1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/Hashing.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/MemoryLocation.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineInstrBundle.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/Register.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/CodeGenTypes/LowLevelType.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/ModuleSlotTracker.h" 47 #include "llvm/IR/Operator.h" 48 #include "llvm/MC/MCInstrDesc.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/FormattedStream.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Target/TargetMachine.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <cstring> 61 #include <utility> 62 63 using namespace llvm; 64 65 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 66 if (const MachineBasicBlock *MBB = MI.getParent()) 67 if (const MachineFunction *MF = MBB->getParent()) 68 return MF; 69 return nullptr; 70 } 71 72 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 73 // it. 74 static void tryToGetTargetInfo(const MachineInstr &MI, 75 const TargetRegisterInfo *&TRI, 76 const MachineRegisterInfo *&MRI, 77 const TargetIntrinsicInfo *&IntrinsicInfo, 78 const TargetInstrInfo *&TII) { 79 80 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 81 TRI = MF->getSubtarget().getRegisterInfo(); 82 MRI = &MF->getRegInfo(); 83 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 84 TII = MF->getSubtarget().getInstrInfo(); 85 } 86 } 87 88 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 89 for (MCPhysReg ImpDef : MCID->implicit_defs()) 90 addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true)); 91 for (MCPhysReg ImpUse : MCID->implicit_uses()) 92 addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true)); 93 } 94 95 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 96 /// implicit operands. It reserves space for the number of operands specified by 97 /// the MCInstrDesc. 98 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, 99 DebugLoc DL, bool NoImp) 100 : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0), 101 DbgLoc(std::move(DL)), DebugInstrNum(0), Opcode(TID.Opcode) { 102 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 103 104 // Reserve space for the expected number of operands. 105 if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() + 106 MCID->implicit_uses().size()) { 107 CapOperands = OperandCapacity::get(NumOps); 108 Operands = MF.allocateOperandArray(CapOperands); 109 } 110 111 if (!NoImp) 112 addImplicitDefUseOperands(MF); 113 } 114 115 /// MachineInstr ctor - Copies MachineInstr arg exactly. 116 /// Does not copy the number from debug instruction numbering, to preserve 117 /// uniqueness. 118 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 119 : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0), 120 Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0), 121 Opcode(MI.getOpcode()) { 122 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 123 124 CapOperands = OperandCapacity::get(MI.getNumOperands()); 125 Operands = MF.allocateOperandArray(CapOperands); 126 127 // Copy operands. 128 for (const MachineOperand &MO : MI.operands()) 129 addOperand(MF, MO); 130 131 // Replicate ties between the operands, which addOperand was not 132 // able to do reliably. 133 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 134 MachineOperand &NewMO = getOperand(i); 135 const MachineOperand &OrigMO = MI.getOperand(i); 136 NewMO.TiedTo = OrigMO.TiedTo; 137 } 138 139 // Copy all the sensible flags. 140 setFlags(MI.Flags); 141 } 142 143 void MachineInstr::setDesc(const MCInstrDesc &TID) { 144 if (getParent()) 145 getMF()->handleChangeDesc(*this, TID); 146 MCID = &TID; 147 Opcode = TID.Opcode; 148 } 149 150 void MachineInstr::moveBefore(MachineInstr *MovePos) { 151 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 152 } 153 154 /// getRegInfo - If this instruction is embedded into a MachineFunction, 155 /// return the MachineRegisterInfo object for the current function, otherwise 156 /// return null. 157 MachineRegisterInfo *MachineInstr::getRegInfo() { 158 if (MachineBasicBlock *MBB = getParent()) 159 return &MBB->getParent()->getRegInfo(); 160 return nullptr; 161 } 162 163 const MachineRegisterInfo *MachineInstr::getRegInfo() const { 164 if (const MachineBasicBlock *MBB = getParent()) 165 return &MBB->getParent()->getRegInfo(); 166 return nullptr; 167 } 168 169 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 170 for (MachineOperand &MO : operands()) 171 if (MO.isReg()) 172 MRI.removeRegOperandFromUseList(&MO); 173 } 174 175 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) { 176 for (MachineOperand &MO : operands()) 177 if (MO.isReg()) 178 MRI.addRegOperandToUseList(&MO); 179 } 180 181 void MachineInstr::addOperand(const MachineOperand &Op) { 182 MachineBasicBlock *MBB = getParent(); 183 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 184 MachineFunction *MF = MBB->getParent(); 185 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 186 addOperand(*MF, Op); 187 } 188 189 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 190 /// ranges. If MRI is non-null also update use-def chains. 191 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 192 unsigned NumOps, MachineRegisterInfo *MRI) { 193 if (MRI) 194 return MRI->moveOperands(Dst, Src, NumOps); 195 // MachineOperand is a trivially copyable type so we can just use memmove. 196 assert(Dst && Src && "Unknown operands"); 197 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 198 } 199 200 /// addOperand - Add the specified operand to the instruction. If it is an 201 /// implicit operand, it is added to the end of the operand list. If it is 202 /// an explicit operand it is added at the end of the explicit operand list 203 /// (before the first implicit operand). 204 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 205 assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) && 206 "Cannot add more operands."); 207 assert(MCID && "Cannot add operands before providing an instr descriptor"); 208 209 // Check if we're adding one of our existing operands. 210 if (&Op >= Operands && &Op < Operands + NumOperands) { 211 // This is unusual: MI->addOperand(MI->getOperand(i)). 212 // If adding Op requires reallocating or moving existing operands around, 213 // the Op reference could go stale. Support it by copying Op. 214 MachineOperand CopyOp(Op); 215 return addOperand(MF, CopyOp); 216 } 217 218 // Find the insert location for the new operand. Implicit registers go at 219 // the end, everything else goes before the implicit regs. 220 // 221 // FIXME: Allow mixed explicit and implicit operands on inline asm. 222 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 223 // implicit-defs, but they must not be moved around. See the FIXME in 224 // InstrEmitter.cpp. 225 unsigned OpNo = getNumOperands(); 226 bool isImpReg = Op.isReg() && Op.isImplicit(); 227 if (!isImpReg && !isInlineAsm()) { 228 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 229 --OpNo; 230 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 231 } 232 } 233 234 // OpNo now points as the desired insertion point. Unless this is a variadic 235 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 236 // RegMask operands go between the explicit and implicit operands. 237 MachineRegisterInfo *MRI = getRegInfo(); 238 239 // Determine if the Operands array needs to be reallocated. 240 // Save the old capacity and operand array. 241 OperandCapacity OldCap = CapOperands; 242 MachineOperand *OldOperands = Operands; 243 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 244 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 245 Operands = MF.allocateOperandArray(CapOperands); 246 // Move the operands before the insertion point. 247 if (OpNo) 248 moveOperands(Operands, OldOperands, OpNo, MRI); 249 } 250 251 // Move the operands following the insertion point. 252 if (OpNo != NumOperands) 253 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 254 MRI); 255 ++NumOperands; 256 257 // Deallocate the old operand array. 258 if (OldOperands != Operands && OldOperands) 259 MF.deallocateOperandArray(OldCap, OldOperands); 260 261 // Copy Op into place. It still needs to be inserted into the MRI use lists. 262 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 263 NewMO->ParentMI = this; 264 265 // When adding a register operand, tell MRI about it. 266 if (NewMO->isReg()) { 267 // Ensure isOnRegUseList() returns false, regardless of Op's status. 268 NewMO->Contents.Reg.Prev = nullptr; 269 // Ignore existing ties. This is not a property that can be copied. 270 NewMO->TiedTo = 0; 271 // Add the new operand to MRI, but only for instructions in an MBB. 272 if (MRI) 273 MRI->addRegOperandToUseList(NewMO); 274 // The MCID operand information isn't accurate until we start adding 275 // explicit operands. The implicit operands are added first, then the 276 // explicits are inserted before them. 277 if (!isImpReg) { 278 // Tie uses to defs as indicated in MCInstrDesc. 279 if (NewMO->isUse()) { 280 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 281 if (DefIdx != -1) 282 tieOperands(DefIdx, OpNo); 283 } 284 // If the register operand is flagged as early, mark the operand as such. 285 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 286 NewMO->setIsEarlyClobber(true); 287 } 288 // Ensure debug instructions set debug flag on register uses. 289 if (NewMO->isUse() && isDebugInstr()) 290 NewMO->setIsDebug(); 291 } 292 } 293 294 void MachineInstr::removeOperand(unsigned OpNo) { 295 assert(OpNo < getNumOperands() && "Invalid operand number"); 296 untieRegOperand(OpNo); 297 298 #ifndef NDEBUG 299 // Moving tied operands would break the ties. 300 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 301 if (Operands[i].isReg()) 302 assert(!Operands[i].isTied() && "Cannot move tied operands"); 303 #endif 304 305 MachineRegisterInfo *MRI = getRegInfo(); 306 if (MRI && Operands[OpNo].isReg()) 307 MRI->removeRegOperandFromUseList(Operands + OpNo); 308 309 // Don't call the MachineOperand destructor. A lot of this code depends on 310 // MachineOperand having a trivial destructor anyway, and adding a call here 311 // wouldn't make it 'destructor-correct'. 312 313 if (unsigned N = NumOperands - 1 - OpNo) 314 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 315 --NumOperands; 316 } 317 318 void MachineInstr::setExtraInfo(MachineFunction &MF, 319 ArrayRef<MachineMemOperand *> MMOs, 320 MCSymbol *PreInstrSymbol, 321 MCSymbol *PostInstrSymbol, 322 MDNode *HeapAllocMarker, MDNode *PCSections, 323 uint32_t CFIType, MDNode *MMRAs) { 324 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 325 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 326 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 327 bool HasPCSections = PCSections != nullptr; 328 bool HasCFIType = CFIType != 0; 329 bool HasMMRAs = MMRAs != nullptr; 330 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + 331 HasHeapAllocMarker + HasPCSections + HasCFIType + HasMMRAs; 332 333 // Drop all extra info if there is none. 334 if (NumPointers <= 0) { 335 Info.clear(); 336 return; 337 } 338 339 // If more than one pointer, then store out of line. Store heap alloc markers 340 // out of line because PointerSumType cannot hold more than 4 tag types with 341 // 32-bit pointers. 342 // FIXME: Maybe we should make the symbols in the extra info mutable? 343 else if (NumPointers > 1 || HasMMRAs || HasHeapAllocMarker || HasPCSections || 344 HasCFIType) { 345 Info.set<EIIK_OutOfLine>( 346 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol, 347 HeapAllocMarker, PCSections, CFIType, MMRAs)); 348 return; 349 } 350 351 // Otherwise store the single pointer inline. 352 if (HasPreInstrSymbol) 353 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 354 else if (HasPostInstrSymbol) 355 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 356 else 357 Info.set<EIIK_MMO>(MMOs[0]); 358 } 359 360 void MachineInstr::dropMemRefs(MachineFunction &MF) { 361 if (memoperands_empty()) 362 return; 363 364 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 365 getHeapAllocMarker(), getPCSections(), getCFIType(), 366 getMMRAMetadata()); 367 } 368 369 void MachineInstr::setMemRefs(MachineFunction &MF, 370 ArrayRef<MachineMemOperand *> MMOs) { 371 if (MMOs.empty()) { 372 dropMemRefs(MF); 373 return; 374 } 375 376 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 377 getHeapAllocMarker(), getPCSections(), getCFIType(), 378 getMMRAMetadata()); 379 } 380 381 void MachineInstr::addMemOperand(MachineFunction &MF, 382 MachineMemOperand *MO) { 383 SmallVector<MachineMemOperand *, 2> MMOs; 384 MMOs.append(memoperands_begin(), memoperands_end()); 385 MMOs.push_back(MO); 386 setMemRefs(MF, MMOs); 387 } 388 389 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 390 if (this == &MI) 391 // Nothing to do for a self-clone! 392 return; 393 394 assert(&MF == MI.getMF() && 395 "Invalid machine functions when cloning memory refrences!"); 396 // See if we can just steal the extra info already allocated for the 397 // instruction. We can do this whenever the pre- and post-instruction symbols 398 // are the same (including null). 399 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 400 getPostInstrSymbol() == MI.getPostInstrSymbol() && 401 getHeapAllocMarker() == MI.getHeapAllocMarker() && 402 getPCSections() == MI.getPCSections() && getMMRAMetadata() && 403 MI.getMMRAMetadata()) { 404 Info = MI.Info; 405 return; 406 } 407 408 // Otherwise, fall back on a copy-based clone. 409 setMemRefs(MF, MI.memoperands()); 410 } 411 412 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 413 /// identical. 414 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 415 ArrayRef<MachineMemOperand *> RHS) { 416 if (LHS.size() != RHS.size()) 417 return false; 418 419 auto LHSPointees = make_pointee_range(LHS); 420 auto RHSPointees = make_pointee_range(RHS); 421 return std::equal(LHSPointees.begin(), LHSPointees.end(), 422 RHSPointees.begin()); 423 } 424 425 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 426 ArrayRef<const MachineInstr *> MIs) { 427 // Try handling easy numbers of MIs with simpler mechanisms. 428 if (MIs.empty()) { 429 dropMemRefs(MF); 430 return; 431 } 432 if (MIs.size() == 1) { 433 cloneMemRefs(MF, *MIs[0]); 434 return; 435 } 436 // Because an empty memoperands list provides *no* information and must be 437 // handled conservatively (assuming the instruction can do anything), the only 438 // way to merge with it is to drop all other memoperands. 439 if (MIs[0]->memoperands_empty()) { 440 dropMemRefs(MF); 441 return; 442 } 443 444 // Handle the general case. 445 SmallVector<MachineMemOperand *, 2> MergedMMOs; 446 // Start with the first instruction. 447 assert(&MF == MIs[0]->getMF() && 448 "Invalid machine functions when cloning memory references!"); 449 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 450 // Now walk all the other instructions and accumulate any different MMOs. 451 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 452 assert(&MF == MI.getMF() && 453 "Invalid machine functions when cloning memory references!"); 454 455 // Skip MIs with identical operands to the first. This is a somewhat 456 // arbitrary hack but will catch common cases without being quadratic. 457 // TODO: We could fully implement merge semantics here if needed. 458 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 459 continue; 460 461 // Because an empty memoperands list provides *no* information and must be 462 // handled conservatively (assuming the instruction can do anything), the 463 // only way to merge with it is to drop all other memoperands. 464 if (MI.memoperands_empty()) { 465 dropMemRefs(MF); 466 return; 467 } 468 469 // Otherwise accumulate these into our temporary buffer of the merged state. 470 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 471 } 472 473 setMemRefs(MF, MergedMMOs); 474 } 475 476 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 477 // Do nothing if old and new symbols are the same. 478 if (Symbol == getPreInstrSymbol()) 479 return; 480 481 // If there was only one symbol and we're removing it, just clear info. 482 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 483 Info.clear(); 484 return; 485 } 486 487 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 488 getHeapAllocMarker(), getPCSections(), getCFIType(), 489 getMMRAMetadata()); 490 } 491 492 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 493 // Do nothing if old and new symbols are the same. 494 if (Symbol == getPostInstrSymbol()) 495 return; 496 497 // If there was only one symbol and we're removing it, just clear info. 498 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 499 Info.clear(); 500 return; 501 } 502 503 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 504 getHeapAllocMarker(), getPCSections(), getCFIType(), 505 getMMRAMetadata()); 506 } 507 508 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 509 // Do nothing if old and new symbols are the same. 510 if (Marker == getHeapAllocMarker()) 511 return; 512 513 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 514 Marker, getPCSections(), getCFIType(), getMMRAMetadata()); 515 } 516 517 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) { 518 // Do nothing if old and new symbols are the same. 519 if (PCSections == getPCSections()) 520 return; 521 522 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 523 getHeapAllocMarker(), PCSections, getCFIType(), 524 getMMRAMetadata()); 525 } 526 527 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) { 528 // Do nothing if old and new types are the same. 529 if (Type == getCFIType()) 530 return; 531 532 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 533 getHeapAllocMarker(), getPCSections(), Type, getMMRAMetadata()); 534 } 535 536 void MachineInstr::setMMRAMetadata(MachineFunction &MF, MDNode *MMRAs) { 537 // Do nothing if old and new symbols are the same. 538 if (MMRAs == getMMRAMetadata()) 539 return; 540 541 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 542 getHeapAllocMarker(), getPCSections(), getCFIType(), MMRAs); 543 } 544 545 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 546 const MachineInstr &MI) { 547 if (this == &MI) 548 // Nothing to do for a self-clone! 549 return; 550 551 assert(&MF == MI.getMF() && 552 "Invalid machine functions when cloning instruction symbols!"); 553 554 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 555 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 556 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 557 setPCSections(MF, MI.getPCSections()); 558 setMMRAMetadata(MF, MI.getMMRAMetadata()); 559 } 560 561 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 562 // For now, the just return the union of the flags. If the flags get more 563 // complicated over time, we might need more logic here. 564 return getFlags() | Other.getFlags(); 565 } 566 567 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 568 uint32_t MIFlags = 0; 569 // Copy the wrapping flags. 570 if (const OverflowingBinaryOperator *OB = 571 dyn_cast<OverflowingBinaryOperator>(&I)) { 572 if (OB->hasNoSignedWrap()) 573 MIFlags |= MachineInstr::MIFlag::NoSWrap; 574 if (OB->hasNoUnsignedWrap()) 575 MIFlags |= MachineInstr::MIFlag::NoUWrap; 576 } else if (const TruncInst *TI = dyn_cast<TruncInst>(&I)) { 577 if (TI->hasNoSignedWrap()) 578 MIFlags |= MachineInstr::MIFlag::NoSWrap; 579 if (TI->hasNoUnsignedWrap()) 580 MIFlags |= MachineInstr::MIFlag::NoUWrap; 581 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { 582 if (GEP->hasNoUnsignedSignedWrap()) 583 MIFlags |= MachineInstr::MIFlag::NoUSWrap; 584 if (GEP->hasNoUnsignedWrap()) 585 MIFlags |= MachineInstr::MIFlag::NoUWrap; 586 } 587 588 // Copy the nonneg flag. 589 if (const PossiblyNonNegInst *PNI = dyn_cast<PossiblyNonNegInst>(&I)) { 590 if (PNI->hasNonNeg()) 591 MIFlags |= MachineInstr::MIFlag::NonNeg; 592 // Copy the disjoint flag. 593 } else if (const PossiblyDisjointInst *PD = 594 dyn_cast<PossiblyDisjointInst>(&I)) { 595 if (PD->isDisjoint()) 596 MIFlags |= MachineInstr::MIFlag::Disjoint; 597 } 598 599 // Copy the exact flag. 600 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 601 if (PE->isExact()) 602 MIFlags |= MachineInstr::MIFlag::IsExact; 603 604 // Copy the fast-math flags. 605 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 606 const FastMathFlags Flags = FP->getFastMathFlags(); 607 if (Flags.noNaNs()) 608 MIFlags |= MachineInstr::MIFlag::FmNoNans; 609 if (Flags.noInfs()) 610 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 611 if (Flags.noSignedZeros()) 612 MIFlags |= MachineInstr::MIFlag::FmNsz; 613 if (Flags.allowReciprocal()) 614 MIFlags |= MachineInstr::MIFlag::FmArcp; 615 if (Flags.allowContract()) 616 MIFlags |= MachineInstr::MIFlag::FmContract; 617 if (Flags.approxFunc()) 618 MIFlags |= MachineInstr::MIFlag::FmAfn; 619 if (Flags.allowReassoc()) 620 MIFlags |= MachineInstr::MIFlag::FmReassoc; 621 } 622 623 if (I.getMetadata(LLVMContext::MD_unpredictable)) 624 MIFlags |= MachineInstr::MIFlag::Unpredictable; 625 626 return MIFlags; 627 } 628 629 void MachineInstr::copyIRFlags(const Instruction &I) { 630 Flags = copyFlagsFromInstruction(I); 631 } 632 633 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 634 assert(!isBundledWithPred() && "Must be called on bundle header"); 635 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 636 if (MII->getDesc().getFlags() & Mask) { 637 if (Type == AnyInBundle) 638 return true; 639 } else { 640 if (Type == AllInBundle && !MII->isBundle()) 641 return false; 642 } 643 // This was the last instruction in the bundle. 644 if (!MII->isBundledWithSucc()) 645 return Type == AllInBundle; 646 } 647 } 648 649 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 650 MICheckType Check) const { 651 // If opcodes or number of operands are not the same then the two 652 // instructions are obviously not identical. 653 if (Other.getOpcode() != getOpcode() || 654 Other.getNumOperands() != getNumOperands()) 655 return false; 656 657 if (isBundle()) { 658 // We have passed the test above that both instructions have the same 659 // opcode, so we know that both instructions are bundles here. Let's compare 660 // MIs inside the bundle. 661 assert(Other.isBundle() && "Expected that both instructions are bundles."); 662 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 663 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 664 // Loop until we analysed the last intruction inside at least one of the 665 // bundles. 666 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 667 ++I1; 668 ++I2; 669 if (!I1->isIdenticalTo(*I2, Check)) 670 return false; 671 } 672 // If we've reached the end of just one of the two bundles, but not both, 673 // the instructions are not identical. 674 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 675 return false; 676 } 677 678 // Check operands to make sure they match. 679 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 680 const MachineOperand &MO = getOperand(i); 681 const MachineOperand &OMO = Other.getOperand(i); 682 if (!MO.isReg()) { 683 if (!MO.isIdenticalTo(OMO)) 684 return false; 685 continue; 686 } 687 688 // Clients may or may not want to ignore defs when testing for equality. 689 // For example, machine CSE pass only cares about finding common 690 // subexpressions, so it's safe to ignore virtual register defs. 691 if (MO.isDef()) { 692 if (Check == IgnoreDefs) 693 continue; 694 else if (Check == IgnoreVRegDefs) { 695 if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual()) 696 if (!MO.isIdenticalTo(OMO)) 697 return false; 698 } else { 699 if (!MO.isIdenticalTo(OMO)) 700 return false; 701 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 702 return false; 703 } 704 } else { 705 if (!MO.isIdenticalTo(OMO)) 706 return false; 707 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 708 return false; 709 } 710 } 711 // If DebugLoc does not match then two debug instructions are not identical. 712 if (isDebugInstr()) 713 if (getDebugLoc() && Other.getDebugLoc() && 714 getDebugLoc() != Other.getDebugLoc()) 715 return false; 716 // If pre- or post-instruction symbols do not match then the two instructions 717 // are not identical. 718 if (getPreInstrSymbol() != Other.getPreInstrSymbol() || 719 getPostInstrSymbol() != Other.getPostInstrSymbol()) 720 return false; 721 // Call instructions with different CFI types are not identical. 722 if (isCall() && getCFIType() != Other.getCFIType()) 723 return false; 724 725 return true; 726 } 727 728 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const { 729 if (!isDebugValueLike() || !Other.isDebugValueLike()) 730 return false; 731 if (getDebugLoc() != Other.getDebugLoc()) 732 return false; 733 if (getDebugVariable() != Other.getDebugVariable()) 734 return false; 735 if (getNumDebugOperands() != Other.getNumDebugOperands()) 736 return false; 737 for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx) 738 if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx))) 739 return false; 740 if (!DIExpression::isEqualExpression( 741 getDebugExpression(), isIndirectDebugValue(), 742 Other.getDebugExpression(), Other.isIndirectDebugValue())) 743 return false; 744 return true; 745 } 746 747 const MachineFunction *MachineInstr::getMF() const { 748 return getParent()->getParent(); 749 } 750 751 MachineInstr *MachineInstr::removeFromParent() { 752 assert(getParent() && "Not embedded in a basic block!"); 753 return getParent()->remove(this); 754 } 755 756 MachineInstr *MachineInstr::removeFromBundle() { 757 assert(getParent() && "Not embedded in a basic block!"); 758 return getParent()->remove_instr(this); 759 } 760 761 void MachineInstr::eraseFromParent() { 762 assert(getParent() && "Not embedded in a basic block!"); 763 getParent()->erase(this); 764 } 765 766 void MachineInstr::eraseFromBundle() { 767 assert(getParent() && "Not embedded in a basic block!"); 768 getParent()->erase_instr(this); 769 } 770 771 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 772 if (!isCall(Type)) 773 return false; 774 switch (getOpcode()) { 775 case TargetOpcode::PATCHPOINT: 776 case TargetOpcode::STACKMAP: 777 case TargetOpcode::STATEPOINT: 778 case TargetOpcode::FENTRY_CALL: 779 return false; 780 } 781 return true; 782 } 783 784 bool MachineInstr::shouldUpdateCallSiteInfo() const { 785 if (isBundle()) 786 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 787 return isCandidateForCallSiteEntry(); 788 } 789 790 unsigned MachineInstr::getNumExplicitOperands() const { 791 unsigned NumOperands = MCID->getNumOperands(); 792 if (!MCID->isVariadic()) 793 return NumOperands; 794 795 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 796 const MachineOperand &MO = getOperand(I); 797 // The operands must always be in the following order: 798 // - explicit reg defs, 799 // - other explicit operands (reg uses, immediates, etc.), 800 // - implicit reg defs 801 // - implicit reg uses 802 if (MO.isReg() && MO.isImplicit()) 803 break; 804 ++NumOperands; 805 } 806 return NumOperands; 807 } 808 809 unsigned MachineInstr::getNumExplicitDefs() const { 810 unsigned NumDefs = MCID->getNumDefs(); 811 if (!MCID->isVariadic()) 812 return NumDefs; 813 814 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 815 const MachineOperand &MO = getOperand(I); 816 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 817 break; 818 ++NumDefs; 819 } 820 return NumDefs; 821 } 822 823 void MachineInstr::bundleWithPred() { 824 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 825 setFlag(BundledPred); 826 MachineBasicBlock::instr_iterator Pred = getIterator(); 827 --Pred; 828 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 829 Pred->setFlag(BundledSucc); 830 } 831 832 void MachineInstr::bundleWithSucc() { 833 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 834 setFlag(BundledSucc); 835 MachineBasicBlock::instr_iterator Succ = getIterator(); 836 ++Succ; 837 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 838 Succ->setFlag(BundledPred); 839 } 840 841 void MachineInstr::unbundleFromPred() { 842 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 843 clearFlag(BundledPred); 844 MachineBasicBlock::instr_iterator Pred = getIterator(); 845 --Pred; 846 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 847 Pred->clearFlag(BundledSucc); 848 } 849 850 void MachineInstr::unbundleFromSucc() { 851 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 852 clearFlag(BundledSucc); 853 MachineBasicBlock::instr_iterator Succ = getIterator(); 854 ++Succ; 855 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 856 Succ->clearFlag(BundledPred); 857 } 858 859 bool MachineInstr::isStackAligningInlineAsm() const { 860 if (isInlineAsm()) { 861 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 862 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 863 return true; 864 } 865 return false; 866 } 867 868 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 869 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 870 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 871 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 872 } 873 874 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 875 unsigned *GroupNo) const { 876 assert(isInlineAsm() && "Expected an inline asm instruction"); 877 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 878 879 // Ignore queries about the initial operands. 880 if (OpIdx < InlineAsm::MIOp_FirstOperand) 881 return -1; 882 883 unsigned Group = 0; 884 unsigned NumOps; 885 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 886 i += NumOps) { 887 const MachineOperand &FlagMO = getOperand(i); 888 // If we reach the implicit register operands, stop looking. 889 if (!FlagMO.isImm()) 890 return -1; 891 const InlineAsm::Flag F(FlagMO.getImm()); 892 NumOps = 1 + F.getNumOperandRegisters(); 893 if (i + NumOps > OpIdx) { 894 if (GroupNo) 895 *GroupNo = Group; 896 return i; 897 } 898 ++Group; 899 } 900 return -1; 901 } 902 903 const DILabel *MachineInstr::getDebugLabel() const { 904 assert(isDebugLabel() && "not a DBG_LABEL"); 905 return cast<DILabel>(getOperand(0).getMetadata()); 906 } 907 908 const MachineOperand &MachineInstr::getDebugVariableOp() const { 909 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 910 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 911 return getOperand(VariableOp); 912 } 913 914 MachineOperand &MachineInstr::getDebugVariableOp() { 915 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 916 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 917 return getOperand(VariableOp); 918 } 919 920 const DILocalVariable *MachineInstr::getDebugVariable() const { 921 return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); 922 } 923 924 const MachineOperand &MachineInstr::getDebugExpressionOp() const { 925 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 926 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 927 return getOperand(ExpressionOp); 928 } 929 930 MachineOperand &MachineInstr::getDebugExpressionOp() { 931 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 932 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 933 return getOperand(ExpressionOp); 934 } 935 936 const DIExpression *MachineInstr::getDebugExpression() const { 937 return cast<DIExpression>(getDebugExpressionOp().getMetadata()); 938 } 939 940 bool MachineInstr::isDebugEntryValue() const { 941 return isDebugValue() && getDebugExpression()->isEntryValue(); 942 } 943 944 const TargetRegisterClass* 945 MachineInstr::getRegClassConstraint(unsigned OpIdx, 946 const TargetInstrInfo *TII, 947 const TargetRegisterInfo *TRI) const { 948 assert(getParent() && "Can't have an MBB reference here!"); 949 assert(getMF() && "Can't have an MF reference here!"); 950 const MachineFunction &MF = *getMF(); 951 952 // Most opcodes have fixed constraints in their MCInstrDesc. 953 if (!isInlineAsm()) 954 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 955 956 if (!getOperand(OpIdx).isReg()) 957 return nullptr; 958 959 // For tied uses on inline asm, get the constraint from the def. 960 unsigned DefIdx; 961 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 962 OpIdx = DefIdx; 963 964 // Inline asm stores register class constraints in the flag word. 965 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 966 if (FlagIdx < 0) 967 return nullptr; 968 969 const InlineAsm::Flag F(getOperand(FlagIdx).getImm()); 970 unsigned RCID; 971 if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) && 972 F.hasRegClassConstraint(RCID)) 973 return TRI->getRegClass(RCID); 974 975 // Assume that all registers in a memory operand are pointers. 976 if (F.isMemKind()) 977 return TRI->getPointerRegClass(MF); 978 979 return nullptr; 980 } 981 982 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 983 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 984 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 985 // Check every operands inside the bundle if we have 986 // been asked to. 987 if (ExploreBundle) 988 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 989 ++OpndIt) 990 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 991 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 992 else 993 // Otherwise, just check the current operands. 994 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 995 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 996 return CurRC; 997 } 998 999 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1000 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 1001 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1002 assert(CurRC && "Invalid initial register class"); 1003 // Check if Reg is constrained by some of its use/def from MI. 1004 const MachineOperand &MO = getOperand(OpIdx); 1005 if (!MO.isReg() || MO.getReg() != Reg) 1006 return CurRC; 1007 // If yes, accumulate the constraints through the operand. 1008 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1009 } 1010 1011 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1012 unsigned OpIdx, const TargetRegisterClass *CurRC, 1013 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1014 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1015 const MachineOperand &MO = getOperand(OpIdx); 1016 assert(MO.isReg() && 1017 "Cannot get register constraints for non-register operand"); 1018 assert(CurRC && "Invalid initial register class"); 1019 if (unsigned SubIdx = MO.getSubReg()) { 1020 if (OpRC) 1021 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1022 else 1023 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1024 } else if (OpRC) 1025 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1026 return CurRC; 1027 } 1028 1029 /// Return the number of instructions inside the MI bundle, not counting the 1030 /// header instruction. 1031 unsigned MachineInstr::getBundleSize() const { 1032 MachineBasicBlock::const_instr_iterator I = getIterator(); 1033 unsigned Size = 0; 1034 while (I->isBundledWithSucc()) { 1035 ++Size; 1036 ++I; 1037 } 1038 return Size; 1039 } 1040 1041 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1042 /// the given register (not considering sub/super-registers). 1043 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 1044 for (const MachineOperand &MO : implicit_operands()) { 1045 if (MO.isReg() && MO.isUse() && MO.getReg() == Reg) 1046 return true; 1047 } 1048 return false; 1049 } 1050 1051 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1052 /// the specific register or -1 if it is not found. It further tightens 1053 /// the search criteria to a use that kills the register if isKill is true. 1054 int MachineInstr::findRegisterUseOperandIdx(Register Reg, 1055 const TargetRegisterInfo *TRI, 1056 bool isKill) const { 1057 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1058 const MachineOperand &MO = getOperand(i); 1059 if (!MO.isReg() || !MO.isUse()) 1060 continue; 1061 Register MOReg = MO.getReg(); 1062 if (!MOReg) 1063 continue; 1064 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 1065 if (!isKill || MO.isKill()) 1066 return i; 1067 } 1068 return -1; 1069 } 1070 1071 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1072 /// indicating if this instruction reads or writes Reg. This also considers 1073 /// partial defines. 1074 std::pair<bool,bool> 1075 MachineInstr::readsWritesVirtualRegister(Register Reg, 1076 SmallVectorImpl<unsigned> *Ops) const { 1077 bool PartDef = false; // Partial redefine. 1078 bool FullDef = false; // Full define. 1079 bool Use = false; 1080 1081 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1082 const MachineOperand &MO = getOperand(i); 1083 if (!MO.isReg() || MO.getReg() != Reg) 1084 continue; 1085 if (Ops) 1086 Ops->push_back(i); 1087 if (MO.isUse()) 1088 Use |= !MO.isUndef(); 1089 else if (MO.getSubReg() && !MO.isUndef()) 1090 // A partial def undef doesn't count as reading the register. 1091 PartDef = true; 1092 else 1093 FullDef = true; 1094 } 1095 // A partial redefine uses Reg unless there is also a full define. 1096 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1097 } 1098 1099 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1100 /// the specified register or -1 if it is not found. If isDead is true, defs 1101 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1102 /// also checks if there is a def of a super-register. 1103 int MachineInstr::findRegisterDefOperandIdx(Register Reg, 1104 const TargetRegisterInfo *TRI, 1105 bool isDead, bool Overlap) const { 1106 bool isPhys = Reg.isPhysical(); 1107 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1108 const MachineOperand &MO = getOperand(i); 1109 // Accept regmask operands when Overlap is set. 1110 // Ignore them when looking for a specific def operand (Overlap == false). 1111 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1112 return i; 1113 if (!MO.isReg() || !MO.isDef()) 1114 continue; 1115 Register MOReg = MO.getReg(); 1116 bool Found = (MOReg == Reg); 1117 if (!Found && TRI && isPhys && MOReg.isPhysical()) { 1118 if (Overlap) 1119 Found = TRI->regsOverlap(MOReg, Reg); 1120 else 1121 Found = TRI->isSubRegister(MOReg, Reg); 1122 } 1123 if (Found && (!isDead || MO.isDead())) 1124 return i; 1125 } 1126 return -1; 1127 } 1128 1129 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1130 /// operand list that is used to represent the predicate. It returns -1 if 1131 /// none is found. 1132 int MachineInstr::findFirstPredOperandIdx() const { 1133 // Don't call MCID.findFirstPredOperandIdx() because this variant 1134 // is sometimes called on an instruction that's not yet complete, and 1135 // so the number of operands is less than the MCID indicates. In 1136 // particular, the PTX target does this. 1137 const MCInstrDesc &MCID = getDesc(); 1138 if (MCID.isPredicable()) { 1139 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1140 if (MCID.operands()[i].isPredicate()) 1141 return i; 1142 } 1143 1144 return -1; 1145 } 1146 1147 // MachineOperand::TiedTo is 4 bits wide. 1148 const unsigned TiedMax = 15; 1149 1150 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1151 /// 1152 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1153 /// field. TiedTo can have these values: 1154 /// 1155 /// 0: Operand is not tied to anything. 1156 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1157 /// TiedMax: Tied to an operand >= TiedMax-1. 1158 /// 1159 /// The tied def must be one of the first TiedMax operands on a normal 1160 /// instruction. INLINEASM instructions allow more tied defs. 1161 /// 1162 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1163 MachineOperand &DefMO = getOperand(DefIdx); 1164 MachineOperand &UseMO = getOperand(UseIdx); 1165 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1166 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1167 assert(!DefMO.isTied() && "Def is already tied to another use"); 1168 assert(!UseMO.isTied() && "Use is already tied to another def"); 1169 1170 if (DefIdx < TiedMax) 1171 UseMO.TiedTo = DefIdx + 1; 1172 else { 1173 // Inline asm can use the group descriptors to find tied operands, 1174 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1175 // but on normal instruction, the tied def must be within the first TiedMax 1176 // operands. 1177 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1178 "DefIdx out of range"); 1179 UseMO.TiedTo = TiedMax; 1180 } 1181 1182 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1183 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1184 } 1185 1186 /// Given the index of a tied register operand, find the operand it is tied to. 1187 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1188 /// which must exist. 1189 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1190 const MachineOperand &MO = getOperand(OpIdx); 1191 assert(MO.isTied() && "Operand isn't tied"); 1192 1193 // Normally TiedTo is in range. 1194 if (MO.TiedTo < TiedMax) 1195 return MO.TiedTo - 1; 1196 1197 // Uses on normal instructions can be out of range. 1198 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1199 // Normal tied defs must be in the 0..TiedMax-1 range. 1200 if (MO.isUse()) 1201 return TiedMax - 1; 1202 // MO is a def. Search for the tied use. 1203 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1204 const MachineOperand &UseMO = getOperand(i); 1205 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1206 return i; 1207 } 1208 llvm_unreachable("Can't find tied use"); 1209 } 1210 1211 if (getOpcode() == TargetOpcode::STATEPOINT) { 1212 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1213 // on registers. 1214 StatepointOpers SO(this); 1215 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1216 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1217 unsigned NumDefs = getNumDefs(); 1218 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1219 while (!getOperand(CurUseIdx).isReg()) 1220 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1221 if (OpIdx == CurDefIdx) 1222 return CurUseIdx; 1223 if (OpIdx == CurUseIdx) 1224 return CurDefIdx; 1225 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1226 } 1227 llvm_unreachable("Can't find tied use"); 1228 } 1229 1230 // Now deal with inline asm by parsing the operand group descriptor flags. 1231 // Find the beginning of each operand group. 1232 SmallVector<unsigned, 8> GroupIdx; 1233 unsigned OpIdxGroup = ~0u; 1234 unsigned NumOps; 1235 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1236 i += NumOps) { 1237 const MachineOperand &FlagMO = getOperand(i); 1238 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1239 unsigned CurGroup = GroupIdx.size(); 1240 GroupIdx.push_back(i); 1241 const InlineAsm::Flag F(FlagMO.getImm()); 1242 NumOps = 1 + F.getNumOperandRegisters(); 1243 // OpIdx belongs to this operand group. 1244 if (OpIdx > i && OpIdx < i + NumOps) 1245 OpIdxGroup = CurGroup; 1246 unsigned TiedGroup; 1247 if (!F.isUseOperandTiedToDef(TiedGroup)) 1248 continue; 1249 // Operands in this group are tied to operands in TiedGroup which must be 1250 // earlier. Find the number of operands between the two groups. 1251 unsigned Delta = i - GroupIdx[TiedGroup]; 1252 1253 // OpIdx is a use tied to TiedGroup. 1254 if (OpIdxGroup == CurGroup) 1255 return OpIdx - Delta; 1256 1257 // OpIdx is a def tied to this use group. 1258 if (OpIdxGroup == TiedGroup) 1259 return OpIdx + Delta; 1260 } 1261 llvm_unreachable("Invalid tied operand on inline asm"); 1262 } 1263 1264 /// clearKillInfo - Clears kill flags on all operands. 1265 /// 1266 void MachineInstr::clearKillInfo() { 1267 for (MachineOperand &MO : operands()) { 1268 if (MO.isReg() && MO.isUse()) 1269 MO.setIsKill(false); 1270 } 1271 } 1272 1273 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1274 unsigned SubIdx, 1275 const TargetRegisterInfo &RegInfo) { 1276 if (ToReg.isPhysical()) { 1277 if (SubIdx) 1278 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1279 for (MachineOperand &MO : operands()) { 1280 if (!MO.isReg() || MO.getReg() != FromReg) 1281 continue; 1282 MO.substPhysReg(ToReg, RegInfo); 1283 } 1284 } else { 1285 for (MachineOperand &MO : operands()) { 1286 if (!MO.isReg() || MO.getReg() != FromReg) 1287 continue; 1288 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1289 } 1290 } 1291 } 1292 1293 /// isSafeToMove - Return true if it is safe to move this instruction. If 1294 /// SawStore is set to true, it means that there is a store (or call) between 1295 /// the instruction's location and its intended destination. 1296 bool MachineInstr::isSafeToMove(bool &SawStore) const { 1297 // Ignore stuff that we obviously can't move. 1298 // 1299 // Treat volatile loads as stores. This is not strictly necessary for 1300 // volatiles, but it is required for atomic loads. It is not allowed to move 1301 // a load across an atomic load with Ordering > Monotonic. 1302 if (mayStore() || isCall() || isPHI() || 1303 (mayLoad() && hasOrderedMemoryRef())) { 1304 SawStore = true; 1305 return false; 1306 } 1307 1308 if (isPosition() || isDebugInstr() || isTerminator() || 1309 mayRaiseFPException() || hasUnmodeledSideEffects() || 1310 isJumpTableDebugInfo()) 1311 return false; 1312 1313 // See if this instruction does a load. If so, we have to guarantee that the 1314 // loaded value doesn't change between the load and the its intended 1315 // destination. The check for isInvariantLoad gives the target the chance to 1316 // classify the load as always returning a constant, e.g. a constant pool 1317 // load. 1318 if (mayLoad() && !isDereferenceableInvariantLoad()) 1319 // Otherwise, this is a real load. If there is a store between the load and 1320 // end of block, we can't move it. 1321 return !SawStore; 1322 1323 return true; 1324 } 1325 1326 bool MachineInstr::wouldBeTriviallyDead() const { 1327 // Don't delete frame allocation labels. 1328 // FIXME: Why is LOCAL_ESCAPE not considered in MachineInstr::isLabel? 1329 if (getOpcode() == TargetOpcode::LOCAL_ESCAPE) 1330 return false; 1331 1332 // Don't delete FAKE_USE. 1333 // FIXME: Why is FAKE_USE not considered in MachineInstr::isPosition? 1334 if (isFakeUse()) 1335 return false; 1336 1337 // LIFETIME markers should be preserved. 1338 // FIXME: Why are LIFETIME markers not considered in MachineInstr::isPosition? 1339 if (isLifetimeMarker()) 1340 return false; 1341 1342 // If we can move an instruction, we can remove it. Otherwise, it has 1343 // a side-effect of some sort. 1344 bool SawStore = false; 1345 return isPHI() || isSafeToMove(SawStore); 1346 } 1347 1348 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1349 bool UseTBAA, const MachineMemOperand *MMOa, 1350 const MachineMemOperand *MMOb) { 1351 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1352 // operates with MachineMemOperand offset with some important assumptions: 1353 // - LLVM fundamentally assumes flat address spaces. 1354 // - MachineOperand offset can *only* result from legalization and cannot 1355 // affect queries other than the trivial case of overlap checking. 1356 // - These offsets never wrap and never step outside of allocated objects. 1357 // - There should never be any negative offsets here. 1358 // 1359 // FIXME: Modify API to hide this math from "user" 1360 // Even before we go to AA we can reason locally about some memory objects. It 1361 // can save compile time, and possibly catch some corner cases not currently 1362 // covered. 1363 1364 int64_t OffsetA = MMOa->getOffset(); 1365 int64_t OffsetB = MMOb->getOffset(); 1366 int64_t MinOffset = std::min(OffsetA, OffsetB); 1367 1368 LocationSize WidthA = MMOa->getSize(); 1369 LocationSize WidthB = MMOb->getSize(); 1370 bool KnownWidthA = WidthA.hasValue(); 1371 bool KnownWidthB = WidthB.hasValue(); 1372 bool BothMMONonScalable = !WidthA.isScalable() && !WidthB.isScalable(); 1373 1374 const Value *ValA = MMOa->getValue(); 1375 const Value *ValB = MMOb->getValue(); 1376 bool SameVal = (ValA && ValB && (ValA == ValB)); 1377 if (!SameVal) { 1378 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1379 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1380 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1381 return false; 1382 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1383 return false; 1384 if (PSVa && PSVb && (PSVa == PSVb)) 1385 SameVal = true; 1386 } 1387 1388 if (SameVal && BothMMONonScalable) { 1389 if (!KnownWidthA || !KnownWidthB) 1390 return true; 1391 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1392 int64_t LowWidth = (MinOffset == OffsetA) 1393 ? WidthA.getValue().getKnownMinValue() 1394 : WidthB.getValue().getKnownMinValue(); 1395 return (MinOffset + LowWidth > MaxOffset); 1396 } 1397 1398 if (!AA) 1399 return true; 1400 1401 if (!ValA || !ValB) 1402 return true; 1403 1404 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1405 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1406 1407 // If Scalable Location Size has non-zero offset, Width + Offset does not work 1408 // at the moment 1409 if ((WidthA.isScalable() && OffsetA > 0) || 1410 (WidthB.isScalable() && OffsetB > 0)) 1411 return true; 1412 1413 int64_t OverlapA = 1414 KnownWidthA ? WidthA.getValue().getKnownMinValue() + OffsetA - MinOffset 1415 : MemoryLocation::UnknownSize; 1416 int64_t OverlapB = 1417 KnownWidthB ? WidthB.getValue().getKnownMinValue() + OffsetB - MinOffset 1418 : MemoryLocation::UnknownSize; 1419 1420 LocationSize LocA = (WidthA.isScalable() || !KnownWidthA) 1421 ? WidthA 1422 : LocationSize::precise(OverlapA); 1423 LocationSize LocB = (WidthB.isScalable() || !KnownWidthB) 1424 ? WidthB 1425 : LocationSize::precise(OverlapB); 1426 1427 return !AA->isNoAlias( 1428 MemoryLocation(ValA, LocA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1429 MemoryLocation(ValB, LocB, UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1430 } 1431 1432 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1433 bool UseTBAA) const { 1434 const MachineFunction *MF = getMF(); 1435 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1436 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1437 1438 // Exclude call instruction which may alter the memory but can not be handled 1439 // by this function. 1440 if (isCall() || Other.isCall()) 1441 return true; 1442 1443 // If neither instruction stores to memory, they can't alias in any 1444 // meaningful way, even if they read from the same address. 1445 if (!mayStore() && !Other.mayStore()) 1446 return false; 1447 1448 // Both instructions must be memory operations to be able to alias. 1449 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1450 return false; 1451 1452 // Let the target decide if memory accesses cannot possibly overlap. 1453 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1454 return false; 1455 1456 // Memory operations without memory operands may access anything. Be 1457 // conservative and assume `MayAlias`. 1458 if (memoperands_empty() || Other.memoperands_empty()) 1459 return true; 1460 1461 // Skip if there are too many memory operands. 1462 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1463 if (NumChecks > TII->getMemOperandAACheckLimit()) 1464 return true; 1465 1466 // Check each pair of memory operands from both instructions, which can't 1467 // alias only if all pairs won't alias. 1468 for (auto *MMOa : memoperands()) 1469 for (auto *MMOb : Other.memoperands()) 1470 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1471 return true; 1472 1473 return false; 1474 } 1475 1476 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1477 /// or volatile memory reference, or if the information describing the memory 1478 /// reference is not available. Return false if it is known to have no ordered 1479 /// memory references. 1480 bool MachineInstr::hasOrderedMemoryRef() const { 1481 // An instruction known never to access memory won't have a volatile access. 1482 if (!mayStore() && 1483 !mayLoad() && 1484 !isCall() && 1485 !hasUnmodeledSideEffects()) 1486 return false; 1487 1488 // Otherwise, if the instruction has no memory reference information, 1489 // conservatively assume it wasn't preserved. 1490 if (memoperands_empty()) 1491 return true; 1492 1493 // Check if any of our memory operands are ordered. 1494 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1495 return !MMO->isUnordered(); 1496 }); 1497 } 1498 1499 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1500 /// trap and is loading from a location whose value is invariant across a run of 1501 /// this function. 1502 bool MachineInstr::isDereferenceableInvariantLoad() const { 1503 // If the instruction doesn't load at all, it isn't an invariant load. 1504 if (!mayLoad()) 1505 return false; 1506 1507 // If the instruction has lost its memoperands, conservatively assume that 1508 // it may not be an invariant load. 1509 if (memoperands_empty()) 1510 return false; 1511 1512 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1513 1514 for (MachineMemOperand *MMO : memoperands()) { 1515 if (!MMO->isUnordered()) 1516 // If the memory operand has ordering side effects, we can't move the 1517 // instruction. Such an instruction is technically an invariant load, 1518 // but the caller code would need updated to expect that. 1519 return false; 1520 if (MMO->isStore()) return false; 1521 if (MMO->isInvariant() && MMO->isDereferenceable()) 1522 continue; 1523 1524 // A load from a constant PseudoSourceValue is invariant. 1525 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 1526 if (PSV->isConstant(&MFI)) 1527 continue; 1528 } 1529 1530 // Otherwise assume conservatively. 1531 return false; 1532 } 1533 1534 // Everything checks out. 1535 return true; 1536 } 1537 1538 /// isConstantValuePHI - If the specified instruction is a PHI that always 1539 /// merges together the same virtual register, return the register, otherwise 1540 /// return 0. 1541 unsigned MachineInstr::isConstantValuePHI() const { 1542 if (!isPHI()) 1543 return 0; 1544 assert(getNumOperands() >= 3 && 1545 "It's illegal to have a PHI without source operands"); 1546 1547 Register Reg = getOperand(1).getReg(); 1548 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1549 if (getOperand(i).getReg() != Reg) 1550 return 0; 1551 return Reg; 1552 } 1553 1554 bool MachineInstr::hasUnmodeledSideEffects() const { 1555 if (hasProperty(MCID::UnmodeledSideEffects)) 1556 return true; 1557 if (isInlineAsm()) { 1558 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1559 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1560 return true; 1561 } 1562 1563 return false; 1564 } 1565 1566 bool MachineInstr::isLoadFoldBarrier() const { 1567 return mayStore() || isCall() || 1568 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1569 } 1570 1571 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1572 /// 1573 bool MachineInstr::allDefsAreDead() const { 1574 for (const MachineOperand &MO : operands()) { 1575 if (!MO.isReg() || MO.isUse()) 1576 continue; 1577 if (!MO.isDead()) 1578 return false; 1579 } 1580 return true; 1581 } 1582 1583 bool MachineInstr::allImplicitDefsAreDead() const { 1584 for (const MachineOperand &MO : implicit_operands()) { 1585 if (!MO.isReg() || MO.isUse()) 1586 continue; 1587 if (!MO.isDead()) 1588 return false; 1589 } 1590 return true; 1591 } 1592 1593 /// copyImplicitOps - Copy implicit register operands from specified 1594 /// instruction to this instruction. 1595 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1596 const MachineInstr &MI) { 1597 for (const MachineOperand &MO : 1598 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) 1599 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1600 addOperand(MF, MO); 1601 } 1602 1603 bool MachineInstr::hasComplexRegisterTies() const { 1604 const MCInstrDesc &MCID = getDesc(); 1605 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1606 return true; 1607 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1608 const auto &Operand = getOperand(I); 1609 if (!Operand.isReg() || Operand.isDef()) 1610 // Ignore the defined registers as MCID marks only the uses as tied. 1611 continue; 1612 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1613 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1614 if (ExpectedTiedIdx != TiedIdx) 1615 return true; 1616 } 1617 return false; 1618 } 1619 1620 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1621 const MachineRegisterInfo &MRI) const { 1622 const MachineOperand &Op = getOperand(OpIdx); 1623 if (!Op.isReg()) 1624 return LLT{}; 1625 1626 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1627 return MRI.getType(Op.getReg()); 1628 1629 auto &OpInfo = getDesc().operands()[OpIdx]; 1630 if (!OpInfo.isGenericType()) 1631 return MRI.getType(Op.getReg()); 1632 1633 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1634 return LLT{}; 1635 1636 LLT TypeToPrint = MRI.getType(Op.getReg()); 1637 // Don't mark the type index printed if it wasn't actually printed: maybe 1638 // another operand with the same type index has an actual type attached: 1639 if (TypeToPrint.isValid()) 1640 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1641 return TypeToPrint; 1642 } 1643 1644 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1645 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1646 dbgs() << " "; 1647 print(dbgs()); 1648 } 1649 1650 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1651 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1652 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1653 if (Depth >= MaxDepth) 1654 return; 1655 if (!AlreadySeenInstrs.insert(this).second) 1656 return; 1657 // PadToColumn always inserts at least one space. 1658 // Don't mess up the alignment if we don't want any space. 1659 if (Depth) 1660 fdbgs().PadToColumn(Depth * 2); 1661 print(fdbgs()); 1662 for (const MachineOperand &MO : operands()) { 1663 if (!MO.isReg() || MO.isDef()) 1664 continue; 1665 Register Reg = MO.getReg(); 1666 if (Reg.isPhysical()) 1667 continue; 1668 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1669 if (NewMI == nullptr) 1670 continue; 1671 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1672 } 1673 } 1674 1675 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1676 unsigned MaxDepth) const { 1677 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1678 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1679 } 1680 #endif 1681 1682 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1683 bool SkipDebugLoc, bool AddNewLine, 1684 const TargetInstrInfo *TII) const { 1685 const Module *M = nullptr; 1686 const Function *F = nullptr; 1687 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1688 F = &MF->getFunction(); 1689 M = F->getParent(); 1690 if (!TII) 1691 TII = MF->getSubtarget().getInstrInfo(); 1692 } 1693 1694 ModuleSlotTracker MST(M); 1695 if (F) 1696 MST.incorporateFunction(*F); 1697 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1698 } 1699 1700 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1701 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1702 bool AddNewLine, const TargetInstrInfo *TII) const { 1703 // We can be a bit tidier if we know the MachineFunction. 1704 const TargetRegisterInfo *TRI = nullptr; 1705 const MachineRegisterInfo *MRI = nullptr; 1706 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1707 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1708 1709 if (isCFIInstruction()) 1710 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1711 1712 SmallBitVector PrintedTypes(8); 1713 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1714 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1715 if (!ShouldPrintRegisterTies) 1716 return 0U; 1717 const MachineOperand &MO = getOperand(OpIdx); 1718 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1719 return findTiedOperandIdx(OpIdx); 1720 return 0U; 1721 }; 1722 unsigned StartOp = 0; 1723 unsigned e = getNumOperands(); 1724 1725 // Print explicitly defined operands on the left of an assignment syntax. 1726 while (StartOp < e) { 1727 const MachineOperand &MO = getOperand(StartOp); 1728 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1729 break; 1730 1731 if (StartOp != 0) 1732 OS << ", "; 1733 1734 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1735 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1736 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1737 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1738 ++StartOp; 1739 } 1740 1741 if (StartOp != 0) 1742 OS << " = "; 1743 1744 if (getFlag(MachineInstr::FrameSetup)) 1745 OS << "frame-setup "; 1746 if (getFlag(MachineInstr::FrameDestroy)) 1747 OS << "frame-destroy "; 1748 if (getFlag(MachineInstr::FmNoNans)) 1749 OS << "nnan "; 1750 if (getFlag(MachineInstr::FmNoInfs)) 1751 OS << "ninf "; 1752 if (getFlag(MachineInstr::FmNsz)) 1753 OS << "nsz "; 1754 if (getFlag(MachineInstr::FmArcp)) 1755 OS << "arcp "; 1756 if (getFlag(MachineInstr::FmContract)) 1757 OS << "contract "; 1758 if (getFlag(MachineInstr::FmAfn)) 1759 OS << "afn "; 1760 if (getFlag(MachineInstr::FmReassoc)) 1761 OS << "reassoc "; 1762 if (getFlag(MachineInstr::NoUWrap)) 1763 OS << "nuw "; 1764 if (getFlag(MachineInstr::NoSWrap)) 1765 OS << "nsw "; 1766 if (getFlag(MachineInstr::IsExact)) 1767 OS << "exact "; 1768 if (getFlag(MachineInstr::NoFPExcept)) 1769 OS << "nofpexcept "; 1770 if (getFlag(MachineInstr::NoMerge)) 1771 OS << "nomerge "; 1772 if (getFlag(MachineInstr::NonNeg)) 1773 OS << "nneg "; 1774 if (getFlag(MachineInstr::Disjoint)) 1775 OS << "disjoint "; 1776 1777 // Print the opcode name. 1778 if (TII) 1779 OS << TII->getName(getOpcode()); 1780 else 1781 OS << "UNKNOWN"; 1782 1783 if (SkipOpers) 1784 return; 1785 1786 // Print the rest of the operands. 1787 bool FirstOp = true; 1788 unsigned AsmDescOp = ~0u; 1789 unsigned AsmOpCount = 0; 1790 1791 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1792 // Print asm string. 1793 OS << " "; 1794 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1795 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1796 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1797 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1798 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1799 IntrinsicInfo); 1800 1801 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1802 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1803 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1804 OS << " [sideeffect]"; 1805 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1806 OS << " [mayload]"; 1807 if (ExtraInfo & InlineAsm::Extra_MayStore) 1808 OS << " [maystore]"; 1809 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1810 OS << " [isconvergent]"; 1811 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1812 OS << " [alignstack]"; 1813 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1814 OS << " [attdialect]"; 1815 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1816 OS << " [inteldialect]"; 1817 1818 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1819 FirstOp = false; 1820 } 1821 1822 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1823 const MachineOperand &MO = getOperand(i); 1824 1825 if (FirstOp) FirstOp = false; else OS << ","; 1826 OS << " "; 1827 1828 if (isDebugValueLike() && MO.isMetadata()) { 1829 // Pretty print DBG_VALUE* instructions. 1830 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1831 if (DIV && !DIV->getName().empty()) 1832 OS << "!\"" << DIV->getName() << '\"'; 1833 else { 1834 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1835 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1836 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1837 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1838 } 1839 } else if (isDebugLabel() && MO.isMetadata()) { 1840 // Pretty print DBG_LABEL instructions. 1841 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1842 if (DIL && !DIL->getName().empty()) 1843 OS << "\"" << DIL->getName() << '\"'; 1844 else { 1845 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1846 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1847 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1848 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1849 } 1850 } else if (i == AsmDescOp && MO.isImm()) { 1851 // Pretty print the inline asm operand descriptor. 1852 OS << '$' << AsmOpCount++; 1853 unsigned Flag = MO.getImm(); 1854 const InlineAsm::Flag F(Flag); 1855 OS << ":["; 1856 OS << F.getKindName(); 1857 1858 unsigned RCID; 1859 if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) { 1860 if (TRI) { 1861 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1862 } else 1863 OS << ":RC" << RCID; 1864 } 1865 1866 if (F.isMemKind()) { 1867 const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID(); 1868 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1869 } 1870 1871 unsigned TiedTo; 1872 if (F.isUseOperandTiedToDef(TiedTo)) 1873 OS << " tiedto:$" << TiedTo; 1874 1875 if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || 1876 F.isRegUseKind()) && 1877 F.getRegMayBeFolded()) { 1878 OS << " foldable"; 1879 } 1880 1881 OS << ']'; 1882 1883 // Compute the index of the next operand descriptor. 1884 AsmDescOp += 1 + F.getNumOperandRegisters(); 1885 } else { 1886 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1887 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1888 if (MO.isImm() && isOperandSubregIdx(i)) 1889 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1890 else 1891 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1892 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1893 } 1894 } 1895 1896 // Print any optional symbols attached to this instruction as-if they were 1897 // operands. 1898 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1899 if (!FirstOp) { 1900 FirstOp = false; 1901 OS << ','; 1902 } 1903 OS << " pre-instr-symbol "; 1904 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1905 } 1906 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1907 if (!FirstOp) { 1908 FirstOp = false; 1909 OS << ','; 1910 } 1911 OS << " post-instr-symbol "; 1912 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1913 } 1914 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1915 if (!FirstOp) { 1916 FirstOp = false; 1917 OS << ','; 1918 } 1919 OS << " heap-alloc-marker "; 1920 HeapAllocMarker->printAsOperand(OS, MST); 1921 } 1922 if (MDNode *PCSections = getPCSections()) { 1923 if (!FirstOp) { 1924 FirstOp = false; 1925 OS << ','; 1926 } 1927 OS << " pcsections "; 1928 PCSections->printAsOperand(OS, MST); 1929 } 1930 if (MDNode *MMRA = getMMRAMetadata()) { 1931 if (!FirstOp) { 1932 FirstOp = false; 1933 OS << ','; 1934 } 1935 OS << " mmra "; 1936 MMRA->printAsOperand(OS, MST); 1937 } 1938 if (uint32_t CFIType = getCFIType()) { 1939 if (!FirstOp) 1940 OS << ','; 1941 OS << " cfi-type " << CFIType; 1942 } 1943 1944 if (DebugInstrNum) { 1945 if (!FirstOp) 1946 OS << ","; 1947 OS << " debug-instr-number " << DebugInstrNum; 1948 } 1949 1950 if (!SkipDebugLoc) { 1951 if (const DebugLoc &DL = getDebugLoc()) { 1952 if (!FirstOp) 1953 OS << ','; 1954 OS << " debug-location "; 1955 DL->printAsOperand(OS, MST); 1956 } 1957 } 1958 1959 if (!memoperands_empty()) { 1960 SmallVector<StringRef, 0> SSNs; 1961 const LLVMContext *Context = nullptr; 1962 std::unique_ptr<LLVMContext> CtxPtr; 1963 const MachineFrameInfo *MFI = nullptr; 1964 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1965 MFI = &MF->getFrameInfo(); 1966 Context = &MF->getFunction().getContext(); 1967 } else { 1968 CtxPtr = std::make_unique<LLVMContext>(); 1969 Context = CtxPtr.get(); 1970 } 1971 1972 OS << " :: "; 1973 bool NeedComma = false; 1974 for (const MachineMemOperand *Op : memoperands()) { 1975 if (NeedComma) 1976 OS << ", "; 1977 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1978 NeedComma = true; 1979 } 1980 } 1981 1982 if (SkipDebugLoc) 1983 return; 1984 1985 bool HaveSemi = false; 1986 1987 // Print debug location information. 1988 if (const DebugLoc &DL = getDebugLoc()) { 1989 if (!HaveSemi) { 1990 OS << ';'; 1991 HaveSemi = true; 1992 } 1993 OS << ' '; 1994 DL.print(OS); 1995 } 1996 1997 // Print extra comments for DEBUG_VALUE and friends if they are well-formed. 1998 if ((isNonListDebugValue() && getNumOperands() >= 4) || 1999 (isDebugValueList() && getNumOperands() >= 2) || 2000 (isDebugRef() && getNumOperands() >= 3)) { 2001 if (getDebugVariableOp().isMetadata()) { 2002 if (!HaveSemi) { 2003 OS << ";"; 2004 HaveSemi = true; 2005 } 2006 auto *DV = getDebugVariable(); 2007 OS << " line no:" << DV->getLine(); 2008 if (isIndirectDebugValue()) 2009 OS << " indirect"; 2010 } 2011 } 2012 // TODO: DBG_LABEL 2013 2014 if (AddNewLine) 2015 OS << '\n'; 2016 } 2017 2018 bool MachineInstr::addRegisterKilled(Register IncomingReg, 2019 const TargetRegisterInfo *RegInfo, 2020 bool AddIfNotFound) { 2021 bool isPhysReg = IncomingReg.isPhysical(); 2022 bool hasAliases = isPhysReg && 2023 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 2024 bool Found = false; 2025 SmallVector<unsigned,4> DeadOps; 2026 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2027 MachineOperand &MO = getOperand(i); 2028 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2029 continue; 2030 2031 // DEBUG_VALUE nodes do not contribute to code generation and should 2032 // always be ignored. Failure to do so may result in trying to modify 2033 // KILL flags on DEBUG_VALUE nodes. 2034 if (MO.isDebug()) 2035 continue; 2036 2037 Register Reg = MO.getReg(); 2038 if (!Reg) 2039 continue; 2040 2041 if (Reg == IncomingReg) { 2042 if (!Found) { 2043 if (MO.isKill()) 2044 // The register is already marked kill. 2045 return true; 2046 if (isPhysReg && isRegTiedToDefOperand(i)) 2047 // Two-address uses of physregs must not be marked kill. 2048 return true; 2049 MO.setIsKill(); 2050 Found = true; 2051 } 2052 } else if (hasAliases && MO.isKill() && Reg.isPhysical()) { 2053 // A super-register kill already exists. 2054 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2055 return true; 2056 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2057 DeadOps.push_back(i); 2058 } 2059 } 2060 2061 // Trim unneeded kill operands. 2062 while (!DeadOps.empty()) { 2063 unsigned OpIdx = DeadOps.back(); 2064 if (getOperand(OpIdx).isImplicit() && 2065 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2066 removeOperand(OpIdx); 2067 else 2068 getOperand(OpIdx).setIsKill(false); 2069 DeadOps.pop_back(); 2070 } 2071 2072 // If not found, this means an alias of one of the operands is killed. Add a 2073 // new implicit operand if required. 2074 if (!Found && AddIfNotFound) { 2075 addOperand(MachineOperand::CreateReg(IncomingReg, 2076 false /*IsDef*/, 2077 true /*IsImp*/, 2078 true /*IsKill*/)); 2079 return true; 2080 } 2081 return Found; 2082 } 2083 2084 void MachineInstr::clearRegisterKills(Register Reg, 2085 const TargetRegisterInfo *RegInfo) { 2086 if (!Reg.isPhysical()) 2087 RegInfo = nullptr; 2088 for (MachineOperand &MO : operands()) { 2089 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2090 continue; 2091 Register OpReg = MO.getReg(); 2092 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2093 MO.setIsKill(false); 2094 } 2095 } 2096 2097 bool MachineInstr::addRegisterDead(Register Reg, 2098 const TargetRegisterInfo *RegInfo, 2099 bool AddIfNotFound) { 2100 bool isPhysReg = Reg.isPhysical(); 2101 bool hasAliases = isPhysReg && 2102 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2103 bool Found = false; 2104 SmallVector<unsigned,4> DeadOps; 2105 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2106 MachineOperand &MO = getOperand(i); 2107 if (!MO.isReg() || !MO.isDef()) 2108 continue; 2109 Register MOReg = MO.getReg(); 2110 if (!MOReg) 2111 continue; 2112 2113 if (MOReg == Reg) { 2114 MO.setIsDead(); 2115 Found = true; 2116 } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) { 2117 // There exists a super-register that's marked dead. 2118 if (RegInfo->isSuperRegister(Reg, MOReg)) 2119 return true; 2120 if (RegInfo->isSubRegister(Reg, MOReg)) 2121 DeadOps.push_back(i); 2122 } 2123 } 2124 2125 // Trim unneeded dead operands. 2126 while (!DeadOps.empty()) { 2127 unsigned OpIdx = DeadOps.back(); 2128 if (getOperand(OpIdx).isImplicit() && 2129 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2130 removeOperand(OpIdx); 2131 else 2132 getOperand(OpIdx).setIsDead(false); 2133 DeadOps.pop_back(); 2134 } 2135 2136 // If not found, this means an alias of one of the operands is dead. Add a 2137 // new implicit operand if required. 2138 if (Found || !AddIfNotFound) 2139 return Found; 2140 2141 addOperand(MachineOperand::CreateReg(Reg, 2142 true /*IsDef*/, 2143 true /*IsImp*/, 2144 false /*IsKill*/, 2145 true /*IsDead*/)); 2146 return true; 2147 } 2148 2149 void MachineInstr::clearRegisterDeads(Register Reg) { 2150 for (MachineOperand &MO : all_defs()) 2151 if (MO.getReg() == Reg) 2152 MO.setIsDead(false); 2153 } 2154 2155 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2156 for (MachineOperand &MO : all_defs()) 2157 if (MO.getReg() == Reg && MO.getSubReg() != 0) 2158 MO.setIsUndef(IsUndef); 2159 } 2160 2161 void MachineInstr::addRegisterDefined(Register Reg, 2162 const TargetRegisterInfo *RegInfo) { 2163 if (Reg.isPhysical()) { 2164 MachineOperand *MO = findRegisterDefOperand(Reg, RegInfo, false, false); 2165 if (MO) 2166 return; 2167 } else { 2168 for (const MachineOperand &MO : all_defs()) { 2169 if (MO.getReg() == Reg && MO.getSubReg() == 0) 2170 return; 2171 } 2172 } 2173 addOperand(MachineOperand::CreateReg(Reg, 2174 true /*IsDef*/, 2175 true /*IsImp*/)); 2176 } 2177 2178 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2179 const TargetRegisterInfo &TRI) { 2180 bool HasRegMask = false; 2181 for (MachineOperand &MO : operands()) { 2182 if (MO.isRegMask()) { 2183 HasRegMask = true; 2184 continue; 2185 } 2186 if (!MO.isReg() || !MO.isDef()) continue; 2187 Register Reg = MO.getReg(); 2188 if (!Reg.isPhysical()) 2189 continue; 2190 // If there are no uses, including partial uses, the def is dead. 2191 if (llvm::none_of(UsedRegs, 2192 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2193 MO.setIsDead(); 2194 } 2195 2196 // This is a call with a register mask operand. 2197 // Mask clobbers are always dead, so add defs for the non-dead defines. 2198 if (HasRegMask) 2199 for (const Register &UsedReg : UsedRegs) 2200 addRegisterDefined(UsedReg, &TRI); 2201 } 2202 2203 unsigned 2204 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2205 // Build up a buffer of hash code components. 2206 SmallVector<size_t, 16> HashComponents; 2207 HashComponents.reserve(MI->getNumOperands() + 1); 2208 HashComponents.push_back(MI->getOpcode()); 2209 for (const MachineOperand &MO : MI->operands()) { 2210 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual()) 2211 continue; // Skip virtual register defs. 2212 2213 HashComponents.push_back(hash_value(MO)); 2214 } 2215 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2216 } 2217 2218 void MachineInstr::emitError(StringRef Msg) const { 2219 // Find the source location cookie. 2220 uint64_t LocCookie = 0; 2221 const MDNode *LocMD = nullptr; 2222 for (unsigned i = getNumOperands(); i != 0; --i) { 2223 if (getOperand(i-1).isMetadata() && 2224 (LocMD = getOperand(i-1).getMetadata()) && 2225 LocMD->getNumOperands() != 0) { 2226 if (const ConstantInt *CI = 2227 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2228 LocCookie = CI->getZExtValue(); 2229 break; 2230 } 2231 } 2232 } 2233 2234 if (const MachineBasicBlock *MBB = getParent()) 2235 if (const MachineFunction *MF = MBB->getParent()) 2236 return MF->getFunction().getContext().emitError(LocCookie, Msg); 2237 report_fatal_error(Msg); 2238 } 2239 2240 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2241 const MCInstrDesc &MCID, bool IsIndirect, 2242 Register Reg, const MDNode *Variable, 2243 const MDNode *Expr) { 2244 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2245 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2246 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2247 "Expected inlined-at fields to agree"); 2248 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); 2249 if (IsIndirect) 2250 MIB.addImm(0U); 2251 else 2252 MIB.addReg(0U); 2253 return MIB.addMetadata(Variable).addMetadata(Expr); 2254 } 2255 2256 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2257 const MCInstrDesc &MCID, bool IsIndirect, 2258 ArrayRef<MachineOperand> DebugOps, 2259 const MDNode *Variable, const MDNode *Expr) { 2260 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2261 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2262 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2263 "Expected inlined-at fields to agree"); 2264 if (MCID.Opcode == TargetOpcode::DBG_VALUE) { 2265 assert(DebugOps.size() == 1 && 2266 "DBG_VALUE must contain exactly one debug operand"); 2267 MachineOperand DebugOp = DebugOps[0]; 2268 if (DebugOp.isReg()) 2269 return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable, 2270 Expr); 2271 2272 auto MIB = BuildMI(MF, DL, MCID).add(DebugOp); 2273 if (IsIndirect) 2274 MIB.addImm(0U); 2275 else 2276 MIB.addReg(0U); 2277 return MIB.addMetadata(Variable).addMetadata(Expr); 2278 } 2279 2280 auto MIB = BuildMI(MF, DL, MCID); 2281 MIB.addMetadata(Variable).addMetadata(Expr); 2282 for (const MachineOperand &DebugOp : DebugOps) 2283 if (DebugOp.isReg()) 2284 MIB.addReg(DebugOp.getReg()); 2285 else 2286 MIB.add(DebugOp); 2287 return MIB; 2288 } 2289 2290 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2291 MachineBasicBlock::iterator I, 2292 const DebugLoc &DL, const MCInstrDesc &MCID, 2293 bool IsIndirect, Register Reg, 2294 const MDNode *Variable, const MDNode *Expr) { 2295 MachineFunction &MF = *BB.getParent(); 2296 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2297 BB.insert(I, MI); 2298 return MachineInstrBuilder(MF, MI); 2299 } 2300 2301 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2302 MachineBasicBlock::iterator I, 2303 const DebugLoc &DL, const MCInstrDesc &MCID, 2304 bool IsIndirect, 2305 ArrayRef<MachineOperand> DebugOps, 2306 const MDNode *Variable, const MDNode *Expr) { 2307 MachineFunction &MF = *BB.getParent(); 2308 MachineInstr *MI = 2309 BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr); 2310 BB.insert(I, MI); 2311 return MachineInstrBuilder(MF, *MI); 2312 } 2313 2314 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2315 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2316 static const DIExpression *computeExprForSpill( 2317 const MachineInstr &MI, 2318 const SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2319 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2320 "Expected inlined-at fields to agree"); 2321 2322 const DIExpression *Expr = MI.getDebugExpression(); 2323 if (MI.isIndirectDebugValue()) { 2324 assert(MI.getDebugOffset().getImm() == 0 && 2325 "DBG_VALUE with nonzero offset"); 2326 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2327 } else if (MI.isDebugValueList()) { 2328 // We will replace the spilled register with a frame index, so 2329 // immediately deref all references to the spilled register. 2330 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; 2331 for (const MachineOperand *Op : SpilledOperands) { 2332 unsigned OpIdx = MI.getDebugOperandIndex(Op); 2333 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); 2334 } 2335 } 2336 return Expr; 2337 } 2338 static const DIExpression *computeExprForSpill(const MachineInstr &MI, 2339 Register SpillReg) { 2340 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); 2341 SmallVector<const MachineOperand *> SpillOperands; 2342 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) 2343 SpillOperands.push_back(&Op); 2344 return computeExprForSpill(MI, SpillOperands); 2345 } 2346 2347 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2348 MachineBasicBlock::iterator I, 2349 const MachineInstr &Orig, 2350 int FrameIndex, Register SpillReg) { 2351 assert(!Orig.isDebugRef() && 2352 "DBG_INSTR_REF should not reference a virtual register."); 2353 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); 2354 MachineInstrBuilder NewMI = 2355 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2356 // Non-Variadic Operands: Location, Offset, Variable, Expression 2357 // Variadic Operands: Variable, Expression, Locations... 2358 if (Orig.isNonListDebugValue()) 2359 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2360 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2361 if (Orig.isDebugValueList()) { 2362 for (const MachineOperand &Op : Orig.debug_operands()) 2363 if (Op.isReg() && Op.getReg() == SpillReg) 2364 NewMI.addFrameIndex(FrameIndex); 2365 else 2366 NewMI.add(MachineOperand(Op)); 2367 } 2368 return NewMI; 2369 } 2370 MachineInstr *llvm::buildDbgValueForSpill( 2371 MachineBasicBlock &BB, MachineBasicBlock::iterator I, 2372 const MachineInstr &Orig, int FrameIndex, 2373 const SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2374 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); 2375 MachineInstrBuilder NewMI = 2376 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2377 // Non-Variadic Operands: Location, Offset, Variable, Expression 2378 // Variadic Operands: Variable, Expression, Locations... 2379 if (Orig.isNonListDebugValue()) 2380 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2381 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2382 if (Orig.isDebugValueList()) { 2383 for (const MachineOperand &Op : Orig.debug_operands()) 2384 if (is_contained(SpilledOperands, &Op)) 2385 NewMI.addFrameIndex(FrameIndex); 2386 else 2387 NewMI.add(MachineOperand(Op)); 2388 } 2389 return NewMI; 2390 } 2391 2392 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, 2393 Register Reg) { 2394 const DIExpression *Expr = computeExprForSpill(Orig, Reg); 2395 if (Orig.isNonListDebugValue()) 2396 Orig.getDebugOffset().ChangeToImmediate(0U); 2397 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) 2398 Op.ChangeToFrameIndex(FrameIndex); 2399 Orig.getDebugExpressionOp().setMetadata(Expr); 2400 } 2401 2402 void MachineInstr::collectDebugValues( 2403 SmallVectorImpl<MachineInstr *> &DbgValues) { 2404 MachineInstr &MI = *this; 2405 if (!MI.getOperand(0).isReg()) 2406 return; 2407 2408 MachineBasicBlock::iterator DI = MI; ++DI; 2409 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2410 DI != DE; ++DI) { 2411 if (!DI->isDebugValue()) 2412 return; 2413 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) 2414 DbgValues.push_back(&*DI); 2415 } 2416 } 2417 2418 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2419 // Collect matching debug values. 2420 SmallVector<MachineInstr *, 2> DbgValues; 2421 2422 if (!getOperand(0).isReg()) 2423 return; 2424 2425 Register DefReg = getOperand(0).getReg(); 2426 auto *MRI = getRegInfo(); 2427 for (auto &MO : MRI->use_operands(DefReg)) { 2428 auto *DI = MO.getParent(); 2429 if (!DI->isDebugValue()) 2430 continue; 2431 if (DI->hasDebugOperandForReg(DefReg)) { 2432 DbgValues.push_back(DI); 2433 } 2434 } 2435 2436 // Propagate Reg to debug value instructions. 2437 for (auto *DBI : DbgValues) 2438 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) 2439 Op.setReg(Reg); 2440 } 2441 2442 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2443 2444 static LocationSize getSpillSlotSize(const MMOList &Accesses, 2445 const MachineFrameInfo &MFI) { 2446 uint64_t Size = 0; 2447 for (const auto *A : Accesses) { 2448 if (MFI.isSpillSlotObjectIndex( 2449 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2450 ->getFrameIndex())) { 2451 LocationSize S = A->getSize(); 2452 if (!S.hasValue()) 2453 return LocationSize::beforeOrAfterPointer(); 2454 Size += S.getValue(); 2455 } 2456 } 2457 return Size; 2458 } 2459 2460 std::optional<LocationSize> 2461 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2462 int FI; 2463 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2464 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2465 if (MFI.isSpillSlotObjectIndex(FI)) 2466 return (*memoperands_begin())->getSize(); 2467 } 2468 return std::nullopt; 2469 } 2470 2471 std::optional<LocationSize> 2472 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2473 MMOList Accesses; 2474 if (TII->hasStoreToStackSlot(*this, Accesses)) 2475 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2476 return std::nullopt; 2477 } 2478 2479 std::optional<LocationSize> 2480 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2481 int FI; 2482 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2483 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2484 if (MFI.isSpillSlotObjectIndex(FI)) 2485 return (*memoperands_begin())->getSize(); 2486 } 2487 return std::nullopt; 2488 } 2489 2490 std::optional<LocationSize> 2491 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2492 MMOList Accesses; 2493 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2494 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2495 return std::nullopt; 2496 } 2497 2498 unsigned MachineInstr::getDebugInstrNum() { 2499 if (DebugInstrNum == 0) 2500 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2501 return DebugInstrNum; 2502 } 2503 2504 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { 2505 if (DebugInstrNum == 0) 2506 DebugInstrNum = MF.getNewDebugInstrNum(); 2507 return DebugInstrNum; 2508 } 2509 2510 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const { 2511 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2512 getRegInfo()->getType(getOperand(1).getReg())); 2513 } 2514 2515 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const { 2516 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2517 getRegInfo()->getType(getOperand(1).getReg()), 2518 getRegInfo()->getType(getOperand(2).getReg())); 2519 } 2520 2521 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const { 2522 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2523 getRegInfo()->getType(getOperand(1).getReg()), 2524 getRegInfo()->getType(getOperand(2).getReg()), 2525 getRegInfo()->getType(getOperand(3).getReg())); 2526 } 2527 2528 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const { 2529 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2530 getRegInfo()->getType(getOperand(1).getReg()), 2531 getRegInfo()->getType(getOperand(2).getReg()), 2532 getRegInfo()->getType(getOperand(3).getReg()), 2533 getRegInfo()->getType(getOperand(4).getReg())); 2534 } 2535 2536 std::tuple<Register, LLT, Register, LLT> 2537 MachineInstr::getFirst2RegLLTs() const { 2538 Register Reg0 = getOperand(0).getReg(); 2539 Register Reg1 = getOperand(1).getReg(); 2540 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2541 getRegInfo()->getType(Reg1)); 2542 } 2543 2544 std::tuple<Register, LLT, Register, LLT, Register, LLT> 2545 MachineInstr::getFirst3RegLLTs() const { 2546 Register Reg0 = getOperand(0).getReg(); 2547 Register Reg1 = getOperand(1).getReg(); 2548 Register Reg2 = getOperand(2).getReg(); 2549 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2550 getRegInfo()->getType(Reg1), Reg2, 2551 getRegInfo()->getType(Reg2)); 2552 } 2553 2554 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT> 2555 MachineInstr::getFirst4RegLLTs() const { 2556 Register Reg0 = getOperand(0).getReg(); 2557 Register Reg1 = getOperand(1).getReg(); 2558 Register Reg2 = getOperand(2).getReg(); 2559 Register Reg3 = getOperand(3).getReg(); 2560 return std::tuple( 2561 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2562 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3)); 2563 } 2564 2565 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register, 2566 LLT> 2567 MachineInstr::getFirst5RegLLTs() const { 2568 Register Reg0 = getOperand(0).getReg(); 2569 Register Reg1 = getOperand(1).getReg(); 2570 Register Reg2 = getOperand(2).getReg(); 2571 Register Reg3 = getOperand(3).getReg(); 2572 Register Reg4 = getOperand(4).getReg(); 2573 return std::tuple( 2574 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2575 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3), 2576 Reg4, getRegInfo()->getType(Reg4)); 2577 } 2578 2579 void MachineInstr::insert(mop_iterator InsertBefore, 2580 ArrayRef<MachineOperand> Ops) { 2581 assert(InsertBefore != nullptr && "invalid iterator"); 2582 assert(InsertBefore->getParent() == this && 2583 "iterator points to operand of other inst"); 2584 if (Ops.empty()) 2585 return; 2586 2587 // Do one pass to untie operands. 2588 SmallDenseMap<unsigned, unsigned> TiedOpIndices; 2589 for (const MachineOperand &MO : operands()) { 2590 if (MO.isReg() && MO.isTied()) { 2591 unsigned OpNo = getOperandNo(&MO); 2592 unsigned TiedTo = findTiedOperandIdx(OpNo); 2593 TiedOpIndices[OpNo] = TiedTo; 2594 untieRegOperand(OpNo); 2595 } 2596 } 2597 2598 unsigned OpIdx = getOperandNo(InsertBefore); 2599 unsigned NumOperands = getNumOperands(); 2600 unsigned OpsToMove = NumOperands - OpIdx; 2601 2602 SmallVector<MachineOperand> MovingOps; 2603 MovingOps.reserve(OpsToMove); 2604 2605 for (unsigned I = 0; I < OpsToMove; ++I) { 2606 MovingOps.emplace_back(getOperand(OpIdx)); 2607 removeOperand(OpIdx); 2608 } 2609 for (const MachineOperand &MO : Ops) 2610 addOperand(MO); 2611 for (const MachineOperand &OpMoved : MovingOps) 2612 addOperand(OpMoved); 2613 2614 // Re-tie operands. 2615 for (auto [Tie1, Tie2] : TiedOpIndices) { 2616 if (Tie1 >= OpIdx) 2617 Tie1 += Ops.size(); 2618 if (Tie2 >= OpIdx) 2619 Tie2 += Ops.size(); 2620 tieOperands(Tie1, Tie2); 2621 } 2622 } 2623 2624 bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId) const { 2625 assert(OpId && "expected non-zero operand id"); 2626 assert(isInlineAsm() && "should only be used on inline asm"); 2627 2628 if (!getOperand(OpId).isReg()) 2629 return false; 2630 2631 const MachineOperand &MD = getOperand(OpId - 1); 2632 if (!MD.isImm()) 2633 return false; 2634 2635 InlineAsm::Flag F(MD.getImm()); 2636 if (F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) 2637 return F.getRegMayBeFolded(); 2638 return false; 2639 } 2640