xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 526ce9c9299ad1f8c2c5971204066dd02e528199)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallBitVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSlotTracker.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/MC/MCInstrDesc.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/FormattedStream.h"
53 #include "llvm/Support/LowLevelTypeImpl.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstdint>
59 #include <cstring>
60 #include <utility>
61 
62 using namespace llvm;
63 
64 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
65   if (const MachineBasicBlock *MBB = MI.getParent())
66     if (const MachineFunction *MF = MBB->getParent())
67       return MF;
68   return nullptr;
69 }
70 
71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
72 // it.
73 static void tryToGetTargetInfo(const MachineInstr &MI,
74                                const TargetRegisterInfo *&TRI,
75                                const MachineRegisterInfo *&MRI,
76                                const TargetIntrinsicInfo *&IntrinsicInfo,
77                                const TargetInstrInfo *&TII) {
78 
79   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
80     TRI = MF->getSubtarget().getRegisterInfo();
81     MRI = &MF->getRegInfo();
82     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
83     TII = MF->getSubtarget().getInstrInfo();
84   }
85 }
86 
87 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
88   if (MCID->ImplicitDefs)
89     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
90            ++ImpDefs)
91       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
92   if (MCID->ImplicitUses)
93     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
94            ++ImpUses)
95       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
96 }
97 
98 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
99 /// implicit operands. It reserves space for the number of operands specified by
100 /// the MCInstrDesc.
101 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
102                            DebugLoc DL, bool NoImp)
103     : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) {
104   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
105 
106   // Reserve space for the expected number of operands.
107   if (unsigned NumOps = MCID->getNumOperands() +
108     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
109     CapOperands = OperandCapacity::get(NumOps);
110     Operands = MF.allocateOperandArray(CapOperands);
111   }
112 
113   if (!NoImp)
114     addImplicitDefUseOperands(MF);
115 }
116 
117 /// MachineInstr ctor - Copies MachineInstr arg exactly.
118 /// Does not copy the number from debug instruction numbering, to preserve
119 /// uniqueness.
120 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
121     : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()),
122       DebugInstrNum(0) {
123   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
124 
125   CapOperands = OperandCapacity::get(MI.getNumOperands());
126   Operands = MF.allocateOperandArray(CapOperands);
127 
128   // Copy operands.
129   for (const MachineOperand &MO : MI.operands())
130     addOperand(MF, MO);
131 
132   // Replicate ties between the operands, which addOperand was not
133   // able to do reliably.
134   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
135     MachineOperand &NewMO = getOperand(i);
136     const MachineOperand &OrigMO = MI.getOperand(i);
137     NewMO.TiedTo = OrigMO.TiedTo;
138   }
139 
140   // Copy all the sensible flags.
141   setFlags(MI.Flags);
142 }
143 
144 void MachineInstr::moveBefore(MachineInstr *MovePos) {
145   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
146 }
147 
148 /// getRegInfo - If this instruction is embedded into a MachineFunction,
149 /// return the MachineRegisterInfo object for the current function, otherwise
150 /// return null.
151 MachineRegisterInfo *MachineInstr::getRegInfo() {
152   if (MachineBasicBlock *MBB = getParent())
153     return &MBB->getParent()->getRegInfo();
154   return nullptr;
155 }
156 
157 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
158   for (MachineOperand &MO : operands())
159     if (MO.isReg())
160       MRI.removeRegOperandFromUseList(&MO);
161 }
162 
163 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
164   for (MachineOperand &MO : operands())
165     if (MO.isReg())
166       MRI.addRegOperandToUseList(&MO);
167 }
168 
169 void MachineInstr::addOperand(const MachineOperand &Op) {
170   MachineBasicBlock *MBB = getParent();
171   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
172   MachineFunction *MF = MBB->getParent();
173   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
174   addOperand(*MF, Op);
175 }
176 
177 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
178 /// ranges. If MRI is non-null also update use-def chains.
179 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
180                          unsigned NumOps, MachineRegisterInfo *MRI) {
181   if (MRI)
182     return MRI->moveOperands(Dst, Src, NumOps);
183   // MachineOperand is a trivially copyable type so we can just use memmove.
184   assert(Dst && Src && "Unknown operands");
185   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
186 }
187 
188 /// addOperand - Add the specified operand to the instruction.  If it is an
189 /// implicit operand, it is added to the end of the operand list.  If it is
190 /// an explicit operand it is added at the end of the explicit operand list
191 /// (before the first implicit operand).
192 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
193   assert(MCID && "Cannot add operands before providing an instr descriptor");
194 
195   // Check if we're adding one of our existing operands.
196   if (&Op >= Operands && &Op < Operands + NumOperands) {
197     // This is unusual: MI->addOperand(MI->getOperand(i)).
198     // If adding Op requires reallocating or moving existing operands around,
199     // the Op reference could go stale. Support it by copying Op.
200     MachineOperand CopyOp(Op);
201     return addOperand(MF, CopyOp);
202   }
203 
204   // Find the insert location for the new operand.  Implicit registers go at
205   // the end, everything else goes before the implicit regs.
206   //
207   // FIXME: Allow mixed explicit and implicit operands on inline asm.
208   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
209   // implicit-defs, but they must not be moved around.  See the FIXME in
210   // InstrEmitter.cpp.
211   unsigned OpNo = getNumOperands();
212   bool isImpReg = Op.isReg() && Op.isImplicit();
213   if (!isImpReg && !isInlineAsm()) {
214     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
215       --OpNo;
216       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
217     }
218   }
219 
220   // OpNo now points as the desired insertion point.  Unless this is a variadic
221   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
222   // RegMask operands go between the explicit and implicit operands.
223   assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() ||
224           Op.isValidExcessOperand()) &&
225          "Trying to add an operand to a machine instr that is already done!");
226 
227   MachineRegisterInfo *MRI = getRegInfo();
228 
229   // Determine if the Operands array needs to be reallocated.
230   // Save the old capacity and operand array.
231   OperandCapacity OldCap = CapOperands;
232   MachineOperand *OldOperands = Operands;
233   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
234     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
235     Operands = MF.allocateOperandArray(CapOperands);
236     // Move the operands before the insertion point.
237     if (OpNo)
238       moveOperands(Operands, OldOperands, OpNo, MRI);
239   }
240 
241   // Move the operands following the insertion point.
242   if (OpNo != NumOperands)
243     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
244                  MRI);
245   ++NumOperands;
246 
247   // Deallocate the old operand array.
248   if (OldOperands != Operands && OldOperands)
249     MF.deallocateOperandArray(OldCap, OldOperands);
250 
251   // Copy Op into place. It still needs to be inserted into the MRI use lists.
252   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
253   NewMO->ParentMI = this;
254 
255   // When adding a register operand, tell MRI about it.
256   if (NewMO->isReg()) {
257     // Ensure isOnRegUseList() returns false, regardless of Op's status.
258     NewMO->Contents.Reg.Prev = nullptr;
259     // Ignore existing ties. This is not a property that can be copied.
260     NewMO->TiedTo = 0;
261     // Add the new operand to MRI, but only for instructions in an MBB.
262     if (MRI)
263       MRI->addRegOperandToUseList(NewMO);
264     // The MCID operand information isn't accurate until we start adding
265     // explicit operands. The implicit operands are added first, then the
266     // explicits are inserted before them.
267     if (!isImpReg) {
268       // Tie uses to defs as indicated in MCInstrDesc.
269       if (NewMO->isUse()) {
270         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
271         if (DefIdx != -1)
272           tieOperands(DefIdx, OpNo);
273       }
274       // If the register operand is flagged as early, mark the operand as such.
275       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
276         NewMO->setIsEarlyClobber(true);
277     }
278     // Ensure debug instructions set debug flag on register uses.
279     if (NewMO->isUse() && isDebugInstr())
280       NewMO->setIsDebug();
281   }
282 }
283 
284 void MachineInstr::removeOperand(unsigned OpNo) {
285   assert(OpNo < getNumOperands() && "Invalid operand number");
286   untieRegOperand(OpNo);
287 
288 #ifndef NDEBUG
289   // Moving tied operands would break the ties.
290   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
291     if (Operands[i].isReg())
292       assert(!Operands[i].isTied() && "Cannot move tied operands");
293 #endif
294 
295   MachineRegisterInfo *MRI = getRegInfo();
296   if (MRI && Operands[OpNo].isReg())
297     MRI->removeRegOperandFromUseList(Operands + OpNo);
298 
299   // Don't call the MachineOperand destructor. A lot of this code depends on
300   // MachineOperand having a trivial destructor anyway, and adding a call here
301   // wouldn't make it 'destructor-correct'.
302 
303   if (unsigned N = NumOperands - 1 - OpNo)
304     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
305   --NumOperands;
306 }
307 
308 void MachineInstr::setExtraInfo(MachineFunction &MF,
309                                 ArrayRef<MachineMemOperand *> MMOs,
310                                 MCSymbol *PreInstrSymbol,
311                                 MCSymbol *PostInstrSymbol,
312                                 MDNode *HeapAllocMarker, MDNode *PCSections,
313                                 uint32_t CFIType) {
314   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
315   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
316   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
317   bool HasPCSections = PCSections != nullptr;
318   bool HasCFIType = CFIType != 0;
319   int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol +
320                     HasHeapAllocMarker + HasPCSections + HasCFIType;
321 
322   // Drop all extra info if there is none.
323   if (NumPointers <= 0) {
324     Info.clear();
325     return;
326   }
327 
328   // If more than one pointer, then store out of line. Store heap alloc markers
329   // out of line because PointerSumType cannot hold more than 4 tag types with
330   // 32-bit pointers.
331   // FIXME: Maybe we should make the symbols in the extra info mutable?
332   else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections ||
333            HasCFIType) {
334     Info.set<EIIK_OutOfLine>(
335         MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol,
336                              HeapAllocMarker, PCSections, CFIType));
337     return;
338   }
339 
340   // Otherwise store the single pointer inline.
341   if (HasPreInstrSymbol)
342     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
343   else if (HasPostInstrSymbol)
344     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
345   else
346     Info.set<EIIK_MMO>(MMOs[0]);
347 }
348 
349 void MachineInstr::dropMemRefs(MachineFunction &MF) {
350   if (memoperands_empty())
351     return;
352 
353   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
354                getHeapAllocMarker(), getPCSections(), getCFIType());
355 }
356 
357 void MachineInstr::setMemRefs(MachineFunction &MF,
358                               ArrayRef<MachineMemOperand *> MMOs) {
359   if (MMOs.empty()) {
360     dropMemRefs(MF);
361     return;
362   }
363 
364   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
365                getHeapAllocMarker(), getPCSections(), getCFIType());
366 }
367 
368 void MachineInstr::addMemOperand(MachineFunction &MF,
369                                  MachineMemOperand *MO) {
370   SmallVector<MachineMemOperand *, 2> MMOs;
371   MMOs.append(memoperands_begin(), memoperands_end());
372   MMOs.push_back(MO);
373   setMemRefs(MF, MMOs);
374 }
375 
376 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
377   if (this == &MI)
378     // Nothing to do for a self-clone!
379     return;
380 
381   assert(&MF == MI.getMF() &&
382          "Invalid machine functions when cloning memory refrences!");
383   // See if we can just steal the extra info already allocated for the
384   // instruction. We can do this whenever the pre- and post-instruction symbols
385   // are the same (including null).
386   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
387       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
388       getHeapAllocMarker() == MI.getHeapAllocMarker() &&
389       getPCSections() == MI.getPCSections()) {
390     Info = MI.Info;
391     return;
392   }
393 
394   // Otherwise, fall back on a copy-based clone.
395   setMemRefs(MF, MI.memoperands());
396 }
397 
398 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
399 /// identical.
400 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
401                              ArrayRef<MachineMemOperand *> RHS) {
402   if (LHS.size() != RHS.size())
403     return false;
404 
405   auto LHSPointees = make_pointee_range(LHS);
406   auto RHSPointees = make_pointee_range(RHS);
407   return std::equal(LHSPointees.begin(), LHSPointees.end(),
408                     RHSPointees.begin());
409 }
410 
411 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
412                                       ArrayRef<const MachineInstr *> MIs) {
413   // Try handling easy numbers of MIs with simpler mechanisms.
414   if (MIs.empty()) {
415     dropMemRefs(MF);
416     return;
417   }
418   if (MIs.size() == 1) {
419     cloneMemRefs(MF, *MIs[0]);
420     return;
421   }
422   // Because an empty memoperands list provides *no* information and must be
423   // handled conservatively (assuming the instruction can do anything), the only
424   // way to merge with it is to drop all other memoperands.
425   if (MIs[0]->memoperands_empty()) {
426     dropMemRefs(MF);
427     return;
428   }
429 
430   // Handle the general case.
431   SmallVector<MachineMemOperand *, 2> MergedMMOs;
432   // Start with the first instruction.
433   assert(&MF == MIs[0]->getMF() &&
434          "Invalid machine functions when cloning memory references!");
435   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
436   // Now walk all the other instructions and accumulate any different MMOs.
437   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
438     assert(&MF == MI.getMF() &&
439            "Invalid machine functions when cloning memory references!");
440 
441     // Skip MIs with identical operands to the first. This is a somewhat
442     // arbitrary hack but will catch common cases without being quadratic.
443     // TODO: We could fully implement merge semantics here if needed.
444     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
445       continue;
446 
447     // Because an empty memoperands list provides *no* information and must be
448     // handled conservatively (assuming the instruction can do anything), the
449     // only way to merge with it is to drop all other memoperands.
450     if (MI.memoperands_empty()) {
451       dropMemRefs(MF);
452       return;
453     }
454 
455     // Otherwise accumulate these into our temporary buffer of the merged state.
456     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
457   }
458 
459   setMemRefs(MF, MergedMMOs);
460 }
461 
462 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
463   // Do nothing if old and new symbols are the same.
464   if (Symbol == getPreInstrSymbol())
465     return;
466 
467   // If there was only one symbol and we're removing it, just clear info.
468   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
469     Info.clear();
470     return;
471   }
472 
473   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
474                getHeapAllocMarker(), getPCSections(), getCFIType());
475 }
476 
477 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
478   // Do nothing if old and new symbols are the same.
479   if (Symbol == getPostInstrSymbol())
480     return;
481 
482   // If there was only one symbol and we're removing it, just clear info.
483   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
484     Info.clear();
485     return;
486   }
487 
488   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
489                getHeapAllocMarker(), getPCSections(), getCFIType());
490 }
491 
492 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
493   // Do nothing if old and new symbols are the same.
494   if (Marker == getHeapAllocMarker())
495     return;
496 
497   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
498                Marker, getPCSections(), getCFIType());
499 }
500 
501 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) {
502   // Do nothing if old and new symbols are the same.
503   if (PCSections == getPCSections())
504     return;
505 
506   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
507                getHeapAllocMarker(), PCSections, getCFIType());
508 }
509 
510 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) {
511   // Do nothing if old and new types are the same.
512   if (Type == getCFIType())
513     return;
514 
515   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
516                getHeapAllocMarker(), getPCSections(), Type);
517 }
518 
519 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
520                                      const MachineInstr &MI) {
521   if (this == &MI)
522     // Nothing to do for a self-clone!
523     return;
524 
525   assert(&MF == MI.getMF() &&
526          "Invalid machine functions when cloning instruction symbols!");
527 
528   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
529   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
530   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
531   setPCSections(MF, MI.getPCSections());
532 }
533 
534 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
535   // For now, the just return the union of the flags. If the flags get more
536   // complicated over time, we might need more logic here.
537   return getFlags() | Other.getFlags();
538 }
539 
540 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
541   uint16_t MIFlags = 0;
542   // Copy the wrapping flags.
543   if (const OverflowingBinaryOperator *OB =
544           dyn_cast<OverflowingBinaryOperator>(&I)) {
545     if (OB->hasNoSignedWrap())
546       MIFlags |= MachineInstr::MIFlag::NoSWrap;
547     if (OB->hasNoUnsignedWrap())
548       MIFlags |= MachineInstr::MIFlag::NoUWrap;
549   }
550 
551   // Copy the exact flag.
552   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
553     if (PE->isExact())
554       MIFlags |= MachineInstr::MIFlag::IsExact;
555 
556   // Copy the fast-math flags.
557   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
558     const FastMathFlags Flags = FP->getFastMathFlags();
559     if (Flags.noNaNs())
560       MIFlags |= MachineInstr::MIFlag::FmNoNans;
561     if (Flags.noInfs())
562       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
563     if (Flags.noSignedZeros())
564       MIFlags |= MachineInstr::MIFlag::FmNsz;
565     if (Flags.allowReciprocal())
566       MIFlags |= MachineInstr::MIFlag::FmArcp;
567     if (Flags.allowContract())
568       MIFlags |= MachineInstr::MIFlag::FmContract;
569     if (Flags.approxFunc())
570       MIFlags |= MachineInstr::MIFlag::FmAfn;
571     if (Flags.allowReassoc())
572       MIFlags |= MachineInstr::MIFlag::FmReassoc;
573   }
574 
575   return MIFlags;
576 }
577 
578 void MachineInstr::copyIRFlags(const Instruction &I) {
579   Flags = copyFlagsFromInstruction(I);
580 }
581 
582 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
583   assert(!isBundledWithPred() && "Must be called on bundle header");
584   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
585     if (MII->getDesc().getFlags() & Mask) {
586       if (Type == AnyInBundle)
587         return true;
588     } else {
589       if (Type == AllInBundle && !MII->isBundle())
590         return false;
591     }
592     // This was the last instruction in the bundle.
593     if (!MII->isBundledWithSucc())
594       return Type == AllInBundle;
595   }
596 }
597 
598 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
599                                  MICheckType Check) const {
600   // If opcodes or number of operands are not the same then the two
601   // instructions are obviously not identical.
602   if (Other.getOpcode() != getOpcode() ||
603       Other.getNumOperands() != getNumOperands())
604     return false;
605 
606   if (isBundle()) {
607     // We have passed the test above that both instructions have the same
608     // opcode, so we know that both instructions are bundles here. Let's compare
609     // MIs inside the bundle.
610     assert(Other.isBundle() && "Expected that both instructions are bundles.");
611     MachineBasicBlock::const_instr_iterator I1 = getIterator();
612     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
613     // Loop until we analysed the last intruction inside at least one of the
614     // bundles.
615     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
616       ++I1;
617       ++I2;
618       if (!I1->isIdenticalTo(*I2, Check))
619         return false;
620     }
621     // If we've reached the end of just one of the two bundles, but not both,
622     // the instructions are not identical.
623     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
624       return false;
625   }
626 
627   // Check operands to make sure they match.
628   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
629     const MachineOperand &MO = getOperand(i);
630     const MachineOperand &OMO = Other.getOperand(i);
631     if (!MO.isReg()) {
632       if (!MO.isIdenticalTo(OMO))
633         return false;
634       continue;
635     }
636 
637     // Clients may or may not want to ignore defs when testing for equality.
638     // For example, machine CSE pass only cares about finding common
639     // subexpressions, so it's safe to ignore virtual register defs.
640     if (MO.isDef()) {
641       if (Check == IgnoreDefs)
642         continue;
643       else if (Check == IgnoreVRegDefs) {
644         if (!Register::isVirtualRegister(MO.getReg()) ||
645             !Register::isVirtualRegister(OMO.getReg()))
646           if (!MO.isIdenticalTo(OMO))
647             return false;
648       } else {
649         if (!MO.isIdenticalTo(OMO))
650           return false;
651         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
652           return false;
653       }
654     } else {
655       if (!MO.isIdenticalTo(OMO))
656         return false;
657       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
658         return false;
659     }
660   }
661   // If DebugLoc does not match then two debug instructions are not identical.
662   if (isDebugInstr())
663     if (getDebugLoc() && Other.getDebugLoc() &&
664         getDebugLoc() != Other.getDebugLoc())
665       return false;
666   // If pre- or post-instruction symbols do not match then the two instructions
667   // are not identical.
668   if (getPreInstrSymbol() != Other.getPreInstrSymbol() ||
669       getPostInstrSymbol() != Other.getPostInstrSymbol())
670     return false;
671   // Call instructions with different CFI types are not identical.
672   if (isCall() && getCFIType() != Other.getCFIType())
673     return false;
674 
675   return true;
676 }
677 
678 const MachineFunction *MachineInstr::getMF() const {
679   return getParent()->getParent();
680 }
681 
682 MachineInstr *MachineInstr::removeFromParent() {
683   assert(getParent() && "Not embedded in a basic block!");
684   return getParent()->remove(this);
685 }
686 
687 MachineInstr *MachineInstr::removeFromBundle() {
688   assert(getParent() && "Not embedded in a basic block!");
689   return getParent()->remove_instr(this);
690 }
691 
692 void MachineInstr::eraseFromParent() {
693   assert(getParent() && "Not embedded in a basic block!");
694   getParent()->erase(this);
695 }
696 
697 void MachineInstr::eraseFromBundle() {
698   assert(getParent() && "Not embedded in a basic block!");
699   getParent()->erase_instr(this);
700 }
701 
702 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
703   if (!isCall(Type))
704     return false;
705   switch (getOpcode()) {
706   case TargetOpcode::PATCHPOINT:
707   case TargetOpcode::STACKMAP:
708   case TargetOpcode::STATEPOINT:
709   case TargetOpcode::FENTRY_CALL:
710     return false;
711   }
712   return true;
713 }
714 
715 bool MachineInstr::shouldUpdateCallSiteInfo() const {
716   if (isBundle())
717     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
718   return isCandidateForCallSiteEntry();
719 }
720 
721 unsigned MachineInstr::getNumExplicitOperands() const {
722   unsigned NumOperands = MCID->getNumOperands();
723   if (!MCID->isVariadic())
724     return NumOperands;
725 
726   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
727     const MachineOperand &MO = getOperand(I);
728     // The operands must always be in the following order:
729     // - explicit reg defs,
730     // - other explicit operands (reg uses, immediates, etc.),
731     // - implicit reg defs
732     // - implicit reg uses
733     if (MO.isReg() && MO.isImplicit())
734       break;
735     ++NumOperands;
736   }
737   return NumOperands;
738 }
739 
740 unsigned MachineInstr::getNumExplicitDefs() const {
741   unsigned NumDefs = MCID->getNumDefs();
742   if (!MCID->isVariadic())
743     return NumDefs;
744 
745   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
746     const MachineOperand &MO = getOperand(I);
747     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
748       break;
749     ++NumDefs;
750   }
751   return NumDefs;
752 }
753 
754 void MachineInstr::bundleWithPred() {
755   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
756   setFlag(BundledPred);
757   MachineBasicBlock::instr_iterator Pred = getIterator();
758   --Pred;
759   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
760   Pred->setFlag(BundledSucc);
761 }
762 
763 void MachineInstr::bundleWithSucc() {
764   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
765   setFlag(BundledSucc);
766   MachineBasicBlock::instr_iterator Succ = getIterator();
767   ++Succ;
768   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
769   Succ->setFlag(BundledPred);
770 }
771 
772 void MachineInstr::unbundleFromPred() {
773   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
774   clearFlag(BundledPred);
775   MachineBasicBlock::instr_iterator Pred = getIterator();
776   --Pred;
777   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
778   Pred->clearFlag(BundledSucc);
779 }
780 
781 void MachineInstr::unbundleFromSucc() {
782   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
783   clearFlag(BundledSucc);
784   MachineBasicBlock::instr_iterator Succ = getIterator();
785   ++Succ;
786   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
787   Succ->clearFlag(BundledPred);
788 }
789 
790 bool MachineInstr::isStackAligningInlineAsm() const {
791   if (isInlineAsm()) {
792     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
793     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
794       return true;
795   }
796   return false;
797 }
798 
799 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
800   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
801   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
802   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
803 }
804 
805 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
806                                        unsigned *GroupNo) const {
807   assert(isInlineAsm() && "Expected an inline asm instruction");
808   assert(OpIdx < getNumOperands() && "OpIdx out of range");
809 
810   // Ignore queries about the initial operands.
811   if (OpIdx < InlineAsm::MIOp_FirstOperand)
812     return -1;
813 
814   unsigned Group = 0;
815   unsigned NumOps;
816   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
817        i += NumOps) {
818     const MachineOperand &FlagMO = getOperand(i);
819     // If we reach the implicit register operands, stop looking.
820     if (!FlagMO.isImm())
821       return -1;
822     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
823     if (i + NumOps > OpIdx) {
824       if (GroupNo)
825         *GroupNo = Group;
826       return i;
827     }
828     ++Group;
829   }
830   return -1;
831 }
832 
833 const DILabel *MachineInstr::getDebugLabel() const {
834   assert(isDebugLabel() && "not a DBG_LABEL");
835   return cast<DILabel>(getOperand(0).getMetadata());
836 }
837 
838 const MachineOperand &MachineInstr::getDebugVariableOp() const {
839   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
840   unsigned VariableOp = isDebugValueList() ? 0 : 2;
841   return getOperand(VariableOp);
842 }
843 
844 MachineOperand &MachineInstr::getDebugVariableOp() {
845   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
846   unsigned VariableOp = isDebugValueList() ? 0 : 2;
847   return getOperand(VariableOp);
848 }
849 
850 const DILocalVariable *MachineInstr::getDebugVariable() const {
851   return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
852 }
853 
854 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
855   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
856   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
857   return getOperand(ExpressionOp);
858 }
859 
860 MachineOperand &MachineInstr::getDebugExpressionOp() {
861   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
862   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
863   return getOperand(ExpressionOp);
864 }
865 
866 const DIExpression *MachineInstr::getDebugExpression() const {
867   return cast<DIExpression>(getDebugExpressionOp().getMetadata());
868 }
869 
870 bool MachineInstr::isDebugEntryValue() const {
871   return isDebugValue() && getDebugExpression()->isEntryValue();
872 }
873 
874 const TargetRegisterClass*
875 MachineInstr::getRegClassConstraint(unsigned OpIdx,
876                                     const TargetInstrInfo *TII,
877                                     const TargetRegisterInfo *TRI) const {
878   assert(getParent() && "Can't have an MBB reference here!");
879   assert(getMF() && "Can't have an MF reference here!");
880   const MachineFunction &MF = *getMF();
881 
882   // Most opcodes have fixed constraints in their MCInstrDesc.
883   if (!isInlineAsm())
884     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
885 
886   if (!getOperand(OpIdx).isReg())
887     return nullptr;
888 
889   // For tied uses on inline asm, get the constraint from the def.
890   unsigned DefIdx;
891   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
892     OpIdx = DefIdx;
893 
894   // Inline asm stores register class constraints in the flag word.
895   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
896   if (FlagIdx < 0)
897     return nullptr;
898 
899   unsigned Flag = getOperand(FlagIdx).getImm();
900   unsigned RCID;
901   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
902        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
903        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
904       InlineAsm::hasRegClassConstraint(Flag, RCID))
905     return TRI->getRegClass(RCID);
906 
907   // Assume that all registers in a memory operand are pointers.
908   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
909     return TRI->getPointerRegClass(MF);
910 
911   return nullptr;
912 }
913 
914 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
915     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
916     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
917   // Check every operands inside the bundle if we have
918   // been asked to.
919   if (ExploreBundle)
920     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
921          ++OpndIt)
922       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
923           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
924   else
925     // Otherwise, just check the current operands.
926     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
927       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
928   return CurRC;
929 }
930 
931 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
932     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
933     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
934   assert(CurRC && "Invalid initial register class");
935   // Check if Reg is constrained by some of its use/def from MI.
936   const MachineOperand &MO = getOperand(OpIdx);
937   if (!MO.isReg() || MO.getReg() != Reg)
938     return CurRC;
939   // If yes, accumulate the constraints through the operand.
940   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
941 }
942 
943 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
944     unsigned OpIdx, const TargetRegisterClass *CurRC,
945     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
946   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
947   const MachineOperand &MO = getOperand(OpIdx);
948   assert(MO.isReg() &&
949          "Cannot get register constraints for non-register operand");
950   assert(CurRC && "Invalid initial register class");
951   if (unsigned SubIdx = MO.getSubReg()) {
952     if (OpRC)
953       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
954     else
955       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
956   } else if (OpRC)
957     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
958   return CurRC;
959 }
960 
961 /// Return the number of instructions inside the MI bundle, not counting the
962 /// header instruction.
963 unsigned MachineInstr::getBundleSize() const {
964   MachineBasicBlock::const_instr_iterator I = getIterator();
965   unsigned Size = 0;
966   while (I->isBundledWithSucc()) {
967     ++Size;
968     ++I;
969   }
970   return Size;
971 }
972 
973 /// Returns true if the MachineInstr has an implicit-use operand of exactly
974 /// the given register (not considering sub/super-registers).
975 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
976   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
977     const MachineOperand &MO = getOperand(i);
978     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
979       return true;
980   }
981   return false;
982 }
983 
984 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
985 /// the specific register or -1 if it is not found. It further tightens
986 /// the search criteria to a use that kills the register if isKill is true.
987 int MachineInstr::findRegisterUseOperandIdx(
988     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
989   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
990     const MachineOperand &MO = getOperand(i);
991     if (!MO.isReg() || !MO.isUse())
992       continue;
993     Register MOReg = MO.getReg();
994     if (!MOReg)
995       continue;
996     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
997       if (!isKill || MO.isKill())
998         return i;
999   }
1000   return -1;
1001 }
1002 
1003 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1004 /// indicating if this instruction reads or writes Reg. This also considers
1005 /// partial defines.
1006 std::pair<bool,bool>
1007 MachineInstr::readsWritesVirtualRegister(Register Reg,
1008                                          SmallVectorImpl<unsigned> *Ops) const {
1009   bool PartDef = false; // Partial redefine.
1010   bool FullDef = false; // Full define.
1011   bool Use = false;
1012 
1013   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1014     const MachineOperand &MO = getOperand(i);
1015     if (!MO.isReg() || MO.getReg() != Reg)
1016       continue;
1017     if (Ops)
1018       Ops->push_back(i);
1019     if (MO.isUse())
1020       Use |= !MO.isUndef();
1021     else if (MO.getSubReg() && !MO.isUndef())
1022       // A partial def undef doesn't count as reading the register.
1023       PartDef = true;
1024     else
1025       FullDef = true;
1026   }
1027   // A partial redefine uses Reg unless there is also a full define.
1028   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1029 }
1030 
1031 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1032 /// the specified register or -1 if it is not found. If isDead is true, defs
1033 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1034 /// also checks if there is a def of a super-register.
1035 int
1036 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1037                                         const TargetRegisterInfo *TRI) const {
1038   bool isPhys = Register::isPhysicalRegister(Reg);
1039   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1040     const MachineOperand &MO = getOperand(i);
1041     // Accept regmask operands when Overlap is set.
1042     // Ignore them when looking for a specific def operand (Overlap == false).
1043     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1044       return i;
1045     if (!MO.isReg() || !MO.isDef())
1046       continue;
1047     Register MOReg = MO.getReg();
1048     bool Found = (MOReg == Reg);
1049     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1050       if (Overlap)
1051         Found = TRI->regsOverlap(MOReg, Reg);
1052       else
1053         Found = TRI->isSubRegister(MOReg, Reg);
1054     }
1055     if (Found && (!isDead || MO.isDead()))
1056       return i;
1057   }
1058   return -1;
1059 }
1060 
1061 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1062 /// operand list that is used to represent the predicate. It returns -1 if
1063 /// none is found.
1064 int MachineInstr::findFirstPredOperandIdx() const {
1065   // Don't call MCID.findFirstPredOperandIdx() because this variant
1066   // is sometimes called on an instruction that's not yet complete, and
1067   // so the number of operands is less than the MCID indicates. In
1068   // particular, the PTX target does this.
1069   const MCInstrDesc &MCID = getDesc();
1070   if (MCID.isPredicable()) {
1071     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1072       if (MCID.OpInfo[i].isPredicate())
1073         return i;
1074   }
1075 
1076   return -1;
1077 }
1078 
1079 // MachineOperand::TiedTo is 4 bits wide.
1080 const unsigned TiedMax = 15;
1081 
1082 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1083 ///
1084 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1085 /// field. TiedTo can have these values:
1086 ///
1087 /// 0:              Operand is not tied to anything.
1088 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1089 /// TiedMax:        Tied to an operand >= TiedMax-1.
1090 ///
1091 /// The tied def must be one of the first TiedMax operands on a normal
1092 /// instruction. INLINEASM instructions allow more tied defs.
1093 ///
1094 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1095   MachineOperand &DefMO = getOperand(DefIdx);
1096   MachineOperand &UseMO = getOperand(UseIdx);
1097   assert(DefMO.isDef() && "DefIdx must be a def operand");
1098   assert(UseMO.isUse() && "UseIdx must be a use operand");
1099   assert(!DefMO.isTied() && "Def is already tied to another use");
1100   assert(!UseMO.isTied() && "Use is already tied to another def");
1101 
1102   if (DefIdx < TiedMax)
1103     UseMO.TiedTo = DefIdx + 1;
1104   else {
1105     // Inline asm can use the group descriptors to find tied operands,
1106     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1107     // but on normal instruction, the tied def must be within the first TiedMax
1108     // operands.
1109     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1110            "DefIdx out of range");
1111     UseMO.TiedTo = TiedMax;
1112   }
1113 
1114   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1115   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1116 }
1117 
1118 /// Given the index of a tied register operand, find the operand it is tied to.
1119 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1120 /// which must exist.
1121 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1122   const MachineOperand &MO = getOperand(OpIdx);
1123   assert(MO.isTied() && "Operand isn't tied");
1124 
1125   // Normally TiedTo is in range.
1126   if (MO.TiedTo < TiedMax)
1127     return MO.TiedTo - 1;
1128 
1129   // Uses on normal instructions can be out of range.
1130   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1131     // Normal tied defs must be in the 0..TiedMax-1 range.
1132     if (MO.isUse())
1133       return TiedMax - 1;
1134     // MO is a def. Search for the tied use.
1135     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1136       const MachineOperand &UseMO = getOperand(i);
1137       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1138         return i;
1139     }
1140     llvm_unreachable("Can't find tied use");
1141   }
1142 
1143   if (getOpcode() == TargetOpcode::STATEPOINT) {
1144     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1145     // on registers.
1146     StatepointOpers SO(this);
1147     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1148     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1149     unsigned NumDefs = getNumDefs();
1150     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1151       while (!getOperand(CurUseIdx).isReg())
1152         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1153       if (OpIdx == CurDefIdx)
1154         return CurUseIdx;
1155       if (OpIdx == CurUseIdx)
1156         return CurDefIdx;
1157       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1158     }
1159     llvm_unreachable("Can't find tied use");
1160   }
1161 
1162   // Now deal with inline asm by parsing the operand group descriptor flags.
1163   // Find the beginning of each operand group.
1164   SmallVector<unsigned, 8> GroupIdx;
1165   unsigned OpIdxGroup = ~0u;
1166   unsigned NumOps;
1167   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1168        i += NumOps) {
1169     const MachineOperand &FlagMO = getOperand(i);
1170     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1171     unsigned CurGroup = GroupIdx.size();
1172     GroupIdx.push_back(i);
1173     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1174     // OpIdx belongs to this operand group.
1175     if (OpIdx > i && OpIdx < i + NumOps)
1176       OpIdxGroup = CurGroup;
1177     unsigned TiedGroup;
1178     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1179       continue;
1180     // Operands in this group are tied to operands in TiedGroup which must be
1181     // earlier. Find the number of operands between the two groups.
1182     unsigned Delta = i - GroupIdx[TiedGroup];
1183 
1184     // OpIdx is a use tied to TiedGroup.
1185     if (OpIdxGroup == CurGroup)
1186       return OpIdx - Delta;
1187 
1188     // OpIdx is a def tied to this use group.
1189     if (OpIdxGroup == TiedGroup)
1190       return OpIdx + Delta;
1191   }
1192   llvm_unreachable("Invalid tied operand on inline asm");
1193 }
1194 
1195 /// clearKillInfo - Clears kill flags on all operands.
1196 ///
1197 void MachineInstr::clearKillInfo() {
1198   for (MachineOperand &MO : operands()) {
1199     if (MO.isReg() && MO.isUse())
1200       MO.setIsKill(false);
1201   }
1202 }
1203 
1204 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1205                                       unsigned SubIdx,
1206                                       const TargetRegisterInfo &RegInfo) {
1207   if (Register::isPhysicalRegister(ToReg)) {
1208     if (SubIdx)
1209       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1210     for (MachineOperand &MO : operands()) {
1211       if (!MO.isReg() || MO.getReg() != FromReg)
1212         continue;
1213       MO.substPhysReg(ToReg, RegInfo);
1214     }
1215   } else {
1216     for (MachineOperand &MO : operands()) {
1217       if (!MO.isReg() || MO.getReg() != FromReg)
1218         continue;
1219       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1220     }
1221   }
1222 }
1223 
1224 /// isSafeToMove - Return true if it is safe to move this instruction. If
1225 /// SawStore is set to true, it means that there is a store (or call) between
1226 /// the instruction's location and its intended destination.
1227 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1228   // Ignore stuff that we obviously can't move.
1229   //
1230   // Treat volatile loads as stores. This is not strictly necessary for
1231   // volatiles, but it is required for atomic loads. It is not allowed to move
1232   // a load across an atomic load with Ordering > Monotonic.
1233   if (mayStore() || isCall() || isPHI() ||
1234       (mayLoad() && hasOrderedMemoryRef())) {
1235     SawStore = true;
1236     return false;
1237   }
1238 
1239   if (isPosition() || isDebugInstr() || isTerminator() ||
1240       mayRaiseFPException() || hasUnmodeledSideEffects())
1241     return false;
1242 
1243   // See if this instruction does a load.  If so, we have to guarantee that the
1244   // loaded value doesn't change between the load and the its intended
1245   // destination. The check for isInvariantLoad gives the target the chance to
1246   // classify the load as always returning a constant, e.g. a constant pool
1247   // load.
1248   if (mayLoad() && !isDereferenceableInvariantLoad())
1249     // Otherwise, this is a real load.  If there is a store between the load and
1250     // end of block, we can't move it.
1251     return !SawStore;
1252 
1253   return true;
1254 }
1255 
1256 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1257                                  bool UseTBAA, const MachineMemOperand *MMOa,
1258                                  const MachineMemOperand *MMOb) {
1259   // The following interface to AA is fashioned after DAGCombiner::isAlias and
1260   // operates with MachineMemOperand offset with some important assumptions:
1261   //   - LLVM fundamentally assumes flat address spaces.
1262   //   - MachineOperand offset can *only* result from legalization and cannot
1263   //     affect queries other than the trivial case of overlap checking.
1264   //   - These offsets never wrap and never step outside of allocated objects.
1265   //   - There should never be any negative offsets here.
1266   //
1267   // FIXME: Modify API to hide this math from "user"
1268   // Even before we go to AA we can reason locally about some memory objects. It
1269   // can save compile time, and possibly catch some corner cases not currently
1270   // covered.
1271 
1272   int64_t OffsetA = MMOa->getOffset();
1273   int64_t OffsetB = MMOb->getOffset();
1274   int64_t MinOffset = std::min(OffsetA, OffsetB);
1275 
1276   uint64_t WidthA = MMOa->getSize();
1277   uint64_t WidthB = MMOb->getSize();
1278   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1279   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1280 
1281   const Value *ValA = MMOa->getValue();
1282   const Value *ValB = MMOb->getValue();
1283   bool SameVal = (ValA && ValB && (ValA == ValB));
1284   if (!SameVal) {
1285     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1286     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1287     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1288       return false;
1289     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1290       return false;
1291     if (PSVa && PSVb && (PSVa == PSVb))
1292       SameVal = true;
1293   }
1294 
1295   if (SameVal) {
1296     if (!KnownWidthA || !KnownWidthB)
1297       return true;
1298     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1299     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1300     return (MinOffset + LowWidth > MaxOffset);
1301   }
1302 
1303   if (!AA)
1304     return true;
1305 
1306   if (!ValA || !ValB)
1307     return true;
1308 
1309   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1310   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1311 
1312   int64_t OverlapA =
1313       KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1314   int64_t OverlapB =
1315       KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1316 
1317   return !AA->isNoAlias(
1318       MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1319       MemoryLocation(ValB, OverlapB,
1320                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1321 }
1322 
1323 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1324                             bool UseTBAA) const {
1325   const MachineFunction *MF = getMF();
1326   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1327   const MachineFrameInfo &MFI = MF->getFrameInfo();
1328 
1329   // Exclude call instruction which may alter the memory but can not be handled
1330   // by this function.
1331   if (isCall() || Other.isCall())
1332     return true;
1333 
1334   // If neither instruction stores to memory, they can't alias in any
1335   // meaningful way, even if they read from the same address.
1336   if (!mayStore() && !Other.mayStore())
1337     return false;
1338 
1339   // Both instructions must be memory operations to be able to alias.
1340   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1341     return false;
1342 
1343   // Let the target decide if memory accesses cannot possibly overlap.
1344   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1345     return false;
1346 
1347   // Memory operations without memory operands may access anything. Be
1348   // conservative and assume `MayAlias`.
1349   if (memoperands_empty() || Other.memoperands_empty())
1350     return true;
1351 
1352   // Skip if there are too many memory operands.
1353   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1354   if (NumChecks > TII->getMemOperandAACheckLimit())
1355     return true;
1356 
1357   // Check each pair of memory operands from both instructions, which can't
1358   // alias only if all pairs won't alias.
1359   for (auto *MMOa : memoperands())
1360     for (auto *MMOb : Other.memoperands())
1361       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1362         return true;
1363 
1364   return false;
1365 }
1366 
1367 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1368 /// or volatile memory reference, or if the information describing the memory
1369 /// reference is not available. Return false if it is known to have no ordered
1370 /// memory references.
1371 bool MachineInstr::hasOrderedMemoryRef() const {
1372   // An instruction known never to access memory won't have a volatile access.
1373   if (!mayStore() &&
1374       !mayLoad() &&
1375       !isCall() &&
1376       !hasUnmodeledSideEffects())
1377     return false;
1378 
1379   // Otherwise, if the instruction has no memory reference information,
1380   // conservatively assume it wasn't preserved.
1381   if (memoperands_empty())
1382     return true;
1383 
1384   // Check if any of our memory operands are ordered.
1385   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1386     return !MMO->isUnordered();
1387   });
1388 }
1389 
1390 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1391 /// trap and is loading from a location whose value is invariant across a run of
1392 /// this function.
1393 bool MachineInstr::isDereferenceableInvariantLoad() const {
1394   // If the instruction doesn't load at all, it isn't an invariant load.
1395   if (!mayLoad())
1396     return false;
1397 
1398   // If the instruction has lost its memoperands, conservatively assume that
1399   // it may not be an invariant load.
1400   if (memoperands_empty())
1401     return false;
1402 
1403   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1404 
1405   for (MachineMemOperand *MMO : memoperands()) {
1406     if (!MMO->isUnordered())
1407       // If the memory operand has ordering side effects, we can't move the
1408       // instruction.  Such an instruction is technically an invariant load,
1409       // but the caller code would need updated to expect that.
1410       return false;
1411     if (MMO->isStore()) return false;
1412     if (MMO->isInvariant() && MMO->isDereferenceable())
1413       continue;
1414 
1415     // A load from a constant PseudoSourceValue is invariant.
1416     if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
1417       if (PSV->isConstant(&MFI))
1418         continue;
1419     }
1420 
1421     // Otherwise assume conservatively.
1422     return false;
1423   }
1424 
1425   // Everything checks out.
1426   return true;
1427 }
1428 
1429 /// isConstantValuePHI - If the specified instruction is a PHI that always
1430 /// merges together the same virtual register, return the register, otherwise
1431 /// return 0.
1432 unsigned MachineInstr::isConstantValuePHI() const {
1433   if (!isPHI())
1434     return 0;
1435   assert(getNumOperands() >= 3 &&
1436          "It's illegal to have a PHI without source operands");
1437 
1438   Register Reg = getOperand(1).getReg();
1439   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1440     if (getOperand(i).getReg() != Reg)
1441       return 0;
1442   return Reg;
1443 }
1444 
1445 bool MachineInstr::hasUnmodeledSideEffects() const {
1446   if (hasProperty(MCID::UnmodeledSideEffects))
1447     return true;
1448   if (isInlineAsm()) {
1449     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1450     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1451       return true;
1452   }
1453 
1454   return false;
1455 }
1456 
1457 bool MachineInstr::isLoadFoldBarrier() const {
1458   return mayStore() || isCall() ||
1459          (hasUnmodeledSideEffects() && !isPseudoProbe());
1460 }
1461 
1462 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1463 ///
1464 bool MachineInstr::allDefsAreDead() const {
1465   for (const MachineOperand &MO : operands()) {
1466     if (!MO.isReg() || MO.isUse())
1467       continue;
1468     if (!MO.isDead())
1469       return false;
1470   }
1471   return true;
1472 }
1473 
1474 /// copyImplicitOps - Copy implicit register operands from specified
1475 /// instruction to this instruction.
1476 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1477                                    const MachineInstr &MI) {
1478   for (const MachineOperand &MO :
1479        llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1480     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1481       addOperand(MF, MO);
1482 }
1483 
1484 bool MachineInstr::hasComplexRegisterTies() const {
1485   const MCInstrDesc &MCID = getDesc();
1486   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1487     return true;
1488   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1489     const auto &Operand = getOperand(I);
1490     if (!Operand.isReg() || Operand.isDef())
1491       // Ignore the defined registers as MCID marks only the uses as tied.
1492       continue;
1493     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1494     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1495     if (ExpectedTiedIdx != TiedIdx)
1496       return true;
1497   }
1498   return false;
1499 }
1500 
1501 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1502                                  const MachineRegisterInfo &MRI) const {
1503   const MachineOperand &Op = getOperand(OpIdx);
1504   if (!Op.isReg())
1505     return LLT{};
1506 
1507   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1508     return MRI.getType(Op.getReg());
1509 
1510   auto &OpInfo = getDesc().OpInfo[OpIdx];
1511   if (!OpInfo.isGenericType())
1512     return MRI.getType(Op.getReg());
1513 
1514   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1515     return LLT{};
1516 
1517   LLT TypeToPrint = MRI.getType(Op.getReg());
1518   // Don't mark the type index printed if it wasn't actually printed: maybe
1519   // another operand with the same type index has an actual type attached:
1520   if (TypeToPrint.isValid())
1521     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1522   return TypeToPrint;
1523 }
1524 
1525 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1526 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1527   dbgs() << "  ";
1528   print(dbgs());
1529 }
1530 
1531 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1532     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1533     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1534   if (Depth >= MaxDepth)
1535     return;
1536   if (!AlreadySeenInstrs.insert(this).second)
1537     return;
1538   // PadToColumn always inserts at least one space.
1539   // Don't mess up the alignment if we don't want any space.
1540   if (Depth)
1541     fdbgs().PadToColumn(Depth * 2);
1542   print(fdbgs());
1543   for (const MachineOperand &MO : operands()) {
1544     if (!MO.isReg() || MO.isDef())
1545       continue;
1546     Register Reg = MO.getReg();
1547     if (Reg.isPhysical())
1548       continue;
1549     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1550     if (NewMI == nullptr)
1551       continue;
1552     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1553   }
1554 }
1555 
1556 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1557                                           unsigned MaxDepth) const {
1558   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1559   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1560 }
1561 #endif
1562 
1563 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1564                          bool SkipDebugLoc, bool AddNewLine,
1565                          const TargetInstrInfo *TII) const {
1566   const Module *M = nullptr;
1567   const Function *F = nullptr;
1568   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1569     F = &MF->getFunction();
1570     M = F->getParent();
1571     if (!TII)
1572       TII = MF->getSubtarget().getInstrInfo();
1573   }
1574 
1575   ModuleSlotTracker MST(M);
1576   if (F)
1577     MST.incorporateFunction(*F);
1578   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1579 }
1580 
1581 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1582                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1583                          bool AddNewLine, const TargetInstrInfo *TII) const {
1584   // We can be a bit tidier if we know the MachineFunction.
1585   const TargetRegisterInfo *TRI = nullptr;
1586   const MachineRegisterInfo *MRI = nullptr;
1587   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1588   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1589 
1590   if (isCFIInstruction())
1591     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1592 
1593   SmallBitVector PrintedTypes(8);
1594   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1595   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1596     if (!ShouldPrintRegisterTies)
1597       return 0U;
1598     const MachineOperand &MO = getOperand(OpIdx);
1599     if (MO.isReg() && MO.isTied() && !MO.isDef())
1600       return findTiedOperandIdx(OpIdx);
1601     return 0U;
1602   };
1603   unsigned StartOp = 0;
1604   unsigned e = getNumOperands();
1605 
1606   // Print explicitly defined operands on the left of an assignment syntax.
1607   while (StartOp < e) {
1608     const MachineOperand &MO = getOperand(StartOp);
1609     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1610       break;
1611 
1612     if (StartOp != 0)
1613       OS << ", ";
1614 
1615     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1616     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1617     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1618              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1619     ++StartOp;
1620   }
1621 
1622   if (StartOp != 0)
1623     OS << " = ";
1624 
1625   if (getFlag(MachineInstr::FrameSetup))
1626     OS << "frame-setup ";
1627   if (getFlag(MachineInstr::FrameDestroy))
1628     OS << "frame-destroy ";
1629   if (getFlag(MachineInstr::FmNoNans))
1630     OS << "nnan ";
1631   if (getFlag(MachineInstr::FmNoInfs))
1632     OS << "ninf ";
1633   if (getFlag(MachineInstr::FmNsz))
1634     OS << "nsz ";
1635   if (getFlag(MachineInstr::FmArcp))
1636     OS << "arcp ";
1637   if (getFlag(MachineInstr::FmContract))
1638     OS << "contract ";
1639   if (getFlag(MachineInstr::FmAfn))
1640     OS << "afn ";
1641   if (getFlag(MachineInstr::FmReassoc))
1642     OS << "reassoc ";
1643   if (getFlag(MachineInstr::NoUWrap))
1644     OS << "nuw ";
1645   if (getFlag(MachineInstr::NoSWrap))
1646     OS << "nsw ";
1647   if (getFlag(MachineInstr::IsExact))
1648     OS << "exact ";
1649   if (getFlag(MachineInstr::NoFPExcept))
1650     OS << "nofpexcept ";
1651   if (getFlag(MachineInstr::NoMerge))
1652     OS << "nomerge ";
1653 
1654   // Print the opcode name.
1655   if (TII)
1656     OS << TII->getName(getOpcode());
1657   else
1658     OS << "UNKNOWN";
1659 
1660   if (SkipOpers)
1661     return;
1662 
1663   // Print the rest of the operands.
1664   bool FirstOp = true;
1665   unsigned AsmDescOp = ~0u;
1666   unsigned AsmOpCount = 0;
1667 
1668   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1669     // Print asm string.
1670     OS << " ";
1671     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1672     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1673     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1674     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1675                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1676                             IntrinsicInfo);
1677 
1678     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1679     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1680     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1681       OS << " [sideeffect]";
1682     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1683       OS << " [mayload]";
1684     if (ExtraInfo & InlineAsm::Extra_MayStore)
1685       OS << " [maystore]";
1686     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1687       OS << " [isconvergent]";
1688     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1689       OS << " [alignstack]";
1690     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1691       OS << " [attdialect]";
1692     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1693       OS << " [inteldialect]";
1694 
1695     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1696     FirstOp = false;
1697   }
1698 
1699   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1700     const MachineOperand &MO = getOperand(i);
1701 
1702     if (FirstOp) FirstOp = false; else OS << ",";
1703     OS << " ";
1704 
1705     if (isDebugValue() && MO.isMetadata()) {
1706       // Pretty print DBG_VALUE* instructions.
1707       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1708       if (DIV && !DIV->getName().empty())
1709         OS << "!\"" << DIV->getName() << '\"';
1710       else {
1711         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1712         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1713         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1714                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1715       }
1716     } else if (isDebugLabel() && MO.isMetadata()) {
1717       // Pretty print DBG_LABEL instructions.
1718       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1719       if (DIL && !DIL->getName().empty())
1720         OS << "\"" << DIL->getName() << '\"';
1721       else {
1722         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1723         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1724         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1725                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1726       }
1727     } else if (i == AsmDescOp && MO.isImm()) {
1728       // Pretty print the inline asm operand descriptor.
1729       OS << '$' << AsmOpCount++;
1730       unsigned Flag = MO.getImm();
1731       OS << ":[";
1732       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1733 
1734       unsigned RCID = 0;
1735       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1736           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1737         if (TRI) {
1738           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1739         } else
1740           OS << ":RC" << RCID;
1741       }
1742 
1743       if (InlineAsm::isMemKind(Flag)) {
1744         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1745         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1746       }
1747 
1748       unsigned TiedTo = 0;
1749       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1750         OS << " tiedto:$" << TiedTo;
1751 
1752       OS << ']';
1753 
1754       // Compute the index of the next operand descriptor.
1755       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1756     } else {
1757       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1758       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1759       if (MO.isImm() && isOperandSubregIdx(i))
1760         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1761       else
1762         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1763                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1764     }
1765   }
1766 
1767   // Print any optional symbols attached to this instruction as-if they were
1768   // operands.
1769   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1770     if (!FirstOp) {
1771       FirstOp = false;
1772       OS << ',';
1773     }
1774     OS << " pre-instr-symbol ";
1775     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1776   }
1777   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1778     if (!FirstOp) {
1779       FirstOp = false;
1780       OS << ',';
1781     }
1782     OS << " post-instr-symbol ";
1783     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1784   }
1785   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1786     if (!FirstOp) {
1787       FirstOp = false;
1788       OS << ',';
1789     }
1790     OS << " heap-alloc-marker ";
1791     HeapAllocMarker->printAsOperand(OS, MST);
1792   }
1793   if (MDNode *PCSections = getPCSections()) {
1794     if (!FirstOp) {
1795       FirstOp = false;
1796       OS << ',';
1797     }
1798     OS << " pcsections ";
1799     PCSections->printAsOperand(OS, MST);
1800   }
1801   if (uint32_t CFIType = getCFIType()) {
1802     if (!FirstOp)
1803       OS << ',';
1804     OS << " cfi-type " << CFIType;
1805   }
1806 
1807   if (DebugInstrNum) {
1808     if (!FirstOp)
1809       OS << ",";
1810     OS << " debug-instr-number " << DebugInstrNum;
1811   }
1812 
1813   if (!SkipDebugLoc) {
1814     if (const DebugLoc &DL = getDebugLoc()) {
1815       if (!FirstOp)
1816         OS << ',';
1817       OS << " debug-location ";
1818       DL->printAsOperand(OS, MST);
1819     }
1820   }
1821 
1822   if (!memoperands_empty()) {
1823     SmallVector<StringRef, 0> SSNs;
1824     const LLVMContext *Context = nullptr;
1825     std::unique_ptr<LLVMContext> CtxPtr;
1826     const MachineFrameInfo *MFI = nullptr;
1827     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1828       MFI = &MF->getFrameInfo();
1829       Context = &MF->getFunction().getContext();
1830     } else {
1831       CtxPtr = std::make_unique<LLVMContext>();
1832       Context = CtxPtr.get();
1833     }
1834 
1835     OS << " :: ";
1836     bool NeedComma = false;
1837     for (const MachineMemOperand *Op : memoperands()) {
1838       if (NeedComma)
1839         OS << ", ";
1840       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1841       NeedComma = true;
1842     }
1843   }
1844 
1845   if (SkipDebugLoc)
1846     return;
1847 
1848   bool HaveSemi = false;
1849 
1850   // Print debug location information.
1851   if (const DebugLoc &DL = getDebugLoc()) {
1852     if (!HaveSemi) {
1853       OS << ';';
1854       HaveSemi = true;
1855     }
1856     OS << ' ';
1857     DL.print(OS);
1858   }
1859 
1860   // Print extra comments for DEBUG_VALUE.
1861   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1862     if (!HaveSemi) {
1863       OS << ";";
1864       HaveSemi = true;
1865     }
1866     auto *DV = getDebugVariable();
1867     OS << " line no:" <<  DV->getLine();
1868     if (isIndirectDebugValue())
1869       OS << " indirect";
1870   }
1871   // TODO: DBG_LABEL
1872 
1873   if (AddNewLine)
1874     OS << '\n';
1875 }
1876 
1877 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1878                                      const TargetRegisterInfo *RegInfo,
1879                                      bool AddIfNotFound) {
1880   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1881   bool hasAliases = isPhysReg &&
1882     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1883   bool Found = false;
1884   SmallVector<unsigned,4> DeadOps;
1885   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1886     MachineOperand &MO = getOperand(i);
1887     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1888       continue;
1889 
1890     // DEBUG_VALUE nodes do not contribute to code generation and should
1891     // always be ignored. Failure to do so may result in trying to modify
1892     // KILL flags on DEBUG_VALUE nodes.
1893     if (MO.isDebug())
1894       continue;
1895 
1896     Register Reg = MO.getReg();
1897     if (!Reg)
1898       continue;
1899 
1900     if (Reg == IncomingReg) {
1901       if (!Found) {
1902         if (MO.isKill())
1903           // The register is already marked kill.
1904           return true;
1905         if (isPhysReg && isRegTiedToDefOperand(i))
1906           // Two-address uses of physregs must not be marked kill.
1907           return true;
1908         MO.setIsKill();
1909         Found = true;
1910       }
1911     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1912       // A super-register kill already exists.
1913       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1914         return true;
1915       if (RegInfo->isSubRegister(IncomingReg, Reg))
1916         DeadOps.push_back(i);
1917     }
1918   }
1919 
1920   // Trim unneeded kill operands.
1921   while (!DeadOps.empty()) {
1922     unsigned OpIdx = DeadOps.back();
1923     if (getOperand(OpIdx).isImplicit() &&
1924         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1925       removeOperand(OpIdx);
1926     else
1927       getOperand(OpIdx).setIsKill(false);
1928     DeadOps.pop_back();
1929   }
1930 
1931   // If not found, this means an alias of one of the operands is killed. Add a
1932   // new implicit operand if required.
1933   if (!Found && AddIfNotFound) {
1934     addOperand(MachineOperand::CreateReg(IncomingReg,
1935                                          false /*IsDef*/,
1936                                          true  /*IsImp*/,
1937                                          true  /*IsKill*/));
1938     return true;
1939   }
1940   return Found;
1941 }
1942 
1943 void MachineInstr::clearRegisterKills(Register Reg,
1944                                       const TargetRegisterInfo *RegInfo) {
1945   if (!Register::isPhysicalRegister(Reg))
1946     RegInfo = nullptr;
1947   for (MachineOperand &MO : operands()) {
1948     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1949       continue;
1950     Register OpReg = MO.getReg();
1951     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1952       MO.setIsKill(false);
1953   }
1954 }
1955 
1956 bool MachineInstr::addRegisterDead(Register Reg,
1957                                    const TargetRegisterInfo *RegInfo,
1958                                    bool AddIfNotFound) {
1959   bool isPhysReg = Register::isPhysicalRegister(Reg);
1960   bool hasAliases = isPhysReg &&
1961     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1962   bool Found = false;
1963   SmallVector<unsigned,4> DeadOps;
1964   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1965     MachineOperand &MO = getOperand(i);
1966     if (!MO.isReg() || !MO.isDef())
1967       continue;
1968     Register MOReg = MO.getReg();
1969     if (!MOReg)
1970       continue;
1971 
1972     if (MOReg == Reg) {
1973       MO.setIsDead();
1974       Found = true;
1975     } else if (hasAliases && MO.isDead() &&
1976                Register::isPhysicalRegister(MOReg)) {
1977       // There exists a super-register that's marked dead.
1978       if (RegInfo->isSuperRegister(Reg, MOReg))
1979         return true;
1980       if (RegInfo->isSubRegister(Reg, MOReg))
1981         DeadOps.push_back(i);
1982     }
1983   }
1984 
1985   // Trim unneeded dead operands.
1986   while (!DeadOps.empty()) {
1987     unsigned OpIdx = DeadOps.back();
1988     if (getOperand(OpIdx).isImplicit() &&
1989         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1990       removeOperand(OpIdx);
1991     else
1992       getOperand(OpIdx).setIsDead(false);
1993     DeadOps.pop_back();
1994   }
1995 
1996   // If not found, this means an alias of one of the operands is dead. Add a
1997   // new implicit operand if required.
1998   if (Found || !AddIfNotFound)
1999     return Found;
2000 
2001   addOperand(MachineOperand::CreateReg(Reg,
2002                                        true  /*IsDef*/,
2003                                        true  /*IsImp*/,
2004                                        false /*IsKill*/,
2005                                        true  /*IsDead*/));
2006   return true;
2007 }
2008 
2009 void MachineInstr::clearRegisterDeads(Register Reg) {
2010   for (MachineOperand &MO : operands()) {
2011     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2012       continue;
2013     MO.setIsDead(false);
2014   }
2015 }
2016 
2017 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2018   for (MachineOperand &MO : operands()) {
2019     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2020       continue;
2021     MO.setIsUndef(IsUndef);
2022   }
2023 }
2024 
2025 void MachineInstr::addRegisterDefined(Register Reg,
2026                                       const TargetRegisterInfo *RegInfo) {
2027   if (Register::isPhysicalRegister(Reg)) {
2028     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2029     if (MO)
2030       return;
2031   } else {
2032     for (const MachineOperand &MO : operands()) {
2033       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2034           MO.getSubReg() == 0)
2035         return;
2036     }
2037   }
2038   addOperand(MachineOperand::CreateReg(Reg,
2039                                        true  /*IsDef*/,
2040                                        true  /*IsImp*/));
2041 }
2042 
2043 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2044                                          const TargetRegisterInfo &TRI) {
2045   bool HasRegMask = false;
2046   for (MachineOperand &MO : operands()) {
2047     if (MO.isRegMask()) {
2048       HasRegMask = true;
2049       continue;
2050     }
2051     if (!MO.isReg() || !MO.isDef()) continue;
2052     Register Reg = MO.getReg();
2053     if (!Reg.isPhysical())
2054       continue;
2055     // If there are no uses, including partial uses, the def is dead.
2056     if (llvm::none_of(UsedRegs,
2057                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2058       MO.setIsDead();
2059   }
2060 
2061   // This is a call with a register mask operand.
2062   // Mask clobbers are always dead, so add defs for the non-dead defines.
2063   if (HasRegMask)
2064     for (const Register &UsedReg : UsedRegs)
2065       addRegisterDefined(UsedReg, &TRI);
2066 }
2067 
2068 unsigned
2069 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2070   // Build up a buffer of hash code components.
2071   SmallVector<size_t, 16> HashComponents;
2072   HashComponents.reserve(MI->getNumOperands() + 1);
2073   HashComponents.push_back(MI->getOpcode());
2074   for (const MachineOperand &MO : MI->operands()) {
2075     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2076       continue;  // Skip virtual register defs.
2077 
2078     HashComponents.push_back(hash_value(MO));
2079   }
2080   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2081 }
2082 
2083 void MachineInstr::emitError(StringRef Msg) const {
2084   // Find the source location cookie.
2085   uint64_t LocCookie = 0;
2086   const MDNode *LocMD = nullptr;
2087   for (unsigned i = getNumOperands(); i != 0; --i) {
2088     if (getOperand(i-1).isMetadata() &&
2089         (LocMD = getOperand(i-1).getMetadata()) &&
2090         LocMD->getNumOperands() != 0) {
2091       if (const ConstantInt *CI =
2092               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2093         LocCookie = CI->getZExtValue();
2094         break;
2095       }
2096     }
2097   }
2098 
2099   if (const MachineBasicBlock *MBB = getParent())
2100     if (const MachineFunction *MF = MBB->getParent())
2101       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2102   report_fatal_error(Msg);
2103 }
2104 
2105 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2106                                   const MCInstrDesc &MCID, bool IsIndirect,
2107                                   Register Reg, const MDNode *Variable,
2108                                   const MDNode *Expr) {
2109   assert(isa<DILocalVariable>(Variable) && "not a variable");
2110   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2111   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2112          "Expected inlined-at fields to agree");
2113   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2114   if (IsIndirect)
2115     MIB.addImm(0U);
2116   else
2117     MIB.addReg(0U);
2118   return MIB.addMetadata(Variable).addMetadata(Expr);
2119 }
2120 
2121 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2122                                   const MCInstrDesc &MCID, bool IsIndirect,
2123                                   const MachineOperand &MO,
2124                                   const MDNode *Variable, const MDNode *Expr) {
2125   assert(isa<DILocalVariable>(Variable) && "not a variable");
2126   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2127   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2128          "Expected inlined-at fields to agree");
2129   if (MO.isReg())
2130     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2131 
2132   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2133   if (IsIndirect)
2134     MIB.addImm(0U);
2135   else
2136     MIB.addReg(0U);
2137   return MIB.addMetadata(Variable).addMetadata(Expr);
2138 }
2139 
2140 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2141                                   const MCInstrDesc &MCID, bool IsIndirect,
2142                                   ArrayRef<MachineOperand> MOs,
2143                                   const MDNode *Variable, const MDNode *Expr) {
2144   assert(isa<DILocalVariable>(Variable) && "not a variable");
2145   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2146   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2147          "Expected inlined-at fields to agree");
2148   if (MCID.Opcode == TargetOpcode::DBG_VALUE)
2149     return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr);
2150 
2151   auto MIB = BuildMI(MF, DL, MCID);
2152   MIB.addMetadata(Variable).addMetadata(Expr);
2153   for (const MachineOperand &MO : MOs)
2154     if (MO.isReg())
2155       MIB.addReg(MO.getReg());
2156     else
2157       MIB.add(MO);
2158   return MIB;
2159 }
2160 
2161 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2162                                   MachineBasicBlock::iterator I,
2163                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2164                                   bool IsIndirect, Register Reg,
2165                                   const MDNode *Variable, const MDNode *Expr) {
2166   MachineFunction &MF = *BB.getParent();
2167   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2168   BB.insert(I, MI);
2169   return MachineInstrBuilder(MF, MI);
2170 }
2171 
2172 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2173                                   MachineBasicBlock::iterator I,
2174                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2175                                   bool IsIndirect, MachineOperand &MO,
2176                                   const MDNode *Variable, const MDNode *Expr) {
2177   MachineFunction &MF = *BB.getParent();
2178   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2179   BB.insert(I, MI);
2180   return MachineInstrBuilder(MF, *MI);
2181 }
2182 
2183 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2184                                   MachineBasicBlock::iterator I,
2185                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2186                                   bool IsIndirect, ArrayRef<MachineOperand> MOs,
2187                                   const MDNode *Variable, const MDNode *Expr) {
2188   MachineFunction &MF = *BB.getParent();
2189   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr);
2190   BB.insert(I, MI);
2191   return MachineInstrBuilder(MF, *MI);
2192 }
2193 
2194 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2195 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2196 static const DIExpression *
2197 computeExprForSpill(const MachineInstr &MI,
2198                     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2199   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2200          "Expected inlined-at fields to agree");
2201 
2202   const DIExpression *Expr = MI.getDebugExpression();
2203   if (MI.isIndirectDebugValue()) {
2204     assert(MI.getDebugOffset().getImm() == 0 &&
2205            "DBG_VALUE with nonzero offset");
2206     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2207   } else if (MI.isDebugValueList()) {
2208     // We will replace the spilled register with a frame index, so
2209     // immediately deref all references to the spilled register.
2210     std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2211     for (const MachineOperand *Op : SpilledOperands) {
2212       unsigned OpIdx = MI.getDebugOperandIndex(Op);
2213       Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2214     }
2215   }
2216   return Expr;
2217 }
2218 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2219                                                Register SpillReg) {
2220   assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2221   SmallVector<const MachineOperand *> SpillOperands;
2222   for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2223     SpillOperands.push_back(&Op);
2224   return computeExprForSpill(MI, SpillOperands);
2225 }
2226 
2227 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2228                                           MachineBasicBlock::iterator I,
2229                                           const MachineInstr &Orig,
2230                                           int FrameIndex, Register SpillReg) {
2231   const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2232   MachineInstrBuilder NewMI =
2233       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2234   // Non-Variadic Operands: Location, Offset, Variable, Expression
2235   // Variadic Operands:     Variable, Expression, Locations...
2236   if (Orig.isNonListDebugValue())
2237     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2238   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2239   if (Orig.isDebugValueList()) {
2240     for (const MachineOperand &Op : Orig.debug_operands())
2241       if (Op.isReg() && Op.getReg() == SpillReg)
2242         NewMI.addFrameIndex(FrameIndex);
2243       else
2244         NewMI.add(MachineOperand(Op));
2245   }
2246   return NewMI;
2247 }
2248 MachineInstr *llvm::buildDbgValueForSpill(
2249     MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2250     const MachineInstr &Orig, int FrameIndex,
2251     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2252   const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2253   MachineInstrBuilder NewMI =
2254       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2255   // Non-Variadic Operands: Location, Offset, Variable, Expression
2256   // Variadic Operands:     Variable, Expression, Locations...
2257   if (Orig.isNonListDebugValue())
2258     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2259   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2260   if (Orig.isDebugValueList()) {
2261     for (const MachineOperand &Op : Orig.debug_operands())
2262       if (is_contained(SpilledOperands, &Op))
2263         NewMI.addFrameIndex(FrameIndex);
2264       else
2265         NewMI.add(MachineOperand(Op));
2266   }
2267   return NewMI;
2268 }
2269 
2270 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2271                                   Register Reg) {
2272   const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2273   if (Orig.isNonListDebugValue())
2274     Orig.getDebugOffset().ChangeToImmediate(0U);
2275   for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2276     Op.ChangeToFrameIndex(FrameIndex);
2277   Orig.getDebugExpressionOp().setMetadata(Expr);
2278 }
2279 
2280 void MachineInstr::collectDebugValues(
2281                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2282   MachineInstr &MI = *this;
2283   if (!MI.getOperand(0).isReg())
2284     return;
2285 
2286   MachineBasicBlock::iterator DI = MI; ++DI;
2287   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2288        DI != DE; ++DI) {
2289     if (!DI->isDebugValue())
2290       return;
2291     if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2292       DbgValues.push_back(&*DI);
2293   }
2294 }
2295 
2296 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2297   // Collect matching debug values.
2298   SmallVector<MachineInstr *, 2> DbgValues;
2299 
2300   if (!getOperand(0).isReg())
2301     return;
2302 
2303   Register DefReg = getOperand(0).getReg();
2304   auto *MRI = getRegInfo();
2305   for (auto &MO : MRI->use_operands(DefReg)) {
2306     auto *DI = MO.getParent();
2307     if (!DI->isDebugValue())
2308       continue;
2309     if (DI->hasDebugOperandForReg(DefReg)) {
2310       DbgValues.push_back(DI);
2311     }
2312   }
2313 
2314   // Propagate Reg to debug value instructions.
2315   for (auto *DBI : DbgValues)
2316     for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2317       Op.setReg(Reg);
2318 }
2319 
2320 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2321 
2322 static unsigned getSpillSlotSize(const MMOList &Accesses,
2323                                  const MachineFrameInfo &MFI) {
2324   unsigned Size = 0;
2325   for (const auto *A : Accesses)
2326     if (MFI.isSpillSlotObjectIndex(
2327             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2328                 ->getFrameIndex()))
2329       Size += A->getSize();
2330   return Size;
2331 }
2332 
2333 Optional<unsigned>
2334 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2335   int FI;
2336   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2337     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2338     if (MFI.isSpillSlotObjectIndex(FI))
2339       return (*memoperands_begin())->getSize();
2340   }
2341   return None;
2342 }
2343 
2344 Optional<unsigned>
2345 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2346   MMOList Accesses;
2347   if (TII->hasStoreToStackSlot(*this, Accesses))
2348     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2349   return None;
2350 }
2351 
2352 Optional<unsigned>
2353 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2354   int FI;
2355   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2356     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2357     if (MFI.isSpillSlotObjectIndex(FI))
2358       return (*memoperands_begin())->getSize();
2359   }
2360   return None;
2361 }
2362 
2363 Optional<unsigned>
2364 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2365   MMOList Accesses;
2366   if (TII->hasLoadFromStackSlot(*this, Accesses))
2367     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2368   return None;
2369 }
2370 
2371 unsigned MachineInstr::getDebugInstrNum() {
2372   if (DebugInstrNum == 0)
2373     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2374   return DebugInstrNum;
2375 }
2376 
2377 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2378   if (DebugInstrNum == 0)
2379     DebugInstrNum = MF.getNewDebugInstrNum();
2380   return DebugInstrNum;
2381 }
2382