1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/Constants.h" 16 #include "llvm/Function.h" 17 #include "llvm/InlineAsm.h" 18 #include "llvm/LLVMContext.h" 19 #include "llvm/Metadata.h" 20 #include "llvm/Module.h" 21 #include "llvm/Type.h" 22 #include "llvm/Value.h" 23 #include "llvm/Assembly/Writer.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/DebugInfo.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/LeakDetector.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/ADT/FoldingSet.h" 43 #include "llvm/ADT/Hashing.h" 44 using namespace llvm; 45 46 //===----------------------------------------------------------------------===// 47 // MachineOperand Implementation 48 //===----------------------------------------------------------------------===// 49 50 /// AddRegOperandToRegInfo - Add this register operand to the specified 51 /// MachineRegisterInfo. If it is null, then the next/prev fields should be 52 /// explicitly nulled out. 53 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { 54 assert(isReg() && "Can only add reg operand to use lists"); 55 56 // If the reginfo pointer is null, just explicitly null out or next/prev 57 // pointers, to ensure they are not garbage. 58 if (RegInfo == 0) { 59 Contents.Reg.Prev = 0; 60 Contents.Reg.Next = 0; 61 return; 62 } 63 64 // Otherwise, add this operand to the head of the registers use/def list. 65 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); 66 67 // For SSA values, we prefer to keep the definition at the start of the list. 68 // we do this by skipping over the definition if it is at the head of the 69 // list. 70 if (*Head && (*Head)->isDef()) 71 Head = &(*Head)->Contents.Reg.Next; 72 73 Contents.Reg.Next = *Head; 74 if (Contents.Reg.Next) { 75 assert(getReg() == Contents.Reg.Next->getReg() && 76 "Different regs on the same list!"); 77 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; 78 } 79 80 Contents.Reg.Prev = Head; 81 *Head = this; 82 } 83 84 /// RemoveRegOperandFromRegInfo - Remove this register operand from the 85 /// MachineRegisterInfo it is linked with. 86 void MachineOperand::RemoveRegOperandFromRegInfo() { 87 assert(isOnRegUseList() && "Reg operand is not on a use list"); 88 // Unlink this from the doubly linked list of operands. 89 MachineOperand *NextOp = Contents.Reg.Next; 90 *Contents.Reg.Prev = NextOp; 91 if (NextOp) { 92 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); 93 NextOp->Contents.Reg.Prev = Contents.Reg.Prev; 94 } 95 Contents.Reg.Prev = 0; 96 Contents.Reg.Next = 0; 97 } 98 99 void MachineOperand::setReg(unsigned Reg) { 100 if (getReg() == Reg) return; // No change. 101 102 // Otherwise, we have to change the register. If this operand is embedded 103 // into a machine function, we need to update the old and new register's 104 // use/def lists. 105 if (MachineInstr *MI = getParent()) 106 if (MachineBasicBlock *MBB = MI->getParent()) 107 if (MachineFunction *MF = MBB->getParent()) { 108 RemoveRegOperandFromRegInfo(); 109 SmallContents.RegNo = Reg; 110 AddRegOperandToRegInfo(&MF->getRegInfo()); 111 return; 112 } 113 114 // Otherwise, just change the register, no problem. :) 115 SmallContents.RegNo = Reg; 116 } 117 118 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 119 const TargetRegisterInfo &TRI) { 120 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 121 if (SubIdx && getSubReg()) 122 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 123 setReg(Reg); 124 if (SubIdx) 125 setSubReg(SubIdx); 126 } 127 128 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 129 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 130 if (getSubReg()) { 131 Reg = TRI.getSubReg(Reg, getSubReg()); 132 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 133 // That won't happen in legal code. 134 setSubReg(0); 135 } 136 setReg(Reg); 137 } 138 139 /// ChangeToImmediate - Replace this operand with a new immediate operand of 140 /// the specified value. If an operand is known to be an immediate already, 141 /// the setImm method should be used. 142 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 143 // If this operand is currently a register operand, and if this is in a 144 // function, deregister the operand from the register's use/def list. 145 if (isReg() && getParent() && getParent()->getParent() && 146 getParent()->getParent()->getParent()) 147 RemoveRegOperandFromRegInfo(); 148 149 OpKind = MO_Immediate; 150 Contents.ImmVal = ImmVal; 151 } 152 153 /// ChangeToRegister - Replace this operand with a new register operand of 154 /// the specified value. If an operand is known to be an register already, 155 /// the setReg method should be used. 156 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 157 bool isKill, bool isDead, bool isUndef, 158 bool isDebug) { 159 // If this operand is already a register operand, use setReg to update the 160 // register's use/def lists. 161 if (isReg()) { 162 assert(!isEarlyClobber()); 163 setReg(Reg); 164 } else { 165 // Otherwise, change this to a register and set the reg#. 166 OpKind = MO_Register; 167 SmallContents.RegNo = Reg; 168 169 // If this operand is embedded in a function, add the operand to the 170 // register's use/def list. 171 if (MachineInstr *MI = getParent()) 172 if (MachineBasicBlock *MBB = MI->getParent()) 173 if (MachineFunction *MF = MBB->getParent()) 174 AddRegOperandToRegInfo(&MF->getRegInfo()); 175 } 176 177 IsDef = isDef; 178 IsImp = isImp; 179 IsKill = isKill; 180 IsDead = isDead; 181 IsUndef = isUndef; 182 IsInternalRead = false; 183 IsEarlyClobber = false; 184 IsDebug = isDebug; 185 SubReg = 0; 186 } 187 188 /// isIdenticalTo - Return true if this operand is identical to the specified 189 /// operand. 190 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 191 if (getType() != Other.getType() || 192 getTargetFlags() != Other.getTargetFlags()) 193 return false; 194 195 switch (getType()) { 196 case MachineOperand::MO_Register: 197 return getReg() == Other.getReg() && isDef() == Other.isDef() && 198 getSubReg() == Other.getSubReg(); 199 case MachineOperand::MO_Immediate: 200 return getImm() == Other.getImm(); 201 case MachineOperand::MO_CImmediate: 202 return getCImm() == Other.getCImm(); 203 case MachineOperand::MO_FPImmediate: 204 return getFPImm() == Other.getFPImm(); 205 case MachineOperand::MO_MachineBasicBlock: 206 return getMBB() == Other.getMBB(); 207 case MachineOperand::MO_FrameIndex: 208 return getIndex() == Other.getIndex(); 209 case MachineOperand::MO_ConstantPoolIndex: 210 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 211 case MachineOperand::MO_JumpTableIndex: 212 return getIndex() == Other.getIndex(); 213 case MachineOperand::MO_GlobalAddress: 214 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 215 case MachineOperand::MO_ExternalSymbol: 216 return !strcmp(getSymbolName(), Other.getSymbolName()) && 217 getOffset() == Other.getOffset(); 218 case MachineOperand::MO_BlockAddress: 219 return getBlockAddress() == Other.getBlockAddress(); 220 case MO_RegisterMask: 221 return getRegMask() == Other.getRegMask(); 222 case MachineOperand::MO_MCSymbol: 223 return getMCSymbol() == Other.getMCSymbol(); 224 case MachineOperand::MO_Metadata: 225 return getMetadata() == Other.getMetadata(); 226 } 227 llvm_unreachable("Invalid machine operand type"); 228 } 229 230 /// print - Print the specified machine operand. 231 /// 232 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 233 // If the instruction is embedded into a basic block, we can find the 234 // target info for the instruction. 235 if (!TM) 236 if (const MachineInstr *MI = getParent()) 237 if (const MachineBasicBlock *MBB = MI->getParent()) 238 if (const MachineFunction *MF = MBB->getParent()) 239 TM = &MF->getTarget(); 240 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 241 242 switch (getType()) { 243 case MachineOperand::MO_Register: 244 OS << PrintReg(getReg(), TRI, getSubReg()); 245 246 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 247 isInternalRead() || isEarlyClobber()) { 248 OS << '<'; 249 bool NeedComma = false; 250 if (isDef()) { 251 if (NeedComma) OS << ','; 252 if (isEarlyClobber()) 253 OS << "earlyclobber,"; 254 if (isImplicit()) 255 OS << "imp-"; 256 OS << "def"; 257 NeedComma = true; 258 // <def,read-undef> only makes sense when getSubReg() is set. 259 // Don't clutter the output otherwise. 260 if (isUndef() && getSubReg()) 261 OS << ",read-undef"; 262 } else if (isImplicit()) { 263 OS << "imp-use"; 264 NeedComma = true; 265 } 266 267 if (isKill() || isDead() || (isUndef() && isUse()) || isInternalRead()) { 268 if (NeedComma) OS << ','; 269 NeedComma = false; 270 if (isKill()) { 271 OS << "kill"; 272 NeedComma = true; 273 } 274 if (isDead()) { 275 OS << "dead"; 276 NeedComma = true; 277 } 278 if (isUndef() && isUse()) { 279 if (NeedComma) OS << ','; 280 OS << "undef"; 281 NeedComma = true; 282 } 283 if (isInternalRead()) { 284 if (NeedComma) OS << ','; 285 OS << "internal"; 286 NeedComma = true; 287 } 288 } 289 OS << '>'; 290 } 291 break; 292 case MachineOperand::MO_Immediate: 293 OS << getImm(); 294 break; 295 case MachineOperand::MO_CImmediate: 296 getCImm()->getValue().print(OS, false); 297 break; 298 case MachineOperand::MO_FPImmediate: 299 if (getFPImm()->getType()->isFloatTy()) 300 OS << getFPImm()->getValueAPF().convertToFloat(); 301 else 302 OS << getFPImm()->getValueAPF().convertToDouble(); 303 break; 304 case MachineOperand::MO_MachineBasicBlock: 305 OS << "<BB#" << getMBB()->getNumber() << ">"; 306 break; 307 case MachineOperand::MO_FrameIndex: 308 OS << "<fi#" << getIndex() << '>'; 309 break; 310 case MachineOperand::MO_ConstantPoolIndex: 311 OS << "<cp#" << getIndex(); 312 if (getOffset()) OS << "+" << getOffset(); 313 OS << '>'; 314 break; 315 case MachineOperand::MO_JumpTableIndex: 316 OS << "<jt#" << getIndex() << '>'; 317 break; 318 case MachineOperand::MO_GlobalAddress: 319 OS << "<ga:"; 320 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 321 if (getOffset()) OS << "+" << getOffset(); 322 OS << '>'; 323 break; 324 case MachineOperand::MO_ExternalSymbol: 325 OS << "<es:" << getSymbolName(); 326 if (getOffset()) OS << "+" << getOffset(); 327 OS << '>'; 328 break; 329 case MachineOperand::MO_BlockAddress: 330 OS << '<'; 331 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 332 OS << '>'; 333 break; 334 case MachineOperand::MO_RegisterMask: 335 OS << "<regmask>"; 336 break; 337 case MachineOperand::MO_Metadata: 338 OS << '<'; 339 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 340 OS << '>'; 341 break; 342 case MachineOperand::MO_MCSymbol: 343 OS << "<MCSym=" << *getMCSymbol() << '>'; 344 break; 345 } 346 347 if (unsigned TF = getTargetFlags()) 348 OS << "[TF=" << TF << ']'; 349 } 350 351 //===----------------------------------------------------------------------===// 352 // MachineMemOperand Implementation 353 //===----------------------------------------------------------------------===// 354 355 /// getAddrSpace - Return the LLVM IR address space number that this pointer 356 /// points into. 357 unsigned MachinePointerInfo::getAddrSpace() const { 358 if (V == 0) return 0; 359 return cast<PointerType>(V->getType())->getAddressSpace(); 360 } 361 362 /// getConstantPool - Return a MachinePointerInfo record that refers to the 363 /// constant pool. 364 MachinePointerInfo MachinePointerInfo::getConstantPool() { 365 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 366 } 367 368 /// getFixedStack - Return a MachinePointerInfo record that refers to the 369 /// the specified FrameIndex. 370 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 371 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 372 } 373 374 MachinePointerInfo MachinePointerInfo::getJumpTable() { 375 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 376 } 377 378 MachinePointerInfo MachinePointerInfo::getGOT() { 379 return MachinePointerInfo(PseudoSourceValue::getGOT()); 380 } 381 382 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 383 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 384 } 385 386 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 387 uint64_t s, unsigned int a, 388 const MDNode *TBAAInfo, 389 const MDNode *Ranges) 390 : PtrInfo(ptrinfo), Size(s), 391 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 392 TBAAInfo(TBAAInfo), Ranges(Ranges) { 393 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 394 "invalid pointer value"); 395 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 396 assert((isLoad() || isStore()) && "Not a load/store!"); 397 } 398 399 /// Profile - Gather unique data for the object. 400 /// 401 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 402 ID.AddInteger(getOffset()); 403 ID.AddInteger(Size); 404 ID.AddPointer(getValue()); 405 ID.AddInteger(Flags); 406 } 407 408 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 409 // The Value and Offset may differ due to CSE. But the flags and size 410 // should be the same. 411 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 412 assert(MMO->getSize() == getSize() && "Size mismatch!"); 413 414 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 415 // Update the alignment value. 416 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 417 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 418 // Also update the base and offset, because the new alignment may 419 // not be applicable with the old ones. 420 PtrInfo = MMO->PtrInfo; 421 } 422 } 423 424 /// getAlignment - Return the minimum known alignment in bytes of the 425 /// actual memory reference. 426 uint64_t MachineMemOperand::getAlignment() const { 427 return MinAlign(getBaseAlignment(), getOffset()); 428 } 429 430 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 431 assert((MMO.isLoad() || MMO.isStore()) && 432 "SV has to be a load, store or both."); 433 434 if (MMO.isVolatile()) 435 OS << "Volatile "; 436 437 if (MMO.isLoad()) 438 OS << "LD"; 439 if (MMO.isStore()) 440 OS << "ST"; 441 OS << MMO.getSize(); 442 443 // Print the address information. 444 OS << "["; 445 if (!MMO.getValue()) 446 OS << "<unknown>"; 447 else 448 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 449 450 // If the alignment of the memory reference itself differs from the alignment 451 // of the base pointer, print the base alignment explicitly, next to the base 452 // pointer. 453 if (MMO.getBaseAlignment() != MMO.getAlignment()) 454 OS << "(align=" << MMO.getBaseAlignment() << ")"; 455 456 if (MMO.getOffset() != 0) 457 OS << "+" << MMO.getOffset(); 458 OS << "]"; 459 460 // Print the alignment of the reference. 461 if (MMO.getBaseAlignment() != MMO.getAlignment() || 462 MMO.getBaseAlignment() != MMO.getSize()) 463 OS << "(align=" << MMO.getAlignment() << ")"; 464 465 // Print TBAA info. 466 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 467 OS << "(tbaa="; 468 if (TBAAInfo->getNumOperands() > 0) 469 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 470 else 471 OS << "<unknown>"; 472 OS << ")"; 473 } 474 475 // Print nontemporal info. 476 if (MMO.isNonTemporal()) 477 OS << "(nontemporal)"; 478 479 return OS; 480 } 481 482 //===----------------------------------------------------------------------===// 483 // MachineInstr Implementation 484 //===----------------------------------------------------------------------===// 485 486 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with 487 /// MCID NULL and no operands. 488 MachineInstr::MachineInstr() 489 : MCID(0), Flags(0), AsmPrinterFlags(0), 490 NumMemRefs(0), MemRefs(0), 491 Parent(0) { 492 // Make sure that we get added to a machine basicblock 493 LeakDetector::addGarbageObject(this); 494 } 495 496 void MachineInstr::addImplicitDefUseOperands() { 497 if (MCID->ImplicitDefs) 498 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 499 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 500 if (MCID->ImplicitUses) 501 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 502 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 503 } 504 505 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 506 /// implicit operands. It reserves space for the number of operands specified by 507 /// the MCInstrDesc. 508 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp) 509 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 510 NumMemRefs(0), MemRefs(0), Parent(0) { 511 unsigned NumImplicitOps = 0; 512 if (!NoImp) 513 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 514 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 515 if (!NoImp) 516 addImplicitDefUseOperands(); 517 // Make sure that we get added to a machine basicblock 518 LeakDetector::addGarbageObject(this); 519 } 520 521 /// MachineInstr ctor - As above, but with a DebugLoc. 522 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl, 523 bool NoImp) 524 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 525 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { 526 unsigned NumImplicitOps = 0; 527 if (!NoImp) 528 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 529 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 530 if (!NoImp) 531 addImplicitDefUseOperands(); 532 // Make sure that we get added to a machine basicblock 533 LeakDetector::addGarbageObject(this); 534 } 535 536 /// MachineInstr ctor - Work exactly the same as the ctor two above, except 537 /// that the MachineInstr is created and added to the end of the specified 538 /// basic block. 539 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid) 540 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 541 NumMemRefs(0), MemRefs(0), Parent(0) { 542 assert(MBB && "Cannot use inserting ctor with null basic block!"); 543 unsigned NumImplicitOps = 544 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 545 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 546 addImplicitDefUseOperands(); 547 // Make sure that we get added to a machine basicblock 548 LeakDetector::addGarbageObject(this); 549 MBB->push_back(this); // Add instruction to end of basic block! 550 } 551 552 /// MachineInstr ctor - As above, but with a DebugLoc. 553 /// 554 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 555 const MCInstrDesc &tid) 556 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 557 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { 558 assert(MBB && "Cannot use inserting ctor with null basic block!"); 559 unsigned NumImplicitOps = 560 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 561 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 562 addImplicitDefUseOperands(); 563 // Make sure that we get added to a machine basicblock 564 LeakDetector::addGarbageObject(this); 565 MBB->push_back(this); // Add instruction to end of basic block! 566 } 567 568 /// MachineInstr ctor - Copies MachineInstr arg exactly 569 /// 570 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 571 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0), 572 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 573 Parent(0), debugLoc(MI.getDebugLoc()) { 574 Operands.reserve(MI.getNumOperands()); 575 576 // Add operands 577 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 578 addOperand(MI.getOperand(i)); 579 580 // Copy all the flags. 581 Flags = MI.Flags; 582 583 // Set parent to null. 584 Parent = 0; 585 586 LeakDetector::addGarbageObject(this); 587 } 588 589 MachineInstr::~MachineInstr() { 590 LeakDetector::removeGarbageObject(this); 591 #ifndef NDEBUG 592 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 593 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 594 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 595 "Reg operand def/use list corrupted"); 596 } 597 #endif 598 } 599 600 /// getRegInfo - If this instruction is embedded into a MachineFunction, 601 /// return the MachineRegisterInfo object for the current function, otherwise 602 /// return null. 603 MachineRegisterInfo *MachineInstr::getRegInfo() { 604 if (MachineBasicBlock *MBB = getParent()) 605 return &MBB->getParent()->getRegInfo(); 606 return 0; 607 } 608 609 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 610 /// this instruction from their respective use lists. This requires that the 611 /// operands already be on their use lists. 612 void MachineInstr::RemoveRegOperandsFromUseLists() { 613 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 614 if (Operands[i].isReg()) 615 Operands[i].RemoveRegOperandFromRegInfo(); 616 } 617 } 618 619 /// AddRegOperandsToUseLists - Add all of the register operands in 620 /// this instruction from their respective use lists. This requires that the 621 /// operands not be on their use lists yet. 622 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { 623 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 624 if (Operands[i].isReg()) 625 Operands[i].AddRegOperandToRegInfo(&RegInfo); 626 } 627 } 628 629 630 /// addOperand - Add the specified operand to the instruction. If it is an 631 /// implicit operand, it is added to the end of the operand list. If it is 632 /// an explicit operand it is added at the end of the explicit operand list 633 /// (before the first implicit operand). 634 void MachineInstr::addOperand(const MachineOperand &Op) { 635 assert(MCID && "Cannot add operands before providing an instr descriptor"); 636 bool isImpReg = Op.isReg() && Op.isImplicit(); 637 MachineRegisterInfo *RegInfo = getRegInfo(); 638 639 // If the Operands backing store is reallocated, all register operands must 640 // be removed and re-added to RegInfo. It is storing pointers to operands. 641 bool Reallocate = RegInfo && 642 !Operands.empty() && Operands.size() == Operands.capacity(); 643 644 // Find the insert location for the new operand. Implicit registers go at 645 // the end, everything goes before the implicit regs. 646 unsigned OpNo = Operands.size(); 647 648 // Remove all the implicit operands from RegInfo if they need to be shifted. 649 // FIXME: Allow mixed explicit and implicit operands on inline asm. 650 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 651 // implicit-defs, but they must not be moved around. See the FIXME in 652 // InstrEmitter.cpp. 653 if (!isImpReg && !isInlineAsm()) { 654 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 655 --OpNo; 656 if (RegInfo) 657 Operands[OpNo].RemoveRegOperandFromRegInfo(); 658 } 659 } 660 661 // OpNo now points as the desired insertion point. Unless this is a variadic 662 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 663 assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) && 664 "Trying to add an operand to a machine instr that is already done!"); 665 666 // All operands from OpNo have been removed from RegInfo. If the Operands 667 // backing store needs to be reallocated, we also need to remove any other 668 // register operands. 669 if (Reallocate) 670 for (unsigned i = 0; i != OpNo; ++i) 671 if (Operands[i].isReg()) 672 Operands[i].RemoveRegOperandFromRegInfo(); 673 674 // Insert the new operand at OpNo. 675 Operands.insert(Operands.begin() + OpNo, Op); 676 Operands[OpNo].ParentMI = this; 677 678 // The Operands backing store has now been reallocated, so we can re-add the 679 // operands before OpNo. 680 if (Reallocate) 681 for (unsigned i = 0; i != OpNo; ++i) 682 if (Operands[i].isReg()) 683 Operands[i].AddRegOperandToRegInfo(RegInfo); 684 685 // When adding a register operand, tell RegInfo about it. 686 if (Operands[OpNo].isReg()) { 687 // Add the new operand to RegInfo, even when RegInfo is NULL. 688 // This will initialize the linked list pointers. 689 Operands[OpNo].AddRegOperandToRegInfo(RegInfo); 690 // If the register operand is flagged as early, mark the operand as such. 691 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 692 Operands[OpNo].setIsEarlyClobber(true); 693 } 694 695 // Re-add all the implicit ops. 696 if (RegInfo) { 697 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) { 698 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 699 Operands[i].AddRegOperandToRegInfo(RegInfo); 700 } 701 } 702 } 703 704 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 705 /// fewer operand than it started with. 706 /// 707 void MachineInstr::RemoveOperand(unsigned OpNo) { 708 assert(OpNo < Operands.size() && "Invalid operand number"); 709 710 // Special case removing the last one. 711 if (OpNo == Operands.size()-1) { 712 // If needed, remove from the reg def/use list. 713 if (Operands.back().isReg() && Operands.back().isOnRegUseList()) 714 Operands.back().RemoveRegOperandFromRegInfo(); 715 716 Operands.pop_back(); 717 return; 718 } 719 720 // Otherwise, we are removing an interior operand. If we have reginfo to 721 // update, remove all operands that will be shifted down from their reg lists, 722 // move everything down, then re-add them. 723 MachineRegisterInfo *RegInfo = getRegInfo(); 724 if (RegInfo) { 725 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 726 if (Operands[i].isReg()) 727 Operands[i].RemoveRegOperandFromRegInfo(); 728 } 729 } 730 731 Operands.erase(Operands.begin()+OpNo); 732 733 if (RegInfo) { 734 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 735 if (Operands[i].isReg()) 736 Operands[i].AddRegOperandToRegInfo(RegInfo); 737 } 738 } 739 } 740 741 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 742 /// This function should be used only occasionally. The setMemRefs function 743 /// is the primary method for setting up a MachineInstr's MemRefs list. 744 void MachineInstr::addMemOperand(MachineFunction &MF, 745 MachineMemOperand *MO) { 746 mmo_iterator OldMemRefs = MemRefs; 747 uint16_t OldNumMemRefs = NumMemRefs; 748 749 uint16_t NewNum = NumMemRefs + 1; 750 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 751 752 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 753 NewMemRefs[NewNum - 1] = MO; 754 755 MemRefs = NewMemRefs; 756 NumMemRefs = NewNum; 757 } 758 759 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 760 const MachineBasicBlock *MBB = getParent(); 761 MachineBasicBlock::const_instr_iterator MII = *this; ++MII; 762 while (MII != MBB->end() && MII->isInsideBundle()) { 763 if (MII->getDesc().getFlags() & Mask) { 764 if (Type == AnyInBundle) 765 return true; 766 } else { 767 if (Type == AllInBundle) 768 return false; 769 } 770 ++MII; 771 } 772 773 return Type == AllInBundle; 774 } 775 776 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 777 MICheckType Check) const { 778 // If opcodes or number of operands are not the same then the two 779 // instructions are obviously not identical. 780 if (Other->getOpcode() != getOpcode() || 781 Other->getNumOperands() != getNumOperands()) 782 return false; 783 784 if (isBundle()) { 785 // Both instructions are bundles, compare MIs inside the bundle. 786 MachineBasicBlock::const_instr_iterator I1 = *this; 787 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 788 MachineBasicBlock::const_instr_iterator I2 = *Other; 789 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 790 while (++I1 != E1 && I1->isInsideBundle()) { 791 ++I2; 792 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 793 return false; 794 } 795 } 796 797 // Check operands to make sure they match. 798 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 799 const MachineOperand &MO = getOperand(i); 800 const MachineOperand &OMO = Other->getOperand(i); 801 if (!MO.isReg()) { 802 if (!MO.isIdenticalTo(OMO)) 803 return false; 804 continue; 805 } 806 807 // Clients may or may not want to ignore defs when testing for equality. 808 // For example, machine CSE pass only cares about finding common 809 // subexpressions, so it's safe to ignore virtual register defs. 810 if (MO.isDef()) { 811 if (Check == IgnoreDefs) 812 continue; 813 else if (Check == IgnoreVRegDefs) { 814 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 815 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 816 if (MO.getReg() != OMO.getReg()) 817 return false; 818 } else { 819 if (!MO.isIdenticalTo(OMO)) 820 return false; 821 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 822 return false; 823 } 824 } else { 825 if (!MO.isIdenticalTo(OMO)) 826 return false; 827 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 828 return false; 829 } 830 } 831 // If DebugLoc does not match then two dbg.values are not identical. 832 if (isDebugValue()) 833 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 834 && getDebugLoc() != Other->getDebugLoc()) 835 return false; 836 return true; 837 } 838 839 /// removeFromParent - This method unlinks 'this' from the containing basic 840 /// block, and returns it, but does not delete it. 841 MachineInstr *MachineInstr::removeFromParent() { 842 assert(getParent() && "Not embedded in a basic block!"); 843 844 // If it's a bundle then remove the MIs inside the bundle as well. 845 if (isBundle()) { 846 MachineBasicBlock *MBB = getParent(); 847 MachineBasicBlock::instr_iterator MII = *this; ++MII; 848 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 849 while (MII != E && MII->isInsideBundle()) { 850 MachineInstr *MI = &*MII; 851 ++MII; 852 MBB->remove(MI); 853 } 854 } 855 getParent()->remove(this); 856 return this; 857 } 858 859 860 /// eraseFromParent - This method unlinks 'this' from the containing basic 861 /// block, and deletes it. 862 void MachineInstr::eraseFromParent() { 863 assert(getParent() && "Not embedded in a basic block!"); 864 // If it's a bundle then remove the MIs inside the bundle as well. 865 if (isBundle()) { 866 MachineBasicBlock *MBB = getParent(); 867 MachineBasicBlock::instr_iterator MII = *this; ++MII; 868 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 869 while (MII != E && MII->isInsideBundle()) { 870 MachineInstr *MI = &*MII; 871 ++MII; 872 MBB->erase(MI); 873 } 874 } 875 getParent()->erase(this); 876 } 877 878 879 /// getNumExplicitOperands - Returns the number of non-implicit operands. 880 /// 881 unsigned MachineInstr::getNumExplicitOperands() const { 882 unsigned NumOperands = MCID->getNumOperands(); 883 if (!MCID->isVariadic()) 884 return NumOperands; 885 886 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 887 const MachineOperand &MO = getOperand(i); 888 if (!MO.isReg() || !MO.isImplicit()) 889 NumOperands++; 890 } 891 return NumOperands; 892 } 893 894 /// isBundled - Return true if this instruction part of a bundle. This is true 895 /// if either itself or its following instruction is marked "InsideBundle". 896 bool MachineInstr::isBundled() const { 897 if (isInsideBundle()) 898 return true; 899 MachineBasicBlock::const_instr_iterator nextMI = this; 900 ++nextMI; 901 return nextMI != Parent->instr_end() && nextMI->isInsideBundle(); 902 } 903 904 bool MachineInstr::isStackAligningInlineAsm() const { 905 if (isInlineAsm()) { 906 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 907 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 908 return true; 909 } 910 return false; 911 } 912 913 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 914 unsigned *GroupNo) const { 915 assert(isInlineAsm() && "Expected an inline asm instruction"); 916 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 917 918 // Ignore queries about the initial operands. 919 if (OpIdx < InlineAsm::MIOp_FirstOperand) 920 return -1; 921 922 unsigned Group = 0; 923 unsigned NumOps; 924 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 925 i += NumOps) { 926 const MachineOperand &FlagMO = getOperand(i); 927 // If we reach the implicit register operands, stop looking. 928 if (!FlagMO.isImm()) 929 return -1; 930 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 931 if (i + NumOps > OpIdx) { 932 if (GroupNo) 933 *GroupNo = Group; 934 return i; 935 } 936 ++Group; 937 } 938 return -1; 939 } 940 941 const TargetRegisterClass* 942 MachineInstr::getRegClassConstraint(unsigned OpIdx, 943 const TargetInstrInfo *TII, 944 const TargetRegisterInfo *TRI) const { 945 assert(getParent() && "Can't have an MBB reference here!"); 946 assert(getParent()->getParent() && "Can't have an MF reference here!"); 947 const MachineFunction &MF = *getParent()->getParent(); 948 949 // Most opcodes have fixed constraints in their MCInstrDesc. 950 if (!isInlineAsm()) 951 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 952 953 if (!getOperand(OpIdx).isReg()) 954 return NULL; 955 956 // For tied uses on inline asm, get the constraint from the def. 957 unsigned DefIdx; 958 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 959 OpIdx = DefIdx; 960 961 // Inline asm stores register class constraints in the flag word. 962 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 963 if (FlagIdx < 0) 964 return NULL; 965 966 unsigned Flag = getOperand(FlagIdx).getImm(); 967 unsigned RCID; 968 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 969 return TRI->getRegClass(RCID); 970 971 // Assume that all registers in a memory operand are pointers. 972 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 973 return TRI->getPointerRegClass(MF); 974 975 return NULL; 976 } 977 978 /// getBundleSize - Return the number of instructions inside the MI bundle. 979 unsigned MachineInstr::getBundleSize() const { 980 assert(isBundle() && "Expecting a bundle"); 981 982 MachineBasicBlock::const_instr_iterator I = *this; 983 unsigned Size = 0; 984 while ((++I)->isInsideBundle()) { 985 ++Size; 986 } 987 assert(Size > 1 && "Malformed bundle"); 988 989 return Size; 990 } 991 992 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 993 /// the specific register or -1 if it is not found. It further tightens 994 /// the search criteria to a use that kills the register if isKill is true. 995 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 996 const TargetRegisterInfo *TRI) const { 997 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 998 const MachineOperand &MO = getOperand(i); 999 if (!MO.isReg() || !MO.isUse()) 1000 continue; 1001 unsigned MOReg = MO.getReg(); 1002 if (!MOReg) 1003 continue; 1004 if (MOReg == Reg || 1005 (TRI && 1006 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1007 TargetRegisterInfo::isPhysicalRegister(Reg) && 1008 TRI->isSubRegister(MOReg, Reg))) 1009 if (!isKill || MO.isKill()) 1010 return i; 1011 } 1012 return -1; 1013 } 1014 1015 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1016 /// indicating if this instruction reads or writes Reg. This also considers 1017 /// partial defines. 1018 std::pair<bool,bool> 1019 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1020 SmallVectorImpl<unsigned> *Ops) const { 1021 bool PartDef = false; // Partial redefine. 1022 bool FullDef = false; // Full define. 1023 bool Use = false; 1024 1025 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1026 const MachineOperand &MO = getOperand(i); 1027 if (!MO.isReg() || MO.getReg() != Reg) 1028 continue; 1029 if (Ops) 1030 Ops->push_back(i); 1031 if (MO.isUse()) 1032 Use |= !MO.isUndef(); 1033 else if (MO.getSubReg() && !MO.isUndef()) 1034 // A partial <def,undef> doesn't count as reading the register. 1035 PartDef = true; 1036 else 1037 FullDef = true; 1038 } 1039 // A partial redefine uses Reg unless there is also a full define. 1040 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1041 } 1042 1043 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1044 /// the specified register or -1 if it is not found. If isDead is true, defs 1045 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1046 /// also checks if there is a def of a super-register. 1047 int 1048 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1049 const TargetRegisterInfo *TRI) const { 1050 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1051 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1052 const MachineOperand &MO = getOperand(i); 1053 // Accept regmask operands when Overlap is set. 1054 // Ignore them when looking for a specific def operand (Overlap == false). 1055 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1056 return i; 1057 if (!MO.isReg() || !MO.isDef()) 1058 continue; 1059 unsigned MOReg = MO.getReg(); 1060 bool Found = (MOReg == Reg); 1061 if (!Found && TRI && isPhys && 1062 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1063 if (Overlap) 1064 Found = TRI->regsOverlap(MOReg, Reg); 1065 else 1066 Found = TRI->isSubRegister(MOReg, Reg); 1067 } 1068 if (Found && (!isDead || MO.isDead())) 1069 return i; 1070 } 1071 return -1; 1072 } 1073 1074 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1075 /// operand list that is used to represent the predicate. It returns -1 if 1076 /// none is found. 1077 int MachineInstr::findFirstPredOperandIdx() const { 1078 // Don't call MCID.findFirstPredOperandIdx() because this variant 1079 // is sometimes called on an instruction that's not yet complete, and 1080 // so the number of operands is less than the MCID indicates. In 1081 // particular, the PTX target does this. 1082 const MCInstrDesc &MCID = getDesc(); 1083 if (MCID.isPredicable()) { 1084 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1085 if (MCID.OpInfo[i].isPredicate()) 1086 return i; 1087 } 1088 1089 return -1; 1090 } 1091 1092 /// isRegTiedToUseOperand - Given the index of a register def operand, 1093 /// check if the register def is tied to a source operand, due to either 1094 /// two-address elimination or inline assembly constraints. Returns the 1095 /// first tied use operand index by reference is UseOpIdx is not null. 1096 bool MachineInstr:: 1097 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 1098 if (isInlineAsm()) { 1099 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand); 1100 const MachineOperand &MO = getOperand(DefOpIdx); 1101 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 1102 return false; 1103 // Determine the actual operand index that corresponds to this index. 1104 unsigned DefNo = 0; 1105 int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo); 1106 if (FlagIdx < 0) 1107 return false; 1108 1109 // Which part of the group is DefOpIdx? 1110 unsigned DefPart = DefOpIdx - (FlagIdx + 1); 1111 1112 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); 1113 i != e; ++i) { 1114 const MachineOperand &FMO = getOperand(i); 1115 if (!FMO.isImm()) 1116 continue; 1117 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 1118 continue; 1119 unsigned Idx; 1120 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 1121 Idx == DefNo) { 1122 if (UseOpIdx) 1123 *UseOpIdx = (unsigned)i + 1 + DefPart; 1124 return true; 1125 } 1126 } 1127 return false; 1128 } 1129 1130 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 1131 const MCInstrDesc &MCID = getDesc(); 1132 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 1133 const MachineOperand &MO = getOperand(i); 1134 if (MO.isReg() && MO.isUse() && 1135 MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) { 1136 if (UseOpIdx) 1137 *UseOpIdx = (unsigned)i; 1138 return true; 1139 } 1140 } 1141 return false; 1142 } 1143 1144 /// isRegTiedToDefOperand - Return true if the operand of the specified index 1145 /// is a register use and it is tied to an def operand. It also returns the def 1146 /// operand index by reference. 1147 bool MachineInstr:: 1148 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 1149 if (isInlineAsm()) { 1150 const MachineOperand &MO = getOperand(UseOpIdx); 1151 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 1152 return false; 1153 1154 // Find the flag operand corresponding to UseOpIdx 1155 int FlagIdx = findInlineAsmFlagIdx(UseOpIdx); 1156 if (FlagIdx < 0) 1157 return false; 1158 1159 const MachineOperand &UFMO = getOperand(FlagIdx); 1160 unsigned DefNo; 1161 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 1162 if (!DefOpIdx) 1163 return true; 1164 1165 unsigned DefIdx = InlineAsm::MIOp_FirstOperand; 1166 // Remember to adjust the index. First operand is asm string, second is 1167 // the HasSideEffects and AlignStack bits, then there is a flag for each. 1168 while (DefNo) { 1169 const MachineOperand &FMO = getOperand(DefIdx); 1170 assert(FMO.isImm()); 1171 // Skip over this def. 1172 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 1173 --DefNo; 1174 } 1175 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 1176 return true; 1177 } 1178 return false; 1179 } 1180 1181 const MCInstrDesc &MCID = getDesc(); 1182 if (UseOpIdx >= MCID.getNumOperands()) 1183 return false; 1184 const MachineOperand &MO = getOperand(UseOpIdx); 1185 if (!MO.isReg() || !MO.isUse()) 1186 return false; 1187 int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO); 1188 if (DefIdx == -1) 1189 return false; 1190 if (DefOpIdx) 1191 *DefOpIdx = (unsigned)DefIdx; 1192 return true; 1193 } 1194 1195 /// clearKillInfo - Clears kill flags on all operands. 1196 /// 1197 void MachineInstr::clearKillInfo() { 1198 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1199 MachineOperand &MO = getOperand(i); 1200 if (MO.isReg() && MO.isUse()) 1201 MO.setIsKill(false); 1202 } 1203 } 1204 1205 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1206 /// 1207 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1208 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1209 const MachineOperand &MO = MI->getOperand(i); 1210 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1211 continue; 1212 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1213 MachineOperand &MOp = getOperand(j); 1214 if (!MOp.isIdenticalTo(MO)) 1215 continue; 1216 if (MO.isKill()) 1217 MOp.setIsKill(); 1218 else 1219 MOp.setIsDead(); 1220 break; 1221 } 1222 } 1223 } 1224 1225 /// copyPredicates - Copies predicate operand(s) from MI. 1226 void MachineInstr::copyPredicates(const MachineInstr *MI) { 1227 assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles"); 1228 1229 const MCInstrDesc &MCID = MI->getDesc(); 1230 if (!MCID.isPredicable()) 1231 return; 1232 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1233 if (MCID.OpInfo[i].isPredicate()) { 1234 // Predicated operands must be last operands. 1235 addOperand(MI->getOperand(i)); 1236 } 1237 } 1238 } 1239 1240 void MachineInstr::substituteRegister(unsigned FromReg, 1241 unsigned ToReg, 1242 unsigned SubIdx, 1243 const TargetRegisterInfo &RegInfo) { 1244 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1245 if (SubIdx) 1246 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1247 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1248 MachineOperand &MO = getOperand(i); 1249 if (!MO.isReg() || MO.getReg() != FromReg) 1250 continue; 1251 MO.substPhysReg(ToReg, RegInfo); 1252 } 1253 } else { 1254 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1255 MachineOperand &MO = getOperand(i); 1256 if (!MO.isReg() || MO.getReg() != FromReg) 1257 continue; 1258 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1259 } 1260 } 1261 } 1262 1263 /// isSafeToMove - Return true if it is safe to move this instruction. If 1264 /// SawStore is set to true, it means that there is a store (or call) between 1265 /// the instruction's location and its intended destination. 1266 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1267 AliasAnalysis *AA, 1268 bool &SawStore) const { 1269 // Ignore stuff that we obviously can't move. 1270 if (mayStore() || isCall()) { 1271 SawStore = true; 1272 return false; 1273 } 1274 1275 if (isLabel() || isDebugValue() || 1276 isTerminator() || hasUnmodeledSideEffects()) 1277 return false; 1278 1279 // See if this instruction does a load. If so, we have to guarantee that the 1280 // loaded value doesn't change between the load and the its intended 1281 // destination. The check for isInvariantLoad gives the targe the chance to 1282 // classify the load as always returning a constant, e.g. a constant pool 1283 // load. 1284 if (mayLoad() && !isInvariantLoad(AA)) 1285 // Otherwise, this is a real load. If there is a store between the load and 1286 // end of block, or if the load is volatile, we can't move it. 1287 return !SawStore && !hasVolatileMemoryRef(); 1288 1289 return true; 1290 } 1291 1292 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1293 /// instruction which defined the specified register instead of copying it. 1294 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1295 AliasAnalysis *AA, 1296 unsigned DstReg) const { 1297 bool SawStore = false; 1298 if (!TII->isTriviallyReMaterializable(this, AA) || 1299 !isSafeToMove(TII, AA, SawStore)) 1300 return false; 1301 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1302 const MachineOperand &MO = getOperand(i); 1303 if (!MO.isReg()) 1304 continue; 1305 // FIXME: For now, do not remat any instruction with register operands. 1306 // Later on, we can loosen the restriction is the register operands have 1307 // not been modified between the def and use. Note, this is different from 1308 // MachineSink because the code is no longer in two-address form (at least 1309 // partially). 1310 if (MO.isUse()) 1311 return false; 1312 else if (!MO.isDead() && MO.getReg() != DstReg) 1313 return false; 1314 } 1315 return true; 1316 } 1317 1318 /// hasVolatileMemoryRef - Return true if this instruction may have a 1319 /// volatile memory reference, or if the information describing the 1320 /// memory reference is not available. Return false if it is known to 1321 /// have no volatile memory references. 1322 bool MachineInstr::hasVolatileMemoryRef() const { 1323 // An instruction known never to access memory won't have a volatile access. 1324 if (!mayStore() && 1325 !mayLoad() && 1326 !isCall() && 1327 !hasUnmodeledSideEffects()) 1328 return false; 1329 1330 // Otherwise, if the instruction has no memory reference information, 1331 // conservatively assume it wasn't preserved. 1332 if (memoperands_empty()) 1333 return true; 1334 1335 // Check the memory reference information for volatile references. 1336 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1337 if ((*I)->isVolatile()) 1338 return true; 1339 1340 return false; 1341 } 1342 1343 /// isInvariantLoad - Return true if this instruction is loading from a 1344 /// location whose value is invariant across the function. For example, 1345 /// loading a value from the constant pool or from the argument area 1346 /// of a function if it does not change. This should only return true of 1347 /// *all* loads the instruction does are invariant (if it does multiple loads). 1348 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1349 // If the instruction doesn't load at all, it isn't an invariant load. 1350 if (!mayLoad()) 1351 return false; 1352 1353 // If the instruction has lost its memoperands, conservatively assume that 1354 // it may not be an invariant load. 1355 if (memoperands_empty()) 1356 return false; 1357 1358 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1359 1360 for (mmo_iterator I = memoperands_begin(), 1361 E = memoperands_end(); I != E; ++I) { 1362 if ((*I)->isVolatile()) return false; 1363 if ((*I)->isStore()) return false; 1364 if ((*I)->isInvariant()) return true; 1365 1366 if (const Value *V = (*I)->getValue()) { 1367 // A load from a constant PseudoSourceValue is invariant. 1368 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1369 if (PSV->isConstant(MFI)) 1370 continue; 1371 // If we have an AliasAnalysis, ask it whether the memory is constant. 1372 if (AA && AA->pointsToConstantMemory( 1373 AliasAnalysis::Location(V, (*I)->getSize(), 1374 (*I)->getTBAAInfo()))) 1375 continue; 1376 } 1377 1378 // Otherwise assume conservatively. 1379 return false; 1380 } 1381 1382 // Everything checks out. 1383 return true; 1384 } 1385 1386 /// isConstantValuePHI - If the specified instruction is a PHI that always 1387 /// merges together the same virtual register, return the register, otherwise 1388 /// return 0. 1389 unsigned MachineInstr::isConstantValuePHI() const { 1390 if (!isPHI()) 1391 return 0; 1392 assert(getNumOperands() >= 3 && 1393 "It's illegal to have a PHI without source operands"); 1394 1395 unsigned Reg = getOperand(1).getReg(); 1396 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1397 if (getOperand(i).getReg() != Reg) 1398 return 0; 1399 return Reg; 1400 } 1401 1402 bool MachineInstr::hasUnmodeledSideEffects() const { 1403 if (hasProperty(MCID::UnmodeledSideEffects)) 1404 return true; 1405 if (isInlineAsm()) { 1406 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1407 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1408 return true; 1409 } 1410 1411 return false; 1412 } 1413 1414 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1415 /// 1416 bool MachineInstr::allDefsAreDead() const { 1417 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1418 const MachineOperand &MO = getOperand(i); 1419 if (!MO.isReg() || MO.isUse()) 1420 continue; 1421 if (!MO.isDead()) 1422 return false; 1423 } 1424 return true; 1425 } 1426 1427 /// copyImplicitOps - Copy implicit register operands from specified 1428 /// instruction to this instruction. 1429 void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1430 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1431 i != e; ++i) { 1432 const MachineOperand &MO = MI->getOperand(i); 1433 if (MO.isReg() && MO.isImplicit()) 1434 addOperand(MO); 1435 } 1436 } 1437 1438 void MachineInstr::dump() const { 1439 dbgs() << " " << *this; 1440 } 1441 1442 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1443 raw_ostream &CommentOS) { 1444 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1445 if (!DL.isUnknown()) { // Print source line info. 1446 DIScope Scope(DL.getScope(Ctx)); 1447 // Omit the directory, because it's likely to be long and uninteresting. 1448 if (Scope.Verify()) 1449 CommentOS << Scope.getFilename(); 1450 else 1451 CommentOS << "<unknown>"; 1452 CommentOS << ':' << DL.getLine(); 1453 if (DL.getCol() != 0) 1454 CommentOS << ':' << DL.getCol(); 1455 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1456 if (!InlinedAtDL.isUnknown()) { 1457 CommentOS << " @[ "; 1458 printDebugLoc(InlinedAtDL, MF, CommentOS); 1459 CommentOS << " ]"; 1460 } 1461 } 1462 } 1463 1464 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1465 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1466 const MachineFunction *MF = 0; 1467 const MachineRegisterInfo *MRI = 0; 1468 if (const MachineBasicBlock *MBB = getParent()) { 1469 MF = MBB->getParent(); 1470 if (!TM && MF) 1471 TM = &MF->getTarget(); 1472 if (MF) 1473 MRI = &MF->getRegInfo(); 1474 } 1475 1476 // Save a list of virtual registers. 1477 SmallVector<unsigned, 8> VirtRegs; 1478 1479 // Print explicitly defined operands on the left of an assignment syntax. 1480 unsigned StartOp = 0, e = getNumOperands(); 1481 for (; StartOp < e && getOperand(StartOp).isReg() && 1482 getOperand(StartOp).isDef() && 1483 !getOperand(StartOp).isImplicit(); 1484 ++StartOp) { 1485 if (StartOp != 0) OS << ", "; 1486 getOperand(StartOp).print(OS, TM); 1487 unsigned Reg = getOperand(StartOp).getReg(); 1488 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1489 VirtRegs.push_back(Reg); 1490 } 1491 1492 if (StartOp != 0) 1493 OS << " = "; 1494 1495 // Print the opcode name. 1496 if (TM && TM->getInstrInfo()) 1497 OS << TM->getInstrInfo()->getName(getOpcode()); 1498 else 1499 OS << "UNKNOWN"; 1500 1501 // Print the rest of the operands. 1502 bool OmittedAnyCallClobbers = false; 1503 bool FirstOp = true; 1504 unsigned AsmDescOp = ~0u; 1505 unsigned AsmOpCount = 0; 1506 1507 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1508 // Print asm string. 1509 OS << " "; 1510 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1511 1512 // Print HasSideEffects, IsAlignStack 1513 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1514 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1515 OS << " [sideeffect]"; 1516 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1517 OS << " [alignstack]"; 1518 1519 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1520 FirstOp = false; 1521 } 1522 1523 1524 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1525 const MachineOperand &MO = getOperand(i); 1526 1527 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1528 VirtRegs.push_back(MO.getReg()); 1529 1530 // Omit call-clobbered registers which aren't used anywhere. This makes 1531 // call instructions much less noisy on targets where calls clobber lots 1532 // of registers. Don't rely on MO.isDead() because we may be called before 1533 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1534 if (MF && isCall() && 1535 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1536 unsigned Reg = MO.getReg(); 1537 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1538 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1539 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1540 bool HasAliasLive = false; 1541 for (const uint16_t *Alias = TM->getRegisterInfo()->getAliasSet(Reg); 1542 unsigned AliasReg = *Alias; ++Alias) 1543 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1544 HasAliasLive = true; 1545 break; 1546 } 1547 if (!HasAliasLive) { 1548 OmittedAnyCallClobbers = true; 1549 continue; 1550 } 1551 } 1552 } 1553 } 1554 1555 if (FirstOp) FirstOp = false; else OS << ","; 1556 OS << " "; 1557 if (i < getDesc().NumOperands) { 1558 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1559 if (MCOI.isPredicate()) 1560 OS << "pred:"; 1561 if (MCOI.isOptionalDef()) 1562 OS << "opt:"; 1563 } 1564 if (isDebugValue() && MO.isMetadata()) { 1565 // Pretty print DBG_VALUE instructions. 1566 const MDNode *MD = MO.getMetadata(); 1567 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1568 OS << "!\"" << MDS->getString() << '\"'; 1569 else 1570 MO.print(OS, TM); 1571 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1572 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1573 } else if (i == AsmDescOp && MO.isImm()) { 1574 // Pretty print the inline asm operand descriptor. 1575 OS << '$' << AsmOpCount++; 1576 unsigned Flag = MO.getImm(); 1577 switch (InlineAsm::getKind(Flag)) { 1578 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1579 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1580 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1581 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1582 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1583 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1584 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1585 } 1586 1587 unsigned RCID = 0; 1588 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1589 if (TM) 1590 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1591 else 1592 OS << ":RC" << RCID; 1593 } 1594 1595 unsigned TiedTo = 0; 1596 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1597 OS << " tiedto:$" << TiedTo; 1598 1599 OS << ']'; 1600 1601 // Compute the index of the next operand descriptor. 1602 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1603 } else 1604 MO.print(OS, TM); 1605 } 1606 1607 // Briefly indicate whether any call clobbers were omitted. 1608 if (OmittedAnyCallClobbers) { 1609 if (!FirstOp) OS << ","; 1610 OS << " ..."; 1611 } 1612 1613 bool HaveSemi = false; 1614 if (Flags) { 1615 if (!HaveSemi) OS << ";"; HaveSemi = true; 1616 OS << " flags: "; 1617 1618 if (Flags & FrameSetup) 1619 OS << "FrameSetup"; 1620 } 1621 1622 if (!memoperands_empty()) { 1623 if (!HaveSemi) OS << ";"; HaveSemi = true; 1624 1625 OS << " mem:"; 1626 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1627 i != e; ++i) { 1628 OS << **i; 1629 if (llvm::next(i) != e) 1630 OS << " "; 1631 } 1632 } 1633 1634 // Print the regclass of any virtual registers encountered. 1635 if (MRI && !VirtRegs.empty()) { 1636 if (!HaveSemi) OS << ";"; HaveSemi = true; 1637 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1638 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1639 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1640 for (unsigned j = i+1; j != VirtRegs.size();) { 1641 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1642 ++j; 1643 continue; 1644 } 1645 if (VirtRegs[i] != VirtRegs[j]) 1646 OS << "," << PrintReg(VirtRegs[j]); 1647 VirtRegs.erase(VirtRegs.begin()+j); 1648 } 1649 } 1650 } 1651 1652 // Print debug location information. 1653 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1654 if (!HaveSemi) OS << ";"; HaveSemi = true; 1655 DIVariable DV(getOperand(e - 1).getMetadata()); 1656 OS << " line no:" << DV.getLineNumber(); 1657 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1658 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1659 if (!InlinedAtDL.isUnknown()) { 1660 OS << " inlined @[ "; 1661 printDebugLoc(InlinedAtDL, MF, OS); 1662 OS << " ]"; 1663 } 1664 } 1665 } else if (!debugLoc.isUnknown() && MF) { 1666 if (!HaveSemi) OS << ";"; HaveSemi = true; 1667 OS << " dbg:"; 1668 printDebugLoc(debugLoc, MF, OS); 1669 } 1670 1671 OS << '\n'; 1672 } 1673 1674 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1675 const TargetRegisterInfo *RegInfo, 1676 bool AddIfNotFound) { 1677 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1678 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1679 bool Found = false; 1680 SmallVector<unsigned,4> DeadOps; 1681 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1682 MachineOperand &MO = getOperand(i); 1683 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1684 continue; 1685 unsigned Reg = MO.getReg(); 1686 if (!Reg) 1687 continue; 1688 1689 if (Reg == IncomingReg) { 1690 if (!Found) { 1691 if (MO.isKill()) 1692 // The register is already marked kill. 1693 return true; 1694 if (isPhysReg && isRegTiedToDefOperand(i)) 1695 // Two-address uses of physregs must not be marked kill. 1696 return true; 1697 MO.setIsKill(); 1698 Found = true; 1699 } 1700 } else if (hasAliases && MO.isKill() && 1701 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1702 // A super-register kill already exists. 1703 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1704 return true; 1705 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1706 DeadOps.push_back(i); 1707 } 1708 } 1709 1710 // Trim unneeded kill operands. 1711 while (!DeadOps.empty()) { 1712 unsigned OpIdx = DeadOps.back(); 1713 if (getOperand(OpIdx).isImplicit()) 1714 RemoveOperand(OpIdx); 1715 else 1716 getOperand(OpIdx).setIsKill(false); 1717 DeadOps.pop_back(); 1718 } 1719 1720 // If not found, this means an alias of one of the operands is killed. Add a 1721 // new implicit operand if required. 1722 if (!Found && AddIfNotFound) { 1723 addOperand(MachineOperand::CreateReg(IncomingReg, 1724 false /*IsDef*/, 1725 true /*IsImp*/, 1726 true /*IsKill*/)); 1727 return true; 1728 } 1729 return Found; 1730 } 1731 1732 void MachineInstr::clearRegisterKills(unsigned Reg, 1733 const TargetRegisterInfo *RegInfo) { 1734 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1735 RegInfo = 0; 1736 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1737 MachineOperand &MO = getOperand(i); 1738 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1739 continue; 1740 unsigned OpReg = MO.getReg(); 1741 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1742 MO.setIsKill(false); 1743 } 1744 } 1745 1746 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1747 const TargetRegisterInfo *RegInfo, 1748 bool AddIfNotFound) { 1749 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1750 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1751 bool Found = false; 1752 SmallVector<unsigned,4> DeadOps; 1753 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1754 MachineOperand &MO = getOperand(i); 1755 if (!MO.isReg() || !MO.isDef()) 1756 continue; 1757 unsigned Reg = MO.getReg(); 1758 if (!Reg) 1759 continue; 1760 1761 if (Reg == IncomingReg) { 1762 MO.setIsDead(); 1763 Found = true; 1764 } else if (hasAliases && MO.isDead() && 1765 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1766 // There exists a super-register that's marked dead. 1767 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1768 return true; 1769 if (RegInfo->getSubRegisters(IncomingReg) && 1770 RegInfo->getSuperRegisters(Reg) && 1771 RegInfo->isSubRegister(IncomingReg, Reg)) 1772 DeadOps.push_back(i); 1773 } 1774 } 1775 1776 // Trim unneeded dead operands. 1777 while (!DeadOps.empty()) { 1778 unsigned OpIdx = DeadOps.back(); 1779 if (getOperand(OpIdx).isImplicit()) 1780 RemoveOperand(OpIdx); 1781 else 1782 getOperand(OpIdx).setIsDead(false); 1783 DeadOps.pop_back(); 1784 } 1785 1786 // If not found, this means an alias of one of the operands is dead. Add a 1787 // new implicit operand if required. 1788 if (Found || !AddIfNotFound) 1789 return Found; 1790 1791 addOperand(MachineOperand::CreateReg(IncomingReg, 1792 true /*IsDef*/, 1793 true /*IsImp*/, 1794 false /*IsKill*/, 1795 true /*IsDead*/)); 1796 return true; 1797 } 1798 1799 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1800 const TargetRegisterInfo *RegInfo) { 1801 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1802 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1803 if (MO) 1804 return; 1805 } else { 1806 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1807 const MachineOperand &MO = getOperand(i); 1808 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1809 MO.getSubReg() == 0) 1810 return; 1811 } 1812 } 1813 addOperand(MachineOperand::CreateReg(IncomingReg, 1814 true /*IsDef*/, 1815 true /*IsImp*/)); 1816 } 1817 1818 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1819 const TargetRegisterInfo &TRI) { 1820 bool HasRegMask = false; 1821 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1822 MachineOperand &MO = getOperand(i); 1823 if (MO.isRegMask()) { 1824 HasRegMask = true; 1825 continue; 1826 } 1827 if (!MO.isReg() || !MO.isDef()) continue; 1828 unsigned Reg = MO.getReg(); 1829 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1830 bool Dead = true; 1831 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1832 I != E; ++I) 1833 if (TRI.regsOverlap(*I, Reg)) { 1834 Dead = false; 1835 break; 1836 } 1837 // If there are no uses, including partial uses, the def is dead. 1838 if (Dead) MO.setIsDead(); 1839 } 1840 1841 // This is a call with a register mask operand. 1842 // Mask clobbers are always dead, so add defs for the non-dead defines. 1843 if (HasRegMask) 1844 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1845 I != E; ++I) 1846 addRegisterDefined(*I, &TRI); 1847 } 1848 1849 unsigned 1850 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1851 // Build up a buffer of hash code components. 1852 // 1853 // FIXME: This is a total hack. We should have a hash_value overload for 1854 // MachineOperand, but currently that doesn't work because there are many 1855 // different ideas of "equality" and thus different sets of information that 1856 // contribute to the hash code. This one happens to want to take a specific 1857 // subset. And it's still not clear that this routine uses the *correct* 1858 // subset of information when computing the hash code. The goal is to use the 1859 // same inputs for the hash code here that MachineInstr::isIdenticalTo uses to 1860 // test for equality when passed the 'IgnoreVRegDefs' filter flag. It would 1861 // be very useful to factor the selection of relevant inputs out of the two 1862 // functions and into a common routine, but it's not clear how that can be 1863 // done. 1864 SmallVector<size_t, 8> HashComponents; 1865 HashComponents.reserve(MI->getNumOperands() + 1); 1866 HashComponents.push_back(MI->getOpcode()); 1867 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1868 const MachineOperand &MO = MI->getOperand(i); 1869 switch (MO.getType()) { 1870 default: break; 1871 case MachineOperand::MO_Register: 1872 if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1873 continue; // Skip virtual register defs. 1874 HashComponents.push_back(hash_combine(MO.getType(), MO.getReg())); 1875 break; 1876 case MachineOperand::MO_Immediate: 1877 HashComponents.push_back(hash_combine(MO.getType(), MO.getImm())); 1878 break; 1879 case MachineOperand::MO_FrameIndex: 1880 case MachineOperand::MO_ConstantPoolIndex: 1881 case MachineOperand::MO_JumpTableIndex: 1882 HashComponents.push_back(hash_combine(MO.getType(), MO.getIndex())); 1883 break; 1884 case MachineOperand::MO_MachineBasicBlock: 1885 HashComponents.push_back(hash_combine(MO.getType(), MO.getMBB())); 1886 break; 1887 case MachineOperand::MO_GlobalAddress: 1888 HashComponents.push_back(hash_combine(MO.getType(), MO.getGlobal())); 1889 break; 1890 case MachineOperand::MO_BlockAddress: 1891 HashComponents.push_back(hash_combine(MO.getType(), 1892 MO.getBlockAddress())); 1893 break; 1894 case MachineOperand::MO_MCSymbol: 1895 HashComponents.push_back(hash_combine(MO.getType(), MO.getMCSymbol())); 1896 break; 1897 } 1898 } 1899 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1900 } 1901 1902 void MachineInstr::emitError(StringRef Msg) const { 1903 // Find the source location cookie. 1904 unsigned LocCookie = 0; 1905 const MDNode *LocMD = 0; 1906 for (unsigned i = getNumOperands(); i != 0; --i) { 1907 if (getOperand(i-1).isMetadata() && 1908 (LocMD = getOperand(i-1).getMetadata()) && 1909 LocMD->getNumOperands() != 0) { 1910 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1911 LocCookie = CI->getZExtValue(); 1912 break; 1913 } 1914 } 1915 } 1916 1917 if (const MachineBasicBlock *MBB = getParent()) 1918 if (const MachineFunction *MF = MBB->getParent()) 1919 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1920 report_fatal_error(Msg); 1921 } 1922