1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallBitVector.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineInstrBundle.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/PseudoSourceValue.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DebugInfoMetadata.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/ModuleSlotTracker.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/MC/MCInstrDesc.h" 56 #include "llvm/MC/MCRegisterInfo.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/LowLevelTypeImpl.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetIntrinsicInfo.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <cstring> 73 #include <iterator> 74 #include <utility> 75 76 using namespace llvm; 77 78 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 79 if (const MachineBasicBlock *MBB = MI.getParent()) 80 if (const MachineFunction *MF = MBB->getParent()) 81 return MF; 82 return nullptr; 83 } 84 85 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 86 // it. 87 static void tryToGetTargetInfo(const MachineInstr &MI, 88 const TargetRegisterInfo *&TRI, 89 const MachineRegisterInfo *&MRI, 90 const TargetIntrinsicInfo *&IntrinsicInfo, 91 const TargetInstrInfo *&TII) { 92 93 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 94 TRI = MF->getSubtarget().getRegisterInfo(); 95 MRI = &MF->getRegInfo(); 96 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 97 TII = MF->getSubtarget().getInstrInfo(); 98 } 99 } 100 101 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 102 if (MCID->ImplicitDefs) 103 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 104 ++ImpDefs) 105 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 106 if (MCID->ImplicitUses) 107 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 108 ++ImpUses) 109 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 110 } 111 112 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 113 /// implicit operands. It reserves space for the number of operands specified by 114 /// the MCInstrDesc. 115 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 116 DebugLoc dl, bool NoImp) 117 : MCID(&tid), debugLoc(std::move(dl)) { 118 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 119 120 // Reserve space for the expected number of operands. 121 if (unsigned NumOps = MCID->getNumOperands() + 122 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 123 CapOperands = OperandCapacity::get(NumOps); 124 Operands = MF.allocateOperandArray(CapOperands); 125 } 126 127 if (!NoImp) 128 addImplicitDefUseOperands(MF); 129 } 130 131 /// MachineInstr ctor - Copies MachineInstr arg exactly 132 /// 133 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 134 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) { 135 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 136 137 CapOperands = OperandCapacity::get(MI.getNumOperands()); 138 Operands = MF.allocateOperandArray(CapOperands); 139 140 // Copy operands. 141 for (const MachineOperand &MO : MI.operands()) 142 addOperand(MF, MO); 143 144 // Copy all the sensible flags. 145 setFlags(MI.Flags); 146 } 147 148 /// getRegInfo - If this instruction is embedded into a MachineFunction, 149 /// return the MachineRegisterInfo object for the current function, otherwise 150 /// return null. 151 MachineRegisterInfo *MachineInstr::getRegInfo() { 152 if (MachineBasicBlock *MBB = getParent()) 153 return &MBB->getParent()->getRegInfo(); 154 return nullptr; 155 } 156 157 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 158 /// this instruction from their respective use lists. This requires that the 159 /// operands already be on their use lists. 160 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 161 for (MachineOperand &MO : operands()) 162 if (MO.isReg()) 163 MRI.removeRegOperandFromUseList(&MO); 164 } 165 166 /// AddRegOperandsToUseLists - Add all of the register operands in 167 /// this instruction from their respective use lists. This requires that the 168 /// operands not be on their use lists yet. 169 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 170 for (MachineOperand &MO : operands()) 171 if (MO.isReg()) 172 MRI.addRegOperandToUseList(&MO); 173 } 174 175 void MachineInstr::addOperand(const MachineOperand &Op) { 176 MachineBasicBlock *MBB = getParent(); 177 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 178 MachineFunction *MF = MBB->getParent(); 179 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 180 addOperand(*MF, Op); 181 } 182 183 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 184 /// ranges. If MRI is non-null also update use-def chains. 185 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 186 unsigned NumOps, MachineRegisterInfo *MRI) { 187 if (MRI) 188 return MRI->moveOperands(Dst, Src, NumOps); 189 190 // MachineOperand is a trivially copyable type so we can just use memmove. 191 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 192 } 193 194 /// addOperand - Add the specified operand to the instruction. If it is an 195 /// implicit operand, it is added to the end of the operand list. If it is 196 /// an explicit operand it is added at the end of the explicit operand list 197 /// (before the first implicit operand). 198 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 199 assert(MCID && "Cannot add operands before providing an instr descriptor"); 200 201 // Check if we're adding one of our existing operands. 202 if (&Op >= Operands && &Op < Operands + NumOperands) { 203 // This is unusual: MI->addOperand(MI->getOperand(i)). 204 // If adding Op requires reallocating or moving existing operands around, 205 // the Op reference could go stale. Support it by copying Op. 206 MachineOperand CopyOp(Op); 207 return addOperand(MF, CopyOp); 208 } 209 210 // Find the insert location for the new operand. Implicit registers go at 211 // the end, everything else goes before the implicit regs. 212 // 213 // FIXME: Allow mixed explicit and implicit operands on inline asm. 214 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 215 // implicit-defs, but they must not be moved around. See the FIXME in 216 // InstrEmitter.cpp. 217 unsigned OpNo = getNumOperands(); 218 bool isImpReg = Op.isReg() && Op.isImplicit(); 219 if (!isImpReg && !isInlineAsm()) { 220 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 221 --OpNo; 222 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 223 } 224 } 225 226 #ifndef NDEBUG 227 bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || 228 Op.getType() == MachineOperand::MO_MCSymbol; 229 // OpNo now points as the desired insertion point. Unless this is a variadic 230 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 231 // RegMask operands go between the explicit and implicit operands. 232 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 233 OpNo < MCID->getNumOperands() || isDebugOp) && 234 "Trying to add an operand to a machine instr that is already done!"); 235 #endif 236 237 MachineRegisterInfo *MRI = getRegInfo(); 238 239 // Determine if the Operands array needs to be reallocated. 240 // Save the old capacity and operand array. 241 OperandCapacity OldCap = CapOperands; 242 MachineOperand *OldOperands = Operands; 243 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 244 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 245 Operands = MF.allocateOperandArray(CapOperands); 246 // Move the operands before the insertion point. 247 if (OpNo) 248 moveOperands(Operands, OldOperands, OpNo, MRI); 249 } 250 251 // Move the operands following the insertion point. 252 if (OpNo != NumOperands) 253 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 254 MRI); 255 ++NumOperands; 256 257 // Deallocate the old operand array. 258 if (OldOperands != Operands && OldOperands) 259 MF.deallocateOperandArray(OldCap, OldOperands); 260 261 // Copy Op into place. It still needs to be inserted into the MRI use lists. 262 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 263 NewMO->ParentMI = this; 264 265 // When adding a register operand, tell MRI about it. 266 if (NewMO->isReg()) { 267 // Ensure isOnRegUseList() returns false, regardless of Op's status. 268 NewMO->Contents.Reg.Prev = nullptr; 269 // Ignore existing ties. This is not a property that can be copied. 270 NewMO->TiedTo = 0; 271 // Add the new operand to MRI, but only for instructions in an MBB. 272 if (MRI) 273 MRI->addRegOperandToUseList(NewMO); 274 // The MCID operand information isn't accurate until we start adding 275 // explicit operands. The implicit operands are added first, then the 276 // explicits are inserted before them. 277 if (!isImpReg) { 278 // Tie uses to defs as indicated in MCInstrDesc. 279 if (NewMO->isUse()) { 280 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 281 if (DefIdx != -1) 282 tieOperands(DefIdx, OpNo); 283 } 284 // If the register operand is flagged as early, mark the operand as such. 285 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 286 NewMO->setIsEarlyClobber(true); 287 } 288 } 289 } 290 291 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 292 /// fewer operand than it started with. 293 /// 294 void MachineInstr::RemoveOperand(unsigned OpNo) { 295 assert(OpNo < getNumOperands() && "Invalid operand number"); 296 untieRegOperand(OpNo); 297 298 #ifndef NDEBUG 299 // Moving tied operands would break the ties. 300 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 301 if (Operands[i].isReg()) 302 assert(!Operands[i].isTied() && "Cannot move tied operands"); 303 #endif 304 305 MachineRegisterInfo *MRI = getRegInfo(); 306 if (MRI && Operands[OpNo].isReg()) 307 MRI->removeRegOperandFromUseList(Operands + OpNo); 308 309 // Don't call the MachineOperand destructor. A lot of this code depends on 310 // MachineOperand having a trivial destructor anyway, and adding a call here 311 // wouldn't make it 'destructor-correct'. 312 313 if (unsigned N = NumOperands - 1 - OpNo) 314 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 315 --NumOperands; 316 } 317 318 void MachineInstr::dropMemRefs(MachineFunction &MF) { 319 if (memoperands_empty()) 320 return; 321 322 // See if we can just drop all of our extra info. 323 if (!getPreInstrSymbol() && !getPostInstrSymbol()) { 324 Info.clear(); 325 return; 326 } 327 if (!getPostInstrSymbol()) { 328 Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol()); 329 return; 330 } 331 if (!getPreInstrSymbol()) { 332 Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol()); 333 return; 334 } 335 336 // Otherwise allocate a fresh extra info with just these symbols. 337 Info.set<EIIK_OutOfLine>( 338 MF.createMIExtraInfo({}, getPreInstrSymbol(), getPostInstrSymbol())); 339 } 340 341 void MachineInstr::setMemRefs(MachineFunction &MF, 342 ArrayRef<MachineMemOperand *> MMOs) { 343 if (MMOs.empty()) { 344 dropMemRefs(MF); 345 return; 346 } 347 348 // Try to store a single MMO inline. 349 if (MMOs.size() == 1 && !getPreInstrSymbol() && !getPostInstrSymbol()) { 350 Info.set<EIIK_MMO>(MMOs[0]); 351 return; 352 } 353 354 // Otherwise create an extra info struct with all of our info. 355 Info.set<EIIK_OutOfLine>( 356 MF.createMIExtraInfo(MMOs, getPreInstrSymbol(), getPostInstrSymbol())); 357 } 358 359 void MachineInstr::addMemOperand(MachineFunction &MF, 360 MachineMemOperand *MO) { 361 SmallVector<MachineMemOperand *, 2> MMOs; 362 MMOs.append(memoperands_begin(), memoperands_end()); 363 MMOs.push_back(MO); 364 setMemRefs(MF, MMOs); 365 } 366 367 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 368 if (this == &MI) 369 // Nothing to do for a self-clone! 370 return; 371 372 assert(&MF == MI.getMF() && 373 "Invalid machine functions when cloning memory refrences!"); 374 // See if we can just steal the extra info already allocated for the 375 // instruction. We can do this whenever the pre- and post-instruction symbols 376 // are the same (including null). 377 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 378 getPostInstrSymbol() == MI.getPostInstrSymbol()) { 379 Info = MI.Info; 380 return; 381 } 382 383 // Otherwise, fall back on a copy-based clone. 384 setMemRefs(MF, MI.memoperands()); 385 } 386 387 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 388 /// identical. 389 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 390 ArrayRef<MachineMemOperand *> RHS) { 391 if (LHS.size() != RHS.size()) 392 return false; 393 394 auto LHSPointees = make_pointee_range(LHS); 395 auto RHSPointees = make_pointee_range(RHS); 396 return std::equal(LHSPointees.begin(), LHSPointees.end(), 397 RHSPointees.begin()); 398 } 399 400 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 401 ArrayRef<const MachineInstr *> MIs) { 402 // Try handling easy numbers of MIs with simpler mechanisms. 403 if (MIs.empty()) { 404 dropMemRefs(MF); 405 return; 406 } 407 if (MIs.size() == 1) { 408 cloneMemRefs(MF, *MIs[0]); 409 return; 410 } 411 // Because an empty memoperands list provides *no* information and must be 412 // handled conservatively (assuming the instruction can do anything), the only 413 // way to merge with it is to drop all other memoperands. 414 if (MIs[0]->memoperands_empty()) { 415 dropMemRefs(MF); 416 return; 417 } 418 419 // Handle the general case. 420 SmallVector<MachineMemOperand *, 2> MergedMMOs; 421 // Start with the first instruction. 422 assert(&MF == MIs[0]->getMF() && 423 "Invalid machine functions when cloning memory references!"); 424 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 425 // Now walk all the other instructions and accumulate any different MMOs. 426 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 427 assert(&MF == MI.getMF() && 428 "Invalid machine functions when cloning memory references!"); 429 430 // Skip MIs with identical operands to the first. This is a somewhat 431 // arbitrary hack but will catch common cases without being quadratic. 432 // TODO: We could fully implement merge semantics here if needed. 433 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 434 continue; 435 436 // Because an empty memoperands list provides *no* information and must be 437 // handled conservatively (assuming the instruction can do anything), the 438 // only way to merge with it is to drop all other memoperands. 439 if (MI.memoperands_empty()) { 440 dropMemRefs(MF); 441 return; 442 } 443 444 // Otherwise accumulate these into our temporary buffer of the merged state. 445 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 446 } 447 448 setMemRefs(MF, MergedMMOs); 449 } 450 451 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 452 MCSymbol *OldSymbol = getPreInstrSymbol(); 453 if (OldSymbol == Symbol) 454 return; 455 if (OldSymbol && !Symbol) { 456 // We're removing a symbol rather than adding one. Try to clean up any 457 // extra info carried around. 458 if (Info.is<EIIK_PreInstrSymbol>()) { 459 Info.clear(); 460 return; 461 } 462 463 if (memoperands_empty()) { 464 assert(getPostInstrSymbol() && 465 "Should never have only a single symbol allocated out-of-line!"); 466 Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol()); 467 return; 468 } 469 470 // Otherwise fallback on the generic update. 471 } else if (!Info || Info.is<EIIK_PreInstrSymbol>()) { 472 // If we don't have any other extra info, we can store this inline. 473 Info.set<EIIK_PreInstrSymbol>(Symbol); 474 return; 475 } 476 477 // Otherwise, allocate a full new set of extra info. 478 // FIXME: Maybe we should make the symbols in the extra info mutable? 479 Info.set<EIIK_OutOfLine>( 480 MF.createMIExtraInfo(memoperands(), Symbol, getPostInstrSymbol())); 481 } 482 483 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 484 MCSymbol *OldSymbol = getPostInstrSymbol(); 485 if (OldSymbol == Symbol) 486 return; 487 if (OldSymbol && !Symbol) { 488 // We're removing a symbol rather than adding one. Try to clean up any 489 // extra info carried around. 490 if (Info.is<EIIK_PostInstrSymbol>()) { 491 Info.clear(); 492 return; 493 } 494 495 if (memoperands_empty()) { 496 assert(getPreInstrSymbol() && 497 "Should never have only a single symbol allocated out-of-line!"); 498 Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol()); 499 return; 500 } 501 502 // Otherwise fallback on the generic update. 503 } else if (!Info || Info.is<EIIK_PostInstrSymbol>()) { 504 // If we don't have any other extra info, we can store this inline. 505 Info.set<EIIK_PostInstrSymbol>(Symbol); 506 return; 507 } 508 509 // Otherwise, allocate a full new set of extra info. 510 // FIXME: Maybe we should make the symbols in the extra info mutable? 511 Info.set<EIIK_OutOfLine>( 512 MF.createMIExtraInfo(memoperands(), getPreInstrSymbol(), Symbol)); 513 } 514 515 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 516 // For now, the just return the union of the flags. If the flags get more 517 // complicated over time, we might need more logic here. 518 return getFlags() | Other.getFlags(); 519 } 520 521 void MachineInstr::copyIRFlags(const Instruction &I) { 522 // Copy the wrapping flags. 523 if (const OverflowingBinaryOperator *OB = 524 dyn_cast<OverflowingBinaryOperator>(&I)) { 525 if (OB->hasNoSignedWrap()) 526 setFlag(MachineInstr::MIFlag::NoSWrap); 527 if (OB->hasNoUnsignedWrap()) 528 setFlag(MachineInstr::MIFlag::NoUWrap); 529 } 530 531 // Copy the exact flag. 532 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 533 if (PE->isExact()) 534 setFlag(MachineInstr::MIFlag::IsExact); 535 536 // Copy the fast-math flags. 537 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 538 const FastMathFlags Flags = FP->getFastMathFlags(); 539 if (Flags.noNaNs()) 540 setFlag(MachineInstr::MIFlag::FmNoNans); 541 if (Flags.noInfs()) 542 setFlag(MachineInstr::MIFlag::FmNoInfs); 543 if (Flags.noSignedZeros()) 544 setFlag(MachineInstr::MIFlag::FmNsz); 545 if (Flags.allowReciprocal()) 546 setFlag(MachineInstr::MIFlag::FmArcp); 547 if (Flags.allowContract()) 548 setFlag(MachineInstr::MIFlag::FmContract); 549 if (Flags.approxFunc()) 550 setFlag(MachineInstr::MIFlag::FmAfn); 551 if (Flags.allowReassoc()) 552 setFlag(MachineInstr::MIFlag::FmReassoc); 553 } 554 } 555 556 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 557 assert(!isBundledWithPred() && "Must be called on bundle header"); 558 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 559 if (MII->getDesc().getFlags() & Mask) { 560 if (Type == AnyInBundle) 561 return true; 562 } else { 563 if (Type == AllInBundle && !MII->isBundle()) 564 return false; 565 } 566 // This was the last instruction in the bundle. 567 if (!MII->isBundledWithSucc()) 568 return Type == AllInBundle; 569 } 570 } 571 572 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 573 MICheckType Check) const { 574 // If opcodes or number of operands are not the same then the two 575 // instructions are obviously not identical. 576 if (Other.getOpcode() != getOpcode() || 577 Other.getNumOperands() != getNumOperands()) 578 return false; 579 580 if (isBundle()) { 581 // We have passed the test above that both instructions have the same 582 // opcode, so we know that both instructions are bundles here. Let's compare 583 // MIs inside the bundle. 584 assert(Other.isBundle() && "Expected that both instructions are bundles."); 585 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 586 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 587 // Loop until we analysed the last intruction inside at least one of the 588 // bundles. 589 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 590 ++I1; 591 ++I2; 592 if (!I1->isIdenticalTo(*I2, Check)) 593 return false; 594 } 595 // If we've reached the end of just one of the two bundles, but not both, 596 // the instructions are not identical. 597 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 598 return false; 599 } 600 601 // Check operands to make sure they match. 602 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 603 const MachineOperand &MO = getOperand(i); 604 const MachineOperand &OMO = Other.getOperand(i); 605 if (!MO.isReg()) { 606 if (!MO.isIdenticalTo(OMO)) 607 return false; 608 continue; 609 } 610 611 // Clients may or may not want to ignore defs when testing for equality. 612 // For example, machine CSE pass only cares about finding common 613 // subexpressions, so it's safe to ignore virtual register defs. 614 if (MO.isDef()) { 615 if (Check == IgnoreDefs) 616 continue; 617 else if (Check == IgnoreVRegDefs) { 618 if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) || 619 !TargetRegisterInfo::isVirtualRegister(OMO.getReg())) 620 if (!MO.isIdenticalTo(OMO)) 621 return false; 622 } else { 623 if (!MO.isIdenticalTo(OMO)) 624 return false; 625 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 626 return false; 627 } 628 } else { 629 if (!MO.isIdenticalTo(OMO)) 630 return false; 631 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 632 return false; 633 } 634 } 635 // If DebugLoc does not match then two debug instructions are not identical. 636 if (isDebugInstr()) 637 if (getDebugLoc() && Other.getDebugLoc() && 638 getDebugLoc() != Other.getDebugLoc()) 639 return false; 640 return true; 641 } 642 643 const MachineFunction *MachineInstr::getMF() const { 644 return getParent()->getParent(); 645 } 646 647 MachineInstr *MachineInstr::removeFromParent() { 648 assert(getParent() && "Not embedded in a basic block!"); 649 return getParent()->remove(this); 650 } 651 652 MachineInstr *MachineInstr::removeFromBundle() { 653 assert(getParent() && "Not embedded in a basic block!"); 654 return getParent()->remove_instr(this); 655 } 656 657 void MachineInstr::eraseFromParent() { 658 assert(getParent() && "Not embedded in a basic block!"); 659 getParent()->erase(this); 660 } 661 662 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 663 assert(getParent() && "Not embedded in a basic block!"); 664 MachineBasicBlock *MBB = getParent(); 665 MachineFunction *MF = MBB->getParent(); 666 assert(MF && "Not embedded in a function!"); 667 668 MachineInstr *MI = (MachineInstr *)this; 669 MachineRegisterInfo &MRI = MF->getRegInfo(); 670 671 for (const MachineOperand &MO : MI->operands()) { 672 if (!MO.isReg() || !MO.isDef()) 673 continue; 674 unsigned Reg = MO.getReg(); 675 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 676 continue; 677 MRI.markUsesInDebugValueAsUndef(Reg); 678 } 679 MI->eraseFromParent(); 680 } 681 682 void MachineInstr::eraseFromBundle() { 683 assert(getParent() && "Not embedded in a basic block!"); 684 getParent()->erase_instr(this); 685 } 686 687 unsigned MachineInstr::getNumExplicitOperands() const { 688 unsigned NumOperands = MCID->getNumOperands(); 689 if (!MCID->isVariadic()) 690 return NumOperands; 691 692 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 693 const MachineOperand &MO = getOperand(I); 694 // The operands must always be in the following order: 695 // - explicit reg defs, 696 // - other explicit operands (reg uses, immediates, etc.), 697 // - implicit reg defs 698 // - implicit reg uses 699 if (MO.isReg() && MO.isImplicit()) 700 break; 701 ++NumOperands; 702 } 703 return NumOperands; 704 } 705 706 unsigned MachineInstr::getNumExplicitDefs() const { 707 unsigned NumDefs = MCID->getNumDefs(); 708 if (!MCID->isVariadic()) 709 return NumDefs; 710 711 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 712 const MachineOperand &MO = getOperand(I); 713 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 714 break; 715 ++NumDefs; 716 } 717 return NumDefs; 718 } 719 720 void MachineInstr::bundleWithPred() { 721 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 722 setFlag(BundledPred); 723 MachineBasicBlock::instr_iterator Pred = getIterator(); 724 --Pred; 725 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 726 Pred->setFlag(BundledSucc); 727 } 728 729 void MachineInstr::bundleWithSucc() { 730 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 731 setFlag(BundledSucc); 732 MachineBasicBlock::instr_iterator Succ = getIterator(); 733 ++Succ; 734 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 735 Succ->setFlag(BundledPred); 736 } 737 738 void MachineInstr::unbundleFromPred() { 739 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 740 clearFlag(BundledPred); 741 MachineBasicBlock::instr_iterator Pred = getIterator(); 742 --Pred; 743 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 744 Pred->clearFlag(BundledSucc); 745 } 746 747 void MachineInstr::unbundleFromSucc() { 748 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 749 clearFlag(BundledSucc); 750 MachineBasicBlock::instr_iterator Succ = getIterator(); 751 ++Succ; 752 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 753 Succ->clearFlag(BundledPred); 754 } 755 756 bool MachineInstr::isStackAligningInlineAsm() const { 757 if (isInlineAsm()) { 758 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 759 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 760 return true; 761 } 762 return false; 763 } 764 765 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 766 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 767 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 768 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 769 } 770 771 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 772 unsigned *GroupNo) const { 773 assert(isInlineAsm() && "Expected an inline asm instruction"); 774 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 775 776 // Ignore queries about the initial operands. 777 if (OpIdx < InlineAsm::MIOp_FirstOperand) 778 return -1; 779 780 unsigned Group = 0; 781 unsigned NumOps; 782 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 783 i += NumOps) { 784 const MachineOperand &FlagMO = getOperand(i); 785 // If we reach the implicit register operands, stop looking. 786 if (!FlagMO.isImm()) 787 return -1; 788 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 789 if (i + NumOps > OpIdx) { 790 if (GroupNo) 791 *GroupNo = Group; 792 return i; 793 } 794 ++Group; 795 } 796 return -1; 797 } 798 799 const DILabel *MachineInstr::getDebugLabel() const { 800 assert(isDebugLabel() && "not a DBG_LABEL"); 801 return cast<DILabel>(getOperand(0).getMetadata()); 802 } 803 804 const DILocalVariable *MachineInstr::getDebugVariable() const { 805 assert(isDebugValue() && "not a DBG_VALUE"); 806 return cast<DILocalVariable>(getOperand(2).getMetadata()); 807 } 808 809 const DIExpression *MachineInstr::getDebugExpression() const { 810 assert(isDebugValue() && "not a DBG_VALUE"); 811 return cast<DIExpression>(getOperand(3).getMetadata()); 812 } 813 814 const TargetRegisterClass* 815 MachineInstr::getRegClassConstraint(unsigned OpIdx, 816 const TargetInstrInfo *TII, 817 const TargetRegisterInfo *TRI) const { 818 assert(getParent() && "Can't have an MBB reference here!"); 819 assert(getMF() && "Can't have an MF reference here!"); 820 const MachineFunction &MF = *getMF(); 821 822 // Most opcodes have fixed constraints in their MCInstrDesc. 823 if (!isInlineAsm()) 824 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 825 826 if (!getOperand(OpIdx).isReg()) 827 return nullptr; 828 829 // For tied uses on inline asm, get the constraint from the def. 830 unsigned DefIdx; 831 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 832 OpIdx = DefIdx; 833 834 // Inline asm stores register class constraints in the flag word. 835 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 836 if (FlagIdx < 0) 837 return nullptr; 838 839 unsigned Flag = getOperand(FlagIdx).getImm(); 840 unsigned RCID; 841 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 842 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 843 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 844 InlineAsm::hasRegClassConstraint(Flag, RCID)) 845 return TRI->getRegClass(RCID); 846 847 // Assume that all registers in a memory operand are pointers. 848 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 849 return TRI->getPointerRegClass(MF); 850 851 return nullptr; 852 } 853 854 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 855 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 856 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 857 // Check every operands inside the bundle if we have 858 // been asked to. 859 if (ExploreBundle) 860 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 861 ++OpndIt) 862 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 863 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 864 else 865 // Otherwise, just check the current operands. 866 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 867 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 868 return CurRC; 869 } 870 871 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 872 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 873 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 874 assert(CurRC && "Invalid initial register class"); 875 // Check if Reg is constrained by some of its use/def from MI. 876 const MachineOperand &MO = getOperand(OpIdx); 877 if (!MO.isReg() || MO.getReg() != Reg) 878 return CurRC; 879 // If yes, accumulate the constraints through the operand. 880 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 881 } 882 883 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 884 unsigned OpIdx, const TargetRegisterClass *CurRC, 885 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 886 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 887 const MachineOperand &MO = getOperand(OpIdx); 888 assert(MO.isReg() && 889 "Cannot get register constraints for non-register operand"); 890 assert(CurRC && "Invalid initial register class"); 891 if (unsigned SubIdx = MO.getSubReg()) { 892 if (OpRC) 893 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 894 else 895 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 896 } else if (OpRC) 897 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 898 return CurRC; 899 } 900 901 /// Return the number of instructions inside the MI bundle, not counting the 902 /// header instruction. 903 unsigned MachineInstr::getBundleSize() const { 904 MachineBasicBlock::const_instr_iterator I = getIterator(); 905 unsigned Size = 0; 906 while (I->isBundledWithSucc()) { 907 ++Size; 908 ++I; 909 } 910 return Size; 911 } 912 913 /// Returns true if the MachineInstr has an implicit-use operand of exactly 914 /// the given register (not considering sub/super-registers). 915 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 916 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 917 const MachineOperand &MO = getOperand(i); 918 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 919 return true; 920 } 921 return false; 922 } 923 924 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 925 /// the specific register or -1 if it is not found. It further tightens 926 /// the search criteria to a use that kills the register if isKill is true. 927 int MachineInstr::findRegisterUseOperandIdx( 928 unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { 929 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 930 const MachineOperand &MO = getOperand(i); 931 if (!MO.isReg() || !MO.isUse()) 932 continue; 933 unsigned MOReg = MO.getReg(); 934 if (!MOReg) 935 continue; 936 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 937 if (!isKill || MO.isKill()) 938 return i; 939 } 940 return -1; 941 } 942 943 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 944 /// indicating if this instruction reads or writes Reg. This also considers 945 /// partial defines. 946 std::pair<bool,bool> 947 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 948 SmallVectorImpl<unsigned> *Ops) const { 949 bool PartDef = false; // Partial redefine. 950 bool FullDef = false; // Full define. 951 bool Use = false; 952 953 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 954 const MachineOperand &MO = getOperand(i); 955 if (!MO.isReg() || MO.getReg() != Reg) 956 continue; 957 if (Ops) 958 Ops->push_back(i); 959 if (MO.isUse()) 960 Use |= !MO.isUndef(); 961 else if (MO.getSubReg() && !MO.isUndef()) 962 // A partial def undef doesn't count as reading the register. 963 PartDef = true; 964 else 965 FullDef = true; 966 } 967 // A partial redefine uses Reg unless there is also a full define. 968 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 969 } 970 971 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 972 /// the specified register or -1 if it is not found. If isDead is true, defs 973 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 974 /// also checks if there is a def of a super-register. 975 int 976 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 977 const TargetRegisterInfo *TRI) const { 978 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 979 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 980 const MachineOperand &MO = getOperand(i); 981 // Accept regmask operands when Overlap is set. 982 // Ignore them when looking for a specific def operand (Overlap == false). 983 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 984 return i; 985 if (!MO.isReg() || !MO.isDef()) 986 continue; 987 unsigned MOReg = MO.getReg(); 988 bool Found = (MOReg == Reg); 989 if (!Found && TRI && isPhys && 990 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 991 if (Overlap) 992 Found = TRI->regsOverlap(MOReg, Reg); 993 else 994 Found = TRI->isSubRegister(MOReg, Reg); 995 } 996 if (Found && (!isDead || MO.isDead())) 997 return i; 998 } 999 return -1; 1000 } 1001 1002 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1003 /// operand list that is used to represent the predicate. It returns -1 if 1004 /// none is found. 1005 int MachineInstr::findFirstPredOperandIdx() const { 1006 // Don't call MCID.findFirstPredOperandIdx() because this variant 1007 // is sometimes called on an instruction that's not yet complete, and 1008 // so the number of operands is less than the MCID indicates. In 1009 // particular, the PTX target does this. 1010 const MCInstrDesc &MCID = getDesc(); 1011 if (MCID.isPredicable()) { 1012 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1013 if (MCID.OpInfo[i].isPredicate()) 1014 return i; 1015 } 1016 1017 return -1; 1018 } 1019 1020 // MachineOperand::TiedTo is 4 bits wide. 1021 const unsigned TiedMax = 15; 1022 1023 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1024 /// 1025 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1026 /// field. TiedTo can have these values: 1027 /// 1028 /// 0: Operand is not tied to anything. 1029 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1030 /// TiedMax: Tied to an operand >= TiedMax-1. 1031 /// 1032 /// The tied def must be one of the first TiedMax operands on a normal 1033 /// instruction. INLINEASM instructions allow more tied defs. 1034 /// 1035 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1036 MachineOperand &DefMO = getOperand(DefIdx); 1037 MachineOperand &UseMO = getOperand(UseIdx); 1038 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1039 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1040 assert(!DefMO.isTied() && "Def is already tied to another use"); 1041 assert(!UseMO.isTied() && "Use is already tied to another def"); 1042 1043 if (DefIdx < TiedMax) 1044 UseMO.TiedTo = DefIdx + 1; 1045 else { 1046 // Inline asm can use the group descriptors to find tied operands, but on 1047 // normal instruction, the tied def must be within the first TiedMax 1048 // operands. 1049 assert(isInlineAsm() && "DefIdx out of range"); 1050 UseMO.TiedTo = TiedMax; 1051 } 1052 1053 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1054 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1055 } 1056 1057 /// Given the index of a tied register operand, find the operand it is tied to. 1058 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1059 /// which must exist. 1060 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1061 const MachineOperand &MO = getOperand(OpIdx); 1062 assert(MO.isTied() && "Operand isn't tied"); 1063 1064 // Normally TiedTo is in range. 1065 if (MO.TiedTo < TiedMax) 1066 return MO.TiedTo - 1; 1067 1068 // Uses on normal instructions can be out of range. 1069 if (!isInlineAsm()) { 1070 // Normal tied defs must be in the 0..TiedMax-1 range. 1071 if (MO.isUse()) 1072 return TiedMax - 1; 1073 // MO is a def. Search for the tied use. 1074 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1075 const MachineOperand &UseMO = getOperand(i); 1076 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1077 return i; 1078 } 1079 llvm_unreachable("Can't find tied use"); 1080 } 1081 1082 // Now deal with inline asm by parsing the operand group descriptor flags. 1083 // Find the beginning of each operand group. 1084 SmallVector<unsigned, 8> GroupIdx; 1085 unsigned OpIdxGroup = ~0u; 1086 unsigned NumOps; 1087 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1088 i += NumOps) { 1089 const MachineOperand &FlagMO = getOperand(i); 1090 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1091 unsigned CurGroup = GroupIdx.size(); 1092 GroupIdx.push_back(i); 1093 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1094 // OpIdx belongs to this operand group. 1095 if (OpIdx > i && OpIdx < i + NumOps) 1096 OpIdxGroup = CurGroup; 1097 unsigned TiedGroup; 1098 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1099 continue; 1100 // Operands in this group are tied to operands in TiedGroup which must be 1101 // earlier. Find the number of operands between the two groups. 1102 unsigned Delta = i - GroupIdx[TiedGroup]; 1103 1104 // OpIdx is a use tied to TiedGroup. 1105 if (OpIdxGroup == CurGroup) 1106 return OpIdx - Delta; 1107 1108 // OpIdx is a def tied to this use group. 1109 if (OpIdxGroup == TiedGroup) 1110 return OpIdx + Delta; 1111 } 1112 llvm_unreachable("Invalid tied operand on inline asm"); 1113 } 1114 1115 /// clearKillInfo - Clears kill flags on all operands. 1116 /// 1117 void MachineInstr::clearKillInfo() { 1118 for (MachineOperand &MO : operands()) { 1119 if (MO.isReg() && MO.isUse()) 1120 MO.setIsKill(false); 1121 } 1122 } 1123 1124 void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg, 1125 unsigned SubIdx, 1126 const TargetRegisterInfo &RegInfo) { 1127 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1128 if (SubIdx) 1129 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1130 for (MachineOperand &MO : operands()) { 1131 if (!MO.isReg() || MO.getReg() != FromReg) 1132 continue; 1133 MO.substPhysReg(ToReg, RegInfo); 1134 } 1135 } else { 1136 for (MachineOperand &MO : operands()) { 1137 if (!MO.isReg() || MO.getReg() != FromReg) 1138 continue; 1139 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1140 } 1141 } 1142 } 1143 1144 /// isSafeToMove - Return true if it is safe to move this instruction. If 1145 /// SawStore is set to true, it means that there is a store (or call) between 1146 /// the instruction's location and its intended destination. 1147 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1148 // Ignore stuff that we obviously can't move. 1149 // 1150 // Treat volatile loads as stores. This is not strictly necessary for 1151 // volatiles, but it is required for atomic loads. It is not allowed to move 1152 // a load across an atomic load with Ordering > Monotonic. 1153 if (mayStore() || isCall() || isPHI() || 1154 (mayLoad() && hasOrderedMemoryRef())) { 1155 SawStore = true; 1156 return false; 1157 } 1158 1159 if (isPosition() || isDebugInstr() || isTerminator() || 1160 hasUnmodeledSideEffects()) 1161 return false; 1162 1163 // See if this instruction does a load. If so, we have to guarantee that the 1164 // loaded value doesn't change between the load and the its intended 1165 // destination. The check for isInvariantLoad gives the targe the chance to 1166 // classify the load as always returning a constant, e.g. a constant pool 1167 // load. 1168 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1169 // Otherwise, this is a real load. If there is a store between the load and 1170 // end of block, we can't move it. 1171 return !SawStore; 1172 1173 return true; 1174 } 1175 1176 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other, 1177 bool UseTBAA) { 1178 const MachineFunction *MF = getMF(); 1179 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1180 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1181 1182 // If neither instruction stores to memory, they can't alias in any 1183 // meaningful way, even if they read from the same address. 1184 if (!mayStore() && !Other.mayStore()) 1185 return false; 1186 1187 // Let the target decide if memory accesses cannot possibly overlap. 1188 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA)) 1189 return false; 1190 1191 // FIXME: Need to handle multiple memory operands to support all targets. 1192 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1193 return true; 1194 1195 MachineMemOperand *MMOa = *memoperands_begin(); 1196 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1197 1198 // The following interface to AA is fashioned after DAGCombiner::isAlias 1199 // and operates with MachineMemOperand offset with some important 1200 // assumptions: 1201 // - LLVM fundamentally assumes flat address spaces. 1202 // - MachineOperand offset can *only* result from legalization and 1203 // cannot affect queries other than the trivial case of overlap 1204 // checking. 1205 // - These offsets never wrap and never step outside 1206 // of allocated objects. 1207 // - There should never be any negative offsets here. 1208 // 1209 // FIXME: Modify API to hide this math from "user" 1210 // Even before we go to AA we can reason locally about some 1211 // memory objects. It can save compile time, and possibly catch some 1212 // corner cases not currently covered. 1213 1214 int64_t OffsetA = MMOa->getOffset(); 1215 int64_t OffsetB = MMOb->getOffset(); 1216 int64_t MinOffset = std::min(OffsetA, OffsetB); 1217 1218 uint64_t WidthA = MMOa->getSize(); 1219 uint64_t WidthB = MMOb->getSize(); 1220 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1221 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1222 1223 const Value *ValA = MMOa->getValue(); 1224 const Value *ValB = MMOb->getValue(); 1225 bool SameVal = (ValA && ValB && (ValA == ValB)); 1226 if (!SameVal) { 1227 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1228 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1229 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1230 return false; 1231 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1232 return false; 1233 if (PSVa && PSVb && (PSVa == PSVb)) 1234 SameVal = true; 1235 } 1236 1237 if (SameVal) { 1238 if (!KnownWidthA || !KnownWidthB) 1239 return true; 1240 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1241 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1242 return (MinOffset + LowWidth > MaxOffset); 1243 } 1244 1245 if (!AA) 1246 return true; 1247 1248 if (!ValA || !ValB) 1249 return true; 1250 1251 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1252 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1253 1254 int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset 1255 : MemoryLocation::UnknownSize; 1256 int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset 1257 : MemoryLocation::UnknownSize; 1258 1259 AliasResult AAResult = AA->alias( 1260 MemoryLocation(ValA, OverlapA, 1261 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1262 MemoryLocation(ValB, OverlapB, 1263 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1264 1265 return (AAResult != NoAlias); 1266 } 1267 1268 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1269 /// or volatile memory reference, or if the information describing the memory 1270 /// reference is not available. Return false if it is known to have no ordered 1271 /// memory references. 1272 bool MachineInstr::hasOrderedMemoryRef() const { 1273 // An instruction known never to access memory won't have a volatile access. 1274 if (!mayStore() && 1275 !mayLoad() && 1276 !isCall() && 1277 !hasUnmodeledSideEffects()) 1278 return false; 1279 1280 // Otherwise, if the instruction has no memory reference information, 1281 // conservatively assume it wasn't preserved. 1282 if (memoperands_empty()) 1283 return true; 1284 1285 // Check if any of our memory operands are ordered. 1286 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1287 return !MMO->isUnordered(); 1288 }); 1289 } 1290 1291 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1292 /// trap and is loading from a location whose value is invariant across a run of 1293 /// this function. 1294 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { 1295 // If the instruction doesn't load at all, it isn't an invariant load. 1296 if (!mayLoad()) 1297 return false; 1298 1299 // If the instruction has lost its memoperands, conservatively assume that 1300 // it may not be an invariant load. 1301 if (memoperands_empty()) 1302 return false; 1303 1304 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1305 1306 for (MachineMemOperand *MMO : memoperands()) { 1307 if (MMO->isVolatile()) return false; 1308 if (MMO->isStore()) return false; 1309 if (MMO->isInvariant() && MMO->isDereferenceable()) 1310 continue; 1311 1312 // A load from a constant PseudoSourceValue is invariant. 1313 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1314 if (PSV->isConstant(&MFI)) 1315 continue; 1316 1317 if (const Value *V = MMO->getValue()) { 1318 // If we have an AliasAnalysis, ask it whether the memory is constant. 1319 if (AA && 1320 AA->pointsToConstantMemory( 1321 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1322 continue; 1323 } 1324 1325 // Otherwise assume conservatively. 1326 return false; 1327 } 1328 1329 // Everything checks out. 1330 return true; 1331 } 1332 1333 /// isConstantValuePHI - If the specified instruction is a PHI that always 1334 /// merges together the same virtual register, return the register, otherwise 1335 /// return 0. 1336 unsigned MachineInstr::isConstantValuePHI() const { 1337 if (!isPHI()) 1338 return 0; 1339 assert(getNumOperands() >= 3 && 1340 "It's illegal to have a PHI without source operands"); 1341 1342 unsigned Reg = getOperand(1).getReg(); 1343 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1344 if (getOperand(i).getReg() != Reg) 1345 return 0; 1346 return Reg; 1347 } 1348 1349 bool MachineInstr::hasUnmodeledSideEffects() const { 1350 if (hasProperty(MCID::UnmodeledSideEffects)) 1351 return true; 1352 if (isInlineAsm()) { 1353 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1354 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1355 return true; 1356 } 1357 1358 return false; 1359 } 1360 1361 bool MachineInstr::isLoadFoldBarrier() const { 1362 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1363 } 1364 1365 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1366 /// 1367 bool MachineInstr::allDefsAreDead() const { 1368 for (const MachineOperand &MO : operands()) { 1369 if (!MO.isReg() || MO.isUse()) 1370 continue; 1371 if (!MO.isDead()) 1372 return false; 1373 } 1374 return true; 1375 } 1376 1377 /// copyImplicitOps - Copy implicit register operands from specified 1378 /// instruction to this instruction. 1379 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1380 const MachineInstr &MI) { 1381 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1382 i != e; ++i) { 1383 const MachineOperand &MO = MI.getOperand(i); 1384 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1385 addOperand(MF, MO); 1386 } 1387 } 1388 1389 bool MachineInstr::hasComplexRegisterTies() const { 1390 const MCInstrDesc &MCID = getDesc(); 1391 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1392 const auto &Operand = getOperand(I); 1393 if (!Operand.isReg() || Operand.isDef()) 1394 // Ignore the defined registers as MCID marks only the uses as tied. 1395 continue; 1396 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1397 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1398 if (ExpectedTiedIdx != TiedIdx) 1399 return true; 1400 } 1401 return false; 1402 } 1403 1404 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1405 const MachineRegisterInfo &MRI) const { 1406 const MachineOperand &Op = getOperand(OpIdx); 1407 if (!Op.isReg()) 1408 return LLT{}; 1409 1410 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1411 return MRI.getType(Op.getReg()); 1412 1413 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1414 if (!OpInfo.isGenericType()) 1415 return MRI.getType(Op.getReg()); 1416 1417 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1418 return LLT{}; 1419 1420 LLT TypeToPrint = MRI.getType(Op.getReg()); 1421 // Don't mark the type index printed if it wasn't actually printed: maybe 1422 // another operand with the same type index has an actual type attached: 1423 if (TypeToPrint.isValid()) 1424 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1425 return TypeToPrint; 1426 } 1427 1428 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1429 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1430 dbgs() << " "; 1431 print(dbgs()); 1432 } 1433 #endif 1434 1435 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1436 bool SkipDebugLoc, bool AddNewLine, 1437 const TargetInstrInfo *TII) const { 1438 const Module *M = nullptr; 1439 const Function *F = nullptr; 1440 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1441 F = &MF->getFunction(); 1442 M = F->getParent(); 1443 if (!TII) 1444 TII = MF->getSubtarget().getInstrInfo(); 1445 } 1446 1447 ModuleSlotTracker MST(M); 1448 if (F) 1449 MST.incorporateFunction(*F); 1450 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, TII); 1451 } 1452 1453 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1454 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1455 bool AddNewLine, const TargetInstrInfo *TII) const { 1456 // We can be a bit tidier if we know the MachineFunction. 1457 const MachineFunction *MF = nullptr; 1458 const TargetRegisterInfo *TRI = nullptr; 1459 const MachineRegisterInfo *MRI = nullptr; 1460 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1461 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1462 1463 if (isCFIInstruction()) 1464 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1465 1466 SmallBitVector PrintedTypes(8); 1467 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1468 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1469 if (!ShouldPrintRegisterTies) 1470 return 0U; 1471 const MachineOperand &MO = getOperand(OpIdx); 1472 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1473 return findTiedOperandIdx(OpIdx); 1474 return 0U; 1475 }; 1476 unsigned StartOp = 0; 1477 unsigned e = getNumOperands(); 1478 1479 // Print explicitly defined operands on the left of an assignment syntax. 1480 while (StartOp < e) { 1481 const MachineOperand &MO = getOperand(StartOp); 1482 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1483 break; 1484 1485 if (StartOp != 0) 1486 OS << ", "; 1487 1488 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1489 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1490 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone, 1491 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1492 ++StartOp; 1493 } 1494 1495 if (StartOp != 0) 1496 OS << " = "; 1497 1498 if (getFlag(MachineInstr::FrameSetup)) 1499 OS << "frame-setup "; 1500 if (getFlag(MachineInstr::FrameDestroy)) 1501 OS << "frame-destroy "; 1502 if (getFlag(MachineInstr::FmNoNans)) 1503 OS << "nnan "; 1504 if (getFlag(MachineInstr::FmNoInfs)) 1505 OS << "ninf "; 1506 if (getFlag(MachineInstr::FmNsz)) 1507 OS << "nsz "; 1508 if (getFlag(MachineInstr::FmArcp)) 1509 OS << "arcp "; 1510 if (getFlag(MachineInstr::FmContract)) 1511 OS << "contract "; 1512 if (getFlag(MachineInstr::FmAfn)) 1513 OS << "afn "; 1514 if (getFlag(MachineInstr::FmReassoc)) 1515 OS << "reassoc "; 1516 if (getFlag(MachineInstr::NoUWrap)) 1517 OS << "nuw "; 1518 if (getFlag(MachineInstr::NoSWrap)) 1519 OS << "nsw "; 1520 if (getFlag(MachineInstr::IsExact)) 1521 OS << "exact "; 1522 1523 // Print the opcode name. 1524 if (TII) 1525 OS << TII->getName(getOpcode()); 1526 else 1527 OS << "UNKNOWN"; 1528 1529 if (SkipOpers) 1530 return; 1531 1532 // Print the rest of the operands. 1533 bool FirstOp = true; 1534 unsigned AsmDescOp = ~0u; 1535 unsigned AsmOpCount = 0; 1536 1537 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1538 // Print asm string. 1539 OS << " "; 1540 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1541 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1542 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1543 getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1544 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1545 IntrinsicInfo); 1546 1547 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1548 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1549 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1550 OS << " [sideeffect]"; 1551 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1552 OS << " [mayload]"; 1553 if (ExtraInfo & InlineAsm::Extra_MayStore) 1554 OS << " [maystore]"; 1555 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1556 OS << " [isconvergent]"; 1557 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1558 OS << " [alignstack]"; 1559 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1560 OS << " [attdialect]"; 1561 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1562 OS << " [inteldialect]"; 1563 1564 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1565 FirstOp = false; 1566 } 1567 1568 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1569 const MachineOperand &MO = getOperand(i); 1570 1571 if (FirstOp) FirstOp = false; else OS << ","; 1572 OS << " "; 1573 1574 if (isDebugValue() && MO.isMetadata()) { 1575 // Pretty print DBG_VALUE instructions. 1576 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1577 if (DIV && !DIV->getName().empty()) 1578 OS << "!\"" << DIV->getName() << '\"'; 1579 else { 1580 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1581 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1582 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1583 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1584 } 1585 } else if (isDebugLabel() && MO.isMetadata()) { 1586 // Pretty print DBG_LABEL instructions. 1587 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1588 if (DIL && !DIL->getName().empty()) 1589 OS << "\"" << DIL->getName() << '\"'; 1590 else { 1591 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1592 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1593 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1594 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1595 } 1596 } else if (i == AsmDescOp && MO.isImm()) { 1597 // Pretty print the inline asm operand descriptor. 1598 OS << '$' << AsmOpCount++; 1599 unsigned Flag = MO.getImm(); 1600 switch (InlineAsm::getKind(Flag)) { 1601 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1602 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1603 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1604 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1605 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1606 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1607 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1608 } 1609 1610 unsigned RCID = 0; 1611 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1612 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1613 if (TRI) { 1614 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1615 } else 1616 OS << ":RC" << RCID; 1617 } 1618 1619 if (InlineAsm::isMemKind(Flag)) { 1620 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1621 switch (MCID) { 1622 case InlineAsm::Constraint_es: OS << ":es"; break; 1623 case InlineAsm::Constraint_i: OS << ":i"; break; 1624 case InlineAsm::Constraint_m: OS << ":m"; break; 1625 case InlineAsm::Constraint_o: OS << ":o"; break; 1626 case InlineAsm::Constraint_v: OS << ":v"; break; 1627 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1628 case InlineAsm::Constraint_R: OS << ":R"; break; 1629 case InlineAsm::Constraint_S: OS << ":S"; break; 1630 case InlineAsm::Constraint_T: OS << ":T"; break; 1631 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1632 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1633 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1634 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1635 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1636 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1637 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1638 case InlineAsm::Constraint_X: OS << ":X"; break; 1639 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1640 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1641 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1642 default: OS << ":?"; break; 1643 } 1644 } 1645 1646 unsigned TiedTo = 0; 1647 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1648 OS << " tiedto:$" << TiedTo; 1649 1650 OS << ']'; 1651 1652 // Compute the index of the next operand descriptor. 1653 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1654 } else { 1655 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1656 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1657 if (MO.isImm() && isOperandSubregIdx(i)) 1658 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1659 else 1660 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1661 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1662 } 1663 } 1664 1665 // Print any optional symbols attached to this instruction as-if they were 1666 // operands. 1667 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1668 if (!FirstOp) { 1669 FirstOp = false; 1670 OS << ','; 1671 } 1672 OS << " pre-instr-symbol "; 1673 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1674 } 1675 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1676 if (!FirstOp) { 1677 FirstOp = false; 1678 OS << ','; 1679 } 1680 OS << " post-instr-symbol "; 1681 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1682 } 1683 1684 if (!SkipDebugLoc) { 1685 if (const DebugLoc &DL = getDebugLoc()) { 1686 if (!FirstOp) 1687 OS << ','; 1688 OS << " debug-location "; 1689 DL->printAsOperand(OS, MST); 1690 } 1691 } 1692 1693 if (!memoperands_empty()) { 1694 SmallVector<StringRef, 0> SSNs; 1695 const LLVMContext *Context = nullptr; 1696 std::unique_ptr<LLVMContext> CtxPtr; 1697 const MachineFrameInfo *MFI = nullptr; 1698 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1699 MFI = &MF->getFrameInfo(); 1700 Context = &MF->getFunction().getContext(); 1701 } else { 1702 CtxPtr = llvm::make_unique<LLVMContext>(); 1703 Context = CtxPtr.get(); 1704 } 1705 1706 OS << " :: "; 1707 bool NeedComma = false; 1708 for (const MachineMemOperand *Op : memoperands()) { 1709 if (NeedComma) 1710 OS << ", "; 1711 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1712 NeedComma = true; 1713 } 1714 } 1715 1716 if (SkipDebugLoc) 1717 return; 1718 1719 bool HaveSemi = false; 1720 1721 // Print debug location information. 1722 if (const DebugLoc &DL = getDebugLoc()) { 1723 if (!HaveSemi) { 1724 OS << ';'; 1725 HaveSemi = true; 1726 } 1727 OS << ' '; 1728 DL.print(OS); 1729 } 1730 1731 // Print extra comments for DEBUG_VALUE. 1732 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1733 if (!HaveSemi) { 1734 OS << ";"; 1735 HaveSemi = true; 1736 } 1737 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1738 OS << " line no:" << DV->getLine(); 1739 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1740 DebugLoc InlinedAtDL(InlinedAt); 1741 if (InlinedAtDL && MF) { 1742 OS << " inlined @[ "; 1743 InlinedAtDL.print(OS); 1744 OS << " ]"; 1745 } 1746 } 1747 if (isIndirectDebugValue()) 1748 OS << " indirect"; 1749 } 1750 // TODO: DBG_LABEL 1751 1752 if (AddNewLine) 1753 OS << '\n'; 1754 } 1755 1756 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1757 const TargetRegisterInfo *RegInfo, 1758 bool AddIfNotFound) { 1759 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1760 bool hasAliases = isPhysReg && 1761 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1762 bool Found = false; 1763 SmallVector<unsigned,4> DeadOps; 1764 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1765 MachineOperand &MO = getOperand(i); 1766 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1767 continue; 1768 1769 // DEBUG_VALUE nodes do not contribute to code generation and should 1770 // always be ignored. Failure to do so may result in trying to modify 1771 // KILL flags on DEBUG_VALUE nodes. 1772 if (MO.isDebug()) 1773 continue; 1774 1775 unsigned Reg = MO.getReg(); 1776 if (!Reg) 1777 continue; 1778 1779 if (Reg == IncomingReg) { 1780 if (!Found) { 1781 if (MO.isKill()) 1782 // The register is already marked kill. 1783 return true; 1784 if (isPhysReg && isRegTiedToDefOperand(i)) 1785 // Two-address uses of physregs must not be marked kill. 1786 return true; 1787 MO.setIsKill(); 1788 Found = true; 1789 } 1790 } else if (hasAliases && MO.isKill() && 1791 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1792 // A super-register kill already exists. 1793 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1794 return true; 1795 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1796 DeadOps.push_back(i); 1797 } 1798 } 1799 1800 // Trim unneeded kill operands. 1801 while (!DeadOps.empty()) { 1802 unsigned OpIdx = DeadOps.back(); 1803 if (getOperand(OpIdx).isImplicit() && 1804 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1805 RemoveOperand(OpIdx); 1806 else 1807 getOperand(OpIdx).setIsKill(false); 1808 DeadOps.pop_back(); 1809 } 1810 1811 // If not found, this means an alias of one of the operands is killed. Add a 1812 // new implicit operand if required. 1813 if (!Found && AddIfNotFound) { 1814 addOperand(MachineOperand::CreateReg(IncomingReg, 1815 false /*IsDef*/, 1816 true /*IsImp*/, 1817 true /*IsKill*/)); 1818 return true; 1819 } 1820 return Found; 1821 } 1822 1823 void MachineInstr::clearRegisterKills(unsigned Reg, 1824 const TargetRegisterInfo *RegInfo) { 1825 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1826 RegInfo = nullptr; 1827 for (MachineOperand &MO : operands()) { 1828 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1829 continue; 1830 unsigned OpReg = MO.getReg(); 1831 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1832 MO.setIsKill(false); 1833 } 1834 } 1835 1836 bool MachineInstr::addRegisterDead(unsigned Reg, 1837 const TargetRegisterInfo *RegInfo, 1838 bool AddIfNotFound) { 1839 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1840 bool hasAliases = isPhysReg && 1841 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1842 bool Found = false; 1843 SmallVector<unsigned,4> DeadOps; 1844 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1845 MachineOperand &MO = getOperand(i); 1846 if (!MO.isReg() || !MO.isDef()) 1847 continue; 1848 unsigned MOReg = MO.getReg(); 1849 if (!MOReg) 1850 continue; 1851 1852 if (MOReg == Reg) { 1853 MO.setIsDead(); 1854 Found = true; 1855 } else if (hasAliases && MO.isDead() && 1856 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1857 // There exists a super-register that's marked dead. 1858 if (RegInfo->isSuperRegister(Reg, MOReg)) 1859 return true; 1860 if (RegInfo->isSubRegister(Reg, MOReg)) 1861 DeadOps.push_back(i); 1862 } 1863 } 1864 1865 // Trim unneeded dead operands. 1866 while (!DeadOps.empty()) { 1867 unsigned OpIdx = DeadOps.back(); 1868 if (getOperand(OpIdx).isImplicit() && 1869 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1870 RemoveOperand(OpIdx); 1871 else 1872 getOperand(OpIdx).setIsDead(false); 1873 DeadOps.pop_back(); 1874 } 1875 1876 // If not found, this means an alias of one of the operands is dead. Add a 1877 // new implicit operand if required. 1878 if (Found || !AddIfNotFound) 1879 return Found; 1880 1881 addOperand(MachineOperand::CreateReg(Reg, 1882 true /*IsDef*/, 1883 true /*IsImp*/, 1884 false /*IsKill*/, 1885 true /*IsDead*/)); 1886 return true; 1887 } 1888 1889 void MachineInstr::clearRegisterDeads(unsigned Reg) { 1890 for (MachineOperand &MO : operands()) { 1891 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 1892 continue; 1893 MO.setIsDead(false); 1894 } 1895 } 1896 1897 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 1898 for (MachineOperand &MO : operands()) { 1899 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 1900 continue; 1901 MO.setIsUndef(IsUndef); 1902 } 1903 } 1904 1905 void MachineInstr::addRegisterDefined(unsigned Reg, 1906 const TargetRegisterInfo *RegInfo) { 1907 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1908 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 1909 if (MO) 1910 return; 1911 } else { 1912 for (const MachineOperand &MO : operands()) { 1913 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1914 MO.getSubReg() == 0) 1915 return; 1916 } 1917 } 1918 addOperand(MachineOperand::CreateReg(Reg, 1919 true /*IsDef*/, 1920 true /*IsImp*/)); 1921 } 1922 1923 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1924 const TargetRegisterInfo &TRI) { 1925 bool HasRegMask = false; 1926 for (MachineOperand &MO : operands()) { 1927 if (MO.isRegMask()) { 1928 HasRegMask = true; 1929 continue; 1930 } 1931 if (!MO.isReg() || !MO.isDef()) continue; 1932 unsigned Reg = MO.getReg(); 1933 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1934 // If there are no uses, including partial uses, the def is dead. 1935 if (llvm::none_of(UsedRegs, 1936 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 1937 MO.setIsDead(); 1938 } 1939 1940 // This is a call with a register mask operand. 1941 // Mask clobbers are always dead, so add defs for the non-dead defines. 1942 if (HasRegMask) 1943 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1944 I != E; ++I) 1945 addRegisterDefined(*I, &TRI); 1946 } 1947 1948 unsigned 1949 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1950 // Build up a buffer of hash code components. 1951 SmallVector<size_t, 8> HashComponents; 1952 HashComponents.reserve(MI->getNumOperands() + 1); 1953 HashComponents.push_back(MI->getOpcode()); 1954 for (const MachineOperand &MO : MI->operands()) { 1955 if (MO.isReg() && MO.isDef() && 1956 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1957 continue; // Skip virtual register defs. 1958 1959 HashComponents.push_back(hash_value(MO)); 1960 } 1961 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1962 } 1963 1964 void MachineInstr::emitError(StringRef Msg) const { 1965 // Find the source location cookie. 1966 unsigned LocCookie = 0; 1967 const MDNode *LocMD = nullptr; 1968 for (unsigned i = getNumOperands(); i != 0; --i) { 1969 if (getOperand(i-1).isMetadata() && 1970 (LocMD = getOperand(i-1).getMetadata()) && 1971 LocMD->getNumOperands() != 0) { 1972 if (const ConstantInt *CI = 1973 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 1974 LocCookie = CI->getZExtValue(); 1975 break; 1976 } 1977 } 1978 } 1979 1980 if (const MachineBasicBlock *MBB = getParent()) 1981 if (const MachineFunction *MF = MBB->getParent()) 1982 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1983 report_fatal_error(Msg); 1984 } 1985 1986 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 1987 const MCInstrDesc &MCID, bool IsIndirect, 1988 unsigned Reg, const MDNode *Variable, 1989 const MDNode *Expr) { 1990 assert(isa<DILocalVariable>(Variable) && "not a variable"); 1991 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 1992 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 1993 "Expected inlined-at fields to agree"); 1994 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); 1995 if (IsIndirect) 1996 MIB.addImm(0U); 1997 else 1998 MIB.addReg(0U, RegState::Debug); 1999 return MIB.addMetadata(Variable).addMetadata(Expr); 2000 } 2001 2002 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2003 const MCInstrDesc &MCID, bool IsIndirect, 2004 MachineOperand &MO, const MDNode *Variable, 2005 const MDNode *Expr) { 2006 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2007 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2008 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2009 "Expected inlined-at fields to agree"); 2010 if (MO.isReg()) 2011 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); 2012 2013 auto MIB = BuildMI(MF, DL, MCID).add(MO); 2014 if (IsIndirect) 2015 MIB.addImm(0U); 2016 else 2017 MIB.addReg(0U, RegState::Debug); 2018 return MIB.addMetadata(Variable).addMetadata(Expr); 2019 } 2020 2021 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2022 MachineBasicBlock::iterator I, 2023 const DebugLoc &DL, const MCInstrDesc &MCID, 2024 bool IsIndirect, unsigned Reg, 2025 const MDNode *Variable, const MDNode *Expr) { 2026 MachineFunction &MF = *BB.getParent(); 2027 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2028 BB.insert(I, MI); 2029 return MachineInstrBuilder(MF, MI); 2030 } 2031 2032 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2033 MachineBasicBlock::iterator I, 2034 const DebugLoc &DL, const MCInstrDesc &MCID, 2035 bool IsIndirect, MachineOperand &MO, 2036 const MDNode *Variable, const MDNode *Expr) { 2037 MachineFunction &MF = *BB.getParent(); 2038 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); 2039 BB.insert(I, MI); 2040 return MachineInstrBuilder(MF, *MI); 2041 } 2042 2043 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2044 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2045 static const DIExpression *computeExprForSpill(const MachineInstr &MI) { 2046 assert(MI.getOperand(0).isReg() && "can't spill non-register"); 2047 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2048 "Expected inlined-at fields to agree"); 2049 2050 const DIExpression *Expr = MI.getDebugExpression(); 2051 if (MI.isIndirectDebugValue()) { 2052 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 2053 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 2054 } 2055 return Expr; 2056 } 2057 2058 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2059 MachineBasicBlock::iterator I, 2060 const MachineInstr &Orig, 2061 int FrameIndex) { 2062 const DIExpression *Expr = computeExprForSpill(Orig); 2063 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) 2064 .addFrameIndex(FrameIndex) 2065 .addImm(0U) 2066 .addMetadata(Orig.getDebugVariable()) 2067 .addMetadata(Expr); 2068 } 2069 2070 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { 2071 const DIExpression *Expr = computeExprForSpill(Orig); 2072 Orig.getOperand(0).ChangeToFrameIndex(FrameIndex); 2073 Orig.getOperand(1).ChangeToImmediate(0U); 2074 Orig.getOperand(3).setMetadata(Expr); 2075 } 2076 2077 void MachineInstr::collectDebugValues( 2078 SmallVectorImpl<MachineInstr *> &DbgValues) { 2079 MachineInstr &MI = *this; 2080 if (!MI.getOperand(0).isReg()) 2081 return; 2082 2083 MachineBasicBlock::iterator DI = MI; ++DI; 2084 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2085 DI != DE; ++DI) { 2086 if (!DI->isDebugValue()) 2087 return; 2088 if (DI->getOperand(0).isReg() && 2089 DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) 2090 DbgValues.push_back(&*DI); 2091 } 2092 } 2093 2094 void MachineInstr::changeDebugValuesDefReg(unsigned Reg) { 2095 // Collect matching debug values. 2096 SmallVector<MachineInstr *, 2> DbgValues; 2097 collectDebugValues(DbgValues); 2098 2099 // Propagate Reg to debug value instructions. 2100 for (auto *DBI : DbgValues) 2101 DBI->getOperand(0).setReg(Reg); 2102 } 2103