1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/Constants.h" 16 #include "llvm/Function.h" 17 #include "llvm/InlineAsm.h" 18 #include "llvm/LLVMContext.h" 19 #include "llvm/Metadata.h" 20 #include "llvm/Module.h" 21 #include "llvm/Type.h" 22 #include "llvm/Value.h" 23 #include "llvm/Assembly/Writer.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/DebugInfo.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/LeakDetector.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/ADT/FoldingSet.h" 43 using namespace llvm; 44 45 //===----------------------------------------------------------------------===// 46 // MachineOperand Implementation 47 //===----------------------------------------------------------------------===// 48 49 /// AddRegOperandToRegInfo - Add this register operand to the specified 50 /// MachineRegisterInfo. If it is null, then the next/prev fields should be 51 /// explicitly nulled out. 52 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { 53 assert(isReg() && "Can only add reg operand to use lists"); 54 55 // If the reginfo pointer is null, just explicitly null out or next/prev 56 // pointers, to ensure they are not garbage. 57 if (RegInfo == 0) { 58 Contents.Reg.Prev = 0; 59 Contents.Reg.Next = 0; 60 return; 61 } 62 63 // Otherwise, add this operand to the head of the registers use/def list. 64 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); 65 66 // For SSA values, we prefer to keep the definition at the start of the list. 67 // we do this by skipping over the definition if it is at the head of the 68 // list. 69 if (*Head && (*Head)->isDef()) 70 Head = &(*Head)->Contents.Reg.Next; 71 72 Contents.Reg.Next = *Head; 73 if (Contents.Reg.Next) { 74 assert(getReg() == Contents.Reg.Next->getReg() && 75 "Different regs on the same list!"); 76 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; 77 } 78 79 Contents.Reg.Prev = Head; 80 *Head = this; 81 } 82 83 /// RemoveRegOperandFromRegInfo - Remove this register operand from the 84 /// MachineRegisterInfo it is linked with. 85 void MachineOperand::RemoveRegOperandFromRegInfo() { 86 assert(isOnRegUseList() && "Reg operand is not on a use list"); 87 // Unlink this from the doubly linked list of operands. 88 MachineOperand *NextOp = Contents.Reg.Next; 89 *Contents.Reg.Prev = NextOp; 90 if (NextOp) { 91 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); 92 NextOp->Contents.Reg.Prev = Contents.Reg.Prev; 93 } 94 Contents.Reg.Prev = 0; 95 Contents.Reg.Next = 0; 96 } 97 98 void MachineOperand::setReg(unsigned Reg) { 99 if (getReg() == Reg) return; // No change. 100 101 // Otherwise, we have to change the register. If this operand is embedded 102 // into a machine function, we need to update the old and new register's 103 // use/def lists. 104 if (MachineInstr *MI = getParent()) 105 if (MachineBasicBlock *MBB = MI->getParent()) 106 if (MachineFunction *MF = MBB->getParent()) { 107 RemoveRegOperandFromRegInfo(); 108 SmallContents.RegNo = Reg; 109 AddRegOperandToRegInfo(&MF->getRegInfo()); 110 return; 111 } 112 113 // Otherwise, just change the register, no problem. :) 114 SmallContents.RegNo = Reg; 115 } 116 117 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 118 const TargetRegisterInfo &TRI) { 119 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 120 if (SubIdx && getSubReg()) 121 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 122 setReg(Reg); 123 if (SubIdx) 124 setSubReg(SubIdx); 125 } 126 127 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 128 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 129 if (getSubReg()) { 130 Reg = TRI.getSubReg(Reg, getSubReg()); 131 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 132 // That won't happen in legal code. 133 setSubReg(0); 134 } 135 setReg(Reg); 136 } 137 138 /// ChangeToImmediate - Replace this operand with a new immediate operand of 139 /// the specified value. If an operand is known to be an immediate already, 140 /// the setImm method should be used. 141 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 142 // If this operand is currently a register operand, and if this is in a 143 // function, deregister the operand from the register's use/def list. 144 if (isReg() && getParent() && getParent()->getParent() && 145 getParent()->getParent()->getParent()) 146 RemoveRegOperandFromRegInfo(); 147 148 OpKind = MO_Immediate; 149 Contents.ImmVal = ImmVal; 150 } 151 152 /// ChangeToRegister - Replace this operand with a new register operand of 153 /// the specified value. If an operand is known to be an register already, 154 /// the setReg method should be used. 155 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 156 bool isKill, bool isDead, bool isUndef, 157 bool isDebug) { 158 // If this operand is already a register operand, use setReg to update the 159 // register's use/def lists. 160 if (isReg()) { 161 assert(!isEarlyClobber()); 162 setReg(Reg); 163 } else { 164 // Otherwise, change this to a register and set the reg#. 165 OpKind = MO_Register; 166 SmallContents.RegNo = Reg; 167 168 // If this operand is embedded in a function, add the operand to the 169 // register's use/def list. 170 if (MachineInstr *MI = getParent()) 171 if (MachineBasicBlock *MBB = MI->getParent()) 172 if (MachineFunction *MF = MBB->getParent()) 173 AddRegOperandToRegInfo(&MF->getRegInfo()); 174 } 175 176 IsDef = isDef; 177 IsImp = isImp; 178 IsKill = isKill; 179 IsDead = isDead; 180 IsUndef = isUndef; 181 IsInternalRead = false; 182 IsEarlyClobber = false; 183 IsDebug = isDebug; 184 SubReg = 0; 185 } 186 187 /// isIdenticalTo - Return true if this operand is identical to the specified 188 /// operand. 189 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 190 if (getType() != Other.getType() || 191 getTargetFlags() != Other.getTargetFlags()) 192 return false; 193 194 switch (getType()) { 195 case MachineOperand::MO_Register: 196 return getReg() == Other.getReg() && isDef() == Other.isDef() && 197 getSubReg() == Other.getSubReg(); 198 case MachineOperand::MO_Immediate: 199 return getImm() == Other.getImm(); 200 case MachineOperand::MO_CImmediate: 201 return getCImm() == Other.getCImm(); 202 case MachineOperand::MO_FPImmediate: 203 return getFPImm() == Other.getFPImm(); 204 case MachineOperand::MO_MachineBasicBlock: 205 return getMBB() == Other.getMBB(); 206 case MachineOperand::MO_FrameIndex: 207 return getIndex() == Other.getIndex(); 208 case MachineOperand::MO_ConstantPoolIndex: 209 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 210 case MachineOperand::MO_JumpTableIndex: 211 return getIndex() == Other.getIndex(); 212 case MachineOperand::MO_GlobalAddress: 213 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 214 case MachineOperand::MO_ExternalSymbol: 215 return !strcmp(getSymbolName(), Other.getSymbolName()) && 216 getOffset() == Other.getOffset(); 217 case MachineOperand::MO_BlockAddress: 218 return getBlockAddress() == Other.getBlockAddress(); 219 case MO_RegisterMask: 220 return getRegMask() == Other.getRegMask(); 221 case MachineOperand::MO_MCSymbol: 222 return getMCSymbol() == Other.getMCSymbol(); 223 case MachineOperand::MO_Metadata: 224 return getMetadata() == Other.getMetadata(); 225 } 226 llvm_unreachable("Invalid machine operand type"); 227 } 228 229 /// print - Print the specified machine operand. 230 /// 231 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 232 // If the instruction is embedded into a basic block, we can find the 233 // target info for the instruction. 234 if (!TM) 235 if (const MachineInstr *MI = getParent()) 236 if (const MachineBasicBlock *MBB = MI->getParent()) 237 if (const MachineFunction *MF = MBB->getParent()) 238 TM = &MF->getTarget(); 239 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 240 241 switch (getType()) { 242 case MachineOperand::MO_Register: 243 OS << PrintReg(getReg(), TRI, getSubReg()); 244 245 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 246 isInternalRead() || isEarlyClobber()) { 247 OS << '<'; 248 bool NeedComma = false; 249 if (isDef()) { 250 if (NeedComma) OS << ','; 251 if (isEarlyClobber()) 252 OS << "earlyclobber,"; 253 if (isImplicit()) 254 OS << "imp-"; 255 OS << "def"; 256 NeedComma = true; 257 } else if (isImplicit()) { 258 OS << "imp-use"; 259 NeedComma = true; 260 } 261 262 if (isKill() || isDead() || isUndef() || isInternalRead()) { 263 if (NeedComma) OS << ','; 264 NeedComma = false; 265 if (isKill()) { 266 OS << "kill"; 267 NeedComma = true; 268 } 269 if (isDead()) { 270 OS << "dead"; 271 NeedComma = true; 272 } 273 if (isUndef()) { 274 if (NeedComma) OS << ','; 275 OS << "undef"; 276 NeedComma = true; 277 } 278 if (isInternalRead()) { 279 if (NeedComma) OS << ','; 280 OS << "internal"; 281 NeedComma = true; 282 } 283 } 284 OS << '>'; 285 } 286 break; 287 case MachineOperand::MO_Immediate: 288 OS << getImm(); 289 break; 290 case MachineOperand::MO_CImmediate: 291 getCImm()->getValue().print(OS, false); 292 break; 293 case MachineOperand::MO_FPImmediate: 294 if (getFPImm()->getType()->isFloatTy()) 295 OS << getFPImm()->getValueAPF().convertToFloat(); 296 else 297 OS << getFPImm()->getValueAPF().convertToDouble(); 298 break; 299 case MachineOperand::MO_MachineBasicBlock: 300 OS << "<BB#" << getMBB()->getNumber() << ">"; 301 break; 302 case MachineOperand::MO_FrameIndex: 303 OS << "<fi#" << getIndex() << '>'; 304 break; 305 case MachineOperand::MO_ConstantPoolIndex: 306 OS << "<cp#" << getIndex(); 307 if (getOffset()) OS << "+" << getOffset(); 308 OS << '>'; 309 break; 310 case MachineOperand::MO_JumpTableIndex: 311 OS << "<jt#" << getIndex() << '>'; 312 break; 313 case MachineOperand::MO_GlobalAddress: 314 OS << "<ga:"; 315 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 316 if (getOffset()) OS << "+" << getOffset(); 317 OS << '>'; 318 break; 319 case MachineOperand::MO_ExternalSymbol: 320 OS << "<es:" << getSymbolName(); 321 if (getOffset()) OS << "+" << getOffset(); 322 OS << '>'; 323 break; 324 case MachineOperand::MO_BlockAddress: 325 OS << '<'; 326 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 327 OS << '>'; 328 break; 329 case MachineOperand::MO_RegisterMask: 330 OS << "<regmask>"; 331 break; 332 case MachineOperand::MO_Metadata: 333 OS << '<'; 334 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 335 OS << '>'; 336 break; 337 case MachineOperand::MO_MCSymbol: 338 OS << "<MCSym=" << *getMCSymbol() << '>'; 339 break; 340 } 341 342 if (unsigned TF = getTargetFlags()) 343 OS << "[TF=" << TF << ']'; 344 } 345 346 //===----------------------------------------------------------------------===// 347 // MachineMemOperand Implementation 348 //===----------------------------------------------------------------------===// 349 350 /// getAddrSpace - Return the LLVM IR address space number that this pointer 351 /// points into. 352 unsigned MachinePointerInfo::getAddrSpace() const { 353 if (V == 0) return 0; 354 return cast<PointerType>(V->getType())->getAddressSpace(); 355 } 356 357 /// getConstantPool - Return a MachinePointerInfo record that refers to the 358 /// constant pool. 359 MachinePointerInfo MachinePointerInfo::getConstantPool() { 360 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 361 } 362 363 /// getFixedStack - Return a MachinePointerInfo record that refers to the 364 /// the specified FrameIndex. 365 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 366 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 367 } 368 369 MachinePointerInfo MachinePointerInfo::getJumpTable() { 370 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 371 } 372 373 MachinePointerInfo MachinePointerInfo::getGOT() { 374 return MachinePointerInfo(PseudoSourceValue::getGOT()); 375 } 376 377 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 378 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 379 } 380 381 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 382 uint64_t s, unsigned int a, 383 const MDNode *TBAAInfo) 384 : PtrInfo(ptrinfo), Size(s), 385 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 386 TBAAInfo(TBAAInfo) { 387 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 388 "invalid pointer value"); 389 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 390 assert((isLoad() || isStore()) && "Not a load/store!"); 391 } 392 393 /// Profile - Gather unique data for the object. 394 /// 395 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 396 ID.AddInteger(getOffset()); 397 ID.AddInteger(Size); 398 ID.AddPointer(getValue()); 399 ID.AddInteger(Flags); 400 } 401 402 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 403 // The Value and Offset may differ due to CSE. But the flags and size 404 // should be the same. 405 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 406 assert(MMO->getSize() == getSize() && "Size mismatch!"); 407 408 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 409 // Update the alignment value. 410 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 411 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 412 // Also update the base and offset, because the new alignment may 413 // not be applicable with the old ones. 414 PtrInfo = MMO->PtrInfo; 415 } 416 } 417 418 /// getAlignment - Return the minimum known alignment in bytes of the 419 /// actual memory reference. 420 uint64_t MachineMemOperand::getAlignment() const { 421 return MinAlign(getBaseAlignment(), getOffset()); 422 } 423 424 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 425 assert((MMO.isLoad() || MMO.isStore()) && 426 "SV has to be a load, store or both."); 427 428 if (MMO.isVolatile()) 429 OS << "Volatile "; 430 431 if (MMO.isLoad()) 432 OS << "LD"; 433 if (MMO.isStore()) 434 OS << "ST"; 435 OS << MMO.getSize(); 436 437 // Print the address information. 438 OS << "["; 439 if (!MMO.getValue()) 440 OS << "<unknown>"; 441 else 442 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 443 444 // If the alignment of the memory reference itself differs from the alignment 445 // of the base pointer, print the base alignment explicitly, next to the base 446 // pointer. 447 if (MMO.getBaseAlignment() != MMO.getAlignment()) 448 OS << "(align=" << MMO.getBaseAlignment() << ")"; 449 450 if (MMO.getOffset() != 0) 451 OS << "+" << MMO.getOffset(); 452 OS << "]"; 453 454 // Print the alignment of the reference. 455 if (MMO.getBaseAlignment() != MMO.getAlignment() || 456 MMO.getBaseAlignment() != MMO.getSize()) 457 OS << "(align=" << MMO.getAlignment() << ")"; 458 459 // Print TBAA info. 460 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 461 OS << "(tbaa="; 462 if (TBAAInfo->getNumOperands() > 0) 463 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 464 else 465 OS << "<unknown>"; 466 OS << ")"; 467 } 468 469 // Print nontemporal info. 470 if (MMO.isNonTemporal()) 471 OS << "(nontemporal)"; 472 473 return OS; 474 } 475 476 //===----------------------------------------------------------------------===// 477 // MachineInstr Implementation 478 //===----------------------------------------------------------------------===// 479 480 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with 481 /// MCID NULL and no operands. 482 MachineInstr::MachineInstr() 483 : MCID(0), Flags(0), AsmPrinterFlags(0), 484 MemRefs(0), MemRefsEnd(0), 485 Parent(0) { 486 // Make sure that we get added to a machine basicblock 487 LeakDetector::addGarbageObject(this); 488 } 489 490 void MachineInstr::addImplicitDefUseOperands() { 491 if (MCID->ImplicitDefs) 492 for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs) 493 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 494 if (MCID->ImplicitUses) 495 for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses) 496 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 497 } 498 499 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 500 /// implicit operands. It reserves space for the number of operands specified by 501 /// the MCInstrDesc. 502 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp) 503 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 504 MemRefs(0), MemRefsEnd(0), Parent(0) { 505 unsigned NumImplicitOps = 0; 506 if (!NoImp) 507 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 508 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 509 if (!NoImp) 510 addImplicitDefUseOperands(); 511 // Make sure that we get added to a machine basicblock 512 LeakDetector::addGarbageObject(this); 513 } 514 515 /// MachineInstr ctor - As above, but with a DebugLoc. 516 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl, 517 bool NoImp) 518 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 519 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) { 520 unsigned NumImplicitOps = 0; 521 if (!NoImp) 522 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 523 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 524 if (!NoImp) 525 addImplicitDefUseOperands(); 526 // Make sure that we get added to a machine basicblock 527 LeakDetector::addGarbageObject(this); 528 } 529 530 /// MachineInstr ctor - Work exactly the same as the ctor two above, except 531 /// that the MachineInstr is created and added to the end of the specified 532 /// basic block. 533 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid) 534 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 535 MemRefs(0), MemRefsEnd(0), Parent(0) { 536 assert(MBB && "Cannot use inserting ctor with null basic block!"); 537 unsigned NumImplicitOps = 538 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 539 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 540 addImplicitDefUseOperands(); 541 // Make sure that we get added to a machine basicblock 542 LeakDetector::addGarbageObject(this); 543 MBB->push_back(this); // Add instruction to end of basic block! 544 } 545 546 /// MachineInstr ctor - As above, but with a DebugLoc. 547 /// 548 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 549 const MCInstrDesc &tid) 550 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 551 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) { 552 assert(MBB && "Cannot use inserting ctor with null basic block!"); 553 unsigned NumImplicitOps = 554 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 555 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 556 addImplicitDefUseOperands(); 557 // Make sure that we get added to a machine basicblock 558 LeakDetector::addGarbageObject(this); 559 MBB->push_back(this); // Add instruction to end of basic block! 560 } 561 562 /// MachineInstr ctor - Copies MachineInstr arg exactly 563 /// 564 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 565 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0), 566 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd), 567 Parent(0), debugLoc(MI.getDebugLoc()) { 568 Operands.reserve(MI.getNumOperands()); 569 570 // Add operands 571 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 572 addOperand(MI.getOperand(i)); 573 574 // Copy all the flags. 575 Flags = MI.Flags; 576 577 // Set parent to null. 578 Parent = 0; 579 580 LeakDetector::addGarbageObject(this); 581 } 582 583 MachineInstr::~MachineInstr() { 584 LeakDetector::removeGarbageObject(this); 585 #ifndef NDEBUG 586 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 587 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 588 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 589 "Reg operand def/use list corrupted"); 590 } 591 #endif 592 } 593 594 /// getRegInfo - If this instruction is embedded into a MachineFunction, 595 /// return the MachineRegisterInfo object for the current function, otherwise 596 /// return null. 597 MachineRegisterInfo *MachineInstr::getRegInfo() { 598 if (MachineBasicBlock *MBB = getParent()) 599 return &MBB->getParent()->getRegInfo(); 600 return 0; 601 } 602 603 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 604 /// this instruction from their respective use lists. This requires that the 605 /// operands already be on their use lists. 606 void MachineInstr::RemoveRegOperandsFromUseLists() { 607 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 608 if (Operands[i].isReg()) 609 Operands[i].RemoveRegOperandFromRegInfo(); 610 } 611 } 612 613 /// AddRegOperandsToUseLists - Add all of the register operands in 614 /// this instruction from their respective use lists. This requires that the 615 /// operands not be on their use lists yet. 616 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { 617 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 618 if (Operands[i].isReg()) 619 Operands[i].AddRegOperandToRegInfo(&RegInfo); 620 } 621 } 622 623 624 /// addOperand - Add the specified operand to the instruction. If it is an 625 /// implicit operand, it is added to the end of the operand list. If it is 626 /// an explicit operand it is added at the end of the explicit operand list 627 /// (before the first implicit operand). 628 void MachineInstr::addOperand(const MachineOperand &Op) { 629 assert(MCID && "Cannot add operands before providing an instr descriptor"); 630 bool isImpReg = Op.isReg() && Op.isImplicit(); 631 MachineRegisterInfo *RegInfo = getRegInfo(); 632 633 // If the Operands backing store is reallocated, all register operands must 634 // be removed and re-added to RegInfo. It is storing pointers to operands. 635 bool Reallocate = RegInfo && 636 !Operands.empty() && Operands.size() == Operands.capacity(); 637 638 // Find the insert location for the new operand. Implicit registers go at 639 // the end, everything goes before the implicit regs. 640 unsigned OpNo = Operands.size(); 641 642 // Remove all the implicit operands from RegInfo if they need to be shifted. 643 // FIXME: Allow mixed explicit and implicit operands on inline asm. 644 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 645 // implicit-defs, but they must not be moved around. See the FIXME in 646 // InstrEmitter.cpp. 647 if (!isImpReg && !isInlineAsm()) { 648 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 649 --OpNo; 650 if (RegInfo) 651 Operands[OpNo].RemoveRegOperandFromRegInfo(); 652 } 653 } 654 655 // OpNo now points as the desired insertion point. Unless this is a variadic 656 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 657 assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) && 658 "Trying to add an operand to a machine instr that is already done!"); 659 660 // All operands from OpNo have been removed from RegInfo. If the Operands 661 // backing store needs to be reallocated, we also need to remove any other 662 // register operands. 663 if (Reallocate) 664 for (unsigned i = 0; i != OpNo; ++i) 665 if (Operands[i].isReg()) 666 Operands[i].RemoveRegOperandFromRegInfo(); 667 668 // Insert the new operand at OpNo. 669 Operands.insert(Operands.begin() + OpNo, Op); 670 Operands[OpNo].ParentMI = this; 671 672 // The Operands backing store has now been reallocated, so we can re-add the 673 // operands before OpNo. 674 if (Reallocate) 675 for (unsigned i = 0; i != OpNo; ++i) 676 if (Operands[i].isReg()) 677 Operands[i].AddRegOperandToRegInfo(RegInfo); 678 679 // When adding a register operand, tell RegInfo about it. 680 if (Operands[OpNo].isReg()) { 681 // Add the new operand to RegInfo, even when RegInfo is NULL. 682 // This will initialize the linked list pointers. 683 Operands[OpNo].AddRegOperandToRegInfo(RegInfo); 684 // If the register operand is flagged as early, mark the operand as such. 685 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 686 Operands[OpNo].setIsEarlyClobber(true); 687 } 688 689 // Re-add all the implicit ops. 690 if (RegInfo) { 691 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) { 692 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 693 Operands[i].AddRegOperandToRegInfo(RegInfo); 694 } 695 } 696 } 697 698 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 699 /// fewer operand than it started with. 700 /// 701 void MachineInstr::RemoveOperand(unsigned OpNo) { 702 assert(OpNo < Operands.size() && "Invalid operand number"); 703 704 // Special case removing the last one. 705 if (OpNo == Operands.size()-1) { 706 // If needed, remove from the reg def/use list. 707 if (Operands.back().isReg() && Operands.back().isOnRegUseList()) 708 Operands.back().RemoveRegOperandFromRegInfo(); 709 710 Operands.pop_back(); 711 return; 712 } 713 714 // Otherwise, we are removing an interior operand. If we have reginfo to 715 // update, remove all operands that will be shifted down from their reg lists, 716 // move everything down, then re-add them. 717 MachineRegisterInfo *RegInfo = getRegInfo(); 718 if (RegInfo) { 719 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 720 if (Operands[i].isReg()) 721 Operands[i].RemoveRegOperandFromRegInfo(); 722 } 723 } 724 725 Operands.erase(Operands.begin()+OpNo); 726 727 if (RegInfo) { 728 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 729 if (Operands[i].isReg()) 730 Operands[i].AddRegOperandToRegInfo(RegInfo); 731 } 732 } 733 } 734 735 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 736 /// This function should be used only occasionally. The setMemRefs function 737 /// is the primary method for setting up a MachineInstr's MemRefs list. 738 void MachineInstr::addMemOperand(MachineFunction &MF, 739 MachineMemOperand *MO) { 740 mmo_iterator OldMemRefs = MemRefs; 741 mmo_iterator OldMemRefsEnd = MemRefsEnd; 742 743 size_t NewNum = (MemRefsEnd - MemRefs) + 1; 744 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 745 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum; 746 747 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs); 748 NewMemRefs[NewNum - 1] = MO; 749 750 MemRefs = NewMemRefs; 751 MemRefsEnd = NewMemRefsEnd; 752 } 753 754 bool 755 MachineInstr::hasProperty(unsigned MCFlag, QueryType Type) const { 756 if (Type == IgnoreBundle || !isBundle()) 757 return getDesc().getFlags() & (1 << MCFlag); 758 759 const MachineBasicBlock *MBB = getParent(); 760 MachineBasicBlock::const_instr_iterator MII = *this; ++MII; 761 while (MII != MBB->end() && MII->isInsideBundle()) { 762 if (MII->getDesc().getFlags() & (1 << MCFlag)) { 763 if (Type == AnyInBundle) 764 return true; 765 } else { 766 if (Type == AllInBundle) 767 return false; 768 } 769 ++MII; 770 } 771 772 return Type == AllInBundle; 773 } 774 775 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 776 MICheckType Check) const { 777 // If opcodes or number of operands are not the same then the two 778 // instructions are obviously not identical. 779 if (Other->getOpcode() != getOpcode() || 780 Other->getNumOperands() != getNumOperands()) 781 return false; 782 783 if (isBundle()) { 784 // Both instructions are bundles, compare MIs inside the bundle. 785 MachineBasicBlock::const_instr_iterator I1 = *this; 786 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 787 MachineBasicBlock::const_instr_iterator I2 = *Other; 788 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 789 while (++I1 != E1 && I1->isInsideBundle()) { 790 ++I2; 791 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 792 return false; 793 } 794 } 795 796 // Check operands to make sure they match. 797 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 798 const MachineOperand &MO = getOperand(i); 799 const MachineOperand &OMO = Other->getOperand(i); 800 if (!MO.isReg()) { 801 if (!MO.isIdenticalTo(OMO)) 802 return false; 803 continue; 804 } 805 806 // Clients may or may not want to ignore defs when testing for equality. 807 // For example, machine CSE pass only cares about finding common 808 // subexpressions, so it's safe to ignore virtual register defs. 809 if (MO.isDef()) { 810 if (Check == IgnoreDefs) 811 continue; 812 else if (Check == IgnoreVRegDefs) { 813 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 814 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 815 if (MO.getReg() != OMO.getReg()) 816 return false; 817 } else { 818 if (!MO.isIdenticalTo(OMO)) 819 return false; 820 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 821 return false; 822 } 823 } else { 824 if (!MO.isIdenticalTo(OMO)) 825 return false; 826 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 827 return false; 828 } 829 } 830 // If DebugLoc does not match then two dbg.values are not identical. 831 if (isDebugValue()) 832 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 833 && getDebugLoc() != Other->getDebugLoc()) 834 return false; 835 return true; 836 } 837 838 /// removeFromParent - This method unlinks 'this' from the containing basic 839 /// block, and returns it, but does not delete it. 840 MachineInstr *MachineInstr::removeFromParent() { 841 assert(getParent() && "Not embedded in a basic block!"); 842 843 // If it's a bundle then remove the MIs inside the bundle as well. 844 if (isBundle()) { 845 MachineBasicBlock *MBB = getParent(); 846 MachineBasicBlock::instr_iterator MII = *this; ++MII; 847 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 848 while (MII != E && MII->isInsideBundle()) { 849 MachineInstr *MI = &*MII; 850 ++MII; 851 MBB->remove(MI); 852 } 853 } 854 getParent()->remove(this); 855 return this; 856 } 857 858 859 /// eraseFromParent - This method unlinks 'this' from the containing basic 860 /// block, and deletes it. 861 void MachineInstr::eraseFromParent() { 862 assert(getParent() && "Not embedded in a basic block!"); 863 // If it's a bundle then remove the MIs inside the bundle as well. 864 if (isBundle()) { 865 MachineBasicBlock *MBB = getParent(); 866 MachineBasicBlock::instr_iterator MII = *this; ++MII; 867 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 868 while (MII != E && MII->isInsideBundle()) { 869 MachineInstr *MI = &*MII; 870 ++MII; 871 MBB->erase(MI); 872 } 873 } 874 getParent()->erase(this); 875 } 876 877 878 /// getNumExplicitOperands - Returns the number of non-implicit operands. 879 /// 880 unsigned MachineInstr::getNumExplicitOperands() const { 881 unsigned NumOperands = MCID->getNumOperands(); 882 if (!MCID->isVariadic()) 883 return NumOperands; 884 885 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 886 const MachineOperand &MO = getOperand(i); 887 if (!MO.isReg() || !MO.isImplicit()) 888 NumOperands++; 889 } 890 return NumOperands; 891 } 892 893 /// isBundled - Return true if this instruction part of a bundle. This is true 894 /// if either itself or its following instruction is marked "InsideBundle". 895 bool MachineInstr::isBundled() const { 896 if (isInsideBundle()) 897 return true; 898 MachineBasicBlock::const_instr_iterator nextMI = this; 899 ++nextMI; 900 return nextMI != Parent->instr_end() && nextMI->isInsideBundle(); 901 } 902 903 bool MachineInstr::isStackAligningInlineAsm() const { 904 if (isInlineAsm()) { 905 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 906 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 907 return true; 908 } 909 return false; 910 } 911 912 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 913 unsigned *GroupNo) const { 914 assert(isInlineAsm() && "Expected an inline asm instruction"); 915 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 916 917 // Ignore queries about the initial operands. 918 if (OpIdx < InlineAsm::MIOp_FirstOperand) 919 return -1; 920 921 unsigned Group = 0; 922 unsigned NumOps; 923 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 924 i += NumOps) { 925 const MachineOperand &FlagMO = getOperand(i); 926 // If we reach the implicit register operands, stop looking. 927 if (!FlagMO.isImm()) 928 return -1; 929 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 930 if (i + NumOps > OpIdx) { 931 if (GroupNo) 932 *GroupNo = Group; 933 return i; 934 } 935 ++Group; 936 } 937 return -1; 938 } 939 940 const TargetRegisterClass* 941 MachineInstr::getRegClassConstraint(unsigned OpIdx, 942 const TargetInstrInfo *TII, 943 const TargetRegisterInfo *TRI) const { 944 // Most opcodes have fixed constraints in their MCInstrDesc. 945 if (!isInlineAsm()) 946 return TII->getRegClass(getDesc(), OpIdx, TRI); 947 948 if (!getOperand(OpIdx).isReg()) 949 return NULL; 950 951 // For tied uses on inline asm, get the constraint from the def. 952 unsigned DefIdx; 953 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 954 OpIdx = DefIdx; 955 956 // Inline asm stores register class constraints in the flag word. 957 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 958 if (FlagIdx < 0) 959 return NULL; 960 961 unsigned Flag = getOperand(FlagIdx).getImm(); 962 unsigned RCID; 963 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 964 return TRI->getRegClass(RCID); 965 966 // Assume that all registers in a memory operand are pointers. 967 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 968 return TRI->getPointerRegClass(); 969 970 return NULL; 971 } 972 973 /// getBundleSize - Return the number of instructions inside the MI bundle. 974 unsigned MachineInstr::getBundleSize() const { 975 assert(isBundle() && "Expecting a bundle"); 976 977 MachineBasicBlock::const_instr_iterator I = *this; 978 unsigned Size = 0; 979 while ((++I)->isInsideBundle()) { 980 ++Size; 981 } 982 assert(Size > 1 && "Malformed bundle"); 983 984 return Size; 985 } 986 987 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 988 /// the specific register or -1 if it is not found. It further tightens 989 /// the search criteria to a use that kills the register if isKill is true. 990 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 991 const TargetRegisterInfo *TRI) const { 992 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 993 const MachineOperand &MO = getOperand(i); 994 if (!MO.isReg() || !MO.isUse()) 995 continue; 996 unsigned MOReg = MO.getReg(); 997 if (!MOReg) 998 continue; 999 if (MOReg == Reg || 1000 (TRI && 1001 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1002 TargetRegisterInfo::isPhysicalRegister(Reg) && 1003 TRI->isSubRegister(MOReg, Reg))) 1004 if (!isKill || MO.isKill()) 1005 return i; 1006 } 1007 return -1; 1008 } 1009 1010 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1011 /// indicating if this instruction reads or writes Reg. This also considers 1012 /// partial defines. 1013 std::pair<bool,bool> 1014 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1015 SmallVectorImpl<unsigned> *Ops) const { 1016 bool PartDef = false; // Partial redefine. 1017 bool FullDef = false; // Full define. 1018 bool Use = false; 1019 1020 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1021 const MachineOperand &MO = getOperand(i); 1022 if (!MO.isReg() || MO.getReg() != Reg) 1023 continue; 1024 if (Ops) 1025 Ops->push_back(i); 1026 if (MO.isUse()) 1027 Use |= !MO.isUndef(); 1028 else if (MO.getSubReg() && !MO.isUndef()) 1029 // A partial <def,undef> doesn't count as reading the register. 1030 PartDef = true; 1031 else 1032 FullDef = true; 1033 } 1034 // A partial redefine uses Reg unless there is also a full define. 1035 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1036 } 1037 1038 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1039 /// the specified register or -1 if it is not found. If isDead is true, defs 1040 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1041 /// also checks if there is a def of a super-register. 1042 int 1043 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1044 const TargetRegisterInfo *TRI) const { 1045 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1046 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1047 const MachineOperand &MO = getOperand(i); 1048 if (!MO.isReg() || !MO.isDef()) 1049 continue; 1050 unsigned MOReg = MO.getReg(); 1051 bool Found = (MOReg == Reg); 1052 if (!Found && TRI && isPhys && 1053 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1054 if (Overlap) 1055 Found = TRI->regsOverlap(MOReg, Reg); 1056 else 1057 Found = TRI->isSubRegister(MOReg, Reg); 1058 } 1059 if (Found && (!isDead || MO.isDead())) 1060 return i; 1061 } 1062 return -1; 1063 } 1064 1065 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1066 /// operand list that is used to represent the predicate. It returns -1 if 1067 /// none is found. 1068 int MachineInstr::findFirstPredOperandIdx() const { 1069 // Don't call MCID.findFirstPredOperandIdx() because this variant 1070 // is sometimes called on an instruction that's not yet complete, and 1071 // so the number of operands is less than the MCID indicates. In 1072 // particular, the PTX target does this. 1073 const MCInstrDesc &MCID = getDesc(); 1074 if (MCID.isPredicable()) { 1075 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1076 if (MCID.OpInfo[i].isPredicate()) 1077 return i; 1078 } 1079 1080 return -1; 1081 } 1082 1083 /// isRegTiedToUseOperand - Given the index of a register def operand, 1084 /// check if the register def is tied to a source operand, due to either 1085 /// two-address elimination or inline assembly constraints. Returns the 1086 /// first tied use operand index by reference is UseOpIdx is not null. 1087 bool MachineInstr:: 1088 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 1089 if (isInlineAsm()) { 1090 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand); 1091 const MachineOperand &MO = getOperand(DefOpIdx); 1092 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 1093 return false; 1094 // Determine the actual operand index that corresponds to this index. 1095 unsigned DefNo = 0; 1096 int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo); 1097 if (FlagIdx < 0) 1098 return false; 1099 1100 // Which part of the group is DefOpIdx? 1101 unsigned DefPart = DefOpIdx - (FlagIdx + 1); 1102 1103 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); 1104 i != e; ++i) { 1105 const MachineOperand &FMO = getOperand(i); 1106 if (!FMO.isImm()) 1107 continue; 1108 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 1109 continue; 1110 unsigned Idx; 1111 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 1112 Idx == DefNo) { 1113 if (UseOpIdx) 1114 *UseOpIdx = (unsigned)i + 1 + DefPart; 1115 return true; 1116 } 1117 } 1118 return false; 1119 } 1120 1121 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 1122 const MCInstrDesc &MCID = getDesc(); 1123 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 1124 const MachineOperand &MO = getOperand(i); 1125 if (MO.isReg() && MO.isUse() && 1126 MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) { 1127 if (UseOpIdx) 1128 *UseOpIdx = (unsigned)i; 1129 return true; 1130 } 1131 } 1132 return false; 1133 } 1134 1135 /// isRegTiedToDefOperand - Return true if the operand of the specified index 1136 /// is a register use and it is tied to an def operand. It also returns the def 1137 /// operand index by reference. 1138 bool MachineInstr:: 1139 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 1140 if (isInlineAsm()) { 1141 const MachineOperand &MO = getOperand(UseOpIdx); 1142 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 1143 return false; 1144 1145 // Find the flag operand corresponding to UseOpIdx 1146 int FlagIdx = findInlineAsmFlagIdx(UseOpIdx); 1147 if (FlagIdx < 0) 1148 return false; 1149 1150 const MachineOperand &UFMO = getOperand(FlagIdx); 1151 unsigned DefNo; 1152 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 1153 if (!DefOpIdx) 1154 return true; 1155 1156 unsigned DefIdx = InlineAsm::MIOp_FirstOperand; 1157 // Remember to adjust the index. First operand is asm string, second is 1158 // the HasSideEffects and AlignStack bits, then there is a flag for each. 1159 while (DefNo) { 1160 const MachineOperand &FMO = getOperand(DefIdx); 1161 assert(FMO.isImm()); 1162 // Skip over this def. 1163 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 1164 --DefNo; 1165 } 1166 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 1167 return true; 1168 } 1169 return false; 1170 } 1171 1172 const MCInstrDesc &MCID = getDesc(); 1173 if (UseOpIdx >= MCID.getNumOperands()) 1174 return false; 1175 const MachineOperand &MO = getOperand(UseOpIdx); 1176 if (!MO.isReg() || !MO.isUse()) 1177 return false; 1178 int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO); 1179 if (DefIdx == -1) 1180 return false; 1181 if (DefOpIdx) 1182 *DefOpIdx = (unsigned)DefIdx; 1183 return true; 1184 } 1185 1186 /// clearKillInfo - Clears kill flags on all operands. 1187 /// 1188 void MachineInstr::clearKillInfo() { 1189 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1190 MachineOperand &MO = getOperand(i); 1191 if (MO.isReg() && MO.isUse()) 1192 MO.setIsKill(false); 1193 } 1194 } 1195 1196 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1197 /// 1198 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1199 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1200 const MachineOperand &MO = MI->getOperand(i); 1201 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1202 continue; 1203 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1204 MachineOperand &MOp = getOperand(j); 1205 if (!MOp.isIdenticalTo(MO)) 1206 continue; 1207 if (MO.isKill()) 1208 MOp.setIsKill(); 1209 else 1210 MOp.setIsDead(); 1211 break; 1212 } 1213 } 1214 } 1215 1216 /// copyPredicates - Copies predicate operand(s) from MI. 1217 void MachineInstr::copyPredicates(const MachineInstr *MI) { 1218 assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles"); 1219 1220 const MCInstrDesc &MCID = MI->getDesc(); 1221 if (!MCID.isPredicable()) 1222 return; 1223 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1224 if (MCID.OpInfo[i].isPredicate()) { 1225 // Predicated operands must be last operands. 1226 addOperand(MI->getOperand(i)); 1227 } 1228 } 1229 } 1230 1231 void MachineInstr::substituteRegister(unsigned FromReg, 1232 unsigned ToReg, 1233 unsigned SubIdx, 1234 const TargetRegisterInfo &RegInfo) { 1235 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1236 if (SubIdx) 1237 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1238 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1239 MachineOperand &MO = getOperand(i); 1240 if (!MO.isReg() || MO.getReg() != FromReg) 1241 continue; 1242 MO.substPhysReg(ToReg, RegInfo); 1243 } 1244 } else { 1245 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1246 MachineOperand &MO = getOperand(i); 1247 if (!MO.isReg() || MO.getReg() != FromReg) 1248 continue; 1249 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1250 } 1251 } 1252 } 1253 1254 /// isSafeToMove - Return true if it is safe to move this instruction. If 1255 /// SawStore is set to true, it means that there is a store (or call) between 1256 /// the instruction's location and its intended destination. 1257 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1258 AliasAnalysis *AA, 1259 bool &SawStore) const { 1260 // Ignore stuff that we obviously can't move. 1261 if (mayStore() || isCall()) { 1262 SawStore = true; 1263 return false; 1264 } 1265 1266 if (isLabel() || isDebugValue() || 1267 isTerminator() || hasUnmodeledSideEffects()) 1268 return false; 1269 1270 // See if this instruction does a load. If so, we have to guarantee that the 1271 // loaded value doesn't change between the load and the its intended 1272 // destination. The check for isInvariantLoad gives the targe the chance to 1273 // classify the load as always returning a constant, e.g. a constant pool 1274 // load. 1275 if (mayLoad() && !isInvariantLoad(AA)) 1276 // Otherwise, this is a real load. If there is a store between the load and 1277 // end of block, or if the load is volatile, we can't move it. 1278 return !SawStore && !hasVolatileMemoryRef(); 1279 1280 return true; 1281 } 1282 1283 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1284 /// instruction which defined the specified register instead of copying it. 1285 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1286 AliasAnalysis *AA, 1287 unsigned DstReg) const { 1288 bool SawStore = false; 1289 if (!TII->isTriviallyReMaterializable(this, AA) || 1290 !isSafeToMove(TII, AA, SawStore)) 1291 return false; 1292 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1293 const MachineOperand &MO = getOperand(i); 1294 if (!MO.isReg()) 1295 continue; 1296 // FIXME: For now, do not remat any instruction with register operands. 1297 // Later on, we can loosen the restriction is the register operands have 1298 // not been modified between the def and use. Note, this is different from 1299 // MachineSink because the code is no longer in two-address form (at least 1300 // partially). 1301 if (MO.isUse()) 1302 return false; 1303 else if (!MO.isDead() && MO.getReg() != DstReg) 1304 return false; 1305 } 1306 return true; 1307 } 1308 1309 /// hasVolatileMemoryRef - Return true if this instruction may have a 1310 /// volatile memory reference, or if the information describing the 1311 /// memory reference is not available. Return false if it is known to 1312 /// have no volatile memory references. 1313 bool MachineInstr::hasVolatileMemoryRef() const { 1314 // An instruction known never to access memory won't have a volatile access. 1315 if (!mayStore() && 1316 !mayLoad() && 1317 !isCall() && 1318 !hasUnmodeledSideEffects()) 1319 return false; 1320 1321 // Otherwise, if the instruction has no memory reference information, 1322 // conservatively assume it wasn't preserved. 1323 if (memoperands_empty()) 1324 return true; 1325 1326 // Check the memory reference information for volatile references. 1327 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1328 if ((*I)->isVolatile()) 1329 return true; 1330 1331 return false; 1332 } 1333 1334 /// isInvariantLoad - Return true if this instruction is loading from a 1335 /// location whose value is invariant across the function. For example, 1336 /// loading a value from the constant pool or from the argument area 1337 /// of a function if it does not change. This should only return true of 1338 /// *all* loads the instruction does are invariant (if it does multiple loads). 1339 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1340 // If the instruction doesn't load at all, it isn't an invariant load. 1341 if (!mayLoad()) 1342 return false; 1343 1344 // If the instruction has lost its memoperands, conservatively assume that 1345 // it may not be an invariant load. 1346 if (memoperands_empty()) 1347 return false; 1348 1349 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1350 1351 for (mmo_iterator I = memoperands_begin(), 1352 E = memoperands_end(); I != E; ++I) { 1353 if ((*I)->isVolatile()) return false; 1354 if ((*I)->isStore()) return false; 1355 if ((*I)->isInvariant()) return true; 1356 1357 if (const Value *V = (*I)->getValue()) { 1358 // A load from a constant PseudoSourceValue is invariant. 1359 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1360 if (PSV->isConstant(MFI)) 1361 continue; 1362 // If we have an AliasAnalysis, ask it whether the memory is constant. 1363 if (AA && AA->pointsToConstantMemory( 1364 AliasAnalysis::Location(V, (*I)->getSize(), 1365 (*I)->getTBAAInfo()))) 1366 continue; 1367 } 1368 1369 // Otherwise assume conservatively. 1370 return false; 1371 } 1372 1373 // Everything checks out. 1374 return true; 1375 } 1376 1377 /// isConstantValuePHI - If the specified instruction is a PHI that always 1378 /// merges together the same virtual register, return the register, otherwise 1379 /// return 0. 1380 unsigned MachineInstr::isConstantValuePHI() const { 1381 if (!isPHI()) 1382 return 0; 1383 assert(getNumOperands() >= 3 && 1384 "It's illegal to have a PHI without source operands"); 1385 1386 unsigned Reg = getOperand(1).getReg(); 1387 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1388 if (getOperand(i).getReg() != Reg) 1389 return 0; 1390 return Reg; 1391 } 1392 1393 bool MachineInstr::hasUnmodeledSideEffects() const { 1394 if (hasProperty(MCID::UnmodeledSideEffects)) 1395 return true; 1396 if (isInlineAsm()) { 1397 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1398 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1399 return true; 1400 } 1401 1402 return false; 1403 } 1404 1405 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1406 /// 1407 bool MachineInstr::allDefsAreDead() const { 1408 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1409 const MachineOperand &MO = getOperand(i); 1410 if (!MO.isReg() || MO.isUse()) 1411 continue; 1412 if (!MO.isDead()) 1413 return false; 1414 } 1415 return true; 1416 } 1417 1418 /// copyImplicitOps - Copy implicit register operands from specified 1419 /// instruction to this instruction. 1420 void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1421 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1422 i != e; ++i) { 1423 const MachineOperand &MO = MI->getOperand(i); 1424 if (MO.isReg() && MO.isImplicit()) 1425 addOperand(MO); 1426 } 1427 } 1428 1429 void MachineInstr::dump() const { 1430 dbgs() << " " << *this; 1431 } 1432 1433 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1434 raw_ostream &CommentOS) { 1435 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1436 if (!DL.isUnknown()) { // Print source line info. 1437 DIScope Scope(DL.getScope(Ctx)); 1438 // Omit the directory, because it's likely to be long and uninteresting. 1439 if (Scope.Verify()) 1440 CommentOS << Scope.getFilename(); 1441 else 1442 CommentOS << "<unknown>"; 1443 CommentOS << ':' << DL.getLine(); 1444 if (DL.getCol() != 0) 1445 CommentOS << ':' << DL.getCol(); 1446 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1447 if (!InlinedAtDL.isUnknown()) { 1448 CommentOS << " @[ "; 1449 printDebugLoc(InlinedAtDL, MF, CommentOS); 1450 CommentOS << " ]"; 1451 } 1452 } 1453 } 1454 1455 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1456 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1457 const MachineFunction *MF = 0; 1458 const MachineRegisterInfo *MRI = 0; 1459 if (const MachineBasicBlock *MBB = getParent()) { 1460 MF = MBB->getParent(); 1461 if (!TM && MF) 1462 TM = &MF->getTarget(); 1463 if (MF) 1464 MRI = &MF->getRegInfo(); 1465 } 1466 1467 // Save a list of virtual registers. 1468 SmallVector<unsigned, 8> VirtRegs; 1469 1470 // Print explicitly defined operands on the left of an assignment syntax. 1471 unsigned StartOp = 0, e = getNumOperands(); 1472 for (; StartOp < e && getOperand(StartOp).isReg() && 1473 getOperand(StartOp).isDef() && 1474 !getOperand(StartOp).isImplicit(); 1475 ++StartOp) { 1476 if (StartOp != 0) OS << ", "; 1477 getOperand(StartOp).print(OS, TM); 1478 unsigned Reg = getOperand(StartOp).getReg(); 1479 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1480 VirtRegs.push_back(Reg); 1481 } 1482 1483 if (StartOp != 0) 1484 OS << " = "; 1485 1486 // Print the opcode name. 1487 OS << getDesc().getName(); 1488 1489 // Print the rest of the operands. 1490 bool OmittedAnyCallClobbers = false; 1491 bool FirstOp = true; 1492 unsigned AsmDescOp = ~0u; 1493 unsigned AsmOpCount = 0; 1494 1495 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1496 // Print asm string. 1497 OS << " "; 1498 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1499 1500 // Print HasSideEffects, IsAlignStack 1501 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1502 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1503 OS << " [sideeffect]"; 1504 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1505 OS << " [alignstack]"; 1506 1507 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1508 FirstOp = false; 1509 } 1510 1511 1512 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1513 const MachineOperand &MO = getOperand(i); 1514 1515 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1516 VirtRegs.push_back(MO.getReg()); 1517 1518 // Omit call-clobbered registers which aren't used anywhere. This makes 1519 // call instructions much less noisy on targets where calls clobber lots 1520 // of registers. Don't rely on MO.isDead() because we may be called before 1521 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1522 if (MF && isCall() && 1523 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1524 unsigned Reg = MO.getReg(); 1525 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1526 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1527 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1528 bool HasAliasLive = false; 1529 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg); 1530 unsigned AliasReg = *Alias; ++Alias) 1531 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1532 HasAliasLive = true; 1533 break; 1534 } 1535 if (!HasAliasLive) { 1536 OmittedAnyCallClobbers = true; 1537 continue; 1538 } 1539 } 1540 } 1541 } 1542 1543 if (FirstOp) FirstOp = false; else OS << ","; 1544 OS << " "; 1545 if (i < getDesc().NumOperands) { 1546 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1547 if (MCOI.isPredicate()) 1548 OS << "pred:"; 1549 if (MCOI.isOptionalDef()) 1550 OS << "opt:"; 1551 } 1552 if (isDebugValue() && MO.isMetadata()) { 1553 // Pretty print DBG_VALUE instructions. 1554 const MDNode *MD = MO.getMetadata(); 1555 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1556 OS << "!\"" << MDS->getString() << '\"'; 1557 else 1558 MO.print(OS, TM); 1559 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1560 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1561 } else if (i == AsmDescOp && MO.isImm()) { 1562 // Pretty print the inline asm operand descriptor. 1563 OS << '$' << AsmOpCount++; 1564 unsigned Flag = MO.getImm(); 1565 switch (InlineAsm::getKind(Flag)) { 1566 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1567 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1568 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1569 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1570 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1571 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1572 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1573 } 1574 1575 unsigned RCID = 0; 1576 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1577 if (TM) 1578 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1579 else 1580 OS << ":RC" << RCID; 1581 } 1582 1583 unsigned TiedTo = 0; 1584 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1585 OS << " tiedto:$" << TiedTo; 1586 1587 OS << ']'; 1588 1589 // Compute the index of the next operand descriptor. 1590 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1591 } else 1592 MO.print(OS, TM); 1593 } 1594 1595 // Briefly indicate whether any call clobbers were omitted. 1596 if (OmittedAnyCallClobbers) { 1597 if (!FirstOp) OS << ","; 1598 OS << " ..."; 1599 } 1600 1601 bool HaveSemi = false; 1602 if (Flags) { 1603 if (!HaveSemi) OS << ";"; HaveSemi = true; 1604 OS << " flags: "; 1605 1606 if (Flags & FrameSetup) 1607 OS << "FrameSetup"; 1608 } 1609 1610 if (!memoperands_empty()) { 1611 if (!HaveSemi) OS << ";"; HaveSemi = true; 1612 1613 OS << " mem:"; 1614 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1615 i != e; ++i) { 1616 OS << **i; 1617 if (llvm::next(i) != e) 1618 OS << " "; 1619 } 1620 } 1621 1622 // Print the regclass of any virtual registers encountered. 1623 if (MRI && !VirtRegs.empty()) { 1624 if (!HaveSemi) OS << ";"; HaveSemi = true; 1625 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1626 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1627 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1628 for (unsigned j = i+1; j != VirtRegs.size();) { 1629 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1630 ++j; 1631 continue; 1632 } 1633 if (VirtRegs[i] != VirtRegs[j]) 1634 OS << "," << PrintReg(VirtRegs[j]); 1635 VirtRegs.erase(VirtRegs.begin()+j); 1636 } 1637 } 1638 } 1639 1640 // Print debug location information. 1641 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1642 if (!HaveSemi) OS << ";"; HaveSemi = true; 1643 DIVariable DV(getOperand(e - 1).getMetadata()); 1644 OS << " line no:" << DV.getLineNumber(); 1645 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1646 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1647 if (!InlinedAtDL.isUnknown()) { 1648 OS << " inlined @[ "; 1649 printDebugLoc(InlinedAtDL, MF, OS); 1650 OS << " ]"; 1651 } 1652 } 1653 } else if (!debugLoc.isUnknown() && MF) { 1654 if (!HaveSemi) OS << ";"; HaveSemi = true; 1655 OS << " dbg:"; 1656 printDebugLoc(debugLoc, MF, OS); 1657 } 1658 1659 OS << '\n'; 1660 } 1661 1662 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1663 const TargetRegisterInfo *RegInfo, 1664 bool AddIfNotFound) { 1665 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1666 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1667 bool Found = false; 1668 SmallVector<unsigned,4> DeadOps; 1669 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1670 MachineOperand &MO = getOperand(i); 1671 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1672 continue; 1673 unsigned Reg = MO.getReg(); 1674 if (!Reg) 1675 continue; 1676 1677 if (Reg == IncomingReg) { 1678 if (!Found) { 1679 if (MO.isKill()) 1680 // The register is already marked kill. 1681 return true; 1682 if (isPhysReg && isRegTiedToDefOperand(i)) 1683 // Two-address uses of physregs must not be marked kill. 1684 return true; 1685 MO.setIsKill(); 1686 Found = true; 1687 } 1688 } else if (hasAliases && MO.isKill() && 1689 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1690 // A super-register kill already exists. 1691 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1692 return true; 1693 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1694 DeadOps.push_back(i); 1695 } 1696 } 1697 1698 // Trim unneeded kill operands. 1699 while (!DeadOps.empty()) { 1700 unsigned OpIdx = DeadOps.back(); 1701 if (getOperand(OpIdx).isImplicit()) 1702 RemoveOperand(OpIdx); 1703 else 1704 getOperand(OpIdx).setIsKill(false); 1705 DeadOps.pop_back(); 1706 } 1707 1708 // If not found, this means an alias of one of the operands is killed. Add a 1709 // new implicit operand if required. 1710 if (!Found && AddIfNotFound) { 1711 addOperand(MachineOperand::CreateReg(IncomingReg, 1712 false /*IsDef*/, 1713 true /*IsImp*/, 1714 true /*IsKill*/)); 1715 return true; 1716 } 1717 return Found; 1718 } 1719 1720 void MachineInstr::clearRegisterKills(unsigned Reg, 1721 const TargetRegisterInfo *RegInfo) { 1722 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1723 RegInfo = 0; 1724 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1725 MachineOperand &MO = getOperand(i); 1726 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1727 continue; 1728 unsigned OpReg = MO.getReg(); 1729 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1730 MO.setIsKill(false); 1731 } 1732 } 1733 1734 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1735 const TargetRegisterInfo *RegInfo, 1736 bool AddIfNotFound) { 1737 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1738 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1739 bool Found = false; 1740 SmallVector<unsigned,4> DeadOps; 1741 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1742 MachineOperand &MO = getOperand(i); 1743 if (!MO.isReg() || !MO.isDef()) 1744 continue; 1745 unsigned Reg = MO.getReg(); 1746 if (!Reg) 1747 continue; 1748 1749 if (Reg == IncomingReg) { 1750 MO.setIsDead(); 1751 Found = true; 1752 } else if (hasAliases && MO.isDead() && 1753 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1754 // There exists a super-register that's marked dead. 1755 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1756 return true; 1757 if (RegInfo->getSubRegisters(IncomingReg) && 1758 RegInfo->getSuperRegisters(Reg) && 1759 RegInfo->isSubRegister(IncomingReg, Reg)) 1760 DeadOps.push_back(i); 1761 } 1762 } 1763 1764 // Trim unneeded dead operands. 1765 while (!DeadOps.empty()) { 1766 unsigned OpIdx = DeadOps.back(); 1767 if (getOperand(OpIdx).isImplicit()) 1768 RemoveOperand(OpIdx); 1769 else 1770 getOperand(OpIdx).setIsDead(false); 1771 DeadOps.pop_back(); 1772 } 1773 1774 // If not found, this means an alias of one of the operands is dead. Add a 1775 // new implicit operand if required. 1776 if (Found || !AddIfNotFound) 1777 return Found; 1778 1779 addOperand(MachineOperand::CreateReg(IncomingReg, 1780 true /*IsDef*/, 1781 true /*IsImp*/, 1782 false /*IsKill*/, 1783 true /*IsDead*/)); 1784 return true; 1785 } 1786 1787 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1788 const TargetRegisterInfo *RegInfo) { 1789 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1790 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1791 if (MO) 1792 return; 1793 } else { 1794 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1795 const MachineOperand &MO = getOperand(i); 1796 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1797 MO.getSubReg() == 0) 1798 return; 1799 } 1800 } 1801 addOperand(MachineOperand::CreateReg(IncomingReg, 1802 true /*IsDef*/, 1803 true /*IsImp*/)); 1804 } 1805 1806 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1807 const TargetRegisterInfo &TRI) { 1808 bool HasRegMask = false; 1809 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1810 MachineOperand &MO = getOperand(i); 1811 if (MO.isRegMask()) { 1812 HasRegMask = true; 1813 continue; 1814 } 1815 if (!MO.isReg() || !MO.isDef()) continue; 1816 unsigned Reg = MO.getReg(); 1817 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1818 bool Dead = true; 1819 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1820 I != E; ++I) 1821 if (TRI.regsOverlap(*I, Reg)) { 1822 Dead = false; 1823 break; 1824 } 1825 // If there are no uses, including partial uses, the def is dead. 1826 if (Dead) MO.setIsDead(); 1827 } 1828 1829 // This is a call with a register mask operand. 1830 // Mask clobbers are always dead, so add defs for the non-dead defines. 1831 if (HasRegMask) 1832 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1833 I != E; ++I) 1834 addRegisterDefined(*I, &TRI); 1835 } 1836 1837 unsigned 1838 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1839 unsigned Hash = MI->getOpcode() * 37; 1840 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1841 const MachineOperand &MO = MI->getOperand(i); 1842 uint64_t Key = (uint64_t)MO.getType() << 32; 1843 switch (MO.getType()) { 1844 default: break; 1845 case MachineOperand::MO_Register: 1846 if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1847 continue; // Skip virtual register defs. 1848 Key |= MO.getReg(); 1849 break; 1850 case MachineOperand::MO_Immediate: 1851 Key |= MO.getImm(); 1852 break; 1853 case MachineOperand::MO_FrameIndex: 1854 case MachineOperand::MO_ConstantPoolIndex: 1855 case MachineOperand::MO_JumpTableIndex: 1856 Key |= MO.getIndex(); 1857 break; 1858 case MachineOperand::MO_MachineBasicBlock: 1859 Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB()); 1860 break; 1861 case MachineOperand::MO_GlobalAddress: 1862 Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal()); 1863 break; 1864 case MachineOperand::MO_BlockAddress: 1865 Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress()); 1866 break; 1867 case MachineOperand::MO_MCSymbol: 1868 Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol()); 1869 break; 1870 } 1871 Key += ~(Key << 32); 1872 Key ^= (Key >> 22); 1873 Key += ~(Key << 13); 1874 Key ^= (Key >> 8); 1875 Key += (Key << 3); 1876 Key ^= (Key >> 15); 1877 Key += ~(Key << 27); 1878 Key ^= (Key >> 31); 1879 Hash = (unsigned)Key + Hash * 37; 1880 } 1881 return Hash; 1882 } 1883 1884 void MachineInstr::emitError(StringRef Msg) const { 1885 // Find the source location cookie. 1886 unsigned LocCookie = 0; 1887 const MDNode *LocMD = 0; 1888 for (unsigned i = getNumOperands(); i != 0; --i) { 1889 if (getOperand(i-1).isMetadata() && 1890 (LocMD = getOperand(i-1).getMetadata()) && 1891 LocMD->getNumOperands() != 0) { 1892 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1893 LocCookie = CI->getZExtValue(); 1894 break; 1895 } 1896 } 1897 } 1898 1899 if (const MachineBasicBlock *MBB = getParent()) 1900 if (const MachineFunction *MF = MBB->getParent()) 1901 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1902 report_fatal_error(Msg); 1903 } 1904