1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/Constants.h" 16 #include "llvm/Function.h" 17 #include "llvm/InlineAsm.h" 18 #include "llvm/Metadata.h" 19 #include "llvm/Type.h" 20 #include "llvm/Value.h" 21 #include "llvm/Assembly/Writer.h" 22 #include "llvm/CodeGen/MachineConstantPool.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/PseudoSourceValue.h" 27 #include "llvm/MC/MCSymbol.h" 28 #include "llvm/Target/TargetMachine.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetInstrDesc.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/DebugInfo.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/LeakDetector.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/ADT/FoldingSet.h" 40 using namespace llvm; 41 42 //===----------------------------------------------------------------------===// 43 // MachineOperand Implementation 44 //===----------------------------------------------------------------------===// 45 46 /// AddRegOperandToRegInfo - Add this register operand to the specified 47 /// MachineRegisterInfo. If it is null, then the next/prev fields should be 48 /// explicitly nulled out. 49 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { 50 assert(isReg() && "Can only add reg operand to use lists"); 51 52 // If the reginfo pointer is null, just explicitly null out or next/prev 53 // pointers, to ensure they are not garbage. 54 if (RegInfo == 0) { 55 Contents.Reg.Prev = 0; 56 Contents.Reg.Next = 0; 57 return; 58 } 59 60 // Otherwise, add this operand to the head of the registers use/def list. 61 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); 62 63 // For SSA values, we prefer to keep the definition at the start of the list. 64 // we do this by skipping over the definition if it is at the head of the 65 // list. 66 if (*Head && (*Head)->isDef()) 67 Head = &(*Head)->Contents.Reg.Next; 68 69 Contents.Reg.Next = *Head; 70 if (Contents.Reg.Next) { 71 assert(getReg() == Contents.Reg.Next->getReg() && 72 "Different regs on the same list!"); 73 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; 74 } 75 76 Contents.Reg.Prev = Head; 77 *Head = this; 78 } 79 80 /// RemoveRegOperandFromRegInfo - Remove this register operand from the 81 /// MachineRegisterInfo it is linked with. 82 void MachineOperand::RemoveRegOperandFromRegInfo() { 83 assert(isOnRegUseList() && "Reg operand is not on a use list"); 84 // Unlink this from the doubly linked list of operands. 85 MachineOperand *NextOp = Contents.Reg.Next; 86 *Contents.Reg.Prev = NextOp; 87 if (NextOp) { 88 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); 89 NextOp->Contents.Reg.Prev = Contents.Reg.Prev; 90 } 91 Contents.Reg.Prev = 0; 92 Contents.Reg.Next = 0; 93 } 94 95 void MachineOperand::setReg(unsigned Reg) { 96 if (getReg() == Reg) return; // No change. 97 98 // Otherwise, we have to change the register. If this operand is embedded 99 // into a machine function, we need to update the old and new register's 100 // use/def lists. 101 if (MachineInstr *MI = getParent()) 102 if (MachineBasicBlock *MBB = MI->getParent()) 103 if (MachineFunction *MF = MBB->getParent()) { 104 RemoveRegOperandFromRegInfo(); 105 Contents.Reg.RegNo = Reg; 106 AddRegOperandToRegInfo(&MF->getRegInfo()); 107 return; 108 } 109 110 // Otherwise, just change the register, no problem. :) 111 Contents.Reg.RegNo = Reg; 112 } 113 114 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 115 const TargetRegisterInfo &TRI) { 116 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 117 if (SubIdx && getSubReg()) 118 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 119 setReg(Reg); 120 if (SubIdx) 121 setSubReg(SubIdx); 122 } 123 124 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 125 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 126 if (getSubReg()) { 127 Reg = TRI.getSubReg(Reg, getSubReg()); 128 assert(Reg && "Invalid SubReg for physical register"); 129 setSubReg(0); 130 } 131 setReg(Reg); 132 } 133 134 /// ChangeToImmediate - Replace this operand with a new immediate operand of 135 /// the specified value. If an operand is known to be an immediate already, 136 /// the setImm method should be used. 137 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 138 // If this operand is currently a register operand, and if this is in a 139 // function, deregister the operand from the register's use/def list. 140 if (isReg() && getParent() && getParent()->getParent() && 141 getParent()->getParent()->getParent()) 142 RemoveRegOperandFromRegInfo(); 143 144 OpKind = MO_Immediate; 145 Contents.ImmVal = ImmVal; 146 } 147 148 /// ChangeToRegister - Replace this operand with a new register operand of 149 /// the specified value. If an operand is known to be an register already, 150 /// the setReg method should be used. 151 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 152 bool isKill, bool isDead, bool isUndef, 153 bool isDebug) { 154 // If this operand is already a register operand, use setReg to update the 155 // register's use/def lists. 156 if (isReg()) { 157 assert(!isEarlyClobber()); 158 setReg(Reg); 159 } else { 160 // Otherwise, change this to a register and set the reg#. 161 OpKind = MO_Register; 162 Contents.Reg.RegNo = Reg; 163 164 // If this operand is embedded in a function, add the operand to the 165 // register's use/def list. 166 if (MachineInstr *MI = getParent()) 167 if (MachineBasicBlock *MBB = MI->getParent()) 168 if (MachineFunction *MF = MBB->getParent()) 169 AddRegOperandToRegInfo(&MF->getRegInfo()); 170 } 171 172 IsDef = isDef; 173 IsImp = isImp; 174 IsKill = isKill; 175 IsDead = isDead; 176 IsUndef = isUndef; 177 IsEarlyClobber = false; 178 IsDebug = isDebug; 179 SubReg = 0; 180 } 181 182 /// isIdenticalTo - Return true if this operand is identical to the specified 183 /// operand. 184 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 185 if (getType() != Other.getType() || 186 getTargetFlags() != Other.getTargetFlags()) 187 return false; 188 189 switch (getType()) { 190 default: llvm_unreachable("Unrecognized operand type"); 191 case MachineOperand::MO_Register: 192 return getReg() == Other.getReg() && isDef() == Other.isDef() && 193 getSubReg() == Other.getSubReg(); 194 case MachineOperand::MO_Immediate: 195 return getImm() == Other.getImm(); 196 case MachineOperand::MO_FPImmediate: 197 return getFPImm() == Other.getFPImm(); 198 case MachineOperand::MO_MachineBasicBlock: 199 return getMBB() == Other.getMBB(); 200 case MachineOperand::MO_FrameIndex: 201 return getIndex() == Other.getIndex(); 202 case MachineOperand::MO_ConstantPoolIndex: 203 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 204 case MachineOperand::MO_JumpTableIndex: 205 return getIndex() == Other.getIndex(); 206 case MachineOperand::MO_GlobalAddress: 207 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 208 case MachineOperand::MO_ExternalSymbol: 209 return !strcmp(getSymbolName(), Other.getSymbolName()) && 210 getOffset() == Other.getOffset(); 211 case MachineOperand::MO_BlockAddress: 212 return getBlockAddress() == Other.getBlockAddress(); 213 case MachineOperand::MO_MCSymbol: 214 return getMCSymbol() == Other.getMCSymbol(); 215 case MachineOperand::MO_Metadata: 216 return getMetadata() == Other.getMetadata(); 217 } 218 } 219 220 /// print - Print the specified machine operand. 221 /// 222 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 223 // If the instruction is embedded into a basic block, we can find the 224 // target info for the instruction. 225 if (!TM) 226 if (const MachineInstr *MI = getParent()) 227 if (const MachineBasicBlock *MBB = MI->getParent()) 228 if (const MachineFunction *MF = MBB->getParent()) 229 TM = &MF->getTarget(); 230 231 switch (getType()) { 232 case MachineOperand::MO_Register: 233 if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) { 234 OS << "%reg" << getReg(); 235 } else { 236 if (TM) 237 OS << "%" << TM->getRegisterInfo()->get(getReg()).Name; 238 else 239 OS << "%physreg" << getReg(); 240 } 241 242 if (getSubReg() != 0) { 243 if (TM) 244 OS << ':' << TM->getRegisterInfo()->getSubRegIndexName(getSubReg()); 245 else 246 OS << ':' << getSubReg(); 247 } 248 249 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 250 isEarlyClobber()) { 251 OS << '<'; 252 bool NeedComma = false; 253 if (isDef()) { 254 if (NeedComma) OS << ','; 255 if (isEarlyClobber()) 256 OS << "earlyclobber,"; 257 if (isImplicit()) 258 OS << "imp-"; 259 OS << "def"; 260 NeedComma = true; 261 } else if (isImplicit()) { 262 OS << "imp-use"; 263 NeedComma = true; 264 } 265 266 if (isKill() || isDead() || isUndef()) { 267 if (NeedComma) OS << ','; 268 if (isKill()) OS << "kill"; 269 if (isDead()) OS << "dead"; 270 if (isUndef()) { 271 if (isKill() || isDead()) 272 OS << ','; 273 OS << "undef"; 274 } 275 } 276 OS << '>'; 277 } 278 break; 279 case MachineOperand::MO_Immediate: 280 OS << getImm(); 281 break; 282 case MachineOperand::MO_FPImmediate: 283 if (getFPImm()->getType()->isFloatTy()) 284 OS << getFPImm()->getValueAPF().convertToFloat(); 285 else 286 OS << getFPImm()->getValueAPF().convertToDouble(); 287 break; 288 case MachineOperand::MO_MachineBasicBlock: 289 OS << "<BB#" << getMBB()->getNumber() << ">"; 290 break; 291 case MachineOperand::MO_FrameIndex: 292 OS << "<fi#" << getIndex() << '>'; 293 break; 294 case MachineOperand::MO_ConstantPoolIndex: 295 OS << "<cp#" << getIndex(); 296 if (getOffset()) OS << "+" << getOffset(); 297 OS << '>'; 298 break; 299 case MachineOperand::MO_JumpTableIndex: 300 OS << "<jt#" << getIndex() << '>'; 301 break; 302 case MachineOperand::MO_GlobalAddress: 303 OS << "<ga:"; 304 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 305 if (getOffset()) OS << "+" << getOffset(); 306 OS << '>'; 307 break; 308 case MachineOperand::MO_ExternalSymbol: 309 OS << "<es:" << getSymbolName(); 310 if (getOffset()) OS << "+" << getOffset(); 311 OS << '>'; 312 break; 313 case MachineOperand::MO_BlockAddress: 314 OS << '<'; 315 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 316 OS << '>'; 317 break; 318 case MachineOperand::MO_Metadata: 319 OS << '<'; 320 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 321 OS << '>'; 322 break; 323 case MachineOperand::MO_MCSymbol: 324 OS << "<MCSym=" << *getMCSymbol() << '>'; 325 break; 326 default: 327 llvm_unreachable("Unrecognized operand type"); 328 } 329 330 if (unsigned TF = getTargetFlags()) 331 OS << "[TF=" << TF << ']'; 332 } 333 334 //===----------------------------------------------------------------------===// 335 // MachineMemOperand Implementation 336 //===----------------------------------------------------------------------===// 337 338 /// getAddrSpace - Return the LLVM IR address space number that this pointer 339 /// points into. 340 unsigned MachinePointerInfo::getAddrSpace() const { 341 if (V == 0) return 0; 342 return cast<PointerType>(V->getType())->getAddressSpace(); 343 } 344 345 /// getConstantPool - Return a MachinePointerInfo record that refers to the 346 /// constant pool. 347 MachinePointerInfo MachinePointerInfo::getConstantPool() { 348 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 349 } 350 351 /// getFixedStack - Return a MachinePointerInfo record that refers to the 352 /// the specified FrameIndex. 353 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 354 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 355 } 356 357 MachinePointerInfo MachinePointerInfo::getJumpTable() { 358 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 359 } 360 361 MachinePointerInfo MachinePointerInfo::getGOT() { 362 return MachinePointerInfo(PseudoSourceValue::getGOT()); 363 } 364 365 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 366 uint64_t s, unsigned int a) 367 : PtrInfo(ptrinfo), Size(s), 368 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)) { 369 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 370 "invalid pointer value"); 371 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 372 assert((isLoad() || isStore()) && "Not a load/store!"); 373 } 374 375 /// Profile - Gather unique data for the object. 376 /// 377 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 378 ID.AddInteger(getOffset()); 379 ID.AddInteger(Size); 380 ID.AddPointer(getValue()); 381 ID.AddInteger(Flags); 382 } 383 384 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 385 // The Value and Offset may differ due to CSE. But the flags and size 386 // should be the same. 387 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 388 assert(MMO->getSize() == getSize() && "Size mismatch!"); 389 390 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 391 // Update the alignment value. 392 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 393 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 394 // Also update the base and offset, because the new alignment may 395 // not be applicable with the old ones. 396 PtrInfo = MMO->PtrInfo; 397 } 398 } 399 400 /// getAlignment - Return the minimum known alignment in bytes of the 401 /// actual memory reference. 402 uint64_t MachineMemOperand::getAlignment() const { 403 return MinAlign(getBaseAlignment(), getOffset()); 404 } 405 406 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 407 assert((MMO.isLoad() || MMO.isStore()) && 408 "SV has to be a load, store or both."); 409 410 if (MMO.isVolatile()) 411 OS << "Volatile "; 412 413 if (MMO.isLoad()) 414 OS << "LD"; 415 if (MMO.isStore()) 416 OS << "ST"; 417 OS << MMO.getSize(); 418 419 // Print the address information. 420 OS << "["; 421 if (!MMO.getValue()) 422 OS << "<unknown>"; 423 else 424 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 425 426 // If the alignment of the memory reference itself differs from the alignment 427 // of the base pointer, print the base alignment explicitly, next to the base 428 // pointer. 429 if (MMO.getBaseAlignment() != MMO.getAlignment()) 430 OS << "(align=" << MMO.getBaseAlignment() << ")"; 431 432 if (MMO.getOffset() != 0) 433 OS << "+" << MMO.getOffset(); 434 OS << "]"; 435 436 // Print the alignment of the reference. 437 if (MMO.getBaseAlignment() != MMO.getAlignment() || 438 MMO.getBaseAlignment() != MMO.getSize()) 439 OS << "(align=" << MMO.getAlignment() << ")"; 440 441 return OS; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // MachineInstr Implementation 446 //===----------------------------------------------------------------------===// 447 448 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with 449 /// TID NULL and no operands. 450 MachineInstr::MachineInstr() 451 : TID(0), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 452 Parent(0) { 453 // Make sure that we get added to a machine basicblock 454 LeakDetector::addGarbageObject(this); 455 } 456 457 void MachineInstr::addImplicitDefUseOperands() { 458 if (TID->ImplicitDefs) 459 for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs) 460 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 461 if (TID->ImplicitUses) 462 for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses) 463 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 464 } 465 466 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 467 /// implicit operands. It reserves space for the number of operands specified by 468 /// the TargetInstrDesc. 469 MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp) 470 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), 471 MemRefs(0), MemRefsEnd(0), Parent(0) { 472 if (!NoImp) 473 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 474 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 475 if (!NoImp) 476 addImplicitDefUseOperands(); 477 // Make sure that we get added to a machine basicblock 478 LeakDetector::addGarbageObject(this); 479 } 480 481 /// MachineInstr ctor - As above, but with a DebugLoc. 482 MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl, 483 bool NoImp) 484 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 485 Parent(0), debugLoc(dl) { 486 if (!NoImp) 487 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 488 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 489 if (!NoImp) 490 addImplicitDefUseOperands(); 491 // Make sure that we get added to a machine basicblock 492 LeakDetector::addGarbageObject(this); 493 } 494 495 /// MachineInstr ctor - Work exactly the same as the ctor two above, except 496 /// that the MachineInstr is created and added to the end of the specified 497 /// basic block. 498 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid) 499 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), 500 MemRefs(0), MemRefsEnd(0), Parent(0) { 501 assert(MBB && "Cannot use inserting ctor with null basic block!"); 502 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 503 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 504 addImplicitDefUseOperands(); 505 // Make sure that we get added to a machine basicblock 506 LeakDetector::addGarbageObject(this); 507 MBB->push_back(this); // Add instruction to end of basic block! 508 } 509 510 /// MachineInstr ctor - As above, but with a DebugLoc. 511 /// 512 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 513 const TargetInstrDesc &tid) 514 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 515 Parent(0), debugLoc(dl) { 516 assert(MBB && "Cannot use inserting ctor with null basic block!"); 517 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 518 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 519 addImplicitDefUseOperands(); 520 // Make sure that we get added to a machine basicblock 521 LeakDetector::addGarbageObject(this); 522 MBB->push_back(this); // Add instruction to end of basic block! 523 } 524 525 /// MachineInstr ctor - Copies MachineInstr arg exactly 526 /// 527 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 528 : TID(&MI.getDesc()), NumImplicitOps(0), AsmPrinterFlags(0), 529 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd), 530 Parent(0), debugLoc(MI.getDebugLoc()) { 531 Operands.reserve(MI.getNumOperands()); 532 533 // Add operands 534 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 535 addOperand(MI.getOperand(i)); 536 NumImplicitOps = MI.NumImplicitOps; 537 538 // Set parent to null. 539 Parent = 0; 540 541 LeakDetector::addGarbageObject(this); 542 } 543 544 MachineInstr::~MachineInstr() { 545 LeakDetector::removeGarbageObject(this); 546 #ifndef NDEBUG 547 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 548 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 549 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 550 "Reg operand def/use list corrupted"); 551 } 552 #endif 553 } 554 555 /// getRegInfo - If this instruction is embedded into a MachineFunction, 556 /// return the MachineRegisterInfo object for the current function, otherwise 557 /// return null. 558 MachineRegisterInfo *MachineInstr::getRegInfo() { 559 if (MachineBasicBlock *MBB = getParent()) 560 return &MBB->getParent()->getRegInfo(); 561 return 0; 562 } 563 564 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 565 /// this instruction from their respective use lists. This requires that the 566 /// operands already be on their use lists. 567 void MachineInstr::RemoveRegOperandsFromUseLists() { 568 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 569 if (Operands[i].isReg()) 570 Operands[i].RemoveRegOperandFromRegInfo(); 571 } 572 } 573 574 /// AddRegOperandsToUseLists - Add all of the register operands in 575 /// this instruction from their respective use lists. This requires that the 576 /// operands not be on their use lists yet. 577 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { 578 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 579 if (Operands[i].isReg()) 580 Operands[i].AddRegOperandToRegInfo(&RegInfo); 581 } 582 } 583 584 585 /// addOperand - Add the specified operand to the instruction. If it is an 586 /// implicit operand, it is added to the end of the operand list. If it is 587 /// an explicit operand it is added at the end of the explicit operand list 588 /// (before the first implicit operand). 589 void MachineInstr::addOperand(const MachineOperand &Op) { 590 bool isImpReg = Op.isReg() && Op.isImplicit(); 591 assert((isImpReg || !OperandsComplete()) && 592 "Trying to add an operand to a machine instr that is already done!"); 593 594 MachineRegisterInfo *RegInfo = getRegInfo(); 595 596 // If we are adding the operand to the end of the list, our job is simpler. 597 // This is true most of the time, so this is a reasonable optimization. 598 if (isImpReg || NumImplicitOps == 0) { 599 // We can only do this optimization if we know that the operand list won't 600 // reallocate. 601 if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) { 602 Operands.push_back(Op); 603 604 // Set the parent of the operand. 605 Operands.back().ParentMI = this; 606 607 // If the operand is a register, update the operand's use list. 608 if (Op.isReg()) { 609 Operands.back().AddRegOperandToRegInfo(RegInfo); 610 // If the register operand is flagged as early, mark the operand as such 611 unsigned OpNo = Operands.size() - 1; 612 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 613 Operands[OpNo].setIsEarlyClobber(true); 614 } 615 return; 616 } 617 } 618 619 // Otherwise, we have to insert a real operand before any implicit ones. 620 unsigned OpNo = Operands.size()-NumImplicitOps; 621 622 // If this instruction isn't embedded into a function, then we don't need to 623 // update any operand lists. 624 if (RegInfo == 0) { 625 // Simple insertion, no reginfo update needed for other register operands. 626 Operands.insert(Operands.begin()+OpNo, Op); 627 Operands[OpNo].ParentMI = this; 628 629 // Do explicitly set the reginfo for this operand though, to ensure the 630 // next/prev fields are properly nulled out. 631 if (Operands[OpNo].isReg()) { 632 Operands[OpNo].AddRegOperandToRegInfo(0); 633 // If the register operand is flagged as early, mark the operand as such 634 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 635 Operands[OpNo].setIsEarlyClobber(true); 636 } 637 638 } else if (Operands.size()+1 <= Operands.capacity()) { 639 // Otherwise, we have to remove register operands from their register use 640 // list, add the operand, then add the register operands back to their use 641 // list. This also must handle the case when the operand list reallocates 642 // to somewhere else. 643 644 // If insertion of this operand won't cause reallocation of the operand 645 // list, just remove the implicit operands, add the operand, then re-add all 646 // the rest of the operands. 647 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 648 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 649 Operands[i].RemoveRegOperandFromRegInfo(); 650 } 651 652 // Add the operand. If it is a register, add it to the reg list. 653 Operands.insert(Operands.begin()+OpNo, Op); 654 Operands[OpNo].ParentMI = this; 655 656 if (Operands[OpNo].isReg()) { 657 Operands[OpNo].AddRegOperandToRegInfo(RegInfo); 658 // If the register operand is flagged as early, mark the operand as such 659 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 660 Operands[OpNo].setIsEarlyClobber(true); 661 } 662 663 // Re-add all the implicit ops. 664 for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) { 665 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 666 Operands[i].AddRegOperandToRegInfo(RegInfo); 667 } 668 } else { 669 // Otherwise, we will be reallocating the operand list. Remove all reg 670 // operands from their list, then readd them after the operand list is 671 // reallocated. 672 RemoveRegOperandsFromUseLists(); 673 674 Operands.insert(Operands.begin()+OpNo, Op); 675 Operands[OpNo].ParentMI = this; 676 677 // Re-add all the operands. 678 AddRegOperandsToUseLists(*RegInfo); 679 680 // If the register operand is flagged as early, mark the operand as such 681 if (Operands[OpNo].isReg() 682 && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 683 Operands[OpNo].setIsEarlyClobber(true); 684 } 685 } 686 687 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 688 /// fewer operand than it started with. 689 /// 690 void MachineInstr::RemoveOperand(unsigned OpNo) { 691 assert(OpNo < Operands.size() && "Invalid operand number"); 692 693 // Special case removing the last one. 694 if (OpNo == Operands.size()-1) { 695 // If needed, remove from the reg def/use list. 696 if (Operands.back().isReg() && Operands.back().isOnRegUseList()) 697 Operands.back().RemoveRegOperandFromRegInfo(); 698 699 Operands.pop_back(); 700 return; 701 } 702 703 // Otherwise, we are removing an interior operand. If we have reginfo to 704 // update, remove all operands that will be shifted down from their reg lists, 705 // move everything down, then re-add them. 706 MachineRegisterInfo *RegInfo = getRegInfo(); 707 if (RegInfo) { 708 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 709 if (Operands[i].isReg()) 710 Operands[i].RemoveRegOperandFromRegInfo(); 711 } 712 } 713 714 Operands.erase(Operands.begin()+OpNo); 715 716 if (RegInfo) { 717 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 718 if (Operands[i].isReg()) 719 Operands[i].AddRegOperandToRegInfo(RegInfo); 720 } 721 } 722 } 723 724 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 725 /// This function should be used only occasionally. The setMemRefs function 726 /// is the primary method for setting up a MachineInstr's MemRefs list. 727 void MachineInstr::addMemOperand(MachineFunction &MF, 728 MachineMemOperand *MO) { 729 mmo_iterator OldMemRefs = MemRefs; 730 mmo_iterator OldMemRefsEnd = MemRefsEnd; 731 732 size_t NewNum = (MemRefsEnd - MemRefs) + 1; 733 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 734 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum; 735 736 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs); 737 NewMemRefs[NewNum - 1] = MO; 738 739 MemRefs = NewMemRefs; 740 MemRefsEnd = NewMemRefsEnd; 741 } 742 743 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 744 MICheckType Check) const { 745 // If opcodes or number of operands are not the same then the two 746 // instructions are obviously not identical. 747 if (Other->getOpcode() != getOpcode() || 748 Other->getNumOperands() != getNumOperands()) 749 return false; 750 751 // Check operands to make sure they match. 752 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 753 const MachineOperand &MO = getOperand(i); 754 const MachineOperand &OMO = Other->getOperand(i); 755 // Clients may or may not want to ignore defs when testing for equality. 756 // For example, machine CSE pass only cares about finding common 757 // subexpressions, so it's safe to ignore virtual register defs. 758 if (Check != CheckDefs && MO.isReg() && MO.isDef()) { 759 if (Check == IgnoreDefs) 760 continue; 761 // Check == IgnoreVRegDefs 762 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 763 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 764 if (MO.getReg() != OMO.getReg()) 765 return false; 766 } else if (!MO.isIdenticalTo(OMO)) 767 return false; 768 } 769 return true; 770 } 771 772 /// removeFromParent - This method unlinks 'this' from the containing basic 773 /// block, and returns it, but does not delete it. 774 MachineInstr *MachineInstr::removeFromParent() { 775 assert(getParent() && "Not embedded in a basic block!"); 776 getParent()->remove(this); 777 return this; 778 } 779 780 781 /// eraseFromParent - This method unlinks 'this' from the containing basic 782 /// block, and deletes it. 783 void MachineInstr::eraseFromParent() { 784 assert(getParent() && "Not embedded in a basic block!"); 785 getParent()->erase(this); 786 } 787 788 789 /// OperandComplete - Return true if it's illegal to add a new operand 790 /// 791 bool MachineInstr::OperandsComplete() const { 792 unsigned short NumOperands = TID->getNumOperands(); 793 if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands) 794 return true; // Broken: we have all the operands of this instruction! 795 return false; 796 } 797 798 /// getNumExplicitOperands - Returns the number of non-implicit operands. 799 /// 800 unsigned MachineInstr::getNumExplicitOperands() const { 801 unsigned NumOperands = TID->getNumOperands(); 802 if (!TID->isVariadic()) 803 return NumOperands; 804 805 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 806 const MachineOperand &MO = getOperand(i); 807 if (!MO.isReg() || !MO.isImplicit()) 808 NumOperands++; 809 } 810 return NumOperands; 811 } 812 813 814 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 815 /// the specific register or -1 if it is not found. It further tightens 816 /// the search criteria to a use that kills the register if isKill is true. 817 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 818 const TargetRegisterInfo *TRI) const { 819 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 820 const MachineOperand &MO = getOperand(i); 821 if (!MO.isReg() || !MO.isUse()) 822 continue; 823 unsigned MOReg = MO.getReg(); 824 if (!MOReg) 825 continue; 826 if (MOReg == Reg || 827 (TRI && 828 TargetRegisterInfo::isPhysicalRegister(MOReg) && 829 TargetRegisterInfo::isPhysicalRegister(Reg) && 830 TRI->isSubRegister(MOReg, Reg))) 831 if (!isKill || MO.isKill()) 832 return i; 833 } 834 return -1; 835 } 836 837 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 838 /// indicating if this instruction reads or writes Reg. This also considers 839 /// partial defines. 840 std::pair<bool,bool> 841 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 842 SmallVectorImpl<unsigned> *Ops) const { 843 bool PartDef = false; // Partial redefine. 844 bool FullDef = false; // Full define. 845 bool Use = false; 846 847 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 848 const MachineOperand &MO = getOperand(i); 849 if (!MO.isReg() || MO.getReg() != Reg) 850 continue; 851 if (Ops) 852 Ops->push_back(i); 853 if (MO.isUse()) 854 Use |= !MO.isUndef(); 855 else if (MO.getSubReg()) 856 PartDef = true; 857 else 858 FullDef = true; 859 } 860 // A partial redefine uses Reg unless there is also a full define. 861 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 862 } 863 864 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 865 /// the specified register or -1 if it is not found. If isDead is true, defs 866 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 867 /// also checks if there is a def of a super-register. 868 int 869 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 870 const TargetRegisterInfo *TRI) const { 871 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 872 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 873 const MachineOperand &MO = getOperand(i); 874 if (!MO.isReg() || !MO.isDef()) 875 continue; 876 unsigned MOReg = MO.getReg(); 877 bool Found = (MOReg == Reg); 878 if (!Found && TRI && isPhys && 879 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 880 if (Overlap) 881 Found = TRI->regsOverlap(MOReg, Reg); 882 else 883 Found = TRI->isSubRegister(MOReg, Reg); 884 } 885 if (Found && (!isDead || MO.isDead())) 886 return i; 887 } 888 return -1; 889 } 890 891 /// findFirstPredOperandIdx() - Find the index of the first operand in the 892 /// operand list that is used to represent the predicate. It returns -1 if 893 /// none is found. 894 int MachineInstr::findFirstPredOperandIdx() const { 895 const TargetInstrDesc &TID = getDesc(); 896 if (TID.isPredicable()) { 897 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 898 if (TID.OpInfo[i].isPredicate()) 899 return i; 900 } 901 902 return -1; 903 } 904 905 /// isRegTiedToUseOperand - Given the index of a register def operand, 906 /// check if the register def is tied to a source operand, due to either 907 /// two-address elimination or inline assembly constraints. Returns the 908 /// first tied use operand index by reference is UseOpIdx is not null. 909 bool MachineInstr:: 910 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 911 if (isInlineAsm()) { 912 assert(DefOpIdx >= 3); 913 const MachineOperand &MO = getOperand(DefOpIdx); 914 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 915 return false; 916 // Determine the actual operand index that corresponds to this index. 917 unsigned DefNo = 0; 918 unsigned DefPart = 0; 919 for (unsigned i = 2, e = getNumOperands(); i < e; ) { 920 const MachineOperand &FMO = getOperand(i); 921 // After the normal asm operands there may be additional imp-def regs. 922 if (!FMO.isImm()) 923 return false; 924 // Skip over this def. 925 unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm()); 926 unsigned PrevDef = i + 1; 927 i = PrevDef + NumOps; 928 if (i > DefOpIdx) { 929 DefPart = DefOpIdx - PrevDef; 930 break; 931 } 932 ++DefNo; 933 } 934 for (unsigned i = 2, e = getNumOperands(); i != e; ++i) { 935 const MachineOperand &FMO = getOperand(i); 936 if (!FMO.isImm()) 937 continue; 938 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 939 continue; 940 unsigned Idx; 941 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 942 Idx == DefNo) { 943 if (UseOpIdx) 944 *UseOpIdx = (unsigned)i + 1 + DefPart; 945 return true; 946 } 947 } 948 return false; 949 } 950 951 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 952 const TargetInstrDesc &TID = getDesc(); 953 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) { 954 const MachineOperand &MO = getOperand(i); 955 if (MO.isReg() && MO.isUse() && 956 TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) { 957 if (UseOpIdx) 958 *UseOpIdx = (unsigned)i; 959 return true; 960 } 961 } 962 return false; 963 } 964 965 /// isRegTiedToDefOperand - Return true if the operand of the specified index 966 /// is a register use and it is tied to an def operand. It also returns the def 967 /// operand index by reference. 968 bool MachineInstr:: 969 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 970 if (isInlineAsm()) { 971 const MachineOperand &MO = getOperand(UseOpIdx); 972 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 973 return false; 974 975 // Find the flag operand corresponding to UseOpIdx 976 unsigned FlagIdx, NumOps=0; 977 for (FlagIdx = 2; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) { 978 const MachineOperand &UFMO = getOperand(FlagIdx); 979 // After the normal asm operands there may be additional imp-def regs. 980 if (!UFMO.isImm()) 981 return false; 982 NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm()); 983 assert(NumOps < getNumOperands() && "Invalid inline asm flag"); 984 if (UseOpIdx < FlagIdx+NumOps+1) 985 break; 986 } 987 if (FlagIdx >= UseOpIdx) 988 return false; 989 const MachineOperand &UFMO = getOperand(FlagIdx); 990 unsigned DefNo; 991 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 992 if (!DefOpIdx) 993 return true; 994 995 unsigned DefIdx = 2; 996 // Remember to adjust the index. First operand is asm string, second is 997 // the AlignStack bit, then there is a flag for each. 998 while (DefNo) { 999 const MachineOperand &FMO = getOperand(DefIdx); 1000 assert(FMO.isImm()); 1001 // Skip over this def. 1002 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 1003 --DefNo; 1004 } 1005 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 1006 return true; 1007 } 1008 return false; 1009 } 1010 1011 const TargetInstrDesc &TID = getDesc(); 1012 if (UseOpIdx >= TID.getNumOperands()) 1013 return false; 1014 const MachineOperand &MO = getOperand(UseOpIdx); 1015 if (!MO.isReg() || !MO.isUse()) 1016 return false; 1017 int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO); 1018 if (DefIdx == -1) 1019 return false; 1020 if (DefOpIdx) 1021 *DefOpIdx = (unsigned)DefIdx; 1022 return true; 1023 } 1024 1025 /// clearKillInfo - Clears kill flags on all operands. 1026 /// 1027 void MachineInstr::clearKillInfo() { 1028 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1029 MachineOperand &MO = getOperand(i); 1030 if (MO.isReg() && MO.isUse()) 1031 MO.setIsKill(false); 1032 } 1033 } 1034 1035 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1036 /// 1037 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1038 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1039 const MachineOperand &MO = MI->getOperand(i); 1040 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1041 continue; 1042 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1043 MachineOperand &MOp = getOperand(j); 1044 if (!MOp.isIdenticalTo(MO)) 1045 continue; 1046 if (MO.isKill()) 1047 MOp.setIsKill(); 1048 else 1049 MOp.setIsDead(); 1050 break; 1051 } 1052 } 1053 } 1054 1055 /// copyPredicates - Copies predicate operand(s) from MI. 1056 void MachineInstr::copyPredicates(const MachineInstr *MI) { 1057 const TargetInstrDesc &TID = MI->getDesc(); 1058 if (!TID.isPredicable()) 1059 return; 1060 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1061 if (TID.OpInfo[i].isPredicate()) { 1062 // Predicated operands must be last operands. 1063 addOperand(MI->getOperand(i)); 1064 } 1065 } 1066 } 1067 1068 void MachineInstr::substituteRegister(unsigned FromReg, 1069 unsigned ToReg, 1070 unsigned SubIdx, 1071 const TargetRegisterInfo &RegInfo) { 1072 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1073 if (SubIdx) 1074 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1075 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1076 MachineOperand &MO = getOperand(i); 1077 if (!MO.isReg() || MO.getReg() != FromReg) 1078 continue; 1079 MO.substPhysReg(ToReg, RegInfo); 1080 } 1081 } else { 1082 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1083 MachineOperand &MO = getOperand(i); 1084 if (!MO.isReg() || MO.getReg() != FromReg) 1085 continue; 1086 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1087 } 1088 } 1089 } 1090 1091 /// isSafeToMove - Return true if it is safe to move this instruction. If 1092 /// SawStore is set to true, it means that there is a store (or call) between 1093 /// the instruction's location and its intended destination. 1094 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1095 AliasAnalysis *AA, 1096 bool &SawStore) const { 1097 // Ignore stuff that we obviously can't move. 1098 if (TID->mayStore() || TID->isCall()) { 1099 SawStore = true; 1100 return false; 1101 } 1102 if (TID->isTerminator() || TID->hasUnmodeledSideEffects()) 1103 return false; 1104 1105 // See if this instruction does a load. If so, we have to guarantee that the 1106 // loaded value doesn't change between the load and the its intended 1107 // destination. The check for isInvariantLoad gives the targe the chance to 1108 // classify the load as always returning a constant, e.g. a constant pool 1109 // load. 1110 if (TID->mayLoad() && !isInvariantLoad(AA)) 1111 // Otherwise, this is a real load. If there is a store between the load and 1112 // end of block, or if the load is volatile, we can't move it. 1113 return !SawStore && !hasVolatileMemoryRef(); 1114 1115 return true; 1116 } 1117 1118 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1119 /// instruction which defined the specified register instead of copying it. 1120 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1121 AliasAnalysis *AA, 1122 unsigned DstReg) const { 1123 bool SawStore = false; 1124 if (!TII->isTriviallyReMaterializable(this, AA) || 1125 !isSafeToMove(TII, AA, SawStore)) 1126 return false; 1127 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1128 const MachineOperand &MO = getOperand(i); 1129 if (!MO.isReg()) 1130 continue; 1131 // FIXME: For now, do not remat any instruction with register operands. 1132 // Later on, we can loosen the restriction is the register operands have 1133 // not been modified between the def and use. Note, this is different from 1134 // MachineSink because the code is no longer in two-address form (at least 1135 // partially). 1136 if (MO.isUse()) 1137 return false; 1138 else if (!MO.isDead() && MO.getReg() != DstReg) 1139 return false; 1140 } 1141 return true; 1142 } 1143 1144 /// hasVolatileMemoryRef - Return true if this instruction may have a 1145 /// volatile memory reference, or if the information describing the 1146 /// memory reference is not available. Return false if it is known to 1147 /// have no volatile memory references. 1148 bool MachineInstr::hasVolatileMemoryRef() const { 1149 // An instruction known never to access memory won't have a volatile access. 1150 if (!TID->mayStore() && 1151 !TID->mayLoad() && 1152 !TID->isCall() && 1153 !TID->hasUnmodeledSideEffects()) 1154 return false; 1155 1156 // Otherwise, if the instruction has no memory reference information, 1157 // conservatively assume it wasn't preserved. 1158 if (memoperands_empty()) 1159 return true; 1160 1161 // Check the memory reference information for volatile references. 1162 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1163 if ((*I)->isVolatile()) 1164 return true; 1165 1166 return false; 1167 } 1168 1169 /// isInvariantLoad - Return true if this instruction is loading from a 1170 /// location whose value is invariant across the function. For example, 1171 /// loading a value from the constant pool or from the argument area 1172 /// of a function if it does not change. This should only return true of 1173 /// *all* loads the instruction does are invariant (if it does multiple loads). 1174 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1175 // If the instruction doesn't load at all, it isn't an invariant load. 1176 if (!TID->mayLoad()) 1177 return false; 1178 1179 // If the instruction has lost its memoperands, conservatively assume that 1180 // it may not be an invariant load. 1181 if (memoperands_empty()) 1182 return false; 1183 1184 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1185 1186 for (mmo_iterator I = memoperands_begin(), 1187 E = memoperands_end(); I != E; ++I) { 1188 if ((*I)->isVolatile()) return false; 1189 if ((*I)->isStore()) return false; 1190 1191 if (const Value *V = (*I)->getValue()) { 1192 // A load from a constant PseudoSourceValue is invariant. 1193 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1194 if (PSV->isConstant(MFI)) 1195 continue; 1196 // If we have an AliasAnalysis, ask it whether the memory is constant. 1197 if (AA && AA->pointsToConstantMemory(V)) 1198 continue; 1199 } 1200 1201 // Otherwise assume conservatively. 1202 return false; 1203 } 1204 1205 // Everything checks out. 1206 return true; 1207 } 1208 1209 /// isConstantValuePHI - If the specified instruction is a PHI that always 1210 /// merges together the same virtual register, return the register, otherwise 1211 /// return 0. 1212 unsigned MachineInstr::isConstantValuePHI() const { 1213 if (!isPHI()) 1214 return 0; 1215 assert(getNumOperands() >= 3 && 1216 "It's illegal to have a PHI without source operands"); 1217 1218 unsigned Reg = getOperand(1).getReg(); 1219 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1220 if (getOperand(i).getReg() != Reg) 1221 return 0; 1222 return Reg; 1223 } 1224 1225 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1226 /// 1227 bool MachineInstr::allDefsAreDead() const { 1228 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1229 const MachineOperand &MO = getOperand(i); 1230 if (!MO.isReg() || MO.isUse()) 1231 continue; 1232 if (!MO.isDead()) 1233 return false; 1234 } 1235 return true; 1236 } 1237 1238 void MachineInstr::dump() const { 1239 dbgs() << " " << *this; 1240 } 1241 1242 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1243 raw_ostream &CommentOS) { 1244 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1245 if (!DL.isUnknown()) { // Print source line info. 1246 DIScope Scope(DL.getScope(Ctx)); 1247 // Omit the directory, because it's likely to be long and uninteresting. 1248 if (Scope.Verify()) 1249 CommentOS << Scope.getFilename(); 1250 else 1251 CommentOS << "<unknown>"; 1252 CommentOS << ':' << DL.getLine(); 1253 if (DL.getCol() != 0) 1254 CommentOS << ':' << DL.getCol(); 1255 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1256 if (!InlinedAtDL.isUnknown()) { 1257 CommentOS << " @[ "; 1258 printDebugLoc(InlinedAtDL, MF, CommentOS); 1259 CommentOS << " ]"; 1260 } 1261 } 1262 } 1263 1264 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1265 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1266 const MachineFunction *MF = 0; 1267 const MachineRegisterInfo *MRI = 0; 1268 if (const MachineBasicBlock *MBB = getParent()) { 1269 MF = MBB->getParent(); 1270 if (!TM && MF) 1271 TM = &MF->getTarget(); 1272 if (MF) 1273 MRI = &MF->getRegInfo(); 1274 } 1275 1276 // Save a list of virtual registers. 1277 SmallVector<unsigned, 8> VirtRegs; 1278 1279 // Print explicitly defined operands on the left of an assignment syntax. 1280 unsigned StartOp = 0, e = getNumOperands(); 1281 for (; StartOp < e && getOperand(StartOp).isReg() && 1282 getOperand(StartOp).isDef() && 1283 !getOperand(StartOp).isImplicit(); 1284 ++StartOp) { 1285 if (StartOp != 0) OS << ", "; 1286 getOperand(StartOp).print(OS, TM); 1287 unsigned Reg = getOperand(StartOp).getReg(); 1288 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) 1289 VirtRegs.push_back(Reg); 1290 } 1291 1292 if (StartOp != 0) 1293 OS << " = "; 1294 1295 // Print the opcode name. 1296 OS << getDesc().getName(); 1297 1298 // Print the rest of the operands. 1299 bool OmittedAnyCallClobbers = false; 1300 bool FirstOp = true; 1301 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1302 const MachineOperand &MO = getOperand(i); 1303 1304 if (MO.isReg() && MO.getReg() && 1305 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1306 VirtRegs.push_back(MO.getReg()); 1307 1308 // Omit call-clobbered registers which aren't used anywhere. This makes 1309 // call instructions much less noisy on targets where calls clobber lots 1310 // of registers. Don't rely on MO.isDead() because we may be called before 1311 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1312 if (MF && getDesc().isCall() && 1313 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1314 unsigned Reg = MO.getReg(); 1315 if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) { 1316 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1317 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1318 bool HasAliasLive = false; 1319 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg); 1320 unsigned AliasReg = *Alias; ++Alias) 1321 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1322 HasAliasLive = true; 1323 break; 1324 } 1325 if (!HasAliasLive) { 1326 OmittedAnyCallClobbers = true; 1327 continue; 1328 } 1329 } 1330 } 1331 } 1332 1333 if (FirstOp) FirstOp = false; else OS << ","; 1334 OS << " "; 1335 if (i < getDesc().NumOperands) { 1336 const TargetOperandInfo &TOI = getDesc().OpInfo[i]; 1337 if (TOI.isPredicate()) 1338 OS << "pred:"; 1339 if (TOI.isOptionalDef()) 1340 OS << "opt:"; 1341 } 1342 if (isDebugValue() && MO.isMetadata()) { 1343 // Pretty print DBG_VALUE instructions. 1344 const MDNode *MD = MO.getMetadata(); 1345 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1346 OS << "!\"" << MDS->getString() << '\"'; 1347 else 1348 MO.print(OS, TM); 1349 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1350 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1351 } else 1352 MO.print(OS, TM); 1353 } 1354 1355 // Briefly indicate whether any call clobbers were omitted. 1356 if (OmittedAnyCallClobbers) { 1357 if (!FirstOp) OS << ","; 1358 OS << " ..."; 1359 } 1360 1361 bool HaveSemi = false; 1362 if (!memoperands_empty()) { 1363 if (!HaveSemi) OS << ";"; HaveSemi = true; 1364 1365 OS << " mem:"; 1366 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1367 i != e; ++i) { 1368 OS << **i; 1369 if (llvm::next(i) != e) 1370 OS << " "; 1371 } 1372 } 1373 1374 // Print the regclass of any virtual registers encountered. 1375 if (MRI && !VirtRegs.empty()) { 1376 if (!HaveSemi) OS << ";"; HaveSemi = true; 1377 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1378 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1379 OS << " " << RC->getName() << ":%reg" << VirtRegs[i]; 1380 for (unsigned j = i+1; j != VirtRegs.size();) { 1381 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1382 ++j; 1383 continue; 1384 } 1385 if (VirtRegs[i] != VirtRegs[j]) 1386 OS << "," << VirtRegs[j]; 1387 VirtRegs.erase(VirtRegs.begin()+j); 1388 } 1389 } 1390 } 1391 1392 if (!debugLoc.isUnknown() && MF) { 1393 if (!HaveSemi) OS << ";"; 1394 OS << " dbg:"; 1395 printDebugLoc(debugLoc, MF, OS); 1396 } 1397 1398 OS << "\n"; 1399 } 1400 1401 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1402 const TargetRegisterInfo *RegInfo, 1403 bool AddIfNotFound) { 1404 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1405 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1406 bool Found = false; 1407 SmallVector<unsigned,4> DeadOps; 1408 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1409 MachineOperand &MO = getOperand(i); 1410 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1411 continue; 1412 unsigned Reg = MO.getReg(); 1413 if (!Reg) 1414 continue; 1415 1416 if (Reg == IncomingReg) { 1417 if (!Found) { 1418 if (MO.isKill()) 1419 // The register is already marked kill. 1420 return true; 1421 if (isPhysReg && isRegTiedToDefOperand(i)) 1422 // Two-address uses of physregs must not be marked kill. 1423 return true; 1424 MO.setIsKill(); 1425 Found = true; 1426 } 1427 } else if (hasAliases && MO.isKill() && 1428 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1429 // A super-register kill already exists. 1430 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1431 return true; 1432 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1433 DeadOps.push_back(i); 1434 } 1435 } 1436 1437 // Trim unneeded kill operands. 1438 while (!DeadOps.empty()) { 1439 unsigned OpIdx = DeadOps.back(); 1440 if (getOperand(OpIdx).isImplicit()) 1441 RemoveOperand(OpIdx); 1442 else 1443 getOperand(OpIdx).setIsKill(false); 1444 DeadOps.pop_back(); 1445 } 1446 1447 // If not found, this means an alias of one of the operands is killed. Add a 1448 // new implicit operand if required. 1449 if (!Found && AddIfNotFound) { 1450 addOperand(MachineOperand::CreateReg(IncomingReg, 1451 false /*IsDef*/, 1452 true /*IsImp*/, 1453 true /*IsKill*/)); 1454 return true; 1455 } 1456 return Found; 1457 } 1458 1459 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1460 const TargetRegisterInfo *RegInfo, 1461 bool AddIfNotFound) { 1462 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1463 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1464 bool Found = false; 1465 SmallVector<unsigned,4> DeadOps; 1466 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1467 MachineOperand &MO = getOperand(i); 1468 if (!MO.isReg() || !MO.isDef()) 1469 continue; 1470 unsigned Reg = MO.getReg(); 1471 if (!Reg) 1472 continue; 1473 1474 if (Reg == IncomingReg) { 1475 if (!Found) { 1476 if (MO.isDead()) 1477 // The register is already marked dead. 1478 return true; 1479 MO.setIsDead(); 1480 Found = true; 1481 } 1482 } else if (hasAliases && MO.isDead() && 1483 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1484 // There exists a super-register that's marked dead. 1485 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1486 return true; 1487 if (RegInfo->getSubRegisters(IncomingReg) && 1488 RegInfo->getSuperRegisters(Reg) && 1489 RegInfo->isSubRegister(IncomingReg, Reg)) 1490 DeadOps.push_back(i); 1491 } 1492 } 1493 1494 // Trim unneeded dead operands. 1495 while (!DeadOps.empty()) { 1496 unsigned OpIdx = DeadOps.back(); 1497 if (getOperand(OpIdx).isImplicit()) 1498 RemoveOperand(OpIdx); 1499 else 1500 getOperand(OpIdx).setIsDead(false); 1501 DeadOps.pop_back(); 1502 } 1503 1504 // If not found, this means an alias of one of the operands is dead. Add a 1505 // new implicit operand if required. 1506 if (Found || !AddIfNotFound) 1507 return Found; 1508 1509 addOperand(MachineOperand::CreateReg(IncomingReg, 1510 true /*IsDef*/, 1511 true /*IsImp*/, 1512 false /*IsKill*/, 1513 true /*IsDead*/)); 1514 return true; 1515 } 1516 1517 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1518 const TargetRegisterInfo *RegInfo) { 1519 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1520 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1521 if (MO) 1522 return; 1523 } else { 1524 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1525 const MachineOperand &MO = getOperand(i); 1526 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1527 MO.getSubReg() == 0) 1528 return; 1529 } 1530 } 1531 addOperand(MachineOperand::CreateReg(IncomingReg, 1532 true /*IsDef*/, 1533 true /*IsImp*/)); 1534 } 1535 1536 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs, 1537 const TargetRegisterInfo &TRI) { 1538 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1539 MachineOperand &MO = getOperand(i); 1540 if (!MO.isReg() || !MO.isDef()) continue; 1541 unsigned Reg = MO.getReg(); 1542 if (Reg == 0) continue; 1543 bool Dead = true; 1544 for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(), 1545 E = UsedRegs.end(); I != E; ++I) 1546 if (TRI.regsOverlap(*I, Reg)) { 1547 Dead = false; 1548 break; 1549 } 1550 // If there are no uses, including partial uses, the def is dead. 1551 if (Dead) MO.setIsDead(); 1552 } 1553 } 1554 1555 unsigned 1556 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1557 unsigned Hash = MI->getOpcode() * 37; 1558 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1559 const MachineOperand &MO = MI->getOperand(i); 1560 uint64_t Key = (uint64_t)MO.getType() << 32; 1561 switch (MO.getType()) { 1562 default: break; 1563 case MachineOperand::MO_Register: 1564 if (MO.isDef() && MO.getReg() && 1565 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1566 continue; // Skip virtual register defs. 1567 Key |= MO.getReg(); 1568 break; 1569 case MachineOperand::MO_Immediate: 1570 Key |= MO.getImm(); 1571 break; 1572 case MachineOperand::MO_FrameIndex: 1573 case MachineOperand::MO_ConstantPoolIndex: 1574 case MachineOperand::MO_JumpTableIndex: 1575 Key |= MO.getIndex(); 1576 break; 1577 case MachineOperand::MO_MachineBasicBlock: 1578 Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB()); 1579 break; 1580 case MachineOperand::MO_GlobalAddress: 1581 Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal()); 1582 break; 1583 case MachineOperand::MO_BlockAddress: 1584 Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress()); 1585 break; 1586 case MachineOperand::MO_MCSymbol: 1587 Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol()); 1588 break; 1589 } 1590 Key += ~(Key << 32); 1591 Key ^= (Key >> 22); 1592 Key += ~(Key << 13); 1593 Key ^= (Key >> 8); 1594 Key += (Key << 3); 1595 Key ^= (Key >> 15); 1596 Key += ~(Key << 27); 1597 Key ^= (Key >> 31); 1598 Hash = (unsigned)Key + Hash * 37; 1599 } 1600 return Hash; 1601 } 1602