1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/Constants.h" 16 #include "llvm/Function.h" 17 #include "llvm/InlineAsm.h" 18 #include "llvm/Metadata.h" 19 #include "llvm/Type.h" 20 #include "llvm/Value.h" 21 #include "llvm/Assembly/Writer.h" 22 #include "llvm/CodeGen/MachineConstantPool.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/PseudoSourceValue.h" 27 #include "llvm/MC/MCSymbol.h" 28 #include "llvm/Target/TargetMachine.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetInstrDesc.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/DebugInfo.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/LeakDetector.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/ADT/FoldingSet.h" 40 using namespace llvm; 41 42 //===----------------------------------------------------------------------===// 43 // MachineOperand Implementation 44 //===----------------------------------------------------------------------===// 45 46 /// AddRegOperandToRegInfo - Add this register operand to the specified 47 /// MachineRegisterInfo. If it is null, then the next/prev fields should be 48 /// explicitly nulled out. 49 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { 50 assert(isReg() && "Can only add reg operand to use lists"); 51 52 // If the reginfo pointer is null, just explicitly null out or next/prev 53 // pointers, to ensure they are not garbage. 54 if (RegInfo == 0) { 55 Contents.Reg.Prev = 0; 56 Contents.Reg.Next = 0; 57 return; 58 } 59 60 // Otherwise, add this operand to the head of the registers use/def list. 61 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); 62 63 // For SSA values, we prefer to keep the definition at the start of the list. 64 // we do this by skipping over the definition if it is at the head of the 65 // list. 66 if (*Head && (*Head)->isDef()) 67 Head = &(*Head)->Contents.Reg.Next; 68 69 Contents.Reg.Next = *Head; 70 if (Contents.Reg.Next) { 71 assert(getReg() == Contents.Reg.Next->getReg() && 72 "Different regs on the same list!"); 73 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; 74 } 75 76 Contents.Reg.Prev = Head; 77 *Head = this; 78 } 79 80 /// RemoveRegOperandFromRegInfo - Remove this register operand from the 81 /// MachineRegisterInfo it is linked with. 82 void MachineOperand::RemoveRegOperandFromRegInfo() { 83 assert(isOnRegUseList() && "Reg operand is not on a use list"); 84 // Unlink this from the doubly linked list of operands. 85 MachineOperand *NextOp = Contents.Reg.Next; 86 *Contents.Reg.Prev = NextOp; 87 if (NextOp) { 88 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); 89 NextOp->Contents.Reg.Prev = Contents.Reg.Prev; 90 } 91 Contents.Reg.Prev = 0; 92 Contents.Reg.Next = 0; 93 } 94 95 void MachineOperand::setReg(unsigned Reg) { 96 if (getReg() == Reg) return; // No change. 97 98 // Otherwise, we have to change the register. If this operand is embedded 99 // into a machine function, we need to update the old and new register's 100 // use/def lists. 101 if (MachineInstr *MI = getParent()) 102 if (MachineBasicBlock *MBB = MI->getParent()) 103 if (MachineFunction *MF = MBB->getParent()) { 104 RemoveRegOperandFromRegInfo(); 105 SmallContents.RegNo = Reg; 106 AddRegOperandToRegInfo(&MF->getRegInfo()); 107 return; 108 } 109 110 // Otherwise, just change the register, no problem. :) 111 SmallContents.RegNo = Reg; 112 } 113 114 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 115 const TargetRegisterInfo &TRI) { 116 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 117 if (SubIdx && getSubReg()) 118 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 119 setReg(Reg); 120 if (SubIdx) 121 setSubReg(SubIdx); 122 } 123 124 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 125 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 126 if (getSubReg()) { 127 Reg = TRI.getSubReg(Reg, getSubReg()); 128 assert(Reg && "Invalid SubReg for physical register"); 129 setSubReg(0); 130 } 131 setReg(Reg); 132 } 133 134 /// ChangeToImmediate - Replace this operand with a new immediate operand of 135 /// the specified value. If an operand is known to be an immediate already, 136 /// the setImm method should be used. 137 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 138 // If this operand is currently a register operand, and if this is in a 139 // function, deregister the operand from the register's use/def list. 140 if (isReg() && getParent() && getParent()->getParent() && 141 getParent()->getParent()->getParent()) 142 RemoveRegOperandFromRegInfo(); 143 144 OpKind = MO_Immediate; 145 Contents.ImmVal = ImmVal; 146 } 147 148 /// ChangeToRegister - Replace this operand with a new register operand of 149 /// the specified value. If an operand is known to be an register already, 150 /// the setReg method should be used. 151 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 152 bool isKill, bool isDead, bool isUndef, 153 bool isDebug) { 154 // If this operand is already a register operand, use setReg to update the 155 // register's use/def lists. 156 if (isReg()) { 157 assert(!isEarlyClobber()); 158 setReg(Reg); 159 } else { 160 // Otherwise, change this to a register and set the reg#. 161 OpKind = MO_Register; 162 SmallContents.RegNo = Reg; 163 164 // If this operand is embedded in a function, add the operand to the 165 // register's use/def list. 166 if (MachineInstr *MI = getParent()) 167 if (MachineBasicBlock *MBB = MI->getParent()) 168 if (MachineFunction *MF = MBB->getParent()) 169 AddRegOperandToRegInfo(&MF->getRegInfo()); 170 } 171 172 IsDef = isDef; 173 IsImp = isImp; 174 IsKill = isKill; 175 IsDead = isDead; 176 IsUndef = isUndef; 177 IsEarlyClobber = false; 178 IsDebug = isDebug; 179 SubReg = 0; 180 } 181 182 /// isIdenticalTo - Return true if this operand is identical to the specified 183 /// operand. 184 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 185 if (getType() != Other.getType() || 186 getTargetFlags() != Other.getTargetFlags()) 187 return false; 188 189 switch (getType()) { 190 default: llvm_unreachable("Unrecognized operand type"); 191 case MachineOperand::MO_Register: 192 return getReg() == Other.getReg() && isDef() == Other.isDef() && 193 getSubReg() == Other.getSubReg(); 194 case MachineOperand::MO_Immediate: 195 return getImm() == Other.getImm(); 196 case MachineOperand::MO_FPImmediate: 197 return getFPImm() == Other.getFPImm(); 198 case MachineOperand::MO_MachineBasicBlock: 199 return getMBB() == Other.getMBB(); 200 case MachineOperand::MO_FrameIndex: 201 return getIndex() == Other.getIndex(); 202 case MachineOperand::MO_ConstantPoolIndex: 203 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 204 case MachineOperand::MO_JumpTableIndex: 205 return getIndex() == Other.getIndex(); 206 case MachineOperand::MO_GlobalAddress: 207 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 208 case MachineOperand::MO_ExternalSymbol: 209 return !strcmp(getSymbolName(), Other.getSymbolName()) && 210 getOffset() == Other.getOffset(); 211 case MachineOperand::MO_BlockAddress: 212 return getBlockAddress() == Other.getBlockAddress(); 213 case MachineOperand::MO_MCSymbol: 214 return getMCSymbol() == Other.getMCSymbol(); 215 case MachineOperand::MO_Metadata: 216 return getMetadata() == Other.getMetadata(); 217 } 218 } 219 220 /// print - Print the specified machine operand. 221 /// 222 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 223 // If the instruction is embedded into a basic block, we can find the 224 // target info for the instruction. 225 if (!TM) 226 if (const MachineInstr *MI = getParent()) 227 if (const MachineBasicBlock *MBB = MI->getParent()) 228 if (const MachineFunction *MF = MBB->getParent()) 229 TM = &MF->getTarget(); 230 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 231 232 switch (getType()) { 233 case MachineOperand::MO_Register: 234 OS << PrintReg(getReg(), TRI, getSubReg()); 235 236 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 237 isEarlyClobber()) { 238 OS << '<'; 239 bool NeedComma = false; 240 if (isDef()) { 241 if (NeedComma) OS << ','; 242 if (isEarlyClobber()) 243 OS << "earlyclobber,"; 244 if (isImplicit()) 245 OS << "imp-"; 246 OS << "def"; 247 NeedComma = true; 248 } else if (isImplicit()) { 249 OS << "imp-use"; 250 NeedComma = true; 251 } 252 253 if (isKill() || isDead() || isUndef()) { 254 if (NeedComma) OS << ','; 255 if (isKill()) OS << "kill"; 256 if (isDead()) OS << "dead"; 257 if (isUndef()) { 258 if (isKill() || isDead()) 259 OS << ','; 260 OS << "undef"; 261 } 262 } 263 OS << '>'; 264 } 265 break; 266 case MachineOperand::MO_Immediate: 267 OS << getImm(); 268 break; 269 case MachineOperand::MO_FPImmediate: 270 if (getFPImm()->getType()->isFloatTy()) 271 OS << getFPImm()->getValueAPF().convertToFloat(); 272 else 273 OS << getFPImm()->getValueAPF().convertToDouble(); 274 break; 275 case MachineOperand::MO_MachineBasicBlock: 276 OS << "<BB#" << getMBB()->getNumber() << ">"; 277 break; 278 case MachineOperand::MO_FrameIndex: 279 OS << "<fi#" << getIndex() << '>'; 280 break; 281 case MachineOperand::MO_ConstantPoolIndex: 282 OS << "<cp#" << getIndex(); 283 if (getOffset()) OS << "+" << getOffset(); 284 OS << '>'; 285 break; 286 case MachineOperand::MO_JumpTableIndex: 287 OS << "<jt#" << getIndex() << '>'; 288 break; 289 case MachineOperand::MO_GlobalAddress: 290 OS << "<ga:"; 291 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 292 if (getOffset()) OS << "+" << getOffset(); 293 OS << '>'; 294 break; 295 case MachineOperand::MO_ExternalSymbol: 296 OS << "<es:" << getSymbolName(); 297 if (getOffset()) OS << "+" << getOffset(); 298 OS << '>'; 299 break; 300 case MachineOperand::MO_BlockAddress: 301 OS << '<'; 302 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 303 OS << '>'; 304 break; 305 case MachineOperand::MO_Metadata: 306 OS << '<'; 307 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 308 OS << '>'; 309 break; 310 case MachineOperand::MO_MCSymbol: 311 OS << "<MCSym=" << *getMCSymbol() << '>'; 312 break; 313 default: 314 llvm_unreachable("Unrecognized operand type"); 315 } 316 317 if (unsigned TF = getTargetFlags()) 318 OS << "[TF=" << TF << ']'; 319 } 320 321 //===----------------------------------------------------------------------===// 322 // MachineMemOperand Implementation 323 //===----------------------------------------------------------------------===// 324 325 /// getAddrSpace - Return the LLVM IR address space number that this pointer 326 /// points into. 327 unsigned MachinePointerInfo::getAddrSpace() const { 328 if (V == 0) return 0; 329 return cast<PointerType>(V->getType())->getAddressSpace(); 330 } 331 332 /// getConstantPool - Return a MachinePointerInfo record that refers to the 333 /// constant pool. 334 MachinePointerInfo MachinePointerInfo::getConstantPool() { 335 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 336 } 337 338 /// getFixedStack - Return a MachinePointerInfo record that refers to the 339 /// the specified FrameIndex. 340 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 341 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 342 } 343 344 MachinePointerInfo MachinePointerInfo::getJumpTable() { 345 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 346 } 347 348 MachinePointerInfo MachinePointerInfo::getGOT() { 349 return MachinePointerInfo(PseudoSourceValue::getGOT()); 350 } 351 352 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 353 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 354 } 355 356 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 357 uint64_t s, unsigned int a, 358 const MDNode *TBAAInfo) 359 : PtrInfo(ptrinfo), Size(s), 360 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 361 TBAAInfo(TBAAInfo) { 362 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 363 "invalid pointer value"); 364 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 365 assert((isLoad() || isStore()) && "Not a load/store!"); 366 } 367 368 /// Profile - Gather unique data for the object. 369 /// 370 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 371 ID.AddInteger(getOffset()); 372 ID.AddInteger(Size); 373 ID.AddPointer(getValue()); 374 ID.AddInteger(Flags); 375 } 376 377 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 378 // The Value and Offset may differ due to CSE. But the flags and size 379 // should be the same. 380 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 381 assert(MMO->getSize() == getSize() && "Size mismatch!"); 382 383 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 384 // Update the alignment value. 385 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 386 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 387 // Also update the base and offset, because the new alignment may 388 // not be applicable with the old ones. 389 PtrInfo = MMO->PtrInfo; 390 } 391 } 392 393 /// getAlignment - Return the minimum known alignment in bytes of the 394 /// actual memory reference. 395 uint64_t MachineMemOperand::getAlignment() const { 396 return MinAlign(getBaseAlignment(), getOffset()); 397 } 398 399 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 400 assert((MMO.isLoad() || MMO.isStore()) && 401 "SV has to be a load, store or both."); 402 403 if (MMO.isVolatile()) 404 OS << "Volatile "; 405 406 if (MMO.isLoad()) 407 OS << "LD"; 408 if (MMO.isStore()) 409 OS << "ST"; 410 OS << MMO.getSize(); 411 412 // Print the address information. 413 OS << "["; 414 if (!MMO.getValue()) 415 OS << "<unknown>"; 416 else 417 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 418 419 // If the alignment of the memory reference itself differs from the alignment 420 // of the base pointer, print the base alignment explicitly, next to the base 421 // pointer. 422 if (MMO.getBaseAlignment() != MMO.getAlignment()) 423 OS << "(align=" << MMO.getBaseAlignment() << ")"; 424 425 if (MMO.getOffset() != 0) 426 OS << "+" << MMO.getOffset(); 427 OS << "]"; 428 429 // Print the alignment of the reference. 430 if (MMO.getBaseAlignment() != MMO.getAlignment() || 431 MMO.getBaseAlignment() != MMO.getSize()) 432 OS << "(align=" << MMO.getAlignment() << ")"; 433 434 // Print TBAA info. 435 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 436 OS << "(tbaa="; 437 if (TBAAInfo->getNumOperands() > 0) 438 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 439 else 440 OS << "<unknown>"; 441 OS << ")"; 442 } 443 444 return OS; 445 } 446 447 //===----------------------------------------------------------------------===// 448 // MachineInstr Implementation 449 //===----------------------------------------------------------------------===// 450 451 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with 452 /// TID NULL and no operands. 453 MachineInstr::MachineInstr() 454 : TID(0), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 455 Parent(0) { 456 // Make sure that we get added to a machine basicblock 457 LeakDetector::addGarbageObject(this); 458 } 459 460 void MachineInstr::addImplicitDefUseOperands() { 461 if (TID->ImplicitDefs) 462 for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs) 463 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 464 if (TID->ImplicitUses) 465 for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses) 466 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 467 } 468 469 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 470 /// implicit operands. It reserves space for the number of operands specified by 471 /// the TargetInstrDesc. 472 MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp) 473 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), 474 MemRefs(0), MemRefsEnd(0), Parent(0) { 475 if (!NoImp) 476 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 477 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 478 if (!NoImp) 479 addImplicitDefUseOperands(); 480 // Make sure that we get added to a machine basicblock 481 LeakDetector::addGarbageObject(this); 482 } 483 484 /// MachineInstr ctor - As above, but with a DebugLoc. 485 MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl, 486 bool NoImp) 487 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 488 Parent(0), debugLoc(dl) { 489 if (!NoImp) 490 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 491 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 492 if (!NoImp) 493 addImplicitDefUseOperands(); 494 // Make sure that we get added to a machine basicblock 495 LeakDetector::addGarbageObject(this); 496 } 497 498 /// MachineInstr ctor - Work exactly the same as the ctor two above, except 499 /// that the MachineInstr is created and added to the end of the specified 500 /// basic block. 501 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid) 502 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), 503 MemRefs(0), MemRefsEnd(0), Parent(0) { 504 assert(MBB && "Cannot use inserting ctor with null basic block!"); 505 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 506 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 507 addImplicitDefUseOperands(); 508 // Make sure that we get added to a machine basicblock 509 LeakDetector::addGarbageObject(this); 510 MBB->push_back(this); // Add instruction to end of basic block! 511 } 512 513 /// MachineInstr ctor - As above, but with a DebugLoc. 514 /// 515 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 516 const TargetInstrDesc &tid) 517 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 518 Parent(0), debugLoc(dl) { 519 assert(MBB && "Cannot use inserting ctor with null basic block!"); 520 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 521 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 522 addImplicitDefUseOperands(); 523 // Make sure that we get added to a machine basicblock 524 LeakDetector::addGarbageObject(this); 525 MBB->push_back(this); // Add instruction to end of basic block! 526 } 527 528 /// MachineInstr ctor - Copies MachineInstr arg exactly 529 /// 530 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 531 : TID(&MI.getDesc()), NumImplicitOps(0), AsmPrinterFlags(0), 532 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd), 533 Parent(0), debugLoc(MI.getDebugLoc()) { 534 Operands.reserve(MI.getNumOperands()); 535 536 // Add operands 537 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 538 addOperand(MI.getOperand(i)); 539 NumImplicitOps = MI.NumImplicitOps; 540 541 // Set parent to null. 542 Parent = 0; 543 544 LeakDetector::addGarbageObject(this); 545 } 546 547 MachineInstr::~MachineInstr() { 548 LeakDetector::removeGarbageObject(this); 549 #ifndef NDEBUG 550 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 551 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 552 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 553 "Reg operand def/use list corrupted"); 554 } 555 #endif 556 } 557 558 /// getRegInfo - If this instruction is embedded into a MachineFunction, 559 /// return the MachineRegisterInfo object for the current function, otherwise 560 /// return null. 561 MachineRegisterInfo *MachineInstr::getRegInfo() { 562 if (MachineBasicBlock *MBB = getParent()) 563 return &MBB->getParent()->getRegInfo(); 564 return 0; 565 } 566 567 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 568 /// this instruction from their respective use lists. This requires that the 569 /// operands already be on their use lists. 570 void MachineInstr::RemoveRegOperandsFromUseLists() { 571 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 572 if (Operands[i].isReg()) 573 Operands[i].RemoveRegOperandFromRegInfo(); 574 } 575 } 576 577 /// AddRegOperandsToUseLists - Add all of the register operands in 578 /// this instruction from their respective use lists. This requires that the 579 /// operands not be on their use lists yet. 580 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { 581 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 582 if (Operands[i].isReg()) 583 Operands[i].AddRegOperandToRegInfo(&RegInfo); 584 } 585 } 586 587 588 /// addOperand - Add the specified operand to the instruction. If it is an 589 /// implicit operand, it is added to the end of the operand list. If it is 590 /// an explicit operand it is added at the end of the explicit operand list 591 /// (before the first implicit operand). 592 void MachineInstr::addOperand(const MachineOperand &Op) { 593 bool isImpReg = Op.isReg() && Op.isImplicit(); 594 assert((isImpReg || !OperandsComplete()) && 595 "Trying to add an operand to a machine instr that is already done!"); 596 597 MachineRegisterInfo *RegInfo = getRegInfo(); 598 599 // If we are adding the operand to the end of the list, our job is simpler. 600 // This is true most of the time, so this is a reasonable optimization. 601 if (isImpReg || NumImplicitOps == 0) { 602 // We can only do this optimization if we know that the operand list won't 603 // reallocate. 604 if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) { 605 Operands.push_back(Op); 606 607 // Set the parent of the operand. 608 Operands.back().ParentMI = this; 609 610 // If the operand is a register, update the operand's use list. 611 if (Op.isReg()) { 612 Operands.back().AddRegOperandToRegInfo(RegInfo); 613 // If the register operand is flagged as early, mark the operand as such 614 unsigned OpNo = Operands.size() - 1; 615 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 616 Operands[OpNo].setIsEarlyClobber(true); 617 } 618 return; 619 } 620 } 621 622 // Otherwise, we have to insert a real operand before any implicit ones. 623 unsigned OpNo = Operands.size()-NumImplicitOps; 624 625 // If this instruction isn't embedded into a function, then we don't need to 626 // update any operand lists. 627 if (RegInfo == 0) { 628 // Simple insertion, no reginfo update needed for other register operands. 629 Operands.insert(Operands.begin()+OpNo, Op); 630 Operands[OpNo].ParentMI = this; 631 632 // Do explicitly set the reginfo for this operand though, to ensure the 633 // next/prev fields are properly nulled out. 634 if (Operands[OpNo].isReg()) { 635 Operands[OpNo].AddRegOperandToRegInfo(0); 636 // If the register operand is flagged as early, mark the operand as such 637 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 638 Operands[OpNo].setIsEarlyClobber(true); 639 } 640 641 } else if (Operands.size()+1 <= Operands.capacity()) { 642 // Otherwise, we have to remove register operands from their register use 643 // list, add the operand, then add the register operands back to their use 644 // list. This also must handle the case when the operand list reallocates 645 // to somewhere else. 646 647 // If insertion of this operand won't cause reallocation of the operand 648 // list, just remove the implicit operands, add the operand, then re-add all 649 // the rest of the operands. 650 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 651 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 652 Operands[i].RemoveRegOperandFromRegInfo(); 653 } 654 655 // Add the operand. If it is a register, add it to the reg list. 656 Operands.insert(Operands.begin()+OpNo, Op); 657 Operands[OpNo].ParentMI = this; 658 659 if (Operands[OpNo].isReg()) { 660 Operands[OpNo].AddRegOperandToRegInfo(RegInfo); 661 // If the register operand is flagged as early, mark the operand as such 662 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 663 Operands[OpNo].setIsEarlyClobber(true); 664 } 665 666 // Re-add all the implicit ops. 667 for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) { 668 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 669 Operands[i].AddRegOperandToRegInfo(RegInfo); 670 } 671 } else { 672 // Otherwise, we will be reallocating the operand list. Remove all reg 673 // operands from their list, then readd them after the operand list is 674 // reallocated. 675 RemoveRegOperandsFromUseLists(); 676 677 Operands.insert(Operands.begin()+OpNo, Op); 678 Operands[OpNo].ParentMI = this; 679 680 // Re-add all the operands. 681 AddRegOperandsToUseLists(*RegInfo); 682 683 // If the register operand is flagged as early, mark the operand as such 684 if (Operands[OpNo].isReg() 685 && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 686 Operands[OpNo].setIsEarlyClobber(true); 687 } 688 } 689 690 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 691 /// fewer operand than it started with. 692 /// 693 void MachineInstr::RemoveOperand(unsigned OpNo) { 694 assert(OpNo < Operands.size() && "Invalid operand number"); 695 696 // Special case removing the last one. 697 if (OpNo == Operands.size()-1) { 698 // If needed, remove from the reg def/use list. 699 if (Operands.back().isReg() && Operands.back().isOnRegUseList()) 700 Operands.back().RemoveRegOperandFromRegInfo(); 701 702 Operands.pop_back(); 703 return; 704 } 705 706 // Otherwise, we are removing an interior operand. If we have reginfo to 707 // update, remove all operands that will be shifted down from their reg lists, 708 // move everything down, then re-add them. 709 MachineRegisterInfo *RegInfo = getRegInfo(); 710 if (RegInfo) { 711 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 712 if (Operands[i].isReg()) 713 Operands[i].RemoveRegOperandFromRegInfo(); 714 } 715 } 716 717 Operands.erase(Operands.begin()+OpNo); 718 719 if (RegInfo) { 720 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 721 if (Operands[i].isReg()) 722 Operands[i].AddRegOperandToRegInfo(RegInfo); 723 } 724 } 725 } 726 727 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 728 /// This function should be used only occasionally. The setMemRefs function 729 /// is the primary method for setting up a MachineInstr's MemRefs list. 730 void MachineInstr::addMemOperand(MachineFunction &MF, 731 MachineMemOperand *MO) { 732 mmo_iterator OldMemRefs = MemRefs; 733 mmo_iterator OldMemRefsEnd = MemRefsEnd; 734 735 size_t NewNum = (MemRefsEnd - MemRefs) + 1; 736 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 737 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum; 738 739 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs); 740 NewMemRefs[NewNum - 1] = MO; 741 742 MemRefs = NewMemRefs; 743 MemRefsEnd = NewMemRefsEnd; 744 } 745 746 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 747 MICheckType Check) const { 748 // If opcodes or number of operands are not the same then the two 749 // instructions are obviously not identical. 750 if (Other->getOpcode() != getOpcode() || 751 Other->getNumOperands() != getNumOperands()) 752 return false; 753 754 // Check operands to make sure they match. 755 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 756 const MachineOperand &MO = getOperand(i); 757 const MachineOperand &OMO = Other->getOperand(i); 758 // Clients may or may not want to ignore defs when testing for equality. 759 // For example, machine CSE pass only cares about finding common 760 // subexpressions, so it's safe to ignore virtual register defs. 761 if (Check != CheckDefs && MO.isReg() && MO.isDef()) { 762 if (Check == IgnoreDefs) 763 continue; 764 // Check == IgnoreVRegDefs 765 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 766 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 767 if (MO.getReg() != OMO.getReg()) 768 return false; 769 } else if (!MO.isIdenticalTo(OMO)) 770 return false; 771 } 772 return true; 773 } 774 775 /// removeFromParent - This method unlinks 'this' from the containing basic 776 /// block, and returns it, but does not delete it. 777 MachineInstr *MachineInstr::removeFromParent() { 778 assert(getParent() && "Not embedded in a basic block!"); 779 getParent()->remove(this); 780 return this; 781 } 782 783 784 /// eraseFromParent - This method unlinks 'this' from the containing basic 785 /// block, and deletes it. 786 void MachineInstr::eraseFromParent() { 787 assert(getParent() && "Not embedded in a basic block!"); 788 getParent()->erase(this); 789 } 790 791 792 /// OperandComplete - Return true if it's illegal to add a new operand 793 /// 794 bool MachineInstr::OperandsComplete() const { 795 unsigned short NumOperands = TID->getNumOperands(); 796 if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands) 797 return true; // Broken: we have all the operands of this instruction! 798 return false; 799 } 800 801 /// getNumExplicitOperands - Returns the number of non-implicit operands. 802 /// 803 unsigned MachineInstr::getNumExplicitOperands() const { 804 unsigned NumOperands = TID->getNumOperands(); 805 if (!TID->isVariadic()) 806 return NumOperands; 807 808 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 809 const MachineOperand &MO = getOperand(i); 810 if (!MO.isReg() || !MO.isImplicit()) 811 NumOperands++; 812 } 813 return NumOperands; 814 } 815 816 bool MachineInstr::isStackAligningInlineAsm() const { 817 if (isInlineAsm()) { 818 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 819 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 820 return true; 821 } 822 return false; 823 } 824 825 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 826 /// the specific register or -1 if it is not found. It further tightens 827 /// the search criteria to a use that kills the register if isKill is true. 828 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 829 const TargetRegisterInfo *TRI) const { 830 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 831 const MachineOperand &MO = getOperand(i); 832 if (!MO.isReg() || !MO.isUse()) 833 continue; 834 unsigned MOReg = MO.getReg(); 835 if (!MOReg) 836 continue; 837 if (MOReg == Reg || 838 (TRI && 839 TargetRegisterInfo::isPhysicalRegister(MOReg) && 840 TargetRegisterInfo::isPhysicalRegister(Reg) && 841 TRI->isSubRegister(MOReg, Reg))) 842 if (!isKill || MO.isKill()) 843 return i; 844 } 845 return -1; 846 } 847 848 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 849 /// indicating if this instruction reads or writes Reg. This also considers 850 /// partial defines. 851 std::pair<bool,bool> 852 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 853 SmallVectorImpl<unsigned> *Ops) const { 854 bool PartDef = false; // Partial redefine. 855 bool FullDef = false; // Full define. 856 bool Use = false; 857 858 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 859 const MachineOperand &MO = getOperand(i); 860 if (!MO.isReg() || MO.getReg() != Reg) 861 continue; 862 if (Ops) 863 Ops->push_back(i); 864 if (MO.isUse()) 865 Use |= !MO.isUndef(); 866 else if (MO.getSubReg()) 867 PartDef = true; 868 else 869 FullDef = true; 870 } 871 // A partial redefine uses Reg unless there is also a full define. 872 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 873 } 874 875 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 876 /// the specified register or -1 if it is not found. If isDead is true, defs 877 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 878 /// also checks if there is a def of a super-register. 879 int 880 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 881 const TargetRegisterInfo *TRI) const { 882 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 883 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 884 const MachineOperand &MO = getOperand(i); 885 if (!MO.isReg() || !MO.isDef()) 886 continue; 887 unsigned MOReg = MO.getReg(); 888 bool Found = (MOReg == Reg); 889 if (!Found && TRI && isPhys && 890 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 891 if (Overlap) 892 Found = TRI->regsOverlap(MOReg, Reg); 893 else 894 Found = TRI->isSubRegister(MOReg, Reg); 895 } 896 if (Found && (!isDead || MO.isDead())) 897 return i; 898 } 899 return -1; 900 } 901 902 /// findFirstPredOperandIdx() - Find the index of the first operand in the 903 /// operand list that is used to represent the predicate. It returns -1 if 904 /// none is found. 905 int MachineInstr::findFirstPredOperandIdx() const { 906 const TargetInstrDesc &TID = getDesc(); 907 if (TID.isPredicable()) { 908 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 909 if (TID.OpInfo[i].isPredicate()) 910 return i; 911 } 912 913 return -1; 914 } 915 916 /// isRegTiedToUseOperand - Given the index of a register def operand, 917 /// check if the register def is tied to a source operand, due to either 918 /// two-address elimination or inline assembly constraints. Returns the 919 /// first tied use operand index by reference is UseOpIdx is not null. 920 bool MachineInstr:: 921 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 922 if (isInlineAsm()) { 923 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand); 924 const MachineOperand &MO = getOperand(DefOpIdx); 925 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 926 return false; 927 // Determine the actual operand index that corresponds to this index. 928 unsigned DefNo = 0; 929 unsigned DefPart = 0; 930 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); 931 i < e; ) { 932 const MachineOperand &FMO = getOperand(i); 933 // After the normal asm operands there may be additional imp-def regs. 934 if (!FMO.isImm()) 935 return false; 936 // Skip over this def. 937 unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm()); 938 unsigned PrevDef = i + 1; 939 i = PrevDef + NumOps; 940 if (i > DefOpIdx) { 941 DefPart = DefOpIdx - PrevDef; 942 break; 943 } 944 ++DefNo; 945 } 946 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); 947 i != e; ++i) { 948 const MachineOperand &FMO = getOperand(i); 949 if (!FMO.isImm()) 950 continue; 951 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 952 continue; 953 unsigned Idx; 954 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 955 Idx == DefNo) { 956 if (UseOpIdx) 957 *UseOpIdx = (unsigned)i + 1 + DefPart; 958 return true; 959 } 960 } 961 return false; 962 } 963 964 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 965 const TargetInstrDesc &TID = getDesc(); 966 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) { 967 const MachineOperand &MO = getOperand(i); 968 if (MO.isReg() && MO.isUse() && 969 TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) { 970 if (UseOpIdx) 971 *UseOpIdx = (unsigned)i; 972 return true; 973 } 974 } 975 return false; 976 } 977 978 /// isRegTiedToDefOperand - Return true if the operand of the specified index 979 /// is a register use and it is tied to an def operand. It also returns the def 980 /// operand index by reference. 981 bool MachineInstr:: 982 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 983 if (isInlineAsm()) { 984 const MachineOperand &MO = getOperand(UseOpIdx); 985 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 986 return false; 987 988 // Find the flag operand corresponding to UseOpIdx 989 unsigned FlagIdx, NumOps=0; 990 for (FlagIdx = InlineAsm::MIOp_FirstOperand; 991 FlagIdx < UseOpIdx; FlagIdx += NumOps+1) { 992 const MachineOperand &UFMO = getOperand(FlagIdx); 993 // After the normal asm operands there may be additional imp-def regs. 994 if (!UFMO.isImm()) 995 return false; 996 NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm()); 997 assert(NumOps < getNumOperands() && "Invalid inline asm flag"); 998 if (UseOpIdx < FlagIdx+NumOps+1) 999 break; 1000 } 1001 if (FlagIdx >= UseOpIdx) 1002 return false; 1003 const MachineOperand &UFMO = getOperand(FlagIdx); 1004 unsigned DefNo; 1005 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 1006 if (!DefOpIdx) 1007 return true; 1008 1009 unsigned DefIdx = InlineAsm::MIOp_FirstOperand; 1010 // Remember to adjust the index. First operand is asm string, second is 1011 // the HasSideEffects and AlignStack bits, then there is a flag for each. 1012 while (DefNo) { 1013 const MachineOperand &FMO = getOperand(DefIdx); 1014 assert(FMO.isImm()); 1015 // Skip over this def. 1016 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 1017 --DefNo; 1018 } 1019 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 1020 return true; 1021 } 1022 return false; 1023 } 1024 1025 const TargetInstrDesc &TID = getDesc(); 1026 if (UseOpIdx >= TID.getNumOperands()) 1027 return false; 1028 const MachineOperand &MO = getOperand(UseOpIdx); 1029 if (!MO.isReg() || !MO.isUse()) 1030 return false; 1031 int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO); 1032 if (DefIdx == -1) 1033 return false; 1034 if (DefOpIdx) 1035 *DefOpIdx = (unsigned)DefIdx; 1036 return true; 1037 } 1038 1039 /// clearKillInfo - Clears kill flags on all operands. 1040 /// 1041 void MachineInstr::clearKillInfo() { 1042 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1043 MachineOperand &MO = getOperand(i); 1044 if (MO.isReg() && MO.isUse()) 1045 MO.setIsKill(false); 1046 } 1047 } 1048 1049 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1050 /// 1051 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1052 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1053 const MachineOperand &MO = MI->getOperand(i); 1054 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1055 continue; 1056 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1057 MachineOperand &MOp = getOperand(j); 1058 if (!MOp.isIdenticalTo(MO)) 1059 continue; 1060 if (MO.isKill()) 1061 MOp.setIsKill(); 1062 else 1063 MOp.setIsDead(); 1064 break; 1065 } 1066 } 1067 } 1068 1069 /// copyPredicates - Copies predicate operand(s) from MI. 1070 void MachineInstr::copyPredicates(const MachineInstr *MI) { 1071 const TargetInstrDesc &TID = MI->getDesc(); 1072 if (!TID.isPredicable()) 1073 return; 1074 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1075 if (TID.OpInfo[i].isPredicate()) { 1076 // Predicated operands must be last operands. 1077 addOperand(MI->getOperand(i)); 1078 } 1079 } 1080 } 1081 1082 void MachineInstr::substituteRegister(unsigned FromReg, 1083 unsigned ToReg, 1084 unsigned SubIdx, 1085 const TargetRegisterInfo &RegInfo) { 1086 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1087 if (SubIdx) 1088 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1089 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1090 MachineOperand &MO = getOperand(i); 1091 if (!MO.isReg() || MO.getReg() != FromReg) 1092 continue; 1093 MO.substPhysReg(ToReg, RegInfo); 1094 } 1095 } else { 1096 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1097 MachineOperand &MO = getOperand(i); 1098 if (!MO.isReg() || MO.getReg() != FromReg) 1099 continue; 1100 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1101 } 1102 } 1103 } 1104 1105 /// isSafeToMove - Return true if it is safe to move this instruction. If 1106 /// SawStore is set to true, it means that there is a store (or call) between 1107 /// the instruction's location and its intended destination. 1108 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1109 AliasAnalysis *AA, 1110 bool &SawStore) const { 1111 // Ignore stuff that we obviously can't move. 1112 if (TID->mayStore() || TID->isCall()) { 1113 SawStore = true; 1114 return false; 1115 } 1116 1117 if (isLabel() || isDebugValue() || 1118 TID->isTerminator() || hasUnmodeledSideEffects()) 1119 return false; 1120 1121 // See if this instruction does a load. If so, we have to guarantee that the 1122 // loaded value doesn't change between the load and the its intended 1123 // destination. The check for isInvariantLoad gives the targe the chance to 1124 // classify the load as always returning a constant, e.g. a constant pool 1125 // load. 1126 if (TID->mayLoad() && !isInvariantLoad(AA)) 1127 // Otherwise, this is a real load. If there is a store between the load and 1128 // end of block, or if the load is volatile, we can't move it. 1129 return !SawStore && !hasVolatileMemoryRef(); 1130 1131 return true; 1132 } 1133 1134 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1135 /// instruction which defined the specified register instead of copying it. 1136 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1137 AliasAnalysis *AA, 1138 unsigned DstReg) const { 1139 bool SawStore = false; 1140 if (!TII->isTriviallyReMaterializable(this, AA) || 1141 !isSafeToMove(TII, AA, SawStore)) 1142 return false; 1143 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1144 const MachineOperand &MO = getOperand(i); 1145 if (!MO.isReg()) 1146 continue; 1147 // FIXME: For now, do not remat any instruction with register operands. 1148 // Later on, we can loosen the restriction is the register operands have 1149 // not been modified between the def and use. Note, this is different from 1150 // MachineSink because the code is no longer in two-address form (at least 1151 // partially). 1152 if (MO.isUse()) 1153 return false; 1154 else if (!MO.isDead() && MO.getReg() != DstReg) 1155 return false; 1156 } 1157 return true; 1158 } 1159 1160 /// hasVolatileMemoryRef - Return true if this instruction may have a 1161 /// volatile memory reference, or if the information describing the 1162 /// memory reference is not available. Return false if it is known to 1163 /// have no volatile memory references. 1164 bool MachineInstr::hasVolatileMemoryRef() const { 1165 // An instruction known never to access memory won't have a volatile access. 1166 if (!TID->mayStore() && 1167 !TID->mayLoad() && 1168 !TID->isCall() && 1169 !hasUnmodeledSideEffects()) 1170 return false; 1171 1172 // Otherwise, if the instruction has no memory reference information, 1173 // conservatively assume it wasn't preserved. 1174 if (memoperands_empty()) 1175 return true; 1176 1177 // Check the memory reference information for volatile references. 1178 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1179 if ((*I)->isVolatile()) 1180 return true; 1181 1182 return false; 1183 } 1184 1185 /// isInvariantLoad - Return true if this instruction is loading from a 1186 /// location whose value is invariant across the function. For example, 1187 /// loading a value from the constant pool or from the argument area 1188 /// of a function if it does not change. This should only return true of 1189 /// *all* loads the instruction does are invariant (if it does multiple loads). 1190 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1191 // If the instruction doesn't load at all, it isn't an invariant load. 1192 if (!TID->mayLoad()) 1193 return false; 1194 1195 // If the instruction has lost its memoperands, conservatively assume that 1196 // it may not be an invariant load. 1197 if (memoperands_empty()) 1198 return false; 1199 1200 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1201 1202 for (mmo_iterator I = memoperands_begin(), 1203 E = memoperands_end(); I != E; ++I) { 1204 if ((*I)->isVolatile()) return false; 1205 if ((*I)->isStore()) return false; 1206 1207 if (const Value *V = (*I)->getValue()) { 1208 // A load from a constant PseudoSourceValue is invariant. 1209 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1210 if (PSV->isConstant(MFI)) 1211 continue; 1212 // If we have an AliasAnalysis, ask it whether the memory is constant. 1213 if (AA && AA->pointsToConstantMemory( 1214 AliasAnalysis::Location(V, (*I)->getSize(), 1215 (*I)->getTBAAInfo()))) 1216 continue; 1217 } 1218 1219 // Otherwise assume conservatively. 1220 return false; 1221 } 1222 1223 // Everything checks out. 1224 return true; 1225 } 1226 1227 /// isConstantValuePHI - If the specified instruction is a PHI that always 1228 /// merges together the same virtual register, return the register, otherwise 1229 /// return 0. 1230 unsigned MachineInstr::isConstantValuePHI() const { 1231 if (!isPHI()) 1232 return 0; 1233 assert(getNumOperands() >= 3 && 1234 "It's illegal to have a PHI without source operands"); 1235 1236 unsigned Reg = getOperand(1).getReg(); 1237 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1238 if (getOperand(i).getReg() != Reg) 1239 return 0; 1240 return Reg; 1241 } 1242 1243 bool MachineInstr::hasUnmodeledSideEffects() const { 1244 if (getDesc().hasUnmodeledSideEffects()) 1245 return true; 1246 if (isInlineAsm()) { 1247 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1248 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1249 return true; 1250 } 1251 1252 return false; 1253 } 1254 1255 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1256 /// 1257 bool MachineInstr::allDefsAreDead() const { 1258 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1259 const MachineOperand &MO = getOperand(i); 1260 if (!MO.isReg() || MO.isUse()) 1261 continue; 1262 if (!MO.isDead()) 1263 return false; 1264 } 1265 return true; 1266 } 1267 1268 /// copyImplicitOps - Copy implicit register operands from specified 1269 /// instruction to this instruction. 1270 void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1271 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1272 i != e; ++i) { 1273 const MachineOperand &MO = MI->getOperand(i); 1274 if (MO.isReg() && MO.isImplicit()) 1275 addOperand(MO); 1276 } 1277 } 1278 1279 void MachineInstr::dump() const { 1280 dbgs() << " " << *this; 1281 } 1282 1283 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1284 raw_ostream &CommentOS) { 1285 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1286 if (!DL.isUnknown()) { // Print source line info. 1287 DIScope Scope(DL.getScope(Ctx)); 1288 // Omit the directory, because it's likely to be long and uninteresting. 1289 if (Scope.Verify()) 1290 CommentOS << Scope.getFilename(); 1291 else 1292 CommentOS << "<unknown>"; 1293 CommentOS << ':' << DL.getLine(); 1294 if (DL.getCol() != 0) 1295 CommentOS << ':' << DL.getCol(); 1296 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1297 if (!InlinedAtDL.isUnknown()) { 1298 CommentOS << " @[ "; 1299 printDebugLoc(InlinedAtDL, MF, CommentOS); 1300 CommentOS << " ]"; 1301 } 1302 } 1303 } 1304 1305 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1306 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1307 const MachineFunction *MF = 0; 1308 const MachineRegisterInfo *MRI = 0; 1309 if (const MachineBasicBlock *MBB = getParent()) { 1310 MF = MBB->getParent(); 1311 if (!TM && MF) 1312 TM = &MF->getTarget(); 1313 if (MF) 1314 MRI = &MF->getRegInfo(); 1315 } 1316 1317 // Save a list of virtual registers. 1318 SmallVector<unsigned, 8> VirtRegs; 1319 1320 // Print explicitly defined operands on the left of an assignment syntax. 1321 unsigned StartOp = 0, e = getNumOperands(); 1322 for (; StartOp < e && getOperand(StartOp).isReg() && 1323 getOperand(StartOp).isDef() && 1324 !getOperand(StartOp).isImplicit(); 1325 ++StartOp) { 1326 if (StartOp != 0) OS << ", "; 1327 getOperand(StartOp).print(OS, TM); 1328 unsigned Reg = getOperand(StartOp).getReg(); 1329 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1330 VirtRegs.push_back(Reg); 1331 } 1332 1333 if (StartOp != 0) 1334 OS << " = "; 1335 1336 // Print the opcode name. 1337 OS << getDesc().getName(); 1338 1339 // Print the rest of the operands. 1340 bool OmittedAnyCallClobbers = false; 1341 bool FirstOp = true; 1342 1343 if (isInlineAsm()) { 1344 // Print asm string. 1345 OS << " "; 1346 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1347 1348 // Print HasSideEffects, IsAlignStack 1349 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1350 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1351 OS << " [sideeffect]"; 1352 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1353 OS << " [alignstack]"; 1354 1355 StartOp = InlineAsm::MIOp_FirstOperand; 1356 FirstOp = false; 1357 } 1358 1359 1360 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1361 const MachineOperand &MO = getOperand(i); 1362 1363 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1364 VirtRegs.push_back(MO.getReg()); 1365 1366 // Omit call-clobbered registers which aren't used anywhere. This makes 1367 // call instructions much less noisy on targets where calls clobber lots 1368 // of registers. Don't rely on MO.isDead() because we may be called before 1369 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1370 if (MF && getDesc().isCall() && 1371 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1372 unsigned Reg = MO.getReg(); 1373 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1374 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1375 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1376 bool HasAliasLive = false; 1377 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg); 1378 unsigned AliasReg = *Alias; ++Alias) 1379 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1380 HasAliasLive = true; 1381 break; 1382 } 1383 if (!HasAliasLive) { 1384 OmittedAnyCallClobbers = true; 1385 continue; 1386 } 1387 } 1388 } 1389 } 1390 1391 if (FirstOp) FirstOp = false; else OS << ","; 1392 OS << " "; 1393 if (i < getDesc().NumOperands) { 1394 const TargetOperandInfo &TOI = getDesc().OpInfo[i]; 1395 if (TOI.isPredicate()) 1396 OS << "pred:"; 1397 if (TOI.isOptionalDef()) 1398 OS << "opt:"; 1399 } 1400 if (isDebugValue() && MO.isMetadata()) { 1401 // Pretty print DBG_VALUE instructions. 1402 const MDNode *MD = MO.getMetadata(); 1403 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1404 OS << "!\"" << MDS->getString() << '\"'; 1405 else 1406 MO.print(OS, TM); 1407 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1408 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1409 } else 1410 MO.print(OS, TM); 1411 } 1412 1413 // Briefly indicate whether any call clobbers were omitted. 1414 if (OmittedAnyCallClobbers) { 1415 if (!FirstOp) OS << ","; 1416 OS << " ..."; 1417 } 1418 1419 bool HaveSemi = false; 1420 if (!memoperands_empty()) { 1421 if (!HaveSemi) OS << ";"; HaveSemi = true; 1422 1423 OS << " mem:"; 1424 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1425 i != e; ++i) { 1426 OS << **i; 1427 if (llvm::next(i) != e) 1428 OS << " "; 1429 } 1430 } 1431 1432 // Print the regclass of any virtual registers encountered. 1433 if (MRI && !VirtRegs.empty()) { 1434 if (!HaveSemi) OS << ";"; HaveSemi = true; 1435 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1436 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1437 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1438 for (unsigned j = i+1; j != VirtRegs.size();) { 1439 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1440 ++j; 1441 continue; 1442 } 1443 if (VirtRegs[i] != VirtRegs[j]) 1444 OS << "," << PrintReg(VirtRegs[j]); 1445 VirtRegs.erase(VirtRegs.begin()+j); 1446 } 1447 } 1448 } 1449 1450 if (!debugLoc.isUnknown() && MF) { 1451 if (!HaveSemi) OS << ";"; 1452 OS << " dbg:"; 1453 printDebugLoc(debugLoc, MF, OS); 1454 } 1455 1456 OS << "\n"; 1457 } 1458 1459 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1460 const TargetRegisterInfo *RegInfo, 1461 bool AddIfNotFound) { 1462 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1463 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1464 bool Found = false; 1465 SmallVector<unsigned,4> DeadOps; 1466 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1467 MachineOperand &MO = getOperand(i); 1468 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1469 continue; 1470 unsigned Reg = MO.getReg(); 1471 if (!Reg) 1472 continue; 1473 1474 if (Reg == IncomingReg) { 1475 if (!Found) { 1476 if (MO.isKill()) 1477 // The register is already marked kill. 1478 return true; 1479 if (isPhysReg && isRegTiedToDefOperand(i)) 1480 // Two-address uses of physregs must not be marked kill. 1481 return true; 1482 MO.setIsKill(); 1483 Found = true; 1484 } 1485 } else if (hasAliases && MO.isKill() && 1486 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1487 // A super-register kill already exists. 1488 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1489 return true; 1490 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1491 DeadOps.push_back(i); 1492 } 1493 } 1494 1495 // Trim unneeded kill operands. 1496 while (!DeadOps.empty()) { 1497 unsigned OpIdx = DeadOps.back(); 1498 if (getOperand(OpIdx).isImplicit()) 1499 RemoveOperand(OpIdx); 1500 else 1501 getOperand(OpIdx).setIsKill(false); 1502 DeadOps.pop_back(); 1503 } 1504 1505 // If not found, this means an alias of one of the operands is killed. Add a 1506 // new implicit operand if required. 1507 if (!Found && AddIfNotFound) { 1508 addOperand(MachineOperand::CreateReg(IncomingReg, 1509 false /*IsDef*/, 1510 true /*IsImp*/, 1511 true /*IsKill*/)); 1512 return true; 1513 } 1514 return Found; 1515 } 1516 1517 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1518 const TargetRegisterInfo *RegInfo, 1519 bool AddIfNotFound) { 1520 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1521 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1522 bool Found = false; 1523 SmallVector<unsigned,4> DeadOps; 1524 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1525 MachineOperand &MO = getOperand(i); 1526 if (!MO.isReg() || !MO.isDef()) 1527 continue; 1528 unsigned Reg = MO.getReg(); 1529 if (!Reg) 1530 continue; 1531 1532 if (Reg == IncomingReg) { 1533 if (!Found) { 1534 if (MO.isDead()) 1535 // The register is already marked dead. 1536 return true; 1537 MO.setIsDead(); 1538 Found = true; 1539 } 1540 } else if (hasAliases && MO.isDead() && 1541 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1542 // There exists a super-register that's marked dead. 1543 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1544 return true; 1545 if (RegInfo->getSubRegisters(IncomingReg) && 1546 RegInfo->getSuperRegisters(Reg) && 1547 RegInfo->isSubRegister(IncomingReg, Reg)) 1548 DeadOps.push_back(i); 1549 } 1550 } 1551 1552 // Trim unneeded dead operands. 1553 while (!DeadOps.empty()) { 1554 unsigned OpIdx = DeadOps.back(); 1555 if (getOperand(OpIdx).isImplicit()) 1556 RemoveOperand(OpIdx); 1557 else 1558 getOperand(OpIdx).setIsDead(false); 1559 DeadOps.pop_back(); 1560 } 1561 1562 // If not found, this means an alias of one of the operands is dead. Add a 1563 // new implicit operand if required. 1564 if (Found || !AddIfNotFound) 1565 return Found; 1566 1567 addOperand(MachineOperand::CreateReg(IncomingReg, 1568 true /*IsDef*/, 1569 true /*IsImp*/, 1570 false /*IsKill*/, 1571 true /*IsDead*/)); 1572 return true; 1573 } 1574 1575 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1576 const TargetRegisterInfo *RegInfo) { 1577 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1578 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1579 if (MO) 1580 return; 1581 } else { 1582 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1583 const MachineOperand &MO = getOperand(i); 1584 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1585 MO.getSubReg() == 0) 1586 return; 1587 } 1588 } 1589 addOperand(MachineOperand::CreateReg(IncomingReg, 1590 true /*IsDef*/, 1591 true /*IsImp*/)); 1592 } 1593 1594 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs, 1595 const TargetRegisterInfo &TRI) { 1596 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1597 MachineOperand &MO = getOperand(i); 1598 if (!MO.isReg() || !MO.isDef()) continue; 1599 unsigned Reg = MO.getReg(); 1600 if (Reg == 0) continue; 1601 bool Dead = true; 1602 for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(), 1603 E = UsedRegs.end(); I != E; ++I) 1604 if (TRI.regsOverlap(*I, Reg)) { 1605 Dead = false; 1606 break; 1607 } 1608 // If there are no uses, including partial uses, the def is dead. 1609 if (Dead) MO.setIsDead(); 1610 } 1611 } 1612 1613 unsigned 1614 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1615 unsigned Hash = MI->getOpcode() * 37; 1616 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1617 const MachineOperand &MO = MI->getOperand(i); 1618 uint64_t Key = (uint64_t)MO.getType() << 32; 1619 switch (MO.getType()) { 1620 default: break; 1621 case MachineOperand::MO_Register: 1622 if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1623 continue; // Skip virtual register defs. 1624 Key |= MO.getReg(); 1625 break; 1626 case MachineOperand::MO_Immediate: 1627 Key |= MO.getImm(); 1628 break; 1629 case MachineOperand::MO_FrameIndex: 1630 case MachineOperand::MO_ConstantPoolIndex: 1631 case MachineOperand::MO_JumpTableIndex: 1632 Key |= MO.getIndex(); 1633 break; 1634 case MachineOperand::MO_MachineBasicBlock: 1635 Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB()); 1636 break; 1637 case MachineOperand::MO_GlobalAddress: 1638 Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal()); 1639 break; 1640 case MachineOperand::MO_BlockAddress: 1641 Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress()); 1642 break; 1643 case MachineOperand::MO_MCSymbol: 1644 Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol()); 1645 break; 1646 } 1647 Key += ~(Key << 32); 1648 Key ^= (Key >> 22); 1649 Key += ~(Key << 13); 1650 Key ^= (Key >> 8); 1651 Key += (Key << 3); 1652 Key ^= (Key >> 15); 1653 Key += ~(Key << 27); 1654 Key ^= (Key >> 31); 1655 Hash = (unsigned)Key + Hash * 37; 1656 } 1657 return Hash; 1658 } 1659