MachineInstr::NoMerge)) 1652 OS << "nomerge "; 1653 1654 // Print the opcode name. 1655 if (TII) 1656 OS << TII->getName(getOpcode()); 1657 else 1658 OS << "UNKNOWN"; 1659 1660 if (SkipOpers) 1661 return; 1662 1663 // Print the rest of the operands. 1664 bool FirstOp = true; 1665 unsigned AsmDescOp = ~0u; 1666 unsigned AsmOpCount = 0; 1667 1668 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1669 // Print asm string. 1670 OS << " "; 1671 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1672 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1673 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1674 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1675 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1676 IntrinsicInfo); 1677 1678 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1679 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1680 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1681 OS << " [sideeffect]"; 1682 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1683 OS << " [mayload]"; 1684 if (ExtraInfo & InlineAsm::Extra_MayStore) 1685 OS << " [maystore]"; 1686 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1687 OS << " [isconvergent]"; 1688 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1689 OS << " [alignstack]"; 1690 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1691 OS << " [attdialect]"; 1692 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1693 OS << " [inteldialect]"; 1694 1695 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1696 FirstOp = false; 1697 } 1698 1699 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1700 const MachineOperand &MO = getOperand(i); 1701 1702 if (FirstOp) FirstOp = false; else OS << ","; 1703 OS << " "; 1704 1705 if (isDebugValue() && MO.isMetadata()) { 1706 // Pretty print DBG_VALUE* instructions. 1707 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1708 if (DIV && !DIV->getName().empty()) 1709 OS << "!\"" << DIV->getName() << '\"'; 1710 else { 1711 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1712 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1713 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1714 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1715 } 1716 } else if (isDebugLabel() && MO.isMetadata()) { 1717 // Pretty print DBG_LABEL instructions. 1718 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1719 if (DIL && !DIL->getName().empty()) 1720 OS << "\"" << DIL->getName() << '\"'; 1721 else { 1722 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1723 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1724 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1725 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1726 } 1727 } else if (i == AsmDescOp && MO.isImm()) { 1728 // Pretty print the inline asm operand descriptor. 1729 OS << '$' << AsmOpCount++; 1730 unsigned Flag = MO.getImm(); 1731 OS << ":["; 1732 OS << InlineAsm::getKindName(InlineAsm::getKind(Flag)); 1733 1734 unsigned RCID = 0; 1735 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1736 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1737 if (TRI) { 1738 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1739 } else 1740 OS << ":RC" << RCID; 1741 } 1742 1743 if (InlineAsm::isMemKind(Flag)) { 1744 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1745 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1746 } 1747 1748 unsigned TiedTo = 0; 1749 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1750 OS << " tiedto:$" << TiedTo; 1751 1752 OS << ']'; 1753 1754 // Compute the index of the next operand descriptor. 1755 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1756 } else { 1757 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1758 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1759 if (MO.isImm() && isOperandSubregIdx(i)) 1760 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1761 else 1762 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1763 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1764 } 1765 } 1766 1767 // Print any optional symbols attached to this instruction as-if they were 1768 // operands. 1769 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1770 if (!FirstOp) { 1771 FirstOp = false; 1772 OS << ','; 1773 } 1774 OS << " pre-instr-symbol "; 1775 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1776 } 1777 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1778 if (!FirstOp) { 1779 FirstOp = false; 1780 OS << ','; 1781 } 1782 OS << " post-instr-symbol "; 1783 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1784 } 1785 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1786 if (!FirstOp) { 1787 FirstOp = false; 1788 OS << ','; 1789 } 1790 OS << " heap-alloc-marker "; 1791 HeapAllocMarker->printAsOperand(OS, MST); 1792 } 1793 if (MDNode *PCSections = getPCSections()) { 1794 if (!FirstOp) { 1795 FirstOp = false; 1796 OS << ','; 1797 } 1798 OS << " pcsections "; 1799 PCSections->printAsOperand(OS, MST); 1800 } 1801 if (uint32_t CFIType = getCFIType()) { 1802 if (!FirstOp) 1803 OS << ','; 1804 OS << " cfi-type " << CFIType; 1805 } 1806 1807 if (DebugInstrNum) { 1808 if (!FirstOp) 1809 OS << ","; 1810 OS << " debug-instr-number " << DebugInstrNum; 1811 } 1812 1813 if (!SkipDebugLoc) { 1814 if (const DebugLoc &DL = getDebugLoc()) { 1815 if (!FirstOp) 1816 OS << ','; 1817 OS << " debug-location "; 1818 DL->printAsOperand(OS, MST); 1819 } 1820 } 1821 1822 if (!memoperands_empty()) { 1823 SmallVector<StringRef, 0> SSNs; 1824 const LLVMContext *Context = nullptr; 1825 std::unique_ptr<LLVMContext> CtxPtr; 1826 const MachineFrameInfo *MFI = nullptr; 1827 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1828 MFI = &MF->getFrameInfo(); 1829 Context = &MF->getFunction().getContext(); 1830 } else { 1831 CtxPtr = std::make_unique<LLVMContext>(); 1832 Context = CtxPtr.get(); 1833 } 1834 1835 OS << " :: "; 1836 bool NeedComma = false; 1837 for (const MachineMemOperand *Op : memoperands()) { 1838 if (NeedComma) 1839 OS << ", "; 1840 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1841 NeedComma = true; 1842 } 1843 } 1844 1845 if (SkipDebugLoc) 1846 return; 1847 1848 bool HaveSemi = false; 1849 1850 // Print debug location information. 1851 if (const DebugLoc &DL = getDebugLoc()) { 1852 if (!HaveSemi) { 1853 OS << ';'; 1854 HaveSemi = true; 1855 } 1856 OS << ' '; 1857 DL.print(OS); 1858 } 1859 1860 // Print extra comments for DEBUG_VALUE. 1861 if (isDebugValue() && getDebugVariableOp().isMetadata()) { 1862 if (!HaveSemi) { 1863 OS << ";"; 1864 HaveSemi = true; 1865 } 1866 auto *DV = getDebugVariable(); 1867 OS << " line no:" << DV->getLine(); 1868 if (isIndirectDebugValue()) 1869 OS << " indirect"; 1870 } 1871 // TODO: DBG_LABEL 1872 1873 if (AddNewLine) 1874 OS << '\n'; 1875 } 1876 1877 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1878 const TargetRegisterInfo *RegInfo, 1879 bool AddIfNotFound) { 1880 bool isPhysReg = Register::isPhysicalRegister(IncomingReg); 1881 bool hasAliases = isPhysReg && 1882 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1883 bool Found = false; 1884 SmallVector<unsigned,4> DeadOps; 1885 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1886 MachineOperand &MO = getOperand(i); 1887 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1888 continue; 1889 1890 // DEBUG_VALUE nodes do not contribute to code generation and should 1891 // always be ignored. Failure to do so may result in trying to modify 1892 // KILL flags on DEBUG_VALUE nodes. 1893 if (MO.isDebug()) 1894 continue; 1895 1896 Register Reg = MO.getReg(); 1897 if (!Reg) 1898 continue; 1899 1900 if (Reg == IncomingReg) { 1901 if (!Found) { 1902 if (MO.isKill()) 1903 // The register is already marked kill. 1904 return true; 1905 if (isPhysReg && isRegTiedToDefOperand(i)) 1906 // Two-address uses of physregs must not be marked kill. 1907 return true; 1908 MO.setIsKill(); 1909 Found = true; 1910 } 1911 } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { 1912 // A super-register kill already exists. 1913 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1914 return true; 1915 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1916 DeadOps.push_back(i); 1917 } 1918 } 1919 1920 // Trim unneeded kill operands. 1921 while (!DeadOps.empty()) { 1922 unsigned OpIdx = DeadOps.back(); 1923 if (getOperand(OpIdx).isImplicit() && 1924 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1925 removeOperand(OpIdx); 1926 else 1927 getOperand(OpIdx).setIsKill(false); 1928 DeadOps.pop_back(); 1929 } 1930 1931 // If not found, this means an alias of one of the operands is killed. Add a 1932 // new implicit operand if required. 1933 if (!Found && AddIfNotFound) { 1934 addOperand(MachineOperand::CreateReg(IncomingReg, 1935 false /*IsDef*/, 1936 true /*IsImp*/, 1937 true /*IsKill*/)); 1938 return true; 1939 } 1940 return Found; 1941 } 1942 1943 void MachineInstr::clearRegisterKills(Register Reg, 1944 const TargetRegisterInfo *RegInfo) { 1945 if (!Register::isPhysicalRegister(Reg)) 1946 RegInfo = nullptr; 1947 for (MachineOperand &MO : operands()) { 1948 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1949 continue; 1950 Register OpReg = MO.getReg(); 1951 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1952 MO.setIsKill(false); 1953 } 1954 } 1955 1956 bool MachineInstr::addRegisterDead(Register Reg, 1957 const TargetRegisterInfo *RegInfo, 1958 bool AddIfNotFound) { 1959 bool isPhysReg = Register::isPhysicalRegister(Reg); 1960 bool hasAliases = isPhysReg && 1961 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1962 bool Found = false; 1963 SmallVector<unsigned,4> DeadOps; 1964 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1965 MachineOperand &MO = getOperand(i); 1966 if (!MO.isReg() || !MO.isDef()) 1967 continue; 1968 Register MOReg = MO.getReg(); 1969 if (!MOReg) 1970 continue; 1971 1972 if (MOReg == Reg) { 1973 MO.setIsDead(); 1974 Found = true; 1975 } else if (hasAliases && MO.isDead() && 1976 Register::isPhysicalRegister(MOReg)) { 1977 // There exists a super-register that's marked dead. 1978 if (RegInfo->isSuperRegister(Reg, MOReg)) 1979 return true; 1980 if (RegInfo->isSubRegister(Reg, MOReg)) 1981 DeadOps.push_back(i); 1982 } 1983 } 1984 1985 // Trim unneeded dead operands. 1986 while (!DeadOps.empty()) { 1987 unsigned OpIdx = DeadOps.back(); 1988 if (getOperand(OpIdx).isImplicit() && 1989 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1990 removeOperand(OpIdx); 1991 else 1992 getOperand(OpIdx).setIsDead(false); 1993 DeadOps.pop_back(); 1994 } 1995 1996 // If not found, this means an alias of one of the operands is dead. Add a 1997 // new implicit operand if required. 1998 if (Found || !AddIfNotFound) 1999 return Found; 2000 2001 addOperand(MachineOperand::CreateReg(Reg, 2002 true /*IsDef*/, 2003 true /*IsImp*/, 2004 false /*IsKill*/, 2005 true /*IsDead*/)); 2006 return true; 2007 } 2008 2009 void MachineInstr::clearRegisterDeads(Register Reg) { 2010 for (MachineOperand &MO : operands()) { 2011 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2012 continue; 2013 MO.setIsDead(false); 2014 } 2015 } 2016 2017 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2018 for (MachineOperand &MO : operands()) { 2019 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2020 continue; 2021 MO.setIsUndef(IsUndef); 2022 } 2023 } 2024 2025 void MachineInstr::addRegisterDefined(Register Reg, 2026 const TargetRegisterInfo *RegInfo) { 2027 if (Register::isPhysicalRegister(Reg)) { 2028 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 2029 if (MO) 2030 return; 2031 } else { 2032 for (const MachineOperand &MO : operands()) { 2033 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2034 MO.getSubReg() == 0) 2035 return; 2036 } 2037 } 2038 addOperand(MachineOperand::CreateReg(Reg, 2039 true /*IsDef*/, 2040 true /*IsImp*/)); 2041 } 2042 2043 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2044 const TargetRegisterInfo &TRI) { 2045 bool HasRegMask = false; 2046 for (MachineOperand &MO : operands()) { 2047 if (MO.isRegMask()) { 2048 HasRegMask = true; 2049 continue; 2050 } 2051 if (!MO.isReg() || !MO.isDef()) continue; 2052 Register Reg = MO.getReg(); 2053 if (!Reg.isPhysical()) 2054 continue; 2055 // If there are no uses, including partial uses, the def is dead. 2056 if (llvm::none_of(UsedRegs, 2057 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2058 MO.setIsDead(); 2059 } 2060 2061 // This is a call with a register mask operand. 2062 // Mask clobbers are always dead, so add defs for the non-dead defines. 2063 if (HasRegMask) 2064 for (const Register &UsedReg : UsedRegs) 2065 addRegisterDefined(UsedReg, &TRI); 2066 } 2067 2068 unsigned 2069 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2070 // Build up a buffer of hash code components. 2071 SmallVector<size_t, 16> HashComponents; 2072 HashComponents.reserve(MI->getNumOperands() + 1); 2073 HashComponents.push_back(MI->getOpcode()); 2074 for (const MachineOperand &MO : MI->operands()) { 2075 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 2076 continue; // Skip virtual register defs. 2077 2078 HashComponents.push_back(hash_value(MO)); 2079 } 2080 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2081 } 2082 2083 void MachineInstr::emitError(StringRef Msg) const { 2084 // Find the source location cookie. 2085 uint64_t LocCookie = 0; 2086 const MDNode *LocMD = nullptr; 2087 for (unsigned i = getNumOperands(); i != 0; --i) { 2088 if (getOperand(i-1).isMetadata() && 2089 (LocMD = getOperand(i-1).getMetadata()) && 2090 LocMD->getNumOperands() != 0) { 2091 if (const ConstantInt *CI = 2092 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2093 LocCookie = CI->getZExtValue(); 2094 break; 2095 } 2096 } 2097 } 2098 2099 if (const MachineBasicBlock *MBB = getParent()) 2100 if (const MachineFunction *MF = MBB->getParent()) 2101 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2102 report_fatal_error(Msg); 2103 } 2104 2105 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2106 const MCInstrDesc &MCID, bool IsIndirect, 2107 Register Reg, const MDNode *Variable, 2108 const MDNode *Expr) { 2109 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2110 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2111 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2112 "Expected inlined-at fields to agree"); 2113 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); 2114 if (IsIndirect) 2115 MIB.addImm(0U); 2116 else 2117 MIB.addReg(0U); 2118 return MIB.addMetadata(Variable).addMetadata(Expr); 2119 } 2120 2121 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2122 const MCInstrDesc &MCID, bool IsIndirect, 2123 const MachineOperand &MO, 2124 const MDNode *Variable, const MDNode *Expr) { 2125 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2126 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2127 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2128 "Expected inlined-at fields to agree"); 2129 if (MO.isReg()) 2130 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); 2131 2132 auto MIB = BuildMI(MF, DL, MCID).add(MO); 2133 if (IsIndirect) 2134 MIB.addImm(0U); 2135 else 2136 MIB.addReg(0U); 2137 return MIB.addMetadata(Variable).addMetadata(Expr); 2138 } 2139 2140 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2141 const MCInstrDesc &MCID, bool IsIndirect, 2142 ArrayRef<MachineOperand> MOs, 2143 const MDNode *Variable, const MDNode *Expr) { 2144 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2145 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2146 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2147 "Expected inlined-at fields to agree"); 2148 if (MCID.Opcode == TargetOpcode::DBG_VALUE) 2149 return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr); 2150 2151 auto MIB = BuildMI(MF, DL, MCID); 2152 MIB.addMetadata(Variable).addMetadata(Expr); 2153 for (const MachineOperand &MO : MOs) 2154 if (MO.isReg()) 2155 MIB.addReg(MO.getReg()); 2156 else 2157 MIB.add(MO); 2158 return MIB; 2159 } 2160 2161 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2162 MachineBasicBlock::iterator I, 2163 const DebugLoc &DL, const MCInstrDesc &MCID, 2164 bool IsIndirect, Register Reg, 2165 const MDNode *Variable, const MDNode *Expr) { 2166 MachineFunction &MF = *BB.getParent(); 2167 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2168 BB.insert(I, MI); 2169 return MachineInstrBuilder(MF, MI); 2170 } 2171 2172 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2173 MachineBasicBlock::iterator I, 2174 const DebugLoc &DL, const MCInstrDesc &MCID, 2175 bool IsIndirect, MachineOperand &MO, 2176 const MDNode *Variable, const MDNode *Expr) { 2177 MachineFunction &MF = *BB.getParent(); 2178 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); 2179 BB.insert(I, MI); 2180 return MachineInstrBuilder(MF, *MI); 2181 } 2182 2183 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2184 MachineBasicBlock::iterator I, 2185 const DebugLoc &DL, const MCInstrDesc &MCID, 2186 bool IsIndirect, ArrayRef<MachineOperand> MOs, 2187 const MDNode *Variable, const MDNode *Expr) { 2188 MachineFunction &MF = *BB.getParent(); 2189 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr); 2190 BB.insert(I, MI); 2191 return MachineInstrBuilder(MF, *MI); 2192 } 2193 2194 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2195 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2196 static const DIExpression * 2197 computeExprForSpill(const MachineInstr &MI, 2198 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2199 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2200 "Expected inlined-at fields to agree"); 2201 2202 const DIExpression *Expr = MI.getDebugExpression(); 2203 if (MI.isIndirectDebugValue()) { 2204 assert(MI.getDebugOffset().getImm() == 0 && 2205 "DBG_VALUE with nonzero offset"); 2206 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2207 } else if (MI.isDebugValueList()) { 2208 // We will replace the spilled register with a frame index, so 2209 // immediately deref all references to the spilled register. 2210 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; 2211 for (const MachineOperand *Op : SpilledOperands) { 2212 unsigned OpIdx = MI.getDebugOperandIndex(Op); 2213 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); 2214 } 2215 } 2216 return Expr; 2217 } 2218 static const DIExpression *computeExprForSpill(const MachineInstr &MI, 2219 Register SpillReg) { 2220 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); 2221 SmallVector<const MachineOperand *> SpillOperands; 2222 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) 2223 SpillOperands.push_back(&Op); 2224 return computeExprForSpill(MI, SpillOperands); 2225 } 2226 2227 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2228 MachineBasicBlock::iterator I, 2229 const MachineInstr &Orig, 2230 int FrameIndex, Register SpillReg) { 2231 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); 2232 MachineInstrBuilder NewMI = 2233 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2234 // Non-Variadic Operands: Location, Offset, Variable, Expression 2235 // Variadic Operands: Variable, Expression, Locations... 2236 if (Orig.isNonListDebugValue()) 2237 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2238 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2239 if (Orig.isDebugValueList()) { 2240 for (const MachineOperand &Op : Orig.debug_operands()) 2241 if (Op.isReg() && Op.getReg() == SpillReg) 2242 NewMI.addFrameIndex(FrameIndex); 2243 else 2244 NewMI.add(MachineOperand(Op)); 2245 } 2246 return NewMI; 2247 } 2248 MachineInstr *llvm::buildDbgValueForSpill( 2249 MachineBasicBlock &BB, MachineBasicBlock::iterator I, 2250 const MachineInstr &Orig, int FrameIndex, 2251 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2252 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); 2253 MachineInstrBuilder NewMI = 2254 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2255 // Non-Variadic Operands: Location, Offset, Variable, Expression 2256 // Variadic Operands: Variable, Expression, Locations... 2257 if (Orig.isNonListDebugValue()) 2258 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2259 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2260 if (Orig.isDebugValueList()) { 2261 for (const MachineOperand &Op : Orig.debug_operands()) 2262 if (is_contained(SpilledOperands, &Op)) 2263 NewMI.addFrameIndex(FrameIndex); 2264 else 2265 NewMI.add(MachineOperand(Op)); 2266 } 2267 return NewMI; 2268 } 2269 2270 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, 2271 Register Reg) { 2272 const DIExpression *Expr = computeExprForSpill(Orig, Reg); 2273 if (Orig.isNonListDebugValue()) 2274 Orig.getDebugOffset().ChangeToImmediate(0U); 2275 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) 2276 Op.ChangeToFrameIndex(FrameIndex); 2277 Orig.getDebugExpressionOp().setMetadata(Expr); 2278 } 2279 2280 void MachineInstr::collectDebugValues( 2281 SmallVectorImpl<MachineInstr *> &DbgValues) { 2282 MachineInstr &MI = *this; 2283 if (!MI.getOperand(0).isReg()) 2284 return; 2285 2286 MachineBasicBlock::iterator DI = MI; ++DI; 2287 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2288 DI != DE; ++DI) { 2289 if (!DI->isDebugValue()) 2290 return; 2291 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) 2292 DbgValues.push_back(&*DI); 2293 } 2294 } 2295 2296 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2297 // Collect matching debug values. 2298 SmallVector<MachineInstr *, 2> DbgValues; 2299 2300 if (!getOperand(0).isReg()) 2301 return; 2302 2303 Register DefReg = getOperand(0).getReg(); 2304 auto *MRI = getRegInfo(); 2305 for (auto &MO : MRI->use_operands(DefReg)) { 2306 auto *DI = MO.getParent(); 2307 if (!DI->isDebugValue()) 2308 continue; 2309 if (DI->hasDebugOperandForReg(DefReg)) { 2310 DbgValues.push_back(DI); 2311 } 2312 } 2313 2314 // Propagate Reg to debug value instructions. 2315 for (auto *DBI : DbgValues) 2316 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) 2317 Op.setReg(Reg); 2318 } 2319 2320 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2321 2322 static unsigned getSpillSlotSize(const MMOList &Accesses, 2323 const MachineFrameInfo &MFI) { 2324 unsigned Size = 0; 2325 for (const auto *A : Accesses) 2326 if (MFI.isSpillSlotObjectIndex( 2327 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2328 ->getFrameIndex())) 2329 Size += A->getSize(); 2330 return Size; 2331 } 2332 2333 Optional<unsigned> 2334 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2335 int FI; 2336 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2337 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2338 if (MFI.isSpillSlotObjectIndex(FI)) 2339 return (*memoperands_begin())->getSize(); 2340 } 2341 return None; 2342 } 2343 2344 Optional<unsigned> 2345 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2346 MMOList Accesses; 2347 if (TII->hasStoreToStackSlot(*this, Accesses)) 2348 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2349 return None; 2350 } 2351 2352 Optional<unsigned> 2353 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2354 int FI; 2355 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2356 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2357 if (MFI.isSpillSlotObjectIndex(FI)) 2358 return (*memoperands_begin())->getSize(); 2359 } 2360 return None; 2361 } 2362 2363 Optional<unsigned> 2364 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2365 MMOList Accesses; 2366 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2367 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2368 return None; 2369 } 2370 2371 unsigned MachineInstr::getDebugInstrNum() { 2372 if (DebugInstrNum == 0) 2373 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2374 return DebugInstrNum; 2375 } 2376 2377 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { 2378 if (DebugInstrNum == 0) 2379 DebugInstrNum = MF.getNewDebugInstrNum(); 2380 return DebugInstrNum; 2381 } 2382