xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 4e9736b1c93b61334fe3d4c7a5b32a827c51424a)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/ModuleSlotTracker.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/MC/MCInstrDesc.h"
50 #include "llvm/MC/MCSymbol.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/LowLevelTypeImpl.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetInstrInfo.h"
61 #include "llvm/Target/TargetIntrinsicInfo.h"
62 #include "llvm/Target/TargetMachine.h"
63 #include "llvm/Target/TargetRegisterInfo.h"
64 #include "llvm/Target/TargetSubtargetInfo.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <iterator>
71 #include <utility>
72 
73 using namespace llvm;
74 
75 static cl::opt<bool> PrintWholeRegMask(
76     "print-whole-regmask",
77     cl::desc("Print the full contents of regmask operands in IR dumps"),
78     cl::init(true), cl::Hidden);
79 
80 //===----------------------------------------------------------------------===//
81 // MachineOperand Implementation
82 //===----------------------------------------------------------------------===//
83 
84 void MachineOperand::setReg(unsigned Reg) {
85   if (getReg() == Reg) return; // No change.
86 
87   // Otherwise, we have to change the register.  If this operand is embedded
88   // into a machine function, we need to update the old and new register's
89   // use/def lists.
90   if (MachineInstr *MI = getParent())
91     if (MachineBasicBlock *MBB = MI->getParent())
92       if (MachineFunction *MF = MBB->getParent()) {
93         MachineRegisterInfo &MRI = MF->getRegInfo();
94         MRI.removeRegOperandFromUseList(this);
95         SmallContents.RegNo = Reg;
96         MRI.addRegOperandToUseList(this);
97         return;
98       }
99 
100   // Otherwise, just change the register, no problem.  :)
101   SmallContents.RegNo = Reg;
102 }
103 
104 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
105                                   const TargetRegisterInfo &TRI) {
106   assert(TargetRegisterInfo::isVirtualRegister(Reg));
107   if (SubIdx && getSubReg())
108     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
109   setReg(Reg);
110   if (SubIdx)
111     setSubReg(SubIdx);
112 }
113 
114 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
115   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
116   if (getSubReg()) {
117     Reg = TRI.getSubReg(Reg, getSubReg());
118     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
119     // That won't happen in legal code.
120     setSubReg(0);
121     if (isDef())
122       setIsUndef(false);
123   }
124   setReg(Reg);
125 }
126 
127 /// Change a def to a use, or a use to a def.
128 void MachineOperand::setIsDef(bool Val) {
129   assert(isReg() && "Wrong MachineOperand accessor");
130   assert((!Val || !isDebug()) && "Marking a debug operation as def");
131   if (IsDef == Val)
132     return;
133   // MRI may keep uses and defs in different list positions.
134   if (MachineInstr *MI = getParent())
135     if (MachineBasicBlock *MBB = MI->getParent())
136       if (MachineFunction *MF = MBB->getParent()) {
137         MachineRegisterInfo &MRI = MF->getRegInfo();
138         MRI.removeRegOperandFromUseList(this);
139         IsDef = Val;
140         MRI.addRegOperandToUseList(this);
141         return;
142       }
143   IsDef = Val;
144 }
145 
146 // If this operand is currently a register operand, and if this is in a
147 // function, deregister the operand from the register's use/def list.
148 void MachineOperand::removeRegFromUses() {
149   if (!isReg() || !isOnRegUseList())
150     return;
151 
152   if (MachineInstr *MI = getParent()) {
153     if (MachineBasicBlock *MBB = MI->getParent()) {
154       if (MachineFunction *MF = MBB->getParent())
155         MF->getRegInfo().removeRegOperandFromUseList(this);
156     }
157   }
158 }
159 
160 /// ChangeToImmediate - Replace this operand with a new immediate operand of
161 /// the specified value.  If an operand is known to be an immediate already,
162 /// the setImm method should be used.
163 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
164   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
165 
166   removeRegFromUses();
167 
168   OpKind = MO_Immediate;
169   Contents.ImmVal = ImmVal;
170 }
171 
172 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
173   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
174 
175   removeRegFromUses();
176 
177   OpKind = MO_FPImmediate;
178   Contents.CFP = FPImm;
179 }
180 
181 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
182   assert((!isReg() || !isTied()) &&
183          "Cannot change a tied operand into an external symbol");
184 
185   removeRegFromUses();
186 
187   OpKind = MO_ExternalSymbol;
188   Contents.OffsetedInfo.Val.SymbolName = SymName;
189   setOffset(0); // Offset is always 0.
190   setTargetFlags(TargetFlags);
191 }
192 
193 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
194   assert((!isReg() || !isTied()) &&
195          "Cannot change a tied operand into an MCSymbol");
196 
197   removeRegFromUses();
198 
199   OpKind = MO_MCSymbol;
200   Contents.Sym = Sym;
201 }
202 
203 void MachineOperand::ChangeToFrameIndex(int Idx) {
204   assert((!isReg() || !isTied()) &&
205          "Cannot change a tied operand into a FrameIndex");
206 
207   removeRegFromUses();
208 
209   OpKind = MO_FrameIndex;
210   setIndex(Idx);
211 }
212 
213 /// ChangeToRegister - Replace this operand with a new register operand of
214 /// the specified value.  If an operand is known to be an register already,
215 /// the setReg method should be used.
216 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
217                                       bool isKill, bool isDead, bool isUndef,
218                                       bool isDebug) {
219   MachineRegisterInfo *RegInfo = nullptr;
220   if (MachineInstr *MI = getParent())
221     if (MachineBasicBlock *MBB = MI->getParent())
222       if (MachineFunction *MF = MBB->getParent())
223         RegInfo = &MF->getRegInfo();
224   // If this operand is already a register operand, remove it from the
225   // register's use/def lists.
226   bool WasReg = isReg();
227   if (RegInfo && WasReg)
228     RegInfo->removeRegOperandFromUseList(this);
229 
230   // Change this to a register and set the reg#.
231   OpKind = MO_Register;
232   SmallContents.RegNo = Reg;
233   SubReg_TargetFlags = 0;
234   IsDef = isDef;
235   IsImp = isImp;
236   IsKill = isKill;
237   IsDead = isDead;
238   IsUndef = isUndef;
239   IsInternalRead = false;
240   IsEarlyClobber = false;
241   IsDebug = isDebug;
242   // Ensure isOnRegUseList() returns false.
243   Contents.Reg.Prev = nullptr;
244   // Preserve the tie when the operand was already a register.
245   if (!WasReg)
246     TiedTo = 0;
247 
248   // If this operand is embedded in a function, add the operand to the
249   // register's use/def list.
250   if (RegInfo)
251     RegInfo->addRegOperandToUseList(this);
252 }
253 
254 /// isIdenticalTo - Return true if this operand is identical to the specified
255 /// operand. Note that this should stay in sync with the hash_value overload
256 /// below.
257 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
258   if (getType() != Other.getType() ||
259       getTargetFlags() != Other.getTargetFlags())
260     return false;
261 
262   switch (getType()) {
263   case MachineOperand::MO_Register:
264     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
265            getSubReg() == Other.getSubReg();
266   case MachineOperand::MO_Immediate:
267     return getImm() == Other.getImm();
268   case MachineOperand::MO_CImmediate:
269     return getCImm() == Other.getCImm();
270   case MachineOperand::MO_FPImmediate:
271     return getFPImm() == Other.getFPImm();
272   case MachineOperand::MO_MachineBasicBlock:
273     return getMBB() == Other.getMBB();
274   case MachineOperand::MO_FrameIndex:
275     return getIndex() == Other.getIndex();
276   case MachineOperand::MO_ConstantPoolIndex:
277   case MachineOperand::MO_TargetIndex:
278     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
279   case MachineOperand::MO_JumpTableIndex:
280     return getIndex() == Other.getIndex();
281   case MachineOperand::MO_GlobalAddress:
282     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
283   case MachineOperand::MO_ExternalSymbol:
284     return strcmp(getSymbolName(), Other.getSymbolName()) == 0 &&
285            getOffset() == Other.getOffset();
286   case MachineOperand::MO_BlockAddress:
287     return getBlockAddress() == Other.getBlockAddress() &&
288            getOffset() == Other.getOffset();
289   case MachineOperand::MO_RegisterMask:
290   case MachineOperand::MO_RegisterLiveOut: {
291     // Shallow compare of the two RegMasks
292     const uint32_t *RegMask = getRegMask();
293     const uint32_t *OtherRegMask = Other.getRegMask();
294     if (RegMask == OtherRegMask)
295       return true;
296 
297     // Calculate the size of the RegMask
298     const MachineFunction *MF = getParent()->getParent()->getParent();
299     const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
300     unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32;
301 
302     // Deep compare of the two RegMasks
303     return std::equal(RegMask, RegMask + RegMaskSize, OtherRegMask);
304   }
305   case MachineOperand::MO_MCSymbol:
306     return getMCSymbol() == Other.getMCSymbol();
307   case MachineOperand::MO_CFIIndex:
308     return getCFIIndex() == Other.getCFIIndex();
309   case MachineOperand::MO_Metadata:
310     return getMetadata() == Other.getMetadata();
311   case MachineOperand::MO_IntrinsicID:
312     return getIntrinsicID() == Other.getIntrinsicID();
313   case MachineOperand::MO_Predicate:
314     return getPredicate() == Other.getPredicate();
315   }
316   llvm_unreachable("Invalid machine operand type");
317 }
318 
319 // Note: this must stay exactly in sync with isIdenticalTo above.
320 hash_code llvm::hash_value(const MachineOperand &MO) {
321   switch (MO.getType()) {
322   case MachineOperand::MO_Register:
323     // Register operands don't have target flags.
324     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
325   case MachineOperand::MO_Immediate:
326     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
327   case MachineOperand::MO_CImmediate:
328     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
329   case MachineOperand::MO_FPImmediate:
330     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
331   case MachineOperand::MO_MachineBasicBlock:
332     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
333   case MachineOperand::MO_FrameIndex:
334     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
335   case MachineOperand::MO_ConstantPoolIndex:
336   case MachineOperand::MO_TargetIndex:
337     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
338                         MO.getOffset());
339   case MachineOperand::MO_JumpTableIndex:
340     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
341   case MachineOperand::MO_ExternalSymbol:
342     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
343                         MO.getSymbolName());
344   case MachineOperand::MO_GlobalAddress:
345     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
346                         MO.getOffset());
347   case MachineOperand::MO_BlockAddress:
348     return hash_combine(MO.getType(), MO.getTargetFlags(),
349                         MO.getBlockAddress(), MO.getOffset());
350   case MachineOperand::MO_RegisterMask:
351   case MachineOperand::MO_RegisterLiveOut:
352     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
353   case MachineOperand::MO_Metadata:
354     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
355   case MachineOperand::MO_MCSymbol:
356     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
357   case MachineOperand::MO_CFIIndex:
358     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
359   case MachineOperand::MO_IntrinsicID:
360     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID());
361   case MachineOperand::MO_Predicate:
362     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate());
363   }
364   llvm_unreachable("Invalid machine operand type");
365 }
366 
367 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI,
368                            const TargetIntrinsicInfo *IntrinsicInfo) const {
369   ModuleSlotTracker DummyMST(nullptr);
370   print(OS, DummyMST, TRI, IntrinsicInfo);
371 }
372 
373 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
374                            const TargetRegisterInfo *TRI,
375                            const TargetIntrinsicInfo *IntrinsicInfo) const {
376   switch (getType()) {
377   case MachineOperand::MO_Register:
378     OS << PrintReg(getReg(), TRI, getSubReg());
379 
380     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
381         isInternalRead() || isEarlyClobber() || isTied()) {
382       OS << '<';
383       bool NeedComma = false;
384       if (isDef()) {
385         if (NeedComma) OS << ',';
386         if (isEarlyClobber())
387           OS << "earlyclobber,";
388         if (isImplicit())
389           OS << "imp-";
390         OS << "def";
391         NeedComma = true;
392         // <def,read-undef> only makes sense when getSubReg() is set.
393         // Don't clutter the output otherwise.
394         if (isUndef() && getSubReg())
395           OS << ",read-undef";
396       } else if (isImplicit()) {
397         OS << "imp-use";
398         NeedComma = true;
399       }
400 
401       if (isKill()) {
402         if (NeedComma) OS << ',';
403         OS << "kill";
404         NeedComma = true;
405       }
406       if (isDead()) {
407         if (NeedComma) OS << ',';
408         OS << "dead";
409         NeedComma = true;
410       }
411       if (isUndef() && isUse()) {
412         if (NeedComma) OS << ',';
413         OS << "undef";
414         NeedComma = true;
415       }
416       if (isInternalRead()) {
417         if (NeedComma) OS << ',';
418         OS << "internal";
419         NeedComma = true;
420       }
421       if (isTied()) {
422         if (NeedComma) OS << ',';
423         OS << "tied";
424         if (TiedTo != 15)
425           OS << unsigned(TiedTo - 1);
426       }
427       OS << '>';
428     }
429     break;
430   case MachineOperand::MO_Immediate:
431     OS << getImm();
432     break;
433   case MachineOperand::MO_CImmediate:
434     getCImm()->getValue().print(OS, false);
435     break;
436   case MachineOperand::MO_FPImmediate:
437     if (getFPImm()->getType()->isFloatTy()) {
438       OS << getFPImm()->getValueAPF().convertToFloat();
439     } else if (getFPImm()->getType()->isHalfTy()) {
440       APFloat APF = getFPImm()->getValueAPF();
441       bool Unused;
442       APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused);
443       OS << "half " << APF.convertToFloat();
444     } else if (getFPImm()->getType()->isFP128Ty()) {
445       APFloat APF = getFPImm()->getValueAPF();
446       SmallString<16> Str;
447       getFPImm()->getValueAPF().toString(Str);
448       OS << "quad " << Str;
449     } else {
450       OS << getFPImm()->getValueAPF().convertToDouble();
451     }
452     break;
453   case MachineOperand::MO_MachineBasicBlock:
454     OS << "<BB#" << getMBB()->getNumber() << ">";
455     break;
456   case MachineOperand::MO_FrameIndex:
457     OS << "<fi#" << getIndex() << '>';
458     break;
459   case MachineOperand::MO_ConstantPoolIndex:
460     OS << "<cp#" << getIndex();
461     if (getOffset()) OS << "+" << getOffset();
462     OS << '>';
463     break;
464   case MachineOperand::MO_TargetIndex:
465     OS << "<ti#" << getIndex();
466     if (getOffset()) OS << "+" << getOffset();
467     OS << '>';
468     break;
469   case MachineOperand::MO_JumpTableIndex:
470     OS << "<jt#" << getIndex() << '>';
471     break;
472   case MachineOperand::MO_GlobalAddress:
473     OS << "<ga:";
474     getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
475     if (getOffset()) OS << "+" << getOffset();
476     OS << '>';
477     break;
478   case MachineOperand::MO_ExternalSymbol:
479     OS << "<es:" << getSymbolName();
480     if (getOffset()) OS << "+" << getOffset();
481     OS << '>';
482     break;
483   case MachineOperand::MO_BlockAddress:
484     OS << '<';
485     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
486     if (getOffset()) OS << "+" << getOffset();
487     OS << '>';
488     break;
489   case MachineOperand::MO_RegisterMask: {
490     unsigned NumRegsInMask = 0;
491     unsigned NumRegsEmitted = 0;
492     OS << "<regmask";
493     for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
494       unsigned MaskWord = i / 32;
495       unsigned MaskBit = i % 32;
496       if (getRegMask()[MaskWord] & (1 << MaskBit)) {
497         if (PrintWholeRegMask || NumRegsEmitted <= 10) {
498           OS << " " << PrintReg(i, TRI);
499           NumRegsEmitted++;
500         }
501         NumRegsInMask++;
502       }
503     }
504     if (NumRegsEmitted != NumRegsInMask)
505       OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
506     OS << ">";
507     break;
508   }
509   case MachineOperand::MO_RegisterLiveOut:
510     OS << "<regliveout>";
511     break;
512   case MachineOperand::MO_Metadata:
513     OS << '<';
514     getMetadata()->printAsOperand(OS, MST);
515     OS << '>';
516     break;
517   case MachineOperand::MO_MCSymbol:
518     OS << "<MCSym=" << *getMCSymbol() << '>';
519     break;
520   case MachineOperand::MO_CFIIndex:
521     OS << "<call frame instruction>";
522     break;
523   case MachineOperand::MO_IntrinsicID: {
524     Intrinsic::ID ID = getIntrinsicID();
525     if (ID < Intrinsic::num_intrinsics)
526       OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>';
527     else if (IntrinsicInfo)
528       OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>';
529     else
530       OS << "<intrinsic:" << ID << '>';
531     break;
532   }
533   case MachineOperand::MO_Predicate: {
534     auto Pred = static_cast<CmpInst::Predicate>(getPredicate());
535     OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred")
536        << CmpInst::getPredicateName(Pred) << '>';
537     break;
538   }
539   }
540   if (unsigned TF = getTargetFlags())
541     OS << "[TF=" << TF << ']';
542 }
543 
544 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
545 LLVM_DUMP_METHOD void MachineOperand::dump() const {
546   dbgs() << *this << '\n';
547 }
548 #endif
549 
550 //===----------------------------------------------------------------------===//
551 // MachineMemOperand Implementation
552 //===----------------------------------------------------------------------===//
553 
554 /// getAddrSpace - Return the LLVM IR address space number that this pointer
555 /// points into.
556 unsigned MachinePointerInfo::getAddrSpace() const {
557   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
558   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
559 }
560 
561 /// getConstantPool - Return a MachinePointerInfo record that refers to the
562 /// constant pool.
563 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
564   return MachinePointerInfo(MF.getPSVManager().getConstantPool());
565 }
566 
567 /// getFixedStack - Return a MachinePointerInfo record that refers to the
568 /// the specified FrameIndex.
569 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
570                                                      int FI, int64_t Offset) {
571   return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
572 }
573 
574 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
575   return MachinePointerInfo(MF.getPSVManager().getJumpTable());
576 }
577 
578 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
579   return MachinePointerInfo(MF.getPSVManager().getGOT());
580 }
581 
582 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
583                                                 int64_t Offset) {
584   return MachinePointerInfo(MF.getPSVManager().getStack(), Offset);
585 }
586 
587 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f,
588                                      uint64_t s, unsigned int a,
589                                      const AAMDNodes &AAInfo,
590                                      const MDNode *Ranges,
591                                      SynchronizationScope SynchScope,
592                                      AtomicOrdering Ordering,
593                                      AtomicOrdering FailureOrdering)
594     : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1),
595       AAInfo(AAInfo), Ranges(Ranges) {
596   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
597           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
598          "invalid pointer value");
599   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
600   assert((isLoad() || isStore()) && "Not a load/store!");
601 
602   AtomicInfo.SynchScope = static_cast<unsigned>(SynchScope);
603   assert(getSynchScope() == SynchScope && "Value truncated");
604   AtomicInfo.Ordering = static_cast<unsigned>(Ordering);
605   assert(getOrdering() == Ordering && "Value truncated");
606   AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering);
607   assert(getFailureOrdering() == FailureOrdering && "Value truncated");
608 }
609 
610 /// Profile - Gather unique data for the object.
611 ///
612 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
613   ID.AddInteger(getOffset());
614   ID.AddInteger(Size);
615   ID.AddPointer(getOpaqueValue());
616   ID.AddInteger(getFlags());
617   ID.AddInteger(getBaseAlignment());
618 }
619 
620 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
621   // The Value and Offset may differ due to CSE. But the flags and size
622   // should be the same.
623   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
624   assert(MMO->getSize() == getSize() && "Size mismatch!");
625 
626   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
627     // Update the alignment value.
628     BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1;
629     // Also update the base and offset, because the new alignment may
630     // not be applicable with the old ones.
631     PtrInfo = MMO->PtrInfo;
632   }
633 }
634 
635 /// getAlignment - Return the minimum known alignment in bytes of the
636 /// actual memory reference.
637 uint64_t MachineMemOperand::getAlignment() const {
638   return MinAlign(getBaseAlignment(), getOffset());
639 }
640 
641 void MachineMemOperand::print(raw_ostream &OS) const {
642   ModuleSlotTracker DummyMST(nullptr);
643   print(OS, DummyMST);
644 }
645 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
646   assert((isLoad() || isStore()) &&
647          "SV has to be a load, store or both.");
648 
649   if (isVolatile())
650     OS << "Volatile ";
651 
652   if (isLoad())
653     OS << "LD";
654   if (isStore())
655     OS << "ST";
656   OS << getSize();
657 
658   // Print the address information.
659   OS << "[";
660   if (const Value *V = getValue())
661     V->printAsOperand(OS, /*PrintType=*/false, MST);
662   else if (const PseudoSourceValue *PSV = getPseudoValue())
663     PSV->printCustom(OS);
664   else
665     OS << "<unknown>";
666 
667   unsigned AS = getAddrSpace();
668   if (AS != 0)
669     OS << "(addrspace=" << AS << ')';
670 
671   // If the alignment of the memory reference itself differs from the alignment
672   // of the base pointer, print the base alignment explicitly, next to the base
673   // pointer.
674   if (getBaseAlignment() != getAlignment())
675     OS << "(align=" << getBaseAlignment() << ")";
676 
677   if (getOffset() != 0)
678     OS << "+" << getOffset();
679   OS << "]";
680 
681   // Print the alignment of the reference.
682   if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
683     OS << "(align=" << getAlignment() << ")";
684 
685   // Print TBAA info.
686   if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
687     OS << "(tbaa=";
688     if (TBAAInfo->getNumOperands() > 0)
689       TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
690     else
691       OS << "<unknown>";
692     OS << ")";
693   }
694 
695   // Print AA scope info.
696   if (const MDNode *ScopeInfo = getAAInfo().Scope) {
697     OS << "(alias.scope=";
698     if (ScopeInfo->getNumOperands() > 0)
699       for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
700         ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
701         if (i != ie-1)
702           OS << ",";
703       }
704     else
705       OS << "<unknown>";
706     OS << ")";
707   }
708 
709   // Print AA noalias scope info.
710   if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
711     OS << "(noalias=";
712     if (NoAliasInfo->getNumOperands() > 0)
713       for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
714         NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
715         if (i != ie-1)
716           OS << ",";
717       }
718     else
719       OS << "<unknown>";
720     OS << ")";
721   }
722 
723   if (isNonTemporal())
724     OS << "(nontemporal)";
725   if (isDereferenceable())
726     OS << "(dereferenceable)";
727   if (isInvariant())
728     OS << "(invariant)";
729 }
730 
731 //===----------------------------------------------------------------------===//
732 // MachineInstr Implementation
733 //===----------------------------------------------------------------------===//
734 
735 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
736   if (MCID->ImplicitDefs)
737     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
738            ++ImpDefs)
739       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
740   if (MCID->ImplicitUses)
741     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
742            ++ImpUses)
743       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
744 }
745 
746 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
747 /// implicit operands. It reserves space for the number of operands specified by
748 /// the MCInstrDesc.
749 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
750                            DebugLoc dl, bool NoImp)
751     : MCID(&tid), debugLoc(std::move(dl)) {
752   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
753 
754   // Reserve space for the expected number of operands.
755   if (unsigned NumOps = MCID->getNumOperands() +
756     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
757     CapOperands = OperandCapacity::get(NumOps);
758     Operands = MF.allocateOperandArray(CapOperands);
759   }
760 
761   if (!NoImp)
762     addImplicitDefUseOperands(MF);
763 }
764 
765 /// MachineInstr ctor - Copies MachineInstr arg exactly
766 ///
767 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
768     : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
769       debugLoc(MI.getDebugLoc()) {
770   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
771 
772   CapOperands = OperandCapacity::get(MI.getNumOperands());
773   Operands = MF.allocateOperandArray(CapOperands);
774 
775   // Copy operands.
776   for (const MachineOperand &MO : MI.operands())
777     addOperand(MF, MO);
778 
779   // Copy all the sensible flags.
780   setFlags(MI.Flags);
781 }
782 
783 /// getRegInfo - If this instruction is embedded into a MachineFunction,
784 /// return the MachineRegisterInfo object for the current function, otherwise
785 /// return null.
786 MachineRegisterInfo *MachineInstr::getRegInfo() {
787   if (MachineBasicBlock *MBB = getParent())
788     return &MBB->getParent()->getRegInfo();
789   return nullptr;
790 }
791 
792 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
793 /// this instruction from their respective use lists.  This requires that the
794 /// operands already be on their use lists.
795 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
796   for (MachineOperand &MO : operands())
797     if (MO.isReg())
798       MRI.removeRegOperandFromUseList(&MO);
799 }
800 
801 /// AddRegOperandsToUseLists - Add all of the register operands in
802 /// this instruction from their respective use lists.  This requires that the
803 /// operands not be on their use lists yet.
804 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
805   for (MachineOperand &MO : operands())
806     if (MO.isReg())
807       MRI.addRegOperandToUseList(&MO);
808 }
809 
810 void MachineInstr::addOperand(const MachineOperand &Op) {
811   MachineBasicBlock *MBB = getParent();
812   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
813   MachineFunction *MF = MBB->getParent();
814   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
815   addOperand(*MF, Op);
816 }
817 
818 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
819 /// ranges. If MRI is non-null also update use-def chains.
820 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
821                          unsigned NumOps, MachineRegisterInfo *MRI) {
822   if (MRI)
823     return MRI->moveOperands(Dst, Src, NumOps);
824 
825   // MachineOperand is a trivially copyable type so we can just use memmove.
826   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
827 }
828 
829 /// addOperand - Add the specified operand to the instruction.  If it is an
830 /// implicit operand, it is added to the end of the operand list.  If it is
831 /// an explicit operand it is added at the end of the explicit operand list
832 /// (before the first implicit operand).
833 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
834   assert(MCID && "Cannot add operands before providing an instr descriptor");
835 
836   // Check if we're adding one of our existing operands.
837   if (&Op >= Operands && &Op < Operands + NumOperands) {
838     // This is unusual: MI->addOperand(MI->getOperand(i)).
839     // If adding Op requires reallocating or moving existing operands around,
840     // the Op reference could go stale. Support it by copying Op.
841     MachineOperand CopyOp(Op);
842     return addOperand(MF, CopyOp);
843   }
844 
845   // Find the insert location for the new operand.  Implicit registers go at
846   // the end, everything else goes before the implicit regs.
847   //
848   // FIXME: Allow mixed explicit and implicit operands on inline asm.
849   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
850   // implicit-defs, but they must not be moved around.  See the FIXME in
851   // InstrEmitter.cpp.
852   unsigned OpNo = getNumOperands();
853   bool isImpReg = Op.isReg() && Op.isImplicit();
854   if (!isImpReg && !isInlineAsm()) {
855     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
856       --OpNo;
857       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
858     }
859   }
860 
861 #ifndef NDEBUG
862   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
863   // OpNo now points as the desired insertion point.  Unless this is a variadic
864   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
865   // RegMask operands go between the explicit and implicit operands.
866   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
867           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
868          "Trying to add an operand to a machine instr that is already done!");
869 #endif
870 
871   MachineRegisterInfo *MRI = getRegInfo();
872 
873   // Determine if the Operands array needs to be reallocated.
874   // Save the old capacity and operand array.
875   OperandCapacity OldCap = CapOperands;
876   MachineOperand *OldOperands = Operands;
877   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
878     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
879     Operands = MF.allocateOperandArray(CapOperands);
880     // Move the operands before the insertion point.
881     if (OpNo)
882       moveOperands(Operands, OldOperands, OpNo, MRI);
883   }
884 
885   // Move the operands following the insertion point.
886   if (OpNo != NumOperands)
887     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
888                  MRI);
889   ++NumOperands;
890 
891   // Deallocate the old operand array.
892   if (OldOperands != Operands && OldOperands)
893     MF.deallocateOperandArray(OldCap, OldOperands);
894 
895   // Copy Op into place. It still needs to be inserted into the MRI use lists.
896   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
897   NewMO->ParentMI = this;
898 
899   // When adding a register operand, tell MRI about it.
900   if (NewMO->isReg()) {
901     // Ensure isOnRegUseList() returns false, regardless of Op's status.
902     NewMO->Contents.Reg.Prev = nullptr;
903     // Ignore existing ties. This is not a property that can be copied.
904     NewMO->TiedTo = 0;
905     // Add the new operand to MRI, but only for instructions in an MBB.
906     if (MRI)
907       MRI->addRegOperandToUseList(NewMO);
908     // The MCID operand information isn't accurate until we start adding
909     // explicit operands. The implicit operands are added first, then the
910     // explicits are inserted before them.
911     if (!isImpReg) {
912       // Tie uses to defs as indicated in MCInstrDesc.
913       if (NewMO->isUse()) {
914         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
915         if (DefIdx != -1)
916           tieOperands(DefIdx, OpNo);
917       }
918       // If the register operand is flagged as early, mark the operand as such.
919       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
920         NewMO->setIsEarlyClobber(true);
921     }
922   }
923 }
924 
925 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
926 /// fewer operand than it started with.
927 ///
928 void MachineInstr::RemoveOperand(unsigned OpNo) {
929   assert(OpNo < getNumOperands() && "Invalid operand number");
930   untieRegOperand(OpNo);
931 
932 #ifndef NDEBUG
933   // Moving tied operands would break the ties.
934   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
935     if (Operands[i].isReg())
936       assert(!Operands[i].isTied() && "Cannot move tied operands");
937 #endif
938 
939   MachineRegisterInfo *MRI = getRegInfo();
940   if (MRI && Operands[OpNo].isReg())
941     MRI->removeRegOperandFromUseList(Operands + OpNo);
942 
943   // Don't call the MachineOperand destructor. A lot of this code depends on
944   // MachineOperand having a trivial destructor anyway, and adding a call here
945   // wouldn't make it 'destructor-correct'.
946 
947   if (unsigned N = NumOperands - 1 - OpNo)
948     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
949   --NumOperands;
950 }
951 
952 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
953 /// This function should be used only occasionally. The setMemRefs function
954 /// is the primary method for setting up a MachineInstr's MemRefs list.
955 void MachineInstr::addMemOperand(MachineFunction &MF,
956                                  MachineMemOperand *MO) {
957   mmo_iterator OldMemRefs = MemRefs;
958   unsigned OldNumMemRefs = NumMemRefs;
959 
960   unsigned NewNum = NumMemRefs + 1;
961   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
962 
963   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
964   NewMemRefs[NewNum - 1] = MO;
965   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
966 }
967 
968 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
969 /// identical.
970 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
971   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
972   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
973   if ((E1 - I1) != (E2 - I2))
974     return false;
975   for (; I1 != E1; ++I1, ++I2) {
976     if (**I1 != **I2)
977       return false;
978   }
979   return true;
980 }
981 
982 std::pair<MachineInstr::mmo_iterator, unsigned>
983 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
984 
985   // If either of the incoming memrefs are empty, we must be conservative and
986   // treat this as if we've exhausted our space for memrefs and dropped them.
987   if (memoperands_empty() || Other.memoperands_empty())
988     return std::make_pair(nullptr, 0);
989 
990   // If both instructions have identical memrefs, we don't need to merge them.
991   // Since many instructions have a single memref, and we tend to merge things
992   // like pairs of loads from the same location, this catches a large number of
993   // cases in practice.
994   if (hasIdenticalMMOs(*this, Other))
995     return std::make_pair(MemRefs, NumMemRefs);
996 
997   // TODO: consider uniquing elements within the operand lists to reduce
998   // space usage and fall back to conservative information less often.
999   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
1000 
1001   // If we don't have enough room to store this many memrefs, be conservative
1002   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
1003   // the new instruction.
1004   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
1005     return std::make_pair(nullptr, 0);
1006 
1007   MachineFunction *MF = getParent()->getParent();
1008   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
1009   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
1010                                   MemBegin);
1011   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
1012                      MemEnd);
1013   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
1014          "missing memrefs");
1015 
1016   return std::make_pair(MemBegin, CombinedNumMemRefs);
1017 }
1018 
1019 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
1020   assert(!isBundledWithPred() && "Must be called on bundle header");
1021   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
1022     if (MII->getDesc().getFlags() & Mask) {
1023       if (Type == AnyInBundle)
1024         return true;
1025     } else {
1026       if (Type == AllInBundle && !MII->isBundle())
1027         return false;
1028     }
1029     // This was the last instruction in the bundle.
1030     if (!MII->isBundledWithSucc())
1031       return Type == AllInBundle;
1032   }
1033 }
1034 
1035 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
1036                                  MICheckType Check) const {
1037   // If opcodes or number of operands are not the same then the two
1038   // instructions are obviously not identical.
1039   if (Other.getOpcode() != getOpcode() ||
1040       Other.getNumOperands() != getNumOperands())
1041     return false;
1042 
1043   if (isBundle()) {
1044     // We have passed the test above that both instructions have the same
1045     // opcode, so we know that both instructions are bundles here. Let's compare
1046     // MIs inside the bundle.
1047     assert(Other.isBundle() && "Expected that both instructions are bundles.");
1048     MachineBasicBlock::const_instr_iterator I1 = getIterator();
1049     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
1050     // Loop until we analysed the last intruction inside at least one of the
1051     // bundles.
1052     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
1053       ++I1;
1054       ++I2;
1055       if (!I1->isIdenticalTo(*I2, Check))
1056         return false;
1057     }
1058     // If we've reached the end of just one of the two bundles, but not both,
1059     // the instructions are not identical.
1060     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
1061       return false;
1062   }
1063 
1064   // Check operands to make sure they match.
1065   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1066     const MachineOperand &MO = getOperand(i);
1067     const MachineOperand &OMO = Other.getOperand(i);
1068     if (!MO.isReg()) {
1069       if (!MO.isIdenticalTo(OMO))
1070         return false;
1071       continue;
1072     }
1073 
1074     // Clients may or may not want to ignore defs when testing for equality.
1075     // For example, machine CSE pass only cares about finding common
1076     // subexpressions, so it's safe to ignore virtual register defs.
1077     if (MO.isDef()) {
1078       if (Check == IgnoreDefs)
1079         continue;
1080       else if (Check == IgnoreVRegDefs) {
1081         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1082             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
1083           if (MO.getReg() != OMO.getReg())
1084             return false;
1085       } else {
1086         if (!MO.isIdenticalTo(OMO))
1087           return false;
1088         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
1089           return false;
1090       }
1091     } else {
1092       if (!MO.isIdenticalTo(OMO))
1093         return false;
1094       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
1095         return false;
1096     }
1097   }
1098   // If DebugLoc does not match then two dbg.values are not identical.
1099   if (isDebugValue())
1100     if (getDebugLoc() && Other.getDebugLoc() &&
1101         getDebugLoc() != Other.getDebugLoc())
1102       return false;
1103   return true;
1104 }
1105 
1106 MachineInstr *MachineInstr::removeFromParent() {
1107   assert(getParent() && "Not embedded in a basic block!");
1108   return getParent()->remove(this);
1109 }
1110 
1111 MachineInstr *MachineInstr::removeFromBundle() {
1112   assert(getParent() && "Not embedded in a basic block!");
1113   return getParent()->remove_instr(this);
1114 }
1115 
1116 void MachineInstr::eraseFromParent() {
1117   assert(getParent() && "Not embedded in a basic block!");
1118   getParent()->erase(this);
1119 }
1120 
1121 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
1122   assert(getParent() && "Not embedded in a basic block!");
1123   MachineBasicBlock *MBB = getParent();
1124   MachineFunction *MF = MBB->getParent();
1125   assert(MF && "Not embedded in a function!");
1126 
1127   MachineInstr *MI = (MachineInstr *)this;
1128   MachineRegisterInfo &MRI = MF->getRegInfo();
1129 
1130   for (const MachineOperand &MO : MI->operands()) {
1131     if (!MO.isReg() || !MO.isDef())
1132       continue;
1133     unsigned Reg = MO.getReg();
1134     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1135       continue;
1136     MRI.markUsesInDebugValueAsUndef(Reg);
1137   }
1138   MI->eraseFromParent();
1139 }
1140 
1141 void MachineInstr::eraseFromBundle() {
1142   assert(getParent() && "Not embedded in a basic block!");
1143   getParent()->erase_instr(this);
1144 }
1145 
1146 /// getNumExplicitOperands - Returns the number of non-implicit operands.
1147 ///
1148 unsigned MachineInstr::getNumExplicitOperands() const {
1149   unsigned NumOperands = MCID->getNumOperands();
1150   if (!MCID->isVariadic())
1151     return NumOperands;
1152 
1153   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
1154     const MachineOperand &MO = getOperand(i);
1155     if (!MO.isReg() || !MO.isImplicit())
1156       NumOperands++;
1157   }
1158   return NumOperands;
1159 }
1160 
1161 void MachineInstr::bundleWithPred() {
1162   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
1163   setFlag(BundledPred);
1164   MachineBasicBlock::instr_iterator Pred = getIterator();
1165   --Pred;
1166   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1167   Pred->setFlag(BundledSucc);
1168 }
1169 
1170 void MachineInstr::bundleWithSucc() {
1171   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
1172   setFlag(BundledSucc);
1173   MachineBasicBlock::instr_iterator Succ = getIterator();
1174   ++Succ;
1175   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
1176   Succ->setFlag(BundledPred);
1177 }
1178 
1179 void MachineInstr::unbundleFromPred() {
1180   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
1181   clearFlag(BundledPred);
1182   MachineBasicBlock::instr_iterator Pred = getIterator();
1183   --Pred;
1184   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1185   Pred->clearFlag(BundledSucc);
1186 }
1187 
1188 void MachineInstr::unbundleFromSucc() {
1189   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
1190   clearFlag(BundledSucc);
1191   MachineBasicBlock::instr_iterator Succ = getIterator();
1192   ++Succ;
1193   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
1194   Succ->clearFlag(BundledPred);
1195 }
1196 
1197 bool MachineInstr::isStackAligningInlineAsm() const {
1198   if (isInlineAsm()) {
1199     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1200     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1201       return true;
1202   }
1203   return false;
1204 }
1205 
1206 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
1207   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
1208   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1209   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
1210 }
1211 
1212 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
1213                                        unsigned *GroupNo) const {
1214   assert(isInlineAsm() && "Expected an inline asm instruction");
1215   assert(OpIdx < getNumOperands() && "OpIdx out of range");
1216 
1217   // Ignore queries about the initial operands.
1218   if (OpIdx < InlineAsm::MIOp_FirstOperand)
1219     return -1;
1220 
1221   unsigned Group = 0;
1222   unsigned NumOps;
1223   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1224        i += NumOps) {
1225     const MachineOperand &FlagMO = getOperand(i);
1226     // If we reach the implicit register operands, stop looking.
1227     if (!FlagMO.isImm())
1228       return -1;
1229     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1230     if (i + NumOps > OpIdx) {
1231       if (GroupNo)
1232         *GroupNo = Group;
1233       return i;
1234     }
1235     ++Group;
1236   }
1237   return -1;
1238 }
1239 
1240 const DILocalVariable *MachineInstr::getDebugVariable() const {
1241   assert(isDebugValue() && "not a DBG_VALUE");
1242   return cast<DILocalVariable>(getOperand(2).getMetadata());
1243 }
1244 
1245 const DIExpression *MachineInstr::getDebugExpression() const {
1246   assert(isDebugValue() && "not a DBG_VALUE");
1247   return cast<DIExpression>(getOperand(3).getMetadata());
1248 }
1249 
1250 const TargetRegisterClass*
1251 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1252                                     const TargetInstrInfo *TII,
1253                                     const TargetRegisterInfo *TRI) const {
1254   assert(getParent() && "Can't have an MBB reference here!");
1255   assert(getParent()->getParent() && "Can't have an MF reference here!");
1256   const MachineFunction &MF = *getParent()->getParent();
1257 
1258   // Most opcodes have fixed constraints in their MCInstrDesc.
1259   if (!isInlineAsm())
1260     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1261 
1262   if (!getOperand(OpIdx).isReg())
1263     return nullptr;
1264 
1265   // For tied uses on inline asm, get the constraint from the def.
1266   unsigned DefIdx;
1267   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1268     OpIdx = DefIdx;
1269 
1270   // Inline asm stores register class constraints in the flag word.
1271   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1272   if (FlagIdx < 0)
1273     return nullptr;
1274 
1275   unsigned Flag = getOperand(FlagIdx).getImm();
1276   unsigned RCID;
1277   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
1278        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
1279        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
1280       InlineAsm::hasRegClassConstraint(Flag, RCID))
1281     return TRI->getRegClass(RCID);
1282 
1283   // Assume that all registers in a memory operand are pointers.
1284   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1285     return TRI->getPointerRegClass(MF);
1286 
1287   return nullptr;
1288 }
1289 
1290 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1291     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1292     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1293   // Check every operands inside the bundle if we have
1294   // been asked to.
1295   if (ExploreBundle)
1296     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
1297          ++OpndIt)
1298       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1299           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1300   else
1301     // Otherwise, just check the current operands.
1302     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1303       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1304   return CurRC;
1305 }
1306 
1307 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1308     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1309     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1310   assert(CurRC && "Invalid initial register class");
1311   // Check if Reg is constrained by some of its use/def from MI.
1312   const MachineOperand &MO = getOperand(OpIdx);
1313   if (!MO.isReg() || MO.getReg() != Reg)
1314     return CurRC;
1315   // If yes, accumulate the constraints through the operand.
1316   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1317 }
1318 
1319 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1320     unsigned OpIdx, const TargetRegisterClass *CurRC,
1321     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1322   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1323   const MachineOperand &MO = getOperand(OpIdx);
1324   assert(MO.isReg() &&
1325          "Cannot get register constraints for non-register operand");
1326   assert(CurRC && "Invalid initial register class");
1327   if (unsigned SubIdx = MO.getSubReg()) {
1328     if (OpRC)
1329       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1330     else
1331       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1332   } else if (OpRC)
1333     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1334   return CurRC;
1335 }
1336 
1337 /// Return the number of instructions inside the MI bundle, not counting the
1338 /// header instruction.
1339 unsigned MachineInstr::getBundleSize() const {
1340   MachineBasicBlock::const_instr_iterator I = getIterator();
1341   unsigned Size = 0;
1342   while (I->isBundledWithSucc()) {
1343     ++Size;
1344     ++I;
1345   }
1346   return Size;
1347 }
1348 
1349 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1350 /// the given register (not considering sub/super-registers).
1351 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
1352   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1353     const MachineOperand &MO = getOperand(i);
1354     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1355       return true;
1356   }
1357   return false;
1358 }
1359 
1360 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1361 /// the specific register or -1 if it is not found. It further tightens
1362 /// the search criteria to a use that kills the register if isKill is true.
1363 int MachineInstr::findRegisterUseOperandIdx(
1364     unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
1365   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1366     const MachineOperand &MO = getOperand(i);
1367     if (!MO.isReg() || !MO.isUse())
1368       continue;
1369     unsigned MOReg = MO.getReg();
1370     if (!MOReg)
1371       continue;
1372     if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1373                          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1374                          TRI->isSubRegister(MOReg, Reg)))
1375       if (!isKill || MO.isKill())
1376         return i;
1377   }
1378   return -1;
1379 }
1380 
1381 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1382 /// indicating if this instruction reads or writes Reg. This also considers
1383 /// partial defines.
1384 std::pair<bool,bool>
1385 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1386                                          SmallVectorImpl<unsigned> *Ops) const {
1387   bool PartDef = false; // Partial redefine.
1388   bool FullDef = false; // Full define.
1389   bool Use = false;
1390 
1391   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1392     const MachineOperand &MO = getOperand(i);
1393     if (!MO.isReg() || MO.getReg() != Reg)
1394       continue;
1395     if (Ops)
1396       Ops->push_back(i);
1397     if (MO.isUse())
1398       Use |= !MO.isUndef();
1399     else if (MO.getSubReg() && !MO.isUndef())
1400       // A partial <def,undef> doesn't count as reading the register.
1401       PartDef = true;
1402     else
1403       FullDef = true;
1404   }
1405   // A partial redefine uses Reg unless there is also a full define.
1406   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1407 }
1408 
1409 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1410 /// the specified register or -1 if it is not found. If isDead is true, defs
1411 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1412 /// also checks if there is a def of a super-register.
1413 int
1414 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1415                                         const TargetRegisterInfo *TRI) const {
1416   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1417   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1418     const MachineOperand &MO = getOperand(i);
1419     // Accept regmask operands when Overlap is set.
1420     // Ignore them when looking for a specific def operand (Overlap == false).
1421     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1422       return i;
1423     if (!MO.isReg() || !MO.isDef())
1424       continue;
1425     unsigned MOReg = MO.getReg();
1426     bool Found = (MOReg == Reg);
1427     if (!Found && TRI && isPhys &&
1428         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1429       if (Overlap)
1430         Found = TRI->regsOverlap(MOReg, Reg);
1431       else
1432         Found = TRI->isSubRegister(MOReg, Reg);
1433     }
1434     if (Found && (!isDead || MO.isDead()))
1435       return i;
1436   }
1437   return -1;
1438 }
1439 
1440 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1441 /// operand list that is used to represent the predicate. It returns -1 if
1442 /// none is found.
1443 int MachineInstr::findFirstPredOperandIdx() const {
1444   // Don't call MCID.findFirstPredOperandIdx() because this variant
1445   // is sometimes called on an instruction that's not yet complete, and
1446   // so the number of operands is less than the MCID indicates. In
1447   // particular, the PTX target does this.
1448   const MCInstrDesc &MCID = getDesc();
1449   if (MCID.isPredicable()) {
1450     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1451       if (MCID.OpInfo[i].isPredicate())
1452         return i;
1453   }
1454 
1455   return -1;
1456 }
1457 
1458 // MachineOperand::TiedTo is 4 bits wide.
1459 const unsigned TiedMax = 15;
1460 
1461 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1462 ///
1463 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1464 /// field. TiedTo can have these values:
1465 ///
1466 /// 0:              Operand is not tied to anything.
1467 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1468 /// TiedMax:        Tied to an operand >= TiedMax-1.
1469 ///
1470 /// The tied def must be one of the first TiedMax operands on a normal
1471 /// instruction. INLINEASM instructions allow more tied defs.
1472 ///
1473 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1474   MachineOperand &DefMO = getOperand(DefIdx);
1475   MachineOperand &UseMO = getOperand(UseIdx);
1476   assert(DefMO.isDef() && "DefIdx must be a def operand");
1477   assert(UseMO.isUse() && "UseIdx must be a use operand");
1478   assert(!DefMO.isTied() && "Def is already tied to another use");
1479   assert(!UseMO.isTied() && "Use is already tied to another def");
1480 
1481   if (DefIdx < TiedMax)
1482     UseMO.TiedTo = DefIdx + 1;
1483   else {
1484     // Inline asm can use the group descriptors to find tied operands, but on
1485     // normal instruction, the tied def must be within the first TiedMax
1486     // operands.
1487     assert(isInlineAsm() && "DefIdx out of range");
1488     UseMO.TiedTo = TiedMax;
1489   }
1490 
1491   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1492   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1493 }
1494 
1495 /// Given the index of a tied register operand, find the operand it is tied to.
1496 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1497 /// which must exist.
1498 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1499   const MachineOperand &MO = getOperand(OpIdx);
1500   assert(MO.isTied() && "Operand isn't tied");
1501 
1502   // Normally TiedTo is in range.
1503   if (MO.TiedTo < TiedMax)
1504     return MO.TiedTo - 1;
1505 
1506   // Uses on normal instructions can be out of range.
1507   if (!isInlineAsm()) {
1508     // Normal tied defs must be in the 0..TiedMax-1 range.
1509     if (MO.isUse())
1510       return TiedMax - 1;
1511     // MO is a def. Search for the tied use.
1512     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1513       const MachineOperand &UseMO = getOperand(i);
1514       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1515         return i;
1516     }
1517     llvm_unreachable("Can't find tied use");
1518   }
1519 
1520   // Now deal with inline asm by parsing the operand group descriptor flags.
1521   // Find the beginning of each operand group.
1522   SmallVector<unsigned, 8> GroupIdx;
1523   unsigned OpIdxGroup = ~0u;
1524   unsigned NumOps;
1525   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1526        i += NumOps) {
1527     const MachineOperand &FlagMO = getOperand(i);
1528     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1529     unsigned CurGroup = GroupIdx.size();
1530     GroupIdx.push_back(i);
1531     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1532     // OpIdx belongs to this operand group.
1533     if (OpIdx > i && OpIdx < i + NumOps)
1534       OpIdxGroup = CurGroup;
1535     unsigned TiedGroup;
1536     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1537       continue;
1538     // Operands in this group are tied to operands in TiedGroup which must be
1539     // earlier. Find the number of operands between the two groups.
1540     unsigned Delta = i - GroupIdx[TiedGroup];
1541 
1542     // OpIdx is a use tied to TiedGroup.
1543     if (OpIdxGroup == CurGroup)
1544       return OpIdx - Delta;
1545 
1546     // OpIdx is a def tied to this use group.
1547     if (OpIdxGroup == TiedGroup)
1548       return OpIdx + Delta;
1549   }
1550   llvm_unreachable("Invalid tied operand on inline asm");
1551 }
1552 
1553 /// clearKillInfo - Clears kill flags on all operands.
1554 ///
1555 void MachineInstr::clearKillInfo() {
1556   for (MachineOperand &MO : operands()) {
1557     if (MO.isReg() && MO.isUse())
1558       MO.setIsKill(false);
1559   }
1560 }
1561 
1562 void MachineInstr::substituteRegister(unsigned FromReg,
1563                                       unsigned ToReg,
1564                                       unsigned SubIdx,
1565                                       const TargetRegisterInfo &RegInfo) {
1566   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1567     if (SubIdx)
1568       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1569     for (MachineOperand &MO : operands()) {
1570       if (!MO.isReg() || MO.getReg() != FromReg)
1571         continue;
1572       MO.substPhysReg(ToReg, RegInfo);
1573     }
1574   } else {
1575     for (MachineOperand &MO : operands()) {
1576       if (!MO.isReg() || MO.getReg() != FromReg)
1577         continue;
1578       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1579     }
1580   }
1581 }
1582 
1583 /// isSafeToMove - Return true if it is safe to move this instruction. If
1584 /// SawStore is set to true, it means that there is a store (or call) between
1585 /// the instruction's location and its intended destination.
1586 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1587   // Ignore stuff that we obviously can't move.
1588   //
1589   // Treat volatile loads as stores. This is not strictly necessary for
1590   // volatiles, but it is required for atomic loads. It is not allowed to move
1591   // a load across an atomic load with Ordering > Monotonic.
1592   if (mayStore() || isCall() ||
1593       (mayLoad() && hasOrderedMemoryRef())) {
1594     SawStore = true;
1595     return false;
1596   }
1597 
1598   if (isPosition() || isDebugValue() || isTerminator() ||
1599       hasUnmodeledSideEffects())
1600     return false;
1601 
1602   // See if this instruction does a load.  If so, we have to guarantee that the
1603   // loaded value doesn't change between the load and the its intended
1604   // destination. The check for isInvariantLoad gives the targe the chance to
1605   // classify the load as always returning a constant, e.g. a constant pool
1606   // load.
1607   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1608     // Otherwise, this is a real load.  If there is a store between the load and
1609     // end of block, we can't move it.
1610     return !SawStore;
1611 
1612   return true;
1613 }
1614 
1615 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other,
1616                             bool UseTBAA) {
1617   const MachineFunction *MF = getParent()->getParent();
1618   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1619 
1620   // If neither instruction stores to memory, they can't alias in any
1621   // meaningful way, even if they read from the same address.
1622   if (!mayStore() && !Other.mayStore())
1623     return false;
1624 
1625   // Let the target decide if memory accesses cannot possibly overlap.
1626   if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
1627     return false;
1628 
1629   if (!AA)
1630     return true;
1631 
1632   // FIXME: Need to handle multiple memory operands to support all targets.
1633   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1634     return true;
1635 
1636   MachineMemOperand *MMOa = *memoperands_begin();
1637   MachineMemOperand *MMOb = *Other.memoperands_begin();
1638 
1639   if (!MMOa->getValue() || !MMOb->getValue())
1640     return true;
1641 
1642   // The following interface to AA is fashioned after DAGCombiner::isAlias
1643   // and operates with MachineMemOperand offset with some important
1644   // assumptions:
1645   //   - LLVM fundamentally assumes flat address spaces.
1646   //   - MachineOperand offset can *only* result from legalization and
1647   //     cannot affect queries other than the trivial case of overlap
1648   //     checking.
1649   //   - These offsets never wrap and never step outside
1650   //     of allocated objects.
1651   //   - There should never be any negative offsets here.
1652   //
1653   // FIXME: Modify API to hide this math from "user"
1654   // FIXME: Even before we go to AA we can reason locally about some
1655   // memory objects. It can save compile time, and possibly catch some
1656   // corner cases not currently covered.
1657 
1658   assert((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
1659   assert((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
1660 
1661   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
1662   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
1663   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
1664 
1665   AliasResult AAResult =
1666       AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
1667                                UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1668                 MemoryLocation(MMOb->getValue(), Overlapb,
1669                                UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1670 
1671   return (AAResult != NoAlias);
1672 }
1673 
1674 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1675 /// or volatile memory reference, or if the information describing the memory
1676 /// reference is not available. Return false if it is known to have no ordered
1677 /// memory references.
1678 bool MachineInstr::hasOrderedMemoryRef() const {
1679   // An instruction known never to access memory won't have a volatile access.
1680   if (!mayStore() &&
1681       !mayLoad() &&
1682       !isCall() &&
1683       !hasUnmodeledSideEffects())
1684     return false;
1685 
1686   // Otherwise, if the instruction has no memory reference information,
1687   // conservatively assume it wasn't preserved.
1688   if (memoperands_empty())
1689     return true;
1690 
1691   // Check if any of our memory operands are ordered.
1692   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1693     return !MMO->isUnordered();
1694   });
1695 }
1696 
1697 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1698 /// trap and is loading from a location whose value is invariant across a run of
1699 /// this function.
1700 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1701   // If the instruction doesn't load at all, it isn't an invariant load.
1702   if (!mayLoad())
1703     return false;
1704 
1705   // If the instruction has lost its memoperands, conservatively assume that
1706   // it may not be an invariant load.
1707   if (memoperands_empty())
1708     return false;
1709 
1710   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1711 
1712   for (MachineMemOperand *MMO : memoperands()) {
1713     if (MMO->isVolatile()) return false;
1714     if (MMO->isStore()) return false;
1715     if (MMO->isInvariant() && MMO->isDereferenceable())
1716       continue;
1717 
1718     // A load from a constant PseudoSourceValue is invariant.
1719     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1720       if (PSV->isConstant(&MFI))
1721         continue;
1722 
1723     if (const Value *V = MMO->getValue()) {
1724       // If we have an AliasAnalysis, ask it whether the memory is constant.
1725       if (AA &&
1726           AA->pointsToConstantMemory(
1727               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1728         continue;
1729     }
1730 
1731     // Otherwise assume conservatively.
1732     return false;
1733   }
1734 
1735   // Everything checks out.
1736   return true;
1737 }
1738 
1739 /// isConstantValuePHI - If the specified instruction is a PHI that always
1740 /// merges together the same virtual register, return the register, otherwise
1741 /// return 0.
1742 unsigned MachineInstr::isConstantValuePHI() const {
1743   if (!isPHI())
1744     return 0;
1745   assert(getNumOperands() >= 3 &&
1746          "It's illegal to have a PHI without source operands");
1747 
1748   unsigned Reg = getOperand(1).getReg();
1749   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1750     if (getOperand(i).getReg() != Reg)
1751       return 0;
1752   return Reg;
1753 }
1754 
1755 bool MachineInstr::hasUnmodeledSideEffects() const {
1756   if (hasProperty(MCID::UnmodeledSideEffects))
1757     return true;
1758   if (isInlineAsm()) {
1759     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1760     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1761       return true;
1762   }
1763 
1764   return false;
1765 }
1766 
1767 bool MachineInstr::isLoadFoldBarrier() const {
1768   return mayStore() || isCall() || hasUnmodeledSideEffects();
1769 }
1770 
1771 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1772 ///
1773 bool MachineInstr::allDefsAreDead() const {
1774   for (const MachineOperand &MO : operands()) {
1775     if (!MO.isReg() || MO.isUse())
1776       continue;
1777     if (!MO.isDead())
1778       return false;
1779   }
1780   return true;
1781 }
1782 
1783 /// copyImplicitOps - Copy implicit register operands from specified
1784 /// instruction to this instruction.
1785 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1786                                    const MachineInstr &MI) {
1787   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1788        i != e; ++i) {
1789     const MachineOperand &MO = MI.getOperand(i);
1790     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1791       addOperand(MF, MO);
1792   }
1793 }
1794 
1795 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1796 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1797   dbgs() << "  ";
1798   print(dbgs());
1799 }
1800 #endif
1801 
1802 void MachineInstr::print(raw_ostream &OS, bool SkipOpers, bool SkipDebugLoc,
1803                          const TargetInstrInfo *TII) const {
1804   const Module *M = nullptr;
1805   if (const MachineBasicBlock *MBB = getParent())
1806     if (const MachineFunction *MF = MBB->getParent())
1807       M = MF->getFunction()->getParent();
1808 
1809   ModuleSlotTracker MST(M);
1810   print(OS, MST, SkipOpers, SkipDebugLoc, TII);
1811 }
1812 
1813 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1814                          bool SkipOpers, bool SkipDebugLoc,
1815                          const TargetInstrInfo *TII) const {
1816   // We can be a bit tidier if we know the MachineFunction.
1817   const MachineFunction *MF = nullptr;
1818   const TargetRegisterInfo *TRI = nullptr;
1819   const MachineRegisterInfo *MRI = nullptr;
1820   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1821 
1822   if (const MachineBasicBlock *MBB = getParent()) {
1823     MF = MBB->getParent();
1824     if (MF) {
1825       MRI = &MF->getRegInfo();
1826       TRI = MF->getSubtarget().getRegisterInfo();
1827       if (!TII)
1828         TII = MF->getSubtarget().getInstrInfo();
1829       IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
1830     }
1831   }
1832 
1833   // Save a list of virtual registers.
1834   SmallVector<unsigned, 8> VirtRegs;
1835 
1836   // Print explicitly defined operands on the left of an assignment syntax.
1837   unsigned StartOp = 0, e = getNumOperands();
1838   for (; StartOp < e && getOperand(StartOp).isReg() &&
1839          getOperand(StartOp).isDef() &&
1840          !getOperand(StartOp).isImplicit();
1841        ++StartOp) {
1842     if (StartOp != 0) OS << ", ";
1843     getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo);
1844     unsigned Reg = getOperand(StartOp).getReg();
1845     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1846       VirtRegs.push_back(Reg);
1847       LLT Ty = MRI ? MRI->getType(Reg) : LLT{};
1848       if (Ty.isValid())
1849         OS << '(' << Ty << ')';
1850     }
1851   }
1852 
1853   if (StartOp != 0)
1854     OS << " = ";
1855 
1856   // Print the opcode name.
1857   if (TII)
1858     OS << TII->getName(getOpcode());
1859   else
1860     OS << "UNKNOWN";
1861 
1862   if (SkipOpers)
1863     return;
1864 
1865   // Print the rest of the operands.
1866   bool FirstOp = true;
1867   unsigned AsmDescOp = ~0u;
1868   unsigned AsmOpCount = 0;
1869 
1870   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1871     // Print asm string.
1872     OS << " ";
1873     getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
1874 
1875     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1876     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1877     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1878       OS << " [sideeffect]";
1879     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1880       OS << " [mayload]";
1881     if (ExtraInfo & InlineAsm::Extra_MayStore)
1882       OS << " [maystore]";
1883     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1884       OS << " [isconvergent]";
1885     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1886       OS << " [alignstack]";
1887     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1888       OS << " [attdialect]";
1889     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1890       OS << " [inteldialect]";
1891 
1892     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1893     FirstOp = false;
1894   }
1895 
1896   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1897     const MachineOperand &MO = getOperand(i);
1898 
1899     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1900       VirtRegs.push_back(MO.getReg());
1901 
1902     if (FirstOp) FirstOp = false; else OS << ",";
1903     OS << " ";
1904     if (i < getDesc().NumOperands) {
1905       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1906       if (MCOI.isPredicate())
1907         OS << "pred:";
1908       if (MCOI.isOptionalDef())
1909         OS << "opt:";
1910     }
1911     if (isDebugValue() && MO.isMetadata()) {
1912       // Pretty print DBG_VALUE instructions.
1913       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1914       if (DIV && !DIV->getName().empty())
1915         OS << "!\"" << DIV->getName() << '\"';
1916       else
1917         MO.print(OS, MST, TRI);
1918     } else if (TRI && (isInsertSubreg() || isRegSequence() ||
1919                        (isSubregToReg() && i == 3)) && MO.isImm()) {
1920       OS << TRI->getSubRegIndexName(MO.getImm());
1921     } else if (i == AsmDescOp && MO.isImm()) {
1922       // Pretty print the inline asm operand descriptor.
1923       OS << '$' << AsmOpCount++;
1924       unsigned Flag = MO.getImm();
1925       switch (InlineAsm::getKind(Flag)) {
1926       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1927       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1928       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1929       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1930       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1931       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1932       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1933       }
1934 
1935       unsigned RCID = 0;
1936       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1937           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1938         if (TRI) {
1939           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1940         } else
1941           OS << ":RC" << RCID;
1942       }
1943 
1944       if (InlineAsm::isMemKind(Flag)) {
1945         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1946         switch (MCID) {
1947         case InlineAsm::Constraint_es: OS << ":es"; break;
1948         case InlineAsm::Constraint_i:  OS << ":i"; break;
1949         case InlineAsm::Constraint_m:  OS << ":m"; break;
1950         case InlineAsm::Constraint_o:  OS << ":o"; break;
1951         case InlineAsm::Constraint_v:  OS << ":v"; break;
1952         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1953         case InlineAsm::Constraint_R:  OS << ":R"; break;
1954         case InlineAsm::Constraint_S:  OS << ":S"; break;
1955         case InlineAsm::Constraint_T:  OS << ":T"; break;
1956         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1957         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1958         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1959         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1960         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1961         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1962         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1963         case InlineAsm::Constraint_X:  OS << ":X"; break;
1964         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1965         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1966         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1967         default: OS << ":?"; break;
1968         }
1969       }
1970 
1971       unsigned TiedTo = 0;
1972       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1973         OS << " tiedto:$" << TiedTo;
1974 
1975       OS << ']';
1976 
1977       // Compute the index of the next operand descriptor.
1978       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1979     } else
1980       MO.print(OS, MST, TRI);
1981   }
1982 
1983   bool HaveSemi = false;
1984   const unsigned PrintableFlags = FrameSetup | FrameDestroy;
1985   if (Flags & PrintableFlags) {
1986     if (!HaveSemi) {
1987       OS << ";";
1988       HaveSemi = true;
1989     }
1990     OS << " flags: ";
1991 
1992     if (Flags & FrameSetup)
1993       OS << "FrameSetup";
1994 
1995     if (Flags & FrameDestroy)
1996       OS << "FrameDestroy";
1997   }
1998 
1999   if (!memoperands_empty()) {
2000     if (!HaveSemi) {
2001       OS << ";";
2002       HaveSemi = true;
2003     }
2004 
2005     OS << " mem:";
2006     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
2007          i != e; ++i) {
2008       (*i)->print(OS, MST);
2009       if (std::next(i) != e)
2010         OS << " ";
2011     }
2012   }
2013 
2014   // Print the regclass of any virtual registers encountered.
2015   if (MRI && !VirtRegs.empty()) {
2016     if (!HaveSemi) {
2017       OS << ";";
2018       HaveSemi = true;
2019     }
2020     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
2021       const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]);
2022       if (!RC)
2023         continue;
2024       // Generic virtual registers do not have register classes.
2025       if (RC.is<const RegisterBank *>())
2026         OS << " " << RC.get<const RegisterBank *>()->getName();
2027       else
2028         OS << " "
2029            << TRI->getRegClassName(RC.get<const TargetRegisterClass *>());
2030       OS << ':' << PrintReg(VirtRegs[i]);
2031       for (unsigned j = i+1; j != VirtRegs.size();) {
2032         if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) {
2033           ++j;
2034           continue;
2035         }
2036         if (VirtRegs[i] != VirtRegs[j])
2037           OS << "," << PrintReg(VirtRegs[j]);
2038         VirtRegs.erase(VirtRegs.begin()+j);
2039       }
2040     }
2041   }
2042 
2043   // Print debug location information.
2044   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
2045     if (!HaveSemi)
2046       OS << ";";
2047     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
2048     OS << " line no:" <<  DV->getLine();
2049     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
2050       DebugLoc InlinedAtDL(InlinedAt);
2051       if (InlinedAtDL && MF) {
2052         OS << " inlined @[ ";
2053         InlinedAtDL.print(OS);
2054         OS << " ]";
2055       }
2056     }
2057     if (isIndirectDebugValue())
2058       OS << " indirect";
2059   } else if (SkipDebugLoc) {
2060     return;
2061   } else if (debugLoc && MF) {
2062     if (!HaveSemi)
2063       OS << ";";
2064     OS << " dbg:";
2065     debugLoc.print(OS);
2066   }
2067 
2068   OS << '\n';
2069 }
2070 
2071 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
2072                                      const TargetRegisterInfo *RegInfo,
2073                                      bool AddIfNotFound) {
2074   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
2075   bool hasAliases = isPhysReg &&
2076     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
2077   bool Found = false;
2078   SmallVector<unsigned,4> DeadOps;
2079   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2080     MachineOperand &MO = getOperand(i);
2081     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
2082       continue;
2083 
2084     // DEBUG_VALUE nodes do not contribute to code generation and should
2085     // always be ignored. Failure to do so may result in trying to modify
2086     // KILL flags on DEBUG_VALUE nodes.
2087     if (MO.isDebug())
2088       continue;
2089 
2090     unsigned Reg = MO.getReg();
2091     if (!Reg)
2092       continue;
2093 
2094     if (Reg == IncomingReg) {
2095       if (!Found) {
2096         if (MO.isKill())
2097           // The register is already marked kill.
2098           return true;
2099         if (isPhysReg && isRegTiedToDefOperand(i))
2100           // Two-address uses of physregs must not be marked kill.
2101           return true;
2102         MO.setIsKill();
2103         Found = true;
2104       }
2105     } else if (hasAliases && MO.isKill() &&
2106                TargetRegisterInfo::isPhysicalRegister(Reg)) {
2107       // A super-register kill already exists.
2108       if (RegInfo->isSuperRegister(IncomingReg, Reg))
2109         return true;
2110       if (RegInfo->isSubRegister(IncomingReg, Reg))
2111         DeadOps.push_back(i);
2112     }
2113   }
2114 
2115   // Trim unneeded kill operands.
2116   while (!DeadOps.empty()) {
2117     unsigned OpIdx = DeadOps.back();
2118     if (getOperand(OpIdx).isImplicit())
2119       RemoveOperand(OpIdx);
2120     else
2121       getOperand(OpIdx).setIsKill(false);
2122     DeadOps.pop_back();
2123   }
2124 
2125   // If not found, this means an alias of one of the operands is killed. Add a
2126   // new implicit operand if required.
2127   if (!Found && AddIfNotFound) {
2128     addOperand(MachineOperand::CreateReg(IncomingReg,
2129                                          false /*IsDef*/,
2130                                          true  /*IsImp*/,
2131                                          true  /*IsKill*/));
2132     return true;
2133   }
2134   return Found;
2135 }
2136 
2137 void MachineInstr::clearRegisterKills(unsigned Reg,
2138                                       const TargetRegisterInfo *RegInfo) {
2139   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
2140     RegInfo = nullptr;
2141   for (MachineOperand &MO : operands()) {
2142     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2143       continue;
2144     unsigned OpReg = MO.getReg();
2145     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
2146       MO.setIsKill(false);
2147   }
2148 }
2149 
2150 bool MachineInstr::addRegisterDead(unsigned Reg,
2151                                    const TargetRegisterInfo *RegInfo,
2152                                    bool AddIfNotFound) {
2153   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
2154   bool hasAliases = isPhysReg &&
2155     MCRegAliasIterator(Reg, RegInfo, false).isValid();
2156   bool Found = false;
2157   SmallVector<unsigned,4> DeadOps;
2158   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2159     MachineOperand &MO = getOperand(i);
2160     if (!MO.isReg() || !MO.isDef())
2161       continue;
2162     unsigned MOReg = MO.getReg();
2163     if (!MOReg)
2164       continue;
2165 
2166     if (MOReg == Reg) {
2167       MO.setIsDead();
2168       Found = true;
2169     } else if (hasAliases && MO.isDead() &&
2170                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
2171       // There exists a super-register that's marked dead.
2172       if (RegInfo->isSuperRegister(Reg, MOReg))
2173         return true;
2174       if (RegInfo->isSubRegister(Reg, MOReg))
2175         DeadOps.push_back(i);
2176     }
2177   }
2178 
2179   // Trim unneeded dead operands.
2180   while (!DeadOps.empty()) {
2181     unsigned OpIdx = DeadOps.back();
2182     if (getOperand(OpIdx).isImplicit())
2183       RemoveOperand(OpIdx);
2184     else
2185       getOperand(OpIdx).setIsDead(false);
2186     DeadOps.pop_back();
2187   }
2188 
2189   // If not found, this means an alias of one of the operands is dead. Add a
2190   // new implicit operand if required.
2191   if (Found || !AddIfNotFound)
2192     return Found;
2193 
2194   addOperand(MachineOperand::CreateReg(Reg,
2195                                        true  /*IsDef*/,
2196                                        true  /*IsImp*/,
2197                                        false /*IsKill*/,
2198                                        true  /*IsDead*/));
2199   return true;
2200 }
2201 
2202 void MachineInstr::clearRegisterDeads(unsigned Reg) {
2203   for (MachineOperand &MO : operands()) {
2204     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2205       continue;
2206     MO.setIsDead(false);
2207   }
2208 }
2209 
2210 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
2211   for (MachineOperand &MO : operands()) {
2212     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2213       continue;
2214     MO.setIsUndef(IsUndef);
2215   }
2216 }
2217 
2218 void MachineInstr::addRegisterDefined(unsigned Reg,
2219                                       const TargetRegisterInfo *RegInfo) {
2220   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
2221     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
2222     if (MO)
2223       return;
2224   } else {
2225     for (const MachineOperand &MO : operands()) {
2226       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2227           MO.getSubReg() == 0)
2228         return;
2229     }
2230   }
2231   addOperand(MachineOperand::CreateReg(Reg,
2232                                        true  /*IsDef*/,
2233                                        true  /*IsImp*/));
2234 }
2235 
2236 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
2237                                          const TargetRegisterInfo &TRI) {
2238   bool HasRegMask = false;
2239   for (MachineOperand &MO : operands()) {
2240     if (MO.isRegMask()) {
2241       HasRegMask = true;
2242       continue;
2243     }
2244     if (!MO.isReg() || !MO.isDef()) continue;
2245     unsigned Reg = MO.getReg();
2246     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
2247     // If there are no uses, including partial uses, the def is dead.
2248     if (llvm::none_of(UsedRegs,
2249                       [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
2250       MO.setIsDead();
2251   }
2252 
2253   // This is a call with a register mask operand.
2254   // Mask clobbers are always dead, so add defs for the non-dead defines.
2255   if (HasRegMask)
2256     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2257          I != E; ++I)
2258       addRegisterDefined(*I, &TRI);
2259 }
2260 
2261 unsigned
2262 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2263   // Build up a buffer of hash code components.
2264   SmallVector<size_t, 8> HashComponents;
2265   HashComponents.reserve(MI->getNumOperands() + 1);
2266   HashComponents.push_back(MI->getOpcode());
2267   for (const MachineOperand &MO : MI->operands()) {
2268     if (MO.isReg() && MO.isDef() &&
2269         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2270       continue;  // Skip virtual register defs.
2271 
2272     HashComponents.push_back(hash_value(MO));
2273   }
2274   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2275 }
2276 
2277 void MachineInstr::emitError(StringRef Msg) const {
2278   // Find the source location cookie.
2279   unsigned LocCookie = 0;
2280   const MDNode *LocMD = nullptr;
2281   for (unsigned i = getNumOperands(); i != 0; --i) {
2282     if (getOperand(i-1).isMetadata() &&
2283         (LocMD = getOperand(i-1).getMetadata()) &&
2284         LocMD->getNumOperands() != 0) {
2285       if (const ConstantInt *CI =
2286               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2287         LocCookie = CI->getZExtValue();
2288         break;
2289       }
2290     }
2291   }
2292 
2293   if (const MachineBasicBlock *MBB = getParent())
2294     if (const MachineFunction *MF = MBB->getParent())
2295       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2296   report_fatal_error(Msg);
2297 }
2298 
2299 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2300                                   const MCInstrDesc &MCID, bool IsIndirect,
2301                                   unsigned Reg, unsigned Offset,
2302                                   const MDNode *Variable, const MDNode *Expr) {
2303   assert(isa<DILocalVariable>(Variable) && "not a variable");
2304   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2305   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2306          "Expected inlined-at fields to agree");
2307   if (IsIndirect)
2308     return BuildMI(MF, DL, MCID)
2309         .addReg(Reg, RegState::Debug)
2310         .addImm(Offset)
2311         .addMetadata(Variable)
2312         .addMetadata(Expr);
2313   else {
2314     assert(Offset == 0 && "A direct address cannot have an offset.");
2315     return BuildMI(MF, DL, MCID)
2316         .addReg(Reg, RegState::Debug)
2317         .addReg(0U, RegState::Debug)
2318         .addMetadata(Variable)
2319         .addMetadata(Expr);
2320   }
2321 }
2322 
2323 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2324                                   MachineBasicBlock::iterator I,
2325                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2326                                   bool IsIndirect, unsigned Reg,
2327                                   unsigned Offset, const MDNode *Variable,
2328                                   const MDNode *Expr) {
2329   assert(isa<DILocalVariable>(Variable) && "not a variable");
2330   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2331   MachineFunction &MF = *BB.getParent();
2332   MachineInstr *MI =
2333       BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr);
2334   BB.insert(I, MI);
2335   return MachineInstrBuilder(MF, MI);
2336 }
2337 
2338 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2339                                           MachineBasicBlock::iterator I,
2340                                           const MachineInstr &Orig,
2341                                           int FrameIndex) {
2342   const MDNode *Var = Orig.getDebugVariable();
2343   const auto *Expr = cast_or_null<DIExpression>(Orig.getDebugExpression());
2344   bool IsIndirect = Orig.isIndirectDebugValue();
2345   uint64_t Offset = IsIndirect ? Orig.getOperand(1).getImm() : 0;
2346   DebugLoc DL = Orig.getDebugLoc();
2347   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
2348          "Expected inlined-at fields to agree");
2349   // If the DBG_VALUE already was a memory location, add an extra
2350   // DW_OP_deref. Otherwise just turning this from a register into a
2351   // memory/indirect location is sufficient.
2352   if (IsIndirect)
2353     Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
2354   return BuildMI(BB, I, DL, Orig.getDesc())
2355       .addFrameIndex(FrameIndex)
2356       .addImm(Offset)
2357       .addMetadata(Var)
2358       .addMetadata(Expr);
2359 }
2360