xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 51296593a877d819477b64a0046c443d6c66fba8)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineInstrBundle.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/ModuleSlotTracker.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/MC/MCInstrDesc.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/MC/MCSymbol.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/LowLevelTypeImpl.h"
59 #include "llvm/Support/MathExtras.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetInstrInfo.h"
62 #include "llvm/Target/TargetIntrinsicInfo.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include "llvm/Target/TargetRegisterInfo.h"
65 #include "llvm/Target/TargetSubtargetInfo.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <cstring>
71 #include <iterator>
72 #include <utility>
73 
74 using namespace llvm;
75 
76 static cl::opt<int> PrintRegMaskNumRegs(
77     "print-regmask-num-regs",
78     cl::desc("Number of registers to limit to when "
79              "printing regmask operands in IR dumps. "
80              "unlimited = -1"),
81     cl::init(32), cl::Hidden);
82 
83 //===----------------------------------------------------------------------===//
84 // MachineOperand Implementation
85 //===----------------------------------------------------------------------===//
86 
87 void MachineOperand::setReg(unsigned Reg) {
88   if (getReg() == Reg) return; // No change.
89 
90   // Otherwise, we have to change the register.  If this operand is embedded
91   // into a machine function, we need to update the old and new register's
92   // use/def lists.
93   if (MachineInstr *MI = getParent())
94     if (MachineBasicBlock *MBB = MI->getParent())
95       if (MachineFunction *MF = MBB->getParent()) {
96         MachineRegisterInfo &MRI = MF->getRegInfo();
97         MRI.removeRegOperandFromUseList(this);
98         SmallContents.RegNo = Reg;
99         MRI.addRegOperandToUseList(this);
100         return;
101       }
102 
103   // Otherwise, just change the register, no problem.  :)
104   SmallContents.RegNo = Reg;
105 }
106 
107 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
108                                   const TargetRegisterInfo &TRI) {
109   assert(TargetRegisterInfo::isVirtualRegister(Reg));
110   if (SubIdx && getSubReg())
111     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
112   setReg(Reg);
113   if (SubIdx)
114     setSubReg(SubIdx);
115 }
116 
117 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
118   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
119   if (getSubReg()) {
120     Reg = TRI.getSubReg(Reg, getSubReg());
121     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
122     // That won't happen in legal code.
123     setSubReg(0);
124     if (isDef())
125       setIsUndef(false);
126   }
127   setReg(Reg);
128 }
129 
130 /// Change a def to a use, or a use to a def.
131 void MachineOperand::setIsDef(bool Val) {
132   assert(isReg() && "Wrong MachineOperand accessor");
133   assert((!Val || !isDebug()) && "Marking a debug operation as def");
134   if (IsDef == Val)
135     return;
136   // MRI may keep uses and defs in different list positions.
137   if (MachineInstr *MI = getParent())
138     if (MachineBasicBlock *MBB = MI->getParent())
139       if (MachineFunction *MF = MBB->getParent()) {
140         MachineRegisterInfo &MRI = MF->getRegInfo();
141         MRI.removeRegOperandFromUseList(this);
142         IsDef = Val;
143         MRI.addRegOperandToUseList(this);
144         return;
145       }
146   IsDef = Val;
147 }
148 
149 // If this operand is currently a register operand, and if this is in a
150 // function, deregister the operand from the register's use/def list.
151 void MachineOperand::removeRegFromUses() {
152   if (!isReg() || !isOnRegUseList())
153     return;
154 
155   if (MachineInstr *MI = getParent()) {
156     if (MachineBasicBlock *MBB = MI->getParent()) {
157       if (MachineFunction *MF = MBB->getParent())
158         MF->getRegInfo().removeRegOperandFromUseList(this);
159     }
160   }
161 }
162 
163 /// ChangeToImmediate - Replace this operand with a new immediate operand of
164 /// the specified value.  If an operand is known to be an immediate already,
165 /// the setImm method should be used.
166 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
167   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
168 
169   removeRegFromUses();
170 
171   OpKind = MO_Immediate;
172   Contents.ImmVal = ImmVal;
173 }
174 
175 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
176   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
177 
178   removeRegFromUses();
179 
180   OpKind = MO_FPImmediate;
181   Contents.CFP = FPImm;
182 }
183 
184 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
185   assert((!isReg() || !isTied()) &&
186          "Cannot change a tied operand into an external symbol");
187 
188   removeRegFromUses();
189 
190   OpKind = MO_ExternalSymbol;
191   Contents.OffsetedInfo.Val.SymbolName = SymName;
192   setOffset(0); // Offset is always 0.
193   setTargetFlags(TargetFlags);
194 }
195 
196 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
197   assert((!isReg() || !isTied()) &&
198          "Cannot change a tied operand into an MCSymbol");
199 
200   removeRegFromUses();
201 
202   OpKind = MO_MCSymbol;
203   Contents.Sym = Sym;
204 }
205 
206 void MachineOperand::ChangeToFrameIndex(int Idx) {
207   assert((!isReg() || !isTied()) &&
208          "Cannot change a tied operand into a FrameIndex");
209 
210   removeRegFromUses();
211 
212   OpKind = MO_FrameIndex;
213   setIndex(Idx);
214 }
215 
216 /// ChangeToRegister - Replace this operand with a new register operand of
217 /// the specified value.  If an operand is known to be an register already,
218 /// the setReg method should be used.
219 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
220                                       bool isKill, bool isDead, bool isUndef,
221                                       bool isDebug) {
222   MachineRegisterInfo *RegInfo = nullptr;
223   if (MachineInstr *MI = getParent())
224     if (MachineBasicBlock *MBB = MI->getParent())
225       if (MachineFunction *MF = MBB->getParent())
226         RegInfo = &MF->getRegInfo();
227   // If this operand is already a register operand, remove it from the
228   // register's use/def lists.
229   bool WasReg = isReg();
230   if (RegInfo && WasReg)
231     RegInfo->removeRegOperandFromUseList(this);
232 
233   // Change this to a register and set the reg#.
234   OpKind = MO_Register;
235   SmallContents.RegNo = Reg;
236   SubReg_TargetFlags = 0;
237   IsDef = isDef;
238   IsImp = isImp;
239   IsKill = isKill;
240   IsDead = isDead;
241   IsUndef = isUndef;
242   IsInternalRead = false;
243   IsEarlyClobber = false;
244   IsDebug = isDebug;
245   // Ensure isOnRegUseList() returns false.
246   Contents.Reg.Prev = nullptr;
247   // Preserve the tie when the operand was already a register.
248   if (!WasReg)
249     TiedTo = 0;
250 
251   // If this operand is embedded in a function, add the operand to the
252   // register's use/def list.
253   if (RegInfo)
254     RegInfo->addRegOperandToUseList(this);
255 }
256 
257 /// isIdenticalTo - Return true if this operand is identical to the specified
258 /// operand. Note that this should stay in sync with the hash_value overload
259 /// below.
260 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
261   if (getType() != Other.getType() ||
262       getTargetFlags() != Other.getTargetFlags())
263     return false;
264 
265   switch (getType()) {
266   case MachineOperand::MO_Register:
267     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
268            getSubReg() == Other.getSubReg();
269   case MachineOperand::MO_Immediate:
270     return getImm() == Other.getImm();
271   case MachineOperand::MO_CImmediate:
272     return getCImm() == Other.getCImm();
273   case MachineOperand::MO_FPImmediate:
274     return getFPImm() == Other.getFPImm();
275   case MachineOperand::MO_MachineBasicBlock:
276     return getMBB() == Other.getMBB();
277   case MachineOperand::MO_FrameIndex:
278     return getIndex() == Other.getIndex();
279   case MachineOperand::MO_ConstantPoolIndex:
280   case MachineOperand::MO_TargetIndex:
281     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
282   case MachineOperand::MO_JumpTableIndex:
283     return getIndex() == Other.getIndex();
284   case MachineOperand::MO_GlobalAddress:
285     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
286   case MachineOperand::MO_ExternalSymbol:
287     return strcmp(getSymbolName(), Other.getSymbolName()) == 0 &&
288            getOffset() == Other.getOffset();
289   case MachineOperand::MO_BlockAddress:
290     return getBlockAddress() == Other.getBlockAddress() &&
291            getOffset() == Other.getOffset();
292   case MachineOperand::MO_RegisterMask:
293   case MachineOperand::MO_RegisterLiveOut: {
294     // Shallow compare of the two RegMasks
295     const uint32_t *RegMask = getRegMask();
296     const uint32_t *OtherRegMask = Other.getRegMask();
297     if (RegMask == OtherRegMask)
298       return true;
299 
300     // Calculate the size of the RegMask
301     const MachineFunction *MF = getParent()->getParent()->getParent();
302     const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
303     unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32;
304 
305     // Deep compare of the two RegMasks
306     return std::equal(RegMask, RegMask + RegMaskSize, OtherRegMask);
307   }
308   case MachineOperand::MO_MCSymbol:
309     return getMCSymbol() == Other.getMCSymbol();
310   case MachineOperand::MO_CFIIndex:
311     return getCFIIndex() == Other.getCFIIndex();
312   case MachineOperand::MO_Metadata:
313     return getMetadata() == Other.getMetadata();
314   case MachineOperand::MO_IntrinsicID:
315     return getIntrinsicID() == Other.getIntrinsicID();
316   case MachineOperand::MO_Predicate:
317     return getPredicate() == Other.getPredicate();
318   }
319   llvm_unreachable("Invalid machine operand type");
320 }
321 
322 // Note: this must stay exactly in sync with isIdenticalTo above.
323 hash_code llvm::hash_value(const MachineOperand &MO) {
324   switch (MO.getType()) {
325   case MachineOperand::MO_Register:
326     // Register operands don't have target flags.
327     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
328   case MachineOperand::MO_Immediate:
329     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
330   case MachineOperand::MO_CImmediate:
331     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
332   case MachineOperand::MO_FPImmediate:
333     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
334   case MachineOperand::MO_MachineBasicBlock:
335     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
336   case MachineOperand::MO_FrameIndex:
337     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
338   case MachineOperand::MO_ConstantPoolIndex:
339   case MachineOperand::MO_TargetIndex:
340     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
341                         MO.getOffset());
342   case MachineOperand::MO_JumpTableIndex:
343     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
344   case MachineOperand::MO_ExternalSymbol:
345     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
346                         MO.getSymbolName());
347   case MachineOperand::MO_GlobalAddress:
348     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
349                         MO.getOffset());
350   case MachineOperand::MO_BlockAddress:
351     return hash_combine(MO.getType(), MO.getTargetFlags(),
352                         MO.getBlockAddress(), MO.getOffset());
353   case MachineOperand::MO_RegisterMask:
354   case MachineOperand::MO_RegisterLiveOut:
355     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
356   case MachineOperand::MO_Metadata:
357     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
358   case MachineOperand::MO_MCSymbol:
359     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
360   case MachineOperand::MO_CFIIndex:
361     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
362   case MachineOperand::MO_IntrinsicID:
363     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID());
364   case MachineOperand::MO_Predicate:
365     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate());
366   }
367   llvm_unreachable("Invalid machine operand type");
368 }
369 
370 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI,
371                            const TargetIntrinsicInfo *IntrinsicInfo) const {
372   ModuleSlotTracker DummyMST(nullptr);
373   print(OS, DummyMST, TRI, IntrinsicInfo);
374 }
375 
376 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
377                            const TargetRegisterInfo *TRI,
378                            const TargetIntrinsicInfo *IntrinsicInfo) const {
379   switch (getType()) {
380   case MachineOperand::MO_Register:
381     OS << PrintReg(getReg(), TRI, getSubReg());
382 
383     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
384         isInternalRead() || isEarlyClobber() || isTied()) {
385       OS << '<';
386       bool NeedComma = false;
387       if (isDef()) {
388         if (NeedComma) OS << ',';
389         if (isEarlyClobber())
390           OS << "earlyclobber,";
391         if (isImplicit())
392           OS << "imp-";
393         OS << "def";
394         NeedComma = true;
395         // <def,read-undef> only makes sense when getSubReg() is set.
396         // Don't clutter the output otherwise.
397         if (isUndef() && getSubReg())
398           OS << ",read-undef";
399       } else if (isImplicit()) {
400         OS << "imp-use";
401         NeedComma = true;
402       }
403 
404       if (isKill()) {
405         if (NeedComma) OS << ',';
406         OS << "kill";
407         NeedComma = true;
408       }
409       if (isDead()) {
410         if (NeedComma) OS << ',';
411         OS << "dead";
412         NeedComma = true;
413       }
414       if (isUndef() && isUse()) {
415         if (NeedComma) OS << ',';
416         OS << "undef";
417         NeedComma = true;
418       }
419       if (isInternalRead()) {
420         if (NeedComma) OS << ',';
421         OS << "internal";
422         NeedComma = true;
423       }
424       if (isTied()) {
425         if (NeedComma) OS << ',';
426         OS << "tied";
427         if (TiedTo != 15)
428           OS << unsigned(TiedTo - 1);
429       }
430       OS << '>';
431     }
432     break;
433   case MachineOperand::MO_Immediate:
434     OS << getImm();
435     break;
436   case MachineOperand::MO_CImmediate:
437     getCImm()->getValue().print(OS, false);
438     break;
439   case MachineOperand::MO_FPImmediate:
440     if (getFPImm()->getType()->isFloatTy()) {
441       OS << getFPImm()->getValueAPF().convertToFloat();
442     } else if (getFPImm()->getType()->isHalfTy()) {
443       APFloat APF = getFPImm()->getValueAPF();
444       bool Unused;
445       APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused);
446       OS << "half " << APF.convertToFloat();
447     } else if (getFPImm()->getType()->isFP128Ty()) {
448       APFloat APF = getFPImm()->getValueAPF();
449       SmallString<16> Str;
450       getFPImm()->getValueAPF().toString(Str);
451       OS << "quad " << Str;
452     } else if (getFPImm()->getType()->isX86_FP80Ty()) {
453       APFloat APF = getFPImm()->getValueAPF();
454       OS << "x86_fp80 0xK";
455       APInt API = APF.bitcastToAPInt();
456       OS << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
457                                  /*Upper=*/true);
458       OS << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
459                                  /*Upper=*/true);
460     } else {
461       OS << getFPImm()->getValueAPF().convertToDouble();
462     }
463     break;
464   case MachineOperand::MO_MachineBasicBlock:
465     OS << "<BB#" << getMBB()->getNumber() << ">";
466     break;
467   case MachineOperand::MO_FrameIndex:
468     OS << "<fi#" << getIndex() << '>';
469     break;
470   case MachineOperand::MO_ConstantPoolIndex:
471     OS << "<cp#" << getIndex();
472     if (getOffset()) OS << "+" << getOffset();
473     OS << '>';
474     break;
475   case MachineOperand::MO_TargetIndex:
476     OS << "<ti#" << getIndex();
477     if (getOffset()) OS << "+" << getOffset();
478     OS << '>';
479     break;
480   case MachineOperand::MO_JumpTableIndex:
481     OS << "<jt#" << getIndex() << '>';
482     break;
483   case MachineOperand::MO_GlobalAddress:
484     OS << "<ga:";
485     getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
486     if (getOffset()) OS << "+" << getOffset();
487     OS << '>';
488     break;
489   case MachineOperand::MO_ExternalSymbol:
490     OS << "<es:" << getSymbolName();
491     if (getOffset()) OS << "+" << getOffset();
492     OS << '>';
493     break;
494   case MachineOperand::MO_BlockAddress:
495     OS << '<';
496     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
497     if (getOffset()) OS << "+" << getOffset();
498     OS << '>';
499     break;
500   case MachineOperand::MO_RegisterMask: {
501     unsigned NumRegsInMask = 0;
502     unsigned NumRegsEmitted = 0;
503     OS << "<regmask";
504     for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
505       unsigned MaskWord = i / 32;
506       unsigned MaskBit = i % 32;
507       if (getRegMask()[MaskWord] & (1 << MaskBit)) {
508         if (PrintRegMaskNumRegs < 0 ||
509             NumRegsEmitted <= static_cast<unsigned>(PrintRegMaskNumRegs)) {
510           OS << " " << PrintReg(i, TRI);
511           NumRegsEmitted++;
512         }
513         NumRegsInMask++;
514       }
515     }
516     if (NumRegsEmitted != NumRegsInMask)
517       OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
518     OS << ">";
519     break;
520   }
521   case MachineOperand::MO_RegisterLiveOut:
522     OS << "<regliveout>";
523     break;
524   case MachineOperand::MO_Metadata:
525     OS << '<';
526     getMetadata()->printAsOperand(OS, MST);
527     OS << '>';
528     break;
529   case MachineOperand::MO_MCSymbol:
530     OS << "<MCSym=" << *getMCSymbol() << '>';
531     break;
532   case MachineOperand::MO_CFIIndex:
533     OS << "<call frame instruction>";
534     break;
535   case MachineOperand::MO_IntrinsicID: {
536     Intrinsic::ID ID = getIntrinsicID();
537     if (ID < Intrinsic::num_intrinsics)
538       OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>';
539     else if (IntrinsicInfo)
540       OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>';
541     else
542       OS << "<intrinsic:" << ID << '>';
543     break;
544   }
545   case MachineOperand::MO_Predicate: {
546     auto Pred = static_cast<CmpInst::Predicate>(getPredicate());
547     OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred")
548        << CmpInst::getPredicateName(Pred) << '>';
549     break;
550   }
551   }
552   if (unsigned TF = getTargetFlags())
553     OS << "[TF=" << TF << ']';
554 }
555 
556 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
557 LLVM_DUMP_METHOD void MachineOperand::dump() const {
558   dbgs() << *this << '\n';
559 }
560 #endif
561 
562 //===----------------------------------------------------------------------===//
563 // MachineMemOperand Implementation
564 //===----------------------------------------------------------------------===//
565 
566 /// getAddrSpace - Return the LLVM IR address space number that this pointer
567 /// points into.
568 unsigned MachinePointerInfo::getAddrSpace() const {
569   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
570   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
571 }
572 
573 /// isDereferenceable - Return true if V is always dereferenceable for
574 /// Offset + Size byte.
575 bool MachinePointerInfo::isDereferenceable(unsigned Size, LLVMContext &C,
576                                            const DataLayout &DL) const {
577   if (!V.is<const Value*>())
578     return false;
579 
580   const Value *BasePtr = V.get<const Value*>();
581   if (BasePtr == nullptr)
582     return false;
583 
584   return isDereferenceableAndAlignedPointer(
585       BasePtr, 1, APInt(DL.getPointerSizeInBits(), Offset + Size), DL);
586 }
587 
588 /// getConstantPool - Return a MachinePointerInfo record that refers to the
589 /// constant pool.
590 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
591   return MachinePointerInfo(MF.getPSVManager().getConstantPool());
592 }
593 
594 /// getFixedStack - Return a MachinePointerInfo record that refers to the
595 /// the specified FrameIndex.
596 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
597                                                      int FI, int64_t Offset) {
598   return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
599 }
600 
601 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
602   return MachinePointerInfo(MF.getPSVManager().getJumpTable());
603 }
604 
605 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
606   return MachinePointerInfo(MF.getPSVManager().getGOT());
607 }
608 
609 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
610                                                 int64_t Offset,
611                                                 uint8_t ID) {
612   return MachinePointerInfo(MF.getPSVManager().getStack(), Offset,ID);
613 }
614 
615 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f,
616                                      uint64_t s, unsigned int a,
617                                      const AAMDNodes &AAInfo,
618                                      const MDNode *Ranges,
619                                      SyncScope::ID SSID,
620                                      AtomicOrdering Ordering,
621                                      AtomicOrdering FailureOrdering)
622     : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1),
623       AAInfo(AAInfo), Ranges(Ranges) {
624   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
625           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
626          "invalid pointer value");
627   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
628   assert((isLoad() || isStore()) && "Not a load/store!");
629 
630   AtomicInfo.SSID = static_cast<unsigned>(SSID);
631   assert(getSyncScopeID() == SSID && "Value truncated");
632   AtomicInfo.Ordering = static_cast<unsigned>(Ordering);
633   assert(getOrdering() == Ordering && "Value truncated");
634   AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering);
635   assert(getFailureOrdering() == FailureOrdering && "Value truncated");
636 }
637 
638 /// Profile - Gather unique data for the object.
639 ///
640 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
641   ID.AddInteger(getOffset());
642   ID.AddInteger(Size);
643   ID.AddPointer(getOpaqueValue());
644   ID.AddInteger(getFlags());
645   ID.AddInteger(getBaseAlignment());
646 }
647 
648 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
649   // The Value and Offset may differ due to CSE. But the flags and size
650   // should be the same.
651   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
652   assert(MMO->getSize() == getSize() && "Size mismatch!");
653 
654   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
655     // Update the alignment value.
656     BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1;
657     // Also update the base and offset, because the new alignment may
658     // not be applicable with the old ones.
659     PtrInfo = MMO->PtrInfo;
660   }
661 }
662 
663 /// getAlignment - Return the minimum known alignment in bytes of the
664 /// actual memory reference.
665 uint64_t MachineMemOperand::getAlignment() const {
666   return MinAlign(getBaseAlignment(), getOffset());
667 }
668 
669 void MachineMemOperand::print(raw_ostream &OS) const {
670   ModuleSlotTracker DummyMST(nullptr);
671   print(OS, DummyMST);
672 }
673 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
674   assert((isLoad() || isStore()) &&
675          "SV has to be a load, store or both.");
676 
677   if (isVolatile())
678     OS << "Volatile ";
679 
680   if (isLoad())
681     OS << "LD";
682   if (isStore())
683     OS << "ST";
684   OS << getSize();
685 
686   // Print the address information.
687   OS << "[";
688   if (const Value *V = getValue())
689     V->printAsOperand(OS, /*PrintType=*/false, MST);
690   else if (const PseudoSourceValue *PSV = getPseudoValue())
691     PSV->printCustom(OS);
692   else
693     OS << "<unknown>";
694 
695   unsigned AS = getAddrSpace();
696   if (AS != 0)
697     OS << "(addrspace=" << AS << ')';
698 
699   // If the alignment of the memory reference itself differs from the alignment
700   // of the base pointer, print the base alignment explicitly, next to the base
701   // pointer.
702   if (getBaseAlignment() != getAlignment())
703     OS << "(align=" << getBaseAlignment() << ")";
704 
705   if (getOffset() != 0)
706     OS << "+" << getOffset();
707   OS << "]";
708 
709   // Print the alignment of the reference.
710   if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
711     OS << "(align=" << getAlignment() << ")";
712 
713   // Print TBAA info.
714   if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
715     OS << "(tbaa=";
716     if (TBAAInfo->getNumOperands() > 0)
717       TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
718     else
719       OS << "<unknown>";
720     OS << ")";
721   }
722 
723   // Print AA scope info.
724   if (const MDNode *ScopeInfo = getAAInfo().Scope) {
725     OS << "(alias.scope=";
726     if (ScopeInfo->getNumOperands() > 0)
727       for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
728         ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
729         if (i != ie-1)
730           OS << ",";
731       }
732     else
733       OS << "<unknown>";
734     OS << ")";
735   }
736 
737   // Print AA noalias scope info.
738   if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
739     OS << "(noalias=";
740     if (NoAliasInfo->getNumOperands() > 0)
741       for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
742         NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
743         if (i != ie-1)
744           OS << ",";
745       }
746     else
747       OS << "<unknown>";
748     OS << ")";
749   }
750 
751   if (isNonTemporal())
752     OS << "(nontemporal)";
753   if (isDereferenceable())
754     OS << "(dereferenceable)";
755   if (isInvariant())
756     OS << "(invariant)";
757   if (getFlags() & MOTargetFlag1)
758     OS << "(flag1)";
759   if (getFlags() & MOTargetFlag2)
760     OS << "(flag2)";
761   if (getFlags() & MOTargetFlag3)
762     OS << "(flag3)";
763 }
764 
765 //===----------------------------------------------------------------------===//
766 // MachineInstr Implementation
767 //===----------------------------------------------------------------------===//
768 
769 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
770   if (MCID->ImplicitDefs)
771     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
772            ++ImpDefs)
773       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
774   if (MCID->ImplicitUses)
775     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
776            ++ImpUses)
777       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
778 }
779 
780 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
781 /// implicit operands. It reserves space for the number of operands specified by
782 /// the MCInstrDesc.
783 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
784                            DebugLoc dl, bool NoImp)
785     : MCID(&tid), debugLoc(std::move(dl)) {
786   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
787 
788   // Reserve space for the expected number of operands.
789   if (unsigned NumOps = MCID->getNumOperands() +
790     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
791     CapOperands = OperandCapacity::get(NumOps);
792     Operands = MF.allocateOperandArray(CapOperands);
793   }
794 
795   if (!NoImp)
796     addImplicitDefUseOperands(MF);
797 }
798 
799 /// MachineInstr ctor - Copies MachineInstr arg exactly
800 ///
801 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
802     : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
803       debugLoc(MI.getDebugLoc()) {
804   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
805 
806   CapOperands = OperandCapacity::get(MI.getNumOperands());
807   Operands = MF.allocateOperandArray(CapOperands);
808 
809   // Copy operands.
810   for (const MachineOperand &MO : MI.operands())
811     addOperand(MF, MO);
812 
813   // Copy all the sensible flags.
814   setFlags(MI.Flags);
815 }
816 
817 /// getRegInfo - If this instruction is embedded into a MachineFunction,
818 /// return the MachineRegisterInfo object for the current function, otherwise
819 /// return null.
820 MachineRegisterInfo *MachineInstr::getRegInfo() {
821   if (MachineBasicBlock *MBB = getParent())
822     return &MBB->getParent()->getRegInfo();
823   return nullptr;
824 }
825 
826 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
827 /// this instruction from their respective use lists.  This requires that the
828 /// operands already be on their use lists.
829 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
830   for (MachineOperand &MO : operands())
831     if (MO.isReg())
832       MRI.removeRegOperandFromUseList(&MO);
833 }
834 
835 /// AddRegOperandsToUseLists - Add all of the register operands in
836 /// this instruction from their respective use lists.  This requires that the
837 /// operands not be on their use lists yet.
838 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
839   for (MachineOperand &MO : operands())
840     if (MO.isReg())
841       MRI.addRegOperandToUseList(&MO);
842 }
843 
844 void MachineInstr::addOperand(const MachineOperand &Op) {
845   MachineBasicBlock *MBB = getParent();
846   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
847   MachineFunction *MF = MBB->getParent();
848   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
849   addOperand(*MF, Op);
850 }
851 
852 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
853 /// ranges. If MRI is non-null also update use-def chains.
854 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
855                          unsigned NumOps, MachineRegisterInfo *MRI) {
856   if (MRI)
857     return MRI->moveOperands(Dst, Src, NumOps);
858 
859   // MachineOperand is a trivially copyable type so we can just use memmove.
860   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
861 }
862 
863 /// addOperand - Add the specified operand to the instruction.  If it is an
864 /// implicit operand, it is added to the end of the operand list.  If it is
865 /// an explicit operand it is added at the end of the explicit operand list
866 /// (before the first implicit operand).
867 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
868   assert(MCID && "Cannot add operands before providing an instr descriptor");
869 
870   // Check if we're adding one of our existing operands.
871   if (&Op >= Operands && &Op < Operands + NumOperands) {
872     // This is unusual: MI->addOperand(MI->getOperand(i)).
873     // If adding Op requires reallocating or moving existing operands around,
874     // the Op reference could go stale. Support it by copying Op.
875     MachineOperand CopyOp(Op);
876     return addOperand(MF, CopyOp);
877   }
878 
879   // Find the insert location for the new operand.  Implicit registers go at
880   // the end, everything else goes before the implicit regs.
881   //
882   // FIXME: Allow mixed explicit and implicit operands on inline asm.
883   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
884   // implicit-defs, but they must not be moved around.  See the FIXME in
885   // InstrEmitter.cpp.
886   unsigned OpNo = getNumOperands();
887   bool isImpReg = Op.isReg() && Op.isImplicit();
888   if (!isImpReg && !isInlineAsm()) {
889     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
890       --OpNo;
891       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
892     }
893   }
894 
895 #ifndef NDEBUG
896   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
897   // OpNo now points as the desired insertion point.  Unless this is a variadic
898   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
899   // RegMask operands go between the explicit and implicit operands.
900   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
901           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
902          "Trying to add an operand to a machine instr that is already done!");
903 #endif
904 
905   MachineRegisterInfo *MRI = getRegInfo();
906 
907   // Determine if the Operands array needs to be reallocated.
908   // Save the old capacity and operand array.
909   OperandCapacity OldCap = CapOperands;
910   MachineOperand *OldOperands = Operands;
911   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
912     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
913     Operands = MF.allocateOperandArray(CapOperands);
914     // Move the operands before the insertion point.
915     if (OpNo)
916       moveOperands(Operands, OldOperands, OpNo, MRI);
917   }
918 
919   // Move the operands following the insertion point.
920   if (OpNo != NumOperands)
921     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
922                  MRI);
923   ++NumOperands;
924 
925   // Deallocate the old operand array.
926   if (OldOperands != Operands && OldOperands)
927     MF.deallocateOperandArray(OldCap, OldOperands);
928 
929   // Copy Op into place. It still needs to be inserted into the MRI use lists.
930   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
931   NewMO->ParentMI = this;
932 
933   // When adding a register operand, tell MRI about it.
934   if (NewMO->isReg()) {
935     // Ensure isOnRegUseList() returns false, regardless of Op's status.
936     NewMO->Contents.Reg.Prev = nullptr;
937     // Ignore existing ties. This is not a property that can be copied.
938     NewMO->TiedTo = 0;
939     // Add the new operand to MRI, but only for instructions in an MBB.
940     if (MRI)
941       MRI->addRegOperandToUseList(NewMO);
942     // The MCID operand information isn't accurate until we start adding
943     // explicit operands. The implicit operands are added first, then the
944     // explicits are inserted before them.
945     if (!isImpReg) {
946       // Tie uses to defs as indicated in MCInstrDesc.
947       if (NewMO->isUse()) {
948         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
949         if (DefIdx != -1)
950           tieOperands(DefIdx, OpNo);
951       }
952       // If the register operand is flagged as early, mark the operand as such.
953       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
954         NewMO->setIsEarlyClobber(true);
955     }
956   }
957 }
958 
959 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
960 /// fewer operand than it started with.
961 ///
962 void MachineInstr::RemoveOperand(unsigned OpNo) {
963   assert(OpNo < getNumOperands() && "Invalid operand number");
964   untieRegOperand(OpNo);
965 
966 #ifndef NDEBUG
967   // Moving tied operands would break the ties.
968   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
969     if (Operands[i].isReg())
970       assert(!Operands[i].isTied() && "Cannot move tied operands");
971 #endif
972 
973   MachineRegisterInfo *MRI = getRegInfo();
974   if (MRI && Operands[OpNo].isReg())
975     MRI->removeRegOperandFromUseList(Operands + OpNo);
976 
977   // Don't call the MachineOperand destructor. A lot of this code depends on
978   // MachineOperand having a trivial destructor anyway, and adding a call here
979   // wouldn't make it 'destructor-correct'.
980 
981   if (unsigned N = NumOperands - 1 - OpNo)
982     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
983   --NumOperands;
984 }
985 
986 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
987 /// This function should be used only occasionally. The setMemRefs function
988 /// is the primary method for setting up a MachineInstr's MemRefs list.
989 void MachineInstr::addMemOperand(MachineFunction &MF,
990                                  MachineMemOperand *MO) {
991   mmo_iterator OldMemRefs = MemRefs;
992   unsigned OldNumMemRefs = NumMemRefs;
993 
994   unsigned NewNum = NumMemRefs + 1;
995   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
996 
997   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
998   NewMemRefs[NewNum - 1] = MO;
999   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
1000 }
1001 
1002 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
1003 /// identical.
1004 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
1005   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
1006   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
1007   if ((E1 - I1) != (E2 - I2))
1008     return false;
1009   for (; I1 != E1; ++I1, ++I2) {
1010     if (**I1 != **I2)
1011       return false;
1012   }
1013   return true;
1014 }
1015 
1016 std::pair<MachineInstr::mmo_iterator, unsigned>
1017 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
1018 
1019   // If either of the incoming memrefs are empty, we must be conservative and
1020   // treat this as if we've exhausted our space for memrefs and dropped them.
1021   if (memoperands_empty() || Other.memoperands_empty())
1022     return std::make_pair(nullptr, 0);
1023 
1024   // If both instructions have identical memrefs, we don't need to merge them.
1025   // Since many instructions have a single memref, and we tend to merge things
1026   // like pairs of loads from the same location, this catches a large number of
1027   // cases in practice.
1028   if (hasIdenticalMMOs(*this, Other))
1029     return std::make_pair(MemRefs, NumMemRefs);
1030 
1031   // TODO: consider uniquing elements within the operand lists to reduce
1032   // space usage and fall back to conservative information less often.
1033   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
1034 
1035   // If we don't have enough room to store this many memrefs, be conservative
1036   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
1037   // the new instruction.
1038   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
1039     return std::make_pair(nullptr, 0);
1040 
1041   MachineFunction *MF = getParent()->getParent();
1042   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
1043   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
1044                                   MemBegin);
1045   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
1046                      MemEnd);
1047   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
1048          "missing memrefs");
1049 
1050   return std::make_pair(MemBegin, CombinedNumMemRefs);
1051 }
1052 
1053 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
1054   assert(!isBundledWithPred() && "Must be called on bundle header");
1055   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
1056     if (MII->getDesc().getFlags() & Mask) {
1057       if (Type == AnyInBundle)
1058         return true;
1059     } else {
1060       if (Type == AllInBundle && !MII->isBundle())
1061         return false;
1062     }
1063     // This was the last instruction in the bundle.
1064     if (!MII->isBundledWithSucc())
1065       return Type == AllInBundle;
1066   }
1067 }
1068 
1069 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
1070                                  MICheckType Check) const {
1071   // If opcodes or number of operands are not the same then the two
1072   // instructions are obviously not identical.
1073   if (Other.getOpcode() != getOpcode() ||
1074       Other.getNumOperands() != getNumOperands())
1075     return false;
1076 
1077   if (isBundle()) {
1078     // We have passed the test above that both instructions have the same
1079     // opcode, so we know that both instructions are bundles here. Let's compare
1080     // MIs inside the bundle.
1081     assert(Other.isBundle() && "Expected that both instructions are bundles.");
1082     MachineBasicBlock::const_instr_iterator I1 = getIterator();
1083     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
1084     // Loop until we analysed the last intruction inside at least one of the
1085     // bundles.
1086     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
1087       ++I1;
1088       ++I2;
1089       if (!I1->isIdenticalTo(*I2, Check))
1090         return false;
1091     }
1092     // If we've reached the end of just one of the two bundles, but not both,
1093     // the instructions are not identical.
1094     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
1095       return false;
1096   }
1097 
1098   // Check operands to make sure they match.
1099   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1100     const MachineOperand &MO = getOperand(i);
1101     const MachineOperand &OMO = Other.getOperand(i);
1102     if (!MO.isReg()) {
1103       if (!MO.isIdenticalTo(OMO))
1104         return false;
1105       continue;
1106     }
1107 
1108     // Clients may or may not want to ignore defs when testing for equality.
1109     // For example, machine CSE pass only cares about finding common
1110     // subexpressions, so it's safe to ignore virtual register defs.
1111     if (MO.isDef()) {
1112       if (Check == IgnoreDefs)
1113         continue;
1114       else if (Check == IgnoreVRegDefs) {
1115         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1116             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
1117           if (MO.getReg() != OMO.getReg())
1118             return false;
1119       } else {
1120         if (!MO.isIdenticalTo(OMO))
1121           return false;
1122         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
1123           return false;
1124       }
1125     } else {
1126       if (!MO.isIdenticalTo(OMO))
1127         return false;
1128       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
1129         return false;
1130     }
1131   }
1132   // If DebugLoc does not match then two dbg.values are not identical.
1133   if (isDebugValue())
1134     if (getDebugLoc() && Other.getDebugLoc() &&
1135         getDebugLoc() != Other.getDebugLoc())
1136       return false;
1137   return true;
1138 }
1139 
1140 MachineInstr *MachineInstr::removeFromParent() {
1141   assert(getParent() && "Not embedded in a basic block!");
1142   return getParent()->remove(this);
1143 }
1144 
1145 MachineInstr *MachineInstr::removeFromBundle() {
1146   assert(getParent() && "Not embedded in a basic block!");
1147   return getParent()->remove_instr(this);
1148 }
1149 
1150 void MachineInstr::eraseFromParent() {
1151   assert(getParent() && "Not embedded in a basic block!");
1152   getParent()->erase(this);
1153 }
1154 
1155 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
1156   assert(getParent() && "Not embedded in a basic block!");
1157   MachineBasicBlock *MBB = getParent();
1158   MachineFunction *MF = MBB->getParent();
1159   assert(MF && "Not embedded in a function!");
1160 
1161   MachineInstr *MI = (MachineInstr *)this;
1162   MachineRegisterInfo &MRI = MF->getRegInfo();
1163 
1164   for (const MachineOperand &MO : MI->operands()) {
1165     if (!MO.isReg() || !MO.isDef())
1166       continue;
1167     unsigned Reg = MO.getReg();
1168     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1169       continue;
1170     MRI.markUsesInDebugValueAsUndef(Reg);
1171   }
1172   MI->eraseFromParent();
1173 }
1174 
1175 void MachineInstr::eraseFromBundle() {
1176   assert(getParent() && "Not embedded in a basic block!");
1177   getParent()->erase_instr(this);
1178 }
1179 
1180 /// getNumExplicitOperands - Returns the number of non-implicit operands.
1181 ///
1182 unsigned MachineInstr::getNumExplicitOperands() const {
1183   unsigned NumOperands = MCID->getNumOperands();
1184   if (!MCID->isVariadic())
1185     return NumOperands;
1186 
1187   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
1188     const MachineOperand &MO = getOperand(i);
1189     if (!MO.isReg() || !MO.isImplicit())
1190       NumOperands++;
1191   }
1192   return NumOperands;
1193 }
1194 
1195 void MachineInstr::bundleWithPred() {
1196   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
1197   setFlag(BundledPred);
1198   MachineBasicBlock::instr_iterator Pred = getIterator();
1199   --Pred;
1200   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1201   Pred->setFlag(BundledSucc);
1202 }
1203 
1204 void MachineInstr::bundleWithSucc() {
1205   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
1206   setFlag(BundledSucc);
1207   MachineBasicBlock::instr_iterator Succ = getIterator();
1208   ++Succ;
1209   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
1210   Succ->setFlag(BundledPred);
1211 }
1212 
1213 void MachineInstr::unbundleFromPred() {
1214   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
1215   clearFlag(BundledPred);
1216   MachineBasicBlock::instr_iterator Pred = getIterator();
1217   --Pred;
1218   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1219   Pred->clearFlag(BundledSucc);
1220 }
1221 
1222 void MachineInstr::unbundleFromSucc() {
1223   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
1224   clearFlag(BundledSucc);
1225   MachineBasicBlock::instr_iterator Succ = getIterator();
1226   ++Succ;
1227   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
1228   Succ->clearFlag(BundledPred);
1229 }
1230 
1231 bool MachineInstr::isStackAligningInlineAsm() const {
1232   if (isInlineAsm()) {
1233     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1234     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1235       return true;
1236   }
1237   return false;
1238 }
1239 
1240 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
1241   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
1242   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1243   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
1244 }
1245 
1246 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
1247                                        unsigned *GroupNo) const {
1248   assert(isInlineAsm() && "Expected an inline asm instruction");
1249   assert(OpIdx < getNumOperands() && "OpIdx out of range");
1250 
1251   // Ignore queries about the initial operands.
1252   if (OpIdx < InlineAsm::MIOp_FirstOperand)
1253     return -1;
1254 
1255   unsigned Group = 0;
1256   unsigned NumOps;
1257   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1258        i += NumOps) {
1259     const MachineOperand &FlagMO = getOperand(i);
1260     // If we reach the implicit register operands, stop looking.
1261     if (!FlagMO.isImm())
1262       return -1;
1263     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1264     if (i + NumOps > OpIdx) {
1265       if (GroupNo)
1266         *GroupNo = Group;
1267       return i;
1268     }
1269     ++Group;
1270   }
1271   return -1;
1272 }
1273 
1274 const DILocalVariable *MachineInstr::getDebugVariable() const {
1275   assert(isDebugValue() && "not a DBG_VALUE");
1276   return cast<DILocalVariable>(getOperand(2).getMetadata());
1277 }
1278 
1279 const DIExpression *MachineInstr::getDebugExpression() const {
1280   assert(isDebugValue() && "not a DBG_VALUE");
1281   return cast<DIExpression>(getOperand(3).getMetadata());
1282 }
1283 
1284 const TargetRegisterClass*
1285 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1286                                     const TargetInstrInfo *TII,
1287                                     const TargetRegisterInfo *TRI) const {
1288   assert(getParent() && "Can't have an MBB reference here!");
1289   assert(getParent()->getParent() && "Can't have an MF reference here!");
1290   const MachineFunction &MF = *getParent()->getParent();
1291 
1292   // Most opcodes have fixed constraints in their MCInstrDesc.
1293   if (!isInlineAsm())
1294     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1295 
1296   if (!getOperand(OpIdx).isReg())
1297     return nullptr;
1298 
1299   // For tied uses on inline asm, get the constraint from the def.
1300   unsigned DefIdx;
1301   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1302     OpIdx = DefIdx;
1303 
1304   // Inline asm stores register class constraints in the flag word.
1305   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1306   if (FlagIdx < 0)
1307     return nullptr;
1308 
1309   unsigned Flag = getOperand(FlagIdx).getImm();
1310   unsigned RCID;
1311   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
1312        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
1313        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
1314       InlineAsm::hasRegClassConstraint(Flag, RCID))
1315     return TRI->getRegClass(RCID);
1316 
1317   // Assume that all registers in a memory operand are pointers.
1318   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1319     return TRI->getPointerRegClass(MF);
1320 
1321   return nullptr;
1322 }
1323 
1324 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1325     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1326     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1327   // Check every operands inside the bundle if we have
1328   // been asked to.
1329   if (ExploreBundle)
1330     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
1331          ++OpndIt)
1332       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1333           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1334   else
1335     // Otherwise, just check the current operands.
1336     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1337       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1338   return CurRC;
1339 }
1340 
1341 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1342     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1343     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1344   assert(CurRC && "Invalid initial register class");
1345   // Check if Reg is constrained by some of its use/def from MI.
1346   const MachineOperand &MO = getOperand(OpIdx);
1347   if (!MO.isReg() || MO.getReg() != Reg)
1348     return CurRC;
1349   // If yes, accumulate the constraints through the operand.
1350   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1351 }
1352 
1353 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1354     unsigned OpIdx, const TargetRegisterClass *CurRC,
1355     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1356   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1357   const MachineOperand &MO = getOperand(OpIdx);
1358   assert(MO.isReg() &&
1359          "Cannot get register constraints for non-register operand");
1360   assert(CurRC && "Invalid initial register class");
1361   if (unsigned SubIdx = MO.getSubReg()) {
1362     if (OpRC)
1363       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1364     else
1365       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1366   } else if (OpRC)
1367     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1368   return CurRC;
1369 }
1370 
1371 /// Return the number of instructions inside the MI bundle, not counting the
1372 /// header instruction.
1373 unsigned MachineInstr::getBundleSize() const {
1374   MachineBasicBlock::const_instr_iterator I = getIterator();
1375   unsigned Size = 0;
1376   while (I->isBundledWithSucc()) {
1377     ++Size;
1378     ++I;
1379   }
1380   return Size;
1381 }
1382 
1383 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1384 /// the given register (not considering sub/super-registers).
1385 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
1386   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1387     const MachineOperand &MO = getOperand(i);
1388     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1389       return true;
1390   }
1391   return false;
1392 }
1393 
1394 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1395 /// the specific register or -1 if it is not found. It further tightens
1396 /// the search criteria to a use that kills the register if isKill is true.
1397 int MachineInstr::findRegisterUseOperandIdx(
1398     unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
1399   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1400     const MachineOperand &MO = getOperand(i);
1401     if (!MO.isReg() || !MO.isUse())
1402       continue;
1403     unsigned MOReg = MO.getReg();
1404     if (!MOReg)
1405       continue;
1406     if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1407                          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1408                          TRI->isSubRegister(MOReg, Reg)))
1409       if (!isKill || MO.isKill())
1410         return i;
1411   }
1412   return -1;
1413 }
1414 
1415 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1416 /// indicating if this instruction reads or writes Reg. This also considers
1417 /// partial defines.
1418 std::pair<bool,bool>
1419 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1420                                          SmallVectorImpl<unsigned> *Ops) const {
1421   bool PartDef = false; // Partial redefine.
1422   bool FullDef = false; // Full define.
1423   bool Use = false;
1424 
1425   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1426     const MachineOperand &MO = getOperand(i);
1427     if (!MO.isReg() || MO.getReg() != Reg)
1428       continue;
1429     if (Ops)
1430       Ops->push_back(i);
1431     if (MO.isUse())
1432       Use |= !MO.isUndef();
1433     else if (MO.getSubReg() && !MO.isUndef())
1434       // A partial <def,undef> doesn't count as reading the register.
1435       PartDef = true;
1436     else
1437       FullDef = true;
1438   }
1439   // A partial redefine uses Reg unless there is also a full define.
1440   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1441 }
1442 
1443 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1444 /// the specified register or -1 if it is not found. If isDead is true, defs
1445 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1446 /// also checks if there is a def of a super-register.
1447 int
1448 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1449                                         const TargetRegisterInfo *TRI) const {
1450   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1451   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1452     const MachineOperand &MO = getOperand(i);
1453     // Accept regmask operands when Overlap is set.
1454     // Ignore them when looking for a specific def operand (Overlap == false).
1455     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1456       return i;
1457     if (!MO.isReg() || !MO.isDef())
1458       continue;
1459     unsigned MOReg = MO.getReg();
1460     bool Found = (MOReg == Reg);
1461     if (!Found && TRI && isPhys &&
1462         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1463       if (Overlap)
1464         Found = TRI->regsOverlap(MOReg, Reg);
1465       else
1466         Found = TRI->isSubRegister(MOReg, Reg);
1467     }
1468     if (Found && (!isDead || MO.isDead()))
1469       return i;
1470   }
1471   return -1;
1472 }
1473 
1474 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1475 /// operand list that is used to represent the predicate. It returns -1 if
1476 /// none is found.
1477 int MachineInstr::findFirstPredOperandIdx() const {
1478   // Don't call MCID.findFirstPredOperandIdx() because this variant
1479   // is sometimes called on an instruction that's not yet complete, and
1480   // so the number of operands is less than the MCID indicates. In
1481   // particular, the PTX target does this.
1482   const MCInstrDesc &MCID = getDesc();
1483   if (MCID.isPredicable()) {
1484     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1485       if (MCID.OpInfo[i].isPredicate())
1486         return i;
1487   }
1488 
1489   return -1;
1490 }
1491 
1492 // MachineOperand::TiedTo is 4 bits wide.
1493 const unsigned TiedMax = 15;
1494 
1495 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1496 ///
1497 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1498 /// field. TiedTo can have these values:
1499 ///
1500 /// 0:              Operand is not tied to anything.
1501 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1502 /// TiedMax:        Tied to an operand >= TiedMax-1.
1503 ///
1504 /// The tied def must be one of the first TiedMax operands on a normal
1505 /// instruction. INLINEASM instructions allow more tied defs.
1506 ///
1507 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1508   MachineOperand &DefMO = getOperand(DefIdx);
1509   MachineOperand &UseMO = getOperand(UseIdx);
1510   assert(DefMO.isDef() && "DefIdx must be a def operand");
1511   assert(UseMO.isUse() && "UseIdx must be a use operand");
1512   assert(!DefMO.isTied() && "Def is already tied to another use");
1513   assert(!UseMO.isTied() && "Use is already tied to another def");
1514 
1515   if (DefIdx < TiedMax)
1516     UseMO.TiedTo = DefIdx + 1;
1517   else {
1518     // Inline asm can use the group descriptors to find tied operands, but on
1519     // normal instruction, the tied def must be within the first TiedMax
1520     // operands.
1521     assert(isInlineAsm() && "DefIdx out of range");
1522     UseMO.TiedTo = TiedMax;
1523   }
1524 
1525   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1526   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1527 }
1528 
1529 /// Given the index of a tied register operand, find the operand it is tied to.
1530 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1531 /// which must exist.
1532 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1533   const MachineOperand &MO = getOperand(OpIdx);
1534   assert(MO.isTied() && "Operand isn't tied");
1535 
1536   // Normally TiedTo is in range.
1537   if (MO.TiedTo < TiedMax)
1538     return MO.TiedTo - 1;
1539 
1540   // Uses on normal instructions can be out of range.
1541   if (!isInlineAsm()) {
1542     // Normal tied defs must be in the 0..TiedMax-1 range.
1543     if (MO.isUse())
1544       return TiedMax - 1;
1545     // MO is a def. Search for the tied use.
1546     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1547       const MachineOperand &UseMO = getOperand(i);
1548       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1549         return i;
1550     }
1551     llvm_unreachable("Can't find tied use");
1552   }
1553 
1554   // Now deal with inline asm by parsing the operand group descriptor flags.
1555   // Find the beginning of each operand group.
1556   SmallVector<unsigned, 8> GroupIdx;
1557   unsigned OpIdxGroup = ~0u;
1558   unsigned NumOps;
1559   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1560        i += NumOps) {
1561     const MachineOperand &FlagMO = getOperand(i);
1562     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1563     unsigned CurGroup = GroupIdx.size();
1564     GroupIdx.push_back(i);
1565     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1566     // OpIdx belongs to this operand group.
1567     if (OpIdx > i && OpIdx < i + NumOps)
1568       OpIdxGroup = CurGroup;
1569     unsigned TiedGroup;
1570     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1571       continue;
1572     // Operands in this group are tied to operands in TiedGroup which must be
1573     // earlier. Find the number of operands between the two groups.
1574     unsigned Delta = i - GroupIdx[TiedGroup];
1575 
1576     // OpIdx is a use tied to TiedGroup.
1577     if (OpIdxGroup == CurGroup)
1578       return OpIdx - Delta;
1579 
1580     // OpIdx is a def tied to this use group.
1581     if (OpIdxGroup == TiedGroup)
1582       return OpIdx + Delta;
1583   }
1584   llvm_unreachable("Invalid tied operand on inline asm");
1585 }
1586 
1587 /// clearKillInfo - Clears kill flags on all operands.
1588 ///
1589 void MachineInstr::clearKillInfo() {
1590   for (MachineOperand &MO : operands()) {
1591     if (MO.isReg() && MO.isUse())
1592       MO.setIsKill(false);
1593   }
1594 }
1595 
1596 void MachineInstr::substituteRegister(unsigned FromReg,
1597                                       unsigned ToReg,
1598                                       unsigned SubIdx,
1599                                       const TargetRegisterInfo &RegInfo) {
1600   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1601     if (SubIdx)
1602       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1603     for (MachineOperand &MO : operands()) {
1604       if (!MO.isReg() || MO.getReg() != FromReg)
1605         continue;
1606       MO.substPhysReg(ToReg, RegInfo);
1607     }
1608   } else {
1609     for (MachineOperand &MO : operands()) {
1610       if (!MO.isReg() || MO.getReg() != FromReg)
1611         continue;
1612       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1613     }
1614   }
1615 }
1616 
1617 /// isSafeToMove - Return true if it is safe to move this instruction. If
1618 /// SawStore is set to true, it means that there is a store (or call) between
1619 /// the instruction's location and its intended destination.
1620 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1621   // Ignore stuff that we obviously can't move.
1622   //
1623   // Treat volatile loads as stores. This is not strictly necessary for
1624   // volatiles, but it is required for atomic loads. It is not allowed to move
1625   // a load across an atomic load with Ordering > Monotonic.
1626   if (mayStore() || isCall() ||
1627       (mayLoad() && hasOrderedMemoryRef())) {
1628     SawStore = true;
1629     return false;
1630   }
1631 
1632   if (isPosition() || isDebugValue() || isTerminator() ||
1633       hasUnmodeledSideEffects())
1634     return false;
1635 
1636   // See if this instruction does a load.  If so, we have to guarantee that the
1637   // loaded value doesn't change between the load and the its intended
1638   // destination. The check for isInvariantLoad gives the targe the chance to
1639   // classify the load as always returning a constant, e.g. a constant pool
1640   // load.
1641   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1642     // Otherwise, this is a real load.  If there is a store between the load and
1643     // end of block, we can't move it.
1644     return !SawStore;
1645 
1646   return true;
1647 }
1648 
1649 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other,
1650                             bool UseTBAA) {
1651   const MachineFunction *MF = getParent()->getParent();
1652   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1653 
1654   // If neither instruction stores to memory, they can't alias in any
1655   // meaningful way, even if they read from the same address.
1656   if (!mayStore() && !Other.mayStore())
1657     return false;
1658 
1659   // Let the target decide if memory accesses cannot possibly overlap.
1660   if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
1661     return false;
1662 
1663   if (!AA)
1664     return true;
1665 
1666   // FIXME: Need to handle multiple memory operands to support all targets.
1667   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1668     return true;
1669 
1670   MachineMemOperand *MMOa = *memoperands_begin();
1671   MachineMemOperand *MMOb = *Other.memoperands_begin();
1672 
1673   if (!MMOa->getValue() || !MMOb->getValue())
1674     return true;
1675 
1676   // The following interface to AA is fashioned after DAGCombiner::isAlias
1677   // and operates with MachineMemOperand offset with some important
1678   // assumptions:
1679   //   - LLVM fundamentally assumes flat address spaces.
1680   //   - MachineOperand offset can *only* result from legalization and
1681   //     cannot affect queries other than the trivial case of overlap
1682   //     checking.
1683   //   - These offsets never wrap and never step outside
1684   //     of allocated objects.
1685   //   - There should never be any negative offsets here.
1686   //
1687   // FIXME: Modify API to hide this math from "user"
1688   // FIXME: Even before we go to AA we can reason locally about some
1689   // memory objects. It can save compile time, and possibly catch some
1690   // corner cases not currently covered.
1691 
1692   assert((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
1693   assert((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
1694 
1695   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
1696   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
1697   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
1698 
1699   AliasResult AAResult =
1700       AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
1701                                UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1702                 MemoryLocation(MMOb->getValue(), Overlapb,
1703                                UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1704 
1705   return (AAResult != NoAlias);
1706 }
1707 
1708 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1709 /// or volatile memory reference, or if the information describing the memory
1710 /// reference is not available. Return false if it is known to have no ordered
1711 /// memory references.
1712 bool MachineInstr::hasOrderedMemoryRef() const {
1713   // An instruction known never to access memory won't have a volatile access.
1714   if (!mayStore() &&
1715       !mayLoad() &&
1716       !isCall() &&
1717       !hasUnmodeledSideEffects())
1718     return false;
1719 
1720   // Otherwise, if the instruction has no memory reference information,
1721   // conservatively assume it wasn't preserved.
1722   if (memoperands_empty())
1723     return true;
1724 
1725   // Check if any of our memory operands are ordered.
1726   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1727     return !MMO->isUnordered();
1728   });
1729 }
1730 
1731 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1732 /// trap and is loading from a location whose value is invariant across a run of
1733 /// this function.
1734 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1735   // If the instruction doesn't load at all, it isn't an invariant load.
1736   if (!mayLoad())
1737     return false;
1738 
1739   // If the instruction has lost its memoperands, conservatively assume that
1740   // it may not be an invariant load.
1741   if (memoperands_empty())
1742     return false;
1743 
1744   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1745 
1746   for (MachineMemOperand *MMO : memoperands()) {
1747     if (MMO->isVolatile()) return false;
1748     if (MMO->isStore()) return false;
1749     if (MMO->isInvariant() && MMO->isDereferenceable())
1750       continue;
1751 
1752     // A load from a constant PseudoSourceValue is invariant.
1753     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1754       if (PSV->isConstant(&MFI))
1755         continue;
1756 
1757     if (const Value *V = MMO->getValue()) {
1758       // If we have an AliasAnalysis, ask it whether the memory is constant.
1759       if (AA &&
1760           AA->pointsToConstantMemory(
1761               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1762         continue;
1763     }
1764 
1765     // Otherwise assume conservatively.
1766     return false;
1767   }
1768 
1769   // Everything checks out.
1770   return true;
1771 }
1772 
1773 /// isConstantValuePHI - If the specified instruction is a PHI that always
1774 /// merges together the same virtual register, return the register, otherwise
1775 /// return 0.
1776 unsigned MachineInstr::isConstantValuePHI() const {
1777   if (!isPHI())
1778     return 0;
1779   assert(getNumOperands() >= 3 &&
1780          "It's illegal to have a PHI without source operands");
1781 
1782   unsigned Reg = getOperand(1).getReg();
1783   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1784     if (getOperand(i).getReg() != Reg)
1785       return 0;
1786   return Reg;
1787 }
1788 
1789 bool MachineInstr::hasUnmodeledSideEffects() const {
1790   if (hasProperty(MCID::UnmodeledSideEffects))
1791     return true;
1792   if (isInlineAsm()) {
1793     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1794     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1795       return true;
1796   }
1797 
1798   return false;
1799 }
1800 
1801 bool MachineInstr::isLoadFoldBarrier() const {
1802   return mayStore() || isCall() || hasUnmodeledSideEffects();
1803 }
1804 
1805 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1806 ///
1807 bool MachineInstr::allDefsAreDead() const {
1808   for (const MachineOperand &MO : operands()) {
1809     if (!MO.isReg() || MO.isUse())
1810       continue;
1811     if (!MO.isDead())
1812       return false;
1813   }
1814   return true;
1815 }
1816 
1817 /// copyImplicitOps - Copy implicit register operands from specified
1818 /// instruction to this instruction.
1819 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1820                                    const MachineInstr &MI) {
1821   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1822        i != e; ++i) {
1823     const MachineOperand &MO = MI.getOperand(i);
1824     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1825       addOperand(MF, MO);
1826   }
1827 }
1828 
1829 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1830 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1831   dbgs() << "  ";
1832   print(dbgs());
1833 }
1834 #endif
1835 
1836 void MachineInstr::print(raw_ostream &OS, bool SkipOpers, bool SkipDebugLoc,
1837                          const TargetInstrInfo *TII) const {
1838   const Module *M = nullptr;
1839   if (const MachineBasicBlock *MBB = getParent())
1840     if (const MachineFunction *MF = MBB->getParent())
1841       M = MF->getFunction()->getParent();
1842 
1843   ModuleSlotTracker MST(M);
1844   print(OS, MST, SkipOpers, SkipDebugLoc, TII);
1845 }
1846 
1847 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1848                          bool SkipOpers, bool SkipDebugLoc,
1849                          const TargetInstrInfo *TII) const {
1850   // We can be a bit tidier if we know the MachineFunction.
1851   const MachineFunction *MF = nullptr;
1852   const TargetRegisterInfo *TRI = nullptr;
1853   const MachineRegisterInfo *MRI = nullptr;
1854   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1855 
1856   if (const MachineBasicBlock *MBB = getParent()) {
1857     MF = MBB->getParent();
1858     if (MF) {
1859       MRI = &MF->getRegInfo();
1860       TRI = MF->getSubtarget().getRegisterInfo();
1861       if (!TII)
1862         TII = MF->getSubtarget().getInstrInfo();
1863       IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
1864     }
1865   }
1866 
1867   // Save a list of virtual registers.
1868   SmallVector<unsigned, 8> VirtRegs;
1869 
1870   // Print explicitly defined operands on the left of an assignment syntax.
1871   unsigned StartOp = 0, e = getNumOperands();
1872   for (; StartOp < e && getOperand(StartOp).isReg() &&
1873          getOperand(StartOp).isDef() &&
1874          !getOperand(StartOp).isImplicit();
1875        ++StartOp) {
1876     if (StartOp != 0) OS << ", ";
1877     getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo);
1878     unsigned Reg = getOperand(StartOp).getReg();
1879     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1880       VirtRegs.push_back(Reg);
1881       LLT Ty = MRI ? MRI->getType(Reg) : LLT{};
1882       if (Ty.isValid())
1883         OS << '(' << Ty << ')';
1884     }
1885   }
1886 
1887   if (StartOp != 0)
1888     OS << " = ";
1889 
1890   // Print the opcode name.
1891   if (TII)
1892     OS << TII->getName(getOpcode());
1893   else
1894     OS << "UNKNOWN";
1895 
1896   if (SkipOpers)
1897     return;
1898 
1899   // Print the rest of the operands.
1900   bool FirstOp = true;
1901   unsigned AsmDescOp = ~0u;
1902   unsigned AsmOpCount = 0;
1903 
1904   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1905     // Print asm string.
1906     OS << " ";
1907     getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
1908 
1909     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1910     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1911     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1912       OS << " [sideeffect]";
1913     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1914       OS << " [mayload]";
1915     if (ExtraInfo & InlineAsm::Extra_MayStore)
1916       OS << " [maystore]";
1917     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1918       OS << " [isconvergent]";
1919     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1920       OS << " [alignstack]";
1921     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1922       OS << " [attdialect]";
1923     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1924       OS << " [inteldialect]";
1925 
1926     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1927     FirstOp = false;
1928   }
1929 
1930   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1931     const MachineOperand &MO = getOperand(i);
1932 
1933     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1934       VirtRegs.push_back(MO.getReg());
1935 
1936     if (FirstOp) FirstOp = false; else OS << ",";
1937     OS << " ";
1938     if (i < getDesc().NumOperands) {
1939       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1940       if (MCOI.isPredicate())
1941         OS << "pred:";
1942       if (MCOI.isOptionalDef())
1943         OS << "opt:";
1944     }
1945     if (isDebugValue() && MO.isMetadata()) {
1946       // Pretty print DBG_VALUE instructions.
1947       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1948       if (DIV && !DIV->getName().empty())
1949         OS << "!\"" << DIV->getName() << '\"';
1950       else
1951         MO.print(OS, MST, TRI);
1952     } else if (TRI && (isInsertSubreg() || isRegSequence() ||
1953                        (isSubregToReg() && i == 3)) && MO.isImm()) {
1954       OS << TRI->getSubRegIndexName(MO.getImm());
1955     } else if (i == AsmDescOp && MO.isImm()) {
1956       // Pretty print the inline asm operand descriptor.
1957       OS << '$' << AsmOpCount++;
1958       unsigned Flag = MO.getImm();
1959       switch (InlineAsm::getKind(Flag)) {
1960       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1961       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1962       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1963       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1964       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1965       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1966       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1967       }
1968 
1969       unsigned RCID = 0;
1970       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1971           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1972         if (TRI) {
1973           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1974         } else
1975           OS << ":RC" << RCID;
1976       }
1977 
1978       if (InlineAsm::isMemKind(Flag)) {
1979         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1980         switch (MCID) {
1981         case InlineAsm::Constraint_es: OS << ":es"; break;
1982         case InlineAsm::Constraint_i:  OS << ":i"; break;
1983         case InlineAsm::Constraint_m:  OS << ":m"; break;
1984         case InlineAsm::Constraint_o:  OS << ":o"; break;
1985         case InlineAsm::Constraint_v:  OS << ":v"; break;
1986         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1987         case InlineAsm::Constraint_R:  OS << ":R"; break;
1988         case InlineAsm::Constraint_S:  OS << ":S"; break;
1989         case InlineAsm::Constraint_T:  OS << ":T"; break;
1990         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1991         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1992         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1993         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1994         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1995         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1996         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1997         case InlineAsm::Constraint_X:  OS << ":X"; break;
1998         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1999         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
2000         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
2001         default: OS << ":?"; break;
2002         }
2003       }
2004 
2005       unsigned TiedTo = 0;
2006       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
2007         OS << " tiedto:$" << TiedTo;
2008 
2009       OS << ']';
2010 
2011       // Compute the index of the next operand descriptor.
2012       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
2013     } else
2014       MO.print(OS, MST, TRI);
2015   }
2016 
2017   bool HaveSemi = false;
2018   const unsigned PrintableFlags = FrameSetup | FrameDestroy;
2019   if (Flags & PrintableFlags) {
2020     if (!HaveSemi) {
2021       OS << ";";
2022       HaveSemi = true;
2023     }
2024     OS << " flags: ";
2025 
2026     if (Flags & FrameSetup)
2027       OS << "FrameSetup";
2028 
2029     if (Flags & FrameDestroy)
2030       OS << "FrameDestroy";
2031   }
2032 
2033   if (!memoperands_empty()) {
2034     if (!HaveSemi) {
2035       OS << ";";
2036       HaveSemi = true;
2037     }
2038 
2039     OS << " mem:";
2040     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
2041          i != e; ++i) {
2042       (*i)->print(OS, MST);
2043       if (std::next(i) != e)
2044         OS << " ";
2045     }
2046   }
2047 
2048   // Print the regclass of any virtual registers encountered.
2049   if (MRI && !VirtRegs.empty()) {
2050     if (!HaveSemi) {
2051       OS << ";";
2052       HaveSemi = true;
2053     }
2054     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
2055       const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]);
2056       if (!RC)
2057         continue;
2058       // Generic virtual registers do not have register classes.
2059       if (RC.is<const RegisterBank *>())
2060         OS << " " << RC.get<const RegisterBank *>()->getName();
2061       else
2062         OS << " "
2063            << TRI->getRegClassName(RC.get<const TargetRegisterClass *>());
2064       OS << ':' << PrintReg(VirtRegs[i]);
2065       for (unsigned j = i+1; j != VirtRegs.size();) {
2066         if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) {
2067           ++j;
2068           continue;
2069         }
2070         if (VirtRegs[i] != VirtRegs[j])
2071           OS << "," << PrintReg(VirtRegs[j]);
2072         VirtRegs.erase(VirtRegs.begin()+j);
2073       }
2074     }
2075   }
2076 
2077   // Print debug location information.
2078   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
2079     if (!HaveSemi)
2080       OS << ";";
2081     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
2082     OS << " line no:" <<  DV->getLine();
2083     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
2084       DebugLoc InlinedAtDL(InlinedAt);
2085       if (InlinedAtDL && MF) {
2086         OS << " inlined @[ ";
2087         InlinedAtDL.print(OS);
2088         OS << " ]";
2089       }
2090     }
2091     if (isIndirectDebugValue())
2092       OS << " indirect";
2093   } else if (SkipDebugLoc) {
2094     return;
2095   } else if (debugLoc && MF) {
2096     if (!HaveSemi)
2097       OS << ";";
2098     OS << " dbg:";
2099     debugLoc.print(OS);
2100   }
2101 
2102   OS << '\n';
2103 }
2104 
2105 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
2106                                      const TargetRegisterInfo *RegInfo,
2107                                      bool AddIfNotFound) {
2108   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
2109   bool hasAliases = isPhysReg &&
2110     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
2111   bool Found = false;
2112   SmallVector<unsigned,4> DeadOps;
2113   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2114     MachineOperand &MO = getOperand(i);
2115     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
2116       continue;
2117 
2118     // DEBUG_VALUE nodes do not contribute to code generation and should
2119     // always be ignored. Failure to do so may result in trying to modify
2120     // KILL flags on DEBUG_VALUE nodes.
2121     if (MO.isDebug())
2122       continue;
2123 
2124     unsigned Reg = MO.getReg();
2125     if (!Reg)
2126       continue;
2127 
2128     if (Reg == IncomingReg) {
2129       if (!Found) {
2130         if (MO.isKill())
2131           // The register is already marked kill.
2132           return true;
2133         if (isPhysReg && isRegTiedToDefOperand(i))
2134           // Two-address uses of physregs must not be marked kill.
2135           return true;
2136         MO.setIsKill();
2137         Found = true;
2138       }
2139     } else if (hasAliases && MO.isKill() &&
2140                TargetRegisterInfo::isPhysicalRegister(Reg)) {
2141       // A super-register kill already exists.
2142       if (RegInfo->isSuperRegister(IncomingReg, Reg))
2143         return true;
2144       if (RegInfo->isSubRegister(IncomingReg, Reg))
2145         DeadOps.push_back(i);
2146     }
2147   }
2148 
2149   // Trim unneeded kill operands.
2150   while (!DeadOps.empty()) {
2151     unsigned OpIdx = DeadOps.back();
2152     if (getOperand(OpIdx).isImplicit())
2153       RemoveOperand(OpIdx);
2154     else
2155       getOperand(OpIdx).setIsKill(false);
2156     DeadOps.pop_back();
2157   }
2158 
2159   // If not found, this means an alias of one of the operands is killed. Add a
2160   // new implicit operand if required.
2161   if (!Found && AddIfNotFound) {
2162     addOperand(MachineOperand::CreateReg(IncomingReg,
2163                                          false /*IsDef*/,
2164                                          true  /*IsImp*/,
2165                                          true  /*IsKill*/));
2166     return true;
2167   }
2168   return Found;
2169 }
2170 
2171 void MachineInstr::clearRegisterKills(unsigned Reg,
2172                                       const TargetRegisterInfo *RegInfo) {
2173   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
2174     RegInfo = nullptr;
2175   for (MachineOperand &MO : operands()) {
2176     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2177       continue;
2178     unsigned OpReg = MO.getReg();
2179     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
2180       MO.setIsKill(false);
2181   }
2182 }
2183 
2184 bool MachineInstr::addRegisterDead(unsigned Reg,
2185                                    const TargetRegisterInfo *RegInfo,
2186                                    bool AddIfNotFound) {
2187   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
2188   bool hasAliases = isPhysReg &&
2189     MCRegAliasIterator(Reg, RegInfo, false).isValid();
2190   bool Found = false;
2191   SmallVector<unsigned,4> DeadOps;
2192   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2193     MachineOperand &MO = getOperand(i);
2194     if (!MO.isReg() || !MO.isDef())
2195       continue;
2196     unsigned MOReg = MO.getReg();
2197     if (!MOReg)
2198       continue;
2199 
2200     if (MOReg == Reg) {
2201       MO.setIsDead();
2202       Found = true;
2203     } else if (hasAliases && MO.isDead() &&
2204                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
2205       // There exists a super-register that's marked dead.
2206       if (RegInfo->isSuperRegister(Reg, MOReg))
2207         return true;
2208       if (RegInfo->isSubRegister(Reg, MOReg))
2209         DeadOps.push_back(i);
2210     }
2211   }
2212 
2213   // Trim unneeded dead operands.
2214   while (!DeadOps.empty()) {
2215     unsigned OpIdx = DeadOps.back();
2216     if (getOperand(OpIdx).isImplicit())
2217       RemoveOperand(OpIdx);
2218     else
2219       getOperand(OpIdx).setIsDead(false);
2220     DeadOps.pop_back();
2221   }
2222 
2223   // If not found, this means an alias of one of the operands is dead. Add a
2224   // new implicit operand if required.
2225   if (Found || !AddIfNotFound)
2226     return Found;
2227 
2228   addOperand(MachineOperand::CreateReg(Reg,
2229                                        true  /*IsDef*/,
2230                                        true  /*IsImp*/,
2231                                        false /*IsKill*/,
2232                                        true  /*IsDead*/));
2233   return true;
2234 }
2235 
2236 void MachineInstr::clearRegisterDeads(unsigned Reg) {
2237   for (MachineOperand &MO : operands()) {
2238     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2239       continue;
2240     MO.setIsDead(false);
2241   }
2242 }
2243 
2244 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
2245   for (MachineOperand &MO : operands()) {
2246     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2247       continue;
2248     MO.setIsUndef(IsUndef);
2249   }
2250 }
2251 
2252 void MachineInstr::addRegisterDefined(unsigned Reg,
2253                                       const TargetRegisterInfo *RegInfo) {
2254   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
2255     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
2256     if (MO)
2257       return;
2258   } else {
2259     for (const MachineOperand &MO : operands()) {
2260       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2261           MO.getSubReg() == 0)
2262         return;
2263     }
2264   }
2265   addOperand(MachineOperand::CreateReg(Reg,
2266                                        true  /*IsDef*/,
2267                                        true  /*IsImp*/));
2268 }
2269 
2270 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
2271                                          const TargetRegisterInfo &TRI) {
2272   bool HasRegMask = false;
2273   for (MachineOperand &MO : operands()) {
2274     if (MO.isRegMask()) {
2275       HasRegMask = true;
2276       continue;
2277     }
2278     if (!MO.isReg() || !MO.isDef()) continue;
2279     unsigned Reg = MO.getReg();
2280     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
2281     // If there are no uses, including partial uses, the def is dead.
2282     if (llvm::none_of(UsedRegs,
2283                       [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
2284       MO.setIsDead();
2285   }
2286 
2287   // This is a call with a register mask operand.
2288   // Mask clobbers are always dead, so add defs for the non-dead defines.
2289   if (HasRegMask)
2290     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2291          I != E; ++I)
2292       addRegisterDefined(*I, &TRI);
2293 }
2294 
2295 unsigned
2296 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2297   // Build up a buffer of hash code components.
2298   SmallVector<size_t, 8> HashComponents;
2299   HashComponents.reserve(MI->getNumOperands() + 1);
2300   HashComponents.push_back(MI->getOpcode());
2301   for (const MachineOperand &MO : MI->operands()) {
2302     if (MO.isReg() && MO.isDef() &&
2303         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2304       continue;  // Skip virtual register defs.
2305 
2306     HashComponents.push_back(hash_value(MO));
2307   }
2308   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2309 }
2310 
2311 void MachineInstr::emitError(StringRef Msg) const {
2312   // Find the source location cookie.
2313   unsigned LocCookie = 0;
2314   const MDNode *LocMD = nullptr;
2315   for (unsigned i = getNumOperands(); i != 0; --i) {
2316     if (getOperand(i-1).isMetadata() &&
2317         (LocMD = getOperand(i-1).getMetadata()) &&
2318         LocMD->getNumOperands() != 0) {
2319       if (const ConstantInt *CI =
2320               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2321         LocCookie = CI->getZExtValue();
2322         break;
2323       }
2324     }
2325   }
2326 
2327   if (const MachineBasicBlock *MBB = getParent())
2328     if (const MachineFunction *MF = MBB->getParent())
2329       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2330   report_fatal_error(Msg);
2331 }
2332 
2333 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2334                                   const MCInstrDesc &MCID, bool IsIndirect,
2335                                   unsigned Reg, const MDNode *Variable,
2336                                   const MDNode *Expr) {
2337   assert(isa<DILocalVariable>(Variable) && "not a variable");
2338   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2339   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2340          "Expected inlined-at fields to agree");
2341   if (IsIndirect)
2342     return BuildMI(MF, DL, MCID)
2343         .addReg(Reg, RegState::Debug)
2344         .addImm(0U)
2345         .addMetadata(Variable)
2346         .addMetadata(Expr);
2347   else
2348     return BuildMI(MF, DL, MCID)
2349         .addReg(Reg, RegState::Debug)
2350         .addReg(0U, RegState::Debug)
2351         .addMetadata(Variable)
2352         .addMetadata(Expr);
2353 }
2354 
2355 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2356                                   MachineBasicBlock::iterator I,
2357                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2358                                   bool IsIndirect, unsigned Reg,
2359                                   const MDNode *Variable, const MDNode *Expr) {
2360   assert(isa<DILocalVariable>(Variable) && "not a variable");
2361   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2362   MachineFunction &MF = *BB.getParent();
2363   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2364   BB.insert(I, MI);
2365   return MachineInstrBuilder(MF, MI);
2366 }
2367 
2368 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2369                                           MachineBasicBlock::iterator I,
2370                                           const MachineInstr &Orig,
2371                                           int FrameIndex) {
2372   const MDNode *Var = Orig.getDebugVariable();
2373   const auto *Expr = cast_or_null<DIExpression>(Orig.getDebugExpression());
2374   bool IsIndirect = Orig.isIndirectDebugValue();
2375   if (IsIndirect)
2376     assert(Orig.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
2377   DebugLoc DL = Orig.getDebugLoc();
2378   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
2379          "Expected inlined-at fields to agree");
2380   // If the DBG_VALUE already was a memory location, add an extra
2381   // DW_OP_deref. Otherwise just turning this from a register into a
2382   // memory/indirect location is sufficient.
2383   if (IsIndirect)
2384     Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
2385   return BuildMI(BB, I, DL, Orig.getDesc())
2386       .addFrameIndex(FrameIndex)
2387       .addImm(0U)
2388       .addMetadata(Var)
2389       .addMetadata(Expr);
2390 }
2391