xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 25dba30017b145910b9f5719a015299b7989f642)
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/PseudoSourceValue.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ModuleSlotTracker.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/MC/MCInstrDesc.h"
37 #include "llvm/MC/MCSymbol.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include "llvm/Target/TargetIntrinsicInfo.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetRegisterInfo.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
48 using namespace llvm;
49 
50 static cl::opt<bool> PrintWholeRegMask(
51     "print-whole-regmask",
52     cl::desc("Print the full contents of regmask operands in IR dumps"),
53     cl::init(true), cl::Hidden);
54 
55 //===----------------------------------------------------------------------===//
56 // MachineOperand Implementation
57 //===----------------------------------------------------------------------===//
58 
59 void MachineOperand::setReg(unsigned Reg) {
60   if (getReg() == Reg) return; // No change.
61 
62   // Otherwise, we have to change the register.  If this operand is embedded
63   // into a machine function, we need to update the old and new register's
64   // use/def lists.
65   if (MachineInstr *MI = getParent())
66     if (MachineBasicBlock *MBB = MI->getParent())
67       if (MachineFunction *MF = MBB->getParent()) {
68         MachineRegisterInfo &MRI = MF->getRegInfo();
69         MRI.removeRegOperandFromUseList(this);
70         SmallContents.RegNo = Reg;
71         MRI.addRegOperandToUseList(this);
72         return;
73       }
74 
75   // Otherwise, just change the register, no problem.  :)
76   SmallContents.RegNo = Reg;
77 }
78 
79 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
80                                   const TargetRegisterInfo &TRI) {
81   assert(TargetRegisterInfo::isVirtualRegister(Reg));
82   if (SubIdx && getSubReg())
83     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
84   setReg(Reg);
85   if (SubIdx)
86     setSubReg(SubIdx);
87 }
88 
89 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
90   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
91   if (getSubReg()) {
92     Reg = TRI.getSubReg(Reg, getSubReg());
93     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
94     // That won't happen in legal code.
95     setSubReg(0);
96     if (isDef())
97       setIsUndef(false);
98   }
99   setReg(Reg);
100 }
101 
102 /// Change a def to a use, or a use to a def.
103 void MachineOperand::setIsDef(bool Val) {
104   assert(isReg() && "Wrong MachineOperand accessor");
105   assert((!Val || !isDebug()) && "Marking a debug operation as def");
106   if (IsDef == Val)
107     return;
108   // MRI may keep uses and defs in different list positions.
109   if (MachineInstr *MI = getParent())
110     if (MachineBasicBlock *MBB = MI->getParent())
111       if (MachineFunction *MF = MBB->getParent()) {
112         MachineRegisterInfo &MRI = MF->getRegInfo();
113         MRI.removeRegOperandFromUseList(this);
114         IsDef = Val;
115         MRI.addRegOperandToUseList(this);
116         return;
117       }
118   IsDef = Val;
119 }
120 
121 // If this operand is currently a register operand, and if this is in a
122 // function, deregister the operand from the register's use/def list.
123 void MachineOperand::removeRegFromUses() {
124   if (!isReg() || !isOnRegUseList())
125     return;
126 
127   if (MachineInstr *MI = getParent()) {
128     if (MachineBasicBlock *MBB = MI->getParent()) {
129       if (MachineFunction *MF = MBB->getParent())
130         MF->getRegInfo().removeRegOperandFromUseList(this);
131     }
132   }
133 }
134 
135 /// ChangeToImmediate - Replace this operand with a new immediate operand of
136 /// the specified value.  If an operand is known to be an immediate already,
137 /// the setImm method should be used.
138 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
139   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
140 
141   removeRegFromUses();
142 
143   OpKind = MO_Immediate;
144   Contents.ImmVal = ImmVal;
145 }
146 
147 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
148   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
149 
150   removeRegFromUses();
151 
152   OpKind = MO_FPImmediate;
153   Contents.CFP = FPImm;
154 }
155 
156 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
157   assert((!isReg() || !isTied()) &&
158          "Cannot change a tied operand into an external symbol");
159 
160   removeRegFromUses();
161 
162   OpKind = MO_ExternalSymbol;
163   Contents.OffsetedInfo.Val.SymbolName = SymName;
164   setOffset(0); // Offset is always 0.
165   setTargetFlags(TargetFlags);
166 }
167 
168 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
169   assert((!isReg() || !isTied()) &&
170          "Cannot change a tied operand into an MCSymbol");
171 
172   removeRegFromUses();
173 
174   OpKind = MO_MCSymbol;
175   Contents.Sym = Sym;
176 }
177 
178 void MachineOperand::ChangeToFrameIndex(int Idx) {
179   assert((!isReg() || !isTied()) &&
180          "Cannot change a tied operand into a FrameIndex");
181 
182   removeRegFromUses();
183 
184   OpKind = MO_FrameIndex;
185   setIndex(Idx);
186 }
187 
188 /// ChangeToRegister - Replace this operand with a new register operand of
189 /// the specified value.  If an operand is known to be an register already,
190 /// the setReg method should be used.
191 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
192                                       bool isKill, bool isDead, bool isUndef,
193                                       bool isDebug) {
194   MachineRegisterInfo *RegInfo = nullptr;
195   if (MachineInstr *MI = getParent())
196     if (MachineBasicBlock *MBB = MI->getParent())
197       if (MachineFunction *MF = MBB->getParent())
198         RegInfo = &MF->getRegInfo();
199   // If this operand is already a register operand, remove it from the
200   // register's use/def lists.
201   bool WasReg = isReg();
202   if (RegInfo && WasReg)
203     RegInfo->removeRegOperandFromUseList(this);
204 
205   // Change this to a register and set the reg#.
206   OpKind = MO_Register;
207   SmallContents.RegNo = Reg;
208   SubReg_TargetFlags = 0;
209   IsDef = isDef;
210   IsImp = isImp;
211   IsKill = isKill;
212   IsDead = isDead;
213   IsUndef = isUndef;
214   IsInternalRead = false;
215   IsEarlyClobber = false;
216   IsDebug = isDebug;
217   // Ensure isOnRegUseList() returns false.
218   Contents.Reg.Prev = nullptr;
219   // Preserve the tie when the operand was already a register.
220   if (!WasReg)
221     TiedTo = 0;
222 
223   // If this operand is embedded in a function, add the operand to the
224   // register's use/def list.
225   if (RegInfo)
226     RegInfo->addRegOperandToUseList(this);
227 }
228 
229 /// isIdenticalTo - Return true if this operand is identical to the specified
230 /// operand. Note that this should stay in sync with the hash_value overload
231 /// below.
232 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
233   if (getType() != Other.getType() ||
234       getTargetFlags() != Other.getTargetFlags())
235     return false;
236 
237   switch (getType()) {
238   case MachineOperand::MO_Register:
239     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
240            getSubReg() == Other.getSubReg();
241   case MachineOperand::MO_Immediate:
242     return getImm() == Other.getImm();
243   case MachineOperand::MO_CImmediate:
244     return getCImm() == Other.getCImm();
245   case MachineOperand::MO_FPImmediate:
246     return getFPImm() == Other.getFPImm();
247   case MachineOperand::MO_MachineBasicBlock:
248     return getMBB() == Other.getMBB();
249   case MachineOperand::MO_FrameIndex:
250     return getIndex() == Other.getIndex();
251   case MachineOperand::MO_ConstantPoolIndex:
252   case MachineOperand::MO_TargetIndex:
253     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
254   case MachineOperand::MO_JumpTableIndex:
255     return getIndex() == Other.getIndex();
256   case MachineOperand::MO_GlobalAddress:
257     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
258   case MachineOperand::MO_ExternalSymbol:
259     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
260            getOffset() == Other.getOffset();
261   case MachineOperand::MO_BlockAddress:
262     return getBlockAddress() == Other.getBlockAddress() &&
263            getOffset() == Other.getOffset();
264   case MachineOperand::MO_RegisterMask:
265   case MachineOperand::MO_RegisterLiveOut:
266     return getRegMask() == Other.getRegMask();
267   case MachineOperand::MO_MCSymbol:
268     return getMCSymbol() == Other.getMCSymbol();
269   case MachineOperand::MO_CFIIndex:
270     return getCFIIndex() == Other.getCFIIndex();
271   case MachineOperand::MO_Metadata:
272     return getMetadata() == Other.getMetadata();
273   case MachineOperand::MO_IntrinsicID:
274     return getIntrinsicID() == Other.getIntrinsicID();
275   case MachineOperand::MO_Predicate:
276     return getPredicate() == Other.getPredicate();
277   }
278   llvm_unreachable("Invalid machine operand type");
279 }
280 
281 // Note: this must stay exactly in sync with isIdenticalTo above.
282 hash_code llvm::hash_value(const MachineOperand &MO) {
283   switch (MO.getType()) {
284   case MachineOperand::MO_Register:
285     // Register operands don't have target flags.
286     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
287   case MachineOperand::MO_Immediate:
288     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
289   case MachineOperand::MO_CImmediate:
290     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
291   case MachineOperand::MO_FPImmediate:
292     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
293   case MachineOperand::MO_MachineBasicBlock:
294     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
295   case MachineOperand::MO_FrameIndex:
296     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
297   case MachineOperand::MO_ConstantPoolIndex:
298   case MachineOperand::MO_TargetIndex:
299     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
300                         MO.getOffset());
301   case MachineOperand::MO_JumpTableIndex:
302     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
303   case MachineOperand::MO_ExternalSymbol:
304     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
305                         MO.getSymbolName());
306   case MachineOperand::MO_GlobalAddress:
307     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
308                         MO.getOffset());
309   case MachineOperand::MO_BlockAddress:
310     return hash_combine(MO.getType(), MO.getTargetFlags(),
311                         MO.getBlockAddress(), MO.getOffset());
312   case MachineOperand::MO_RegisterMask:
313   case MachineOperand::MO_RegisterLiveOut:
314     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
315   case MachineOperand::MO_Metadata:
316     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
317   case MachineOperand::MO_MCSymbol:
318     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
319   case MachineOperand::MO_CFIIndex:
320     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
321   case MachineOperand::MO_IntrinsicID:
322     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID());
323   case MachineOperand::MO_Predicate:
324     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate());
325   }
326   llvm_unreachable("Invalid machine operand type");
327 }
328 
329 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI,
330                            const TargetIntrinsicInfo *IntrinsicInfo) const {
331   ModuleSlotTracker DummyMST(nullptr);
332   print(OS, DummyMST, TRI, IntrinsicInfo);
333 }
334 
335 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
336                            const TargetRegisterInfo *TRI,
337                            const TargetIntrinsicInfo *IntrinsicInfo) const {
338   switch (getType()) {
339   case MachineOperand::MO_Register:
340     OS << PrintReg(getReg(), TRI, getSubReg());
341 
342     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
343         isInternalRead() || isEarlyClobber() || isTied()) {
344       OS << '<';
345       bool NeedComma = false;
346       if (isDef()) {
347         if (NeedComma) OS << ',';
348         if (isEarlyClobber())
349           OS << "earlyclobber,";
350         if (isImplicit())
351           OS << "imp-";
352         OS << "def";
353         NeedComma = true;
354         // <def,read-undef> only makes sense when getSubReg() is set.
355         // Don't clutter the output otherwise.
356         if (isUndef() && getSubReg())
357           OS << ",read-undef";
358       } else if (isImplicit()) {
359         OS << "imp-use";
360         NeedComma = true;
361       }
362 
363       if (isKill()) {
364         if (NeedComma) OS << ',';
365         OS << "kill";
366         NeedComma = true;
367       }
368       if (isDead()) {
369         if (NeedComma) OS << ',';
370         OS << "dead";
371         NeedComma = true;
372       }
373       if (isUndef() && isUse()) {
374         if (NeedComma) OS << ',';
375         OS << "undef";
376         NeedComma = true;
377       }
378       if (isInternalRead()) {
379         if (NeedComma) OS << ',';
380         OS << "internal";
381         NeedComma = true;
382       }
383       if (isTied()) {
384         if (NeedComma) OS << ',';
385         OS << "tied";
386         if (TiedTo != 15)
387           OS << unsigned(TiedTo - 1);
388       }
389       OS << '>';
390     }
391     break;
392   case MachineOperand::MO_Immediate:
393     OS << getImm();
394     break;
395   case MachineOperand::MO_CImmediate:
396     getCImm()->getValue().print(OS, false);
397     break;
398   case MachineOperand::MO_FPImmediate:
399     if (getFPImm()->getType()->isFloatTy()) {
400       OS << getFPImm()->getValueAPF().convertToFloat();
401     } else if (getFPImm()->getType()->isHalfTy()) {
402       APFloat APF = getFPImm()->getValueAPF();
403       bool Unused;
404       APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused);
405       OS << "half " << APF.convertToFloat();
406     } else {
407       OS << getFPImm()->getValueAPF().convertToDouble();
408     }
409     break;
410   case MachineOperand::MO_MachineBasicBlock:
411     OS << "<BB#" << getMBB()->getNumber() << ">";
412     break;
413   case MachineOperand::MO_FrameIndex:
414     OS << "<fi#" << getIndex() << '>';
415     break;
416   case MachineOperand::MO_ConstantPoolIndex:
417     OS << "<cp#" << getIndex();
418     if (getOffset()) OS << "+" << getOffset();
419     OS << '>';
420     break;
421   case MachineOperand::MO_TargetIndex:
422     OS << "<ti#" << getIndex();
423     if (getOffset()) OS << "+" << getOffset();
424     OS << '>';
425     break;
426   case MachineOperand::MO_JumpTableIndex:
427     OS << "<jt#" << getIndex() << '>';
428     break;
429   case MachineOperand::MO_GlobalAddress:
430     OS << "<ga:";
431     getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
432     if (getOffset()) OS << "+" << getOffset();
433     OS << '>';
434     break;
435   case MachineOperand::MO_ExternalSymbol:
436     OS << "<es:" << getSymbolName();
437     if (getOffset()) OS << "+" << getOffset();
438     OS << '>';
439     break;
440   case MachineOperand::MO_BlockAddress:
441     OS << '<';
442     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
443     if (getOffset()) OS << "+" << getOffset();
444     OS << '>';
445     break;
446   case MachineOperand::MO_RegisterMask: {
447     unsigned NumRegsInMask = 0;
448     unsigned NumRegsEmitted = 0;
449     OS << "<regmask";
450     for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
451       unsigned MaskWord = i / 32;
452       unsigned MaskBit = i % 32;
453       if (getRegMask()[MaskWord] & (1 << MaskBit)) {
454         if (PrintWholeRegMask || NumRegsEmitted <= 10) {
455           OS << " " << PrintReg(i, TRI);
456           NumRegsEmitted++;
457         }
458         NumRegsInMask++;
459       }
460     }
461     if (NumRegsEmitted != NumRegsInMask)
462       OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
463     OS << ">";
464     break;
465   }
466   case MachineOperand::MO_RegisterLiveOut:
467     OS << "<regliveout>";
468     break;
469   case MachineOperand::MO_Metadata:
470     OS << '<';
471     getMetadata()->printAsOperand(OS, MST);
472     OS << '>';
473     break;
474   case MachineOperand::MO_MCSymbol:
475     OS << "<MCSym=" << *getMCSymbol() << '>';
476     break;
477   case MachineOperand::MO_CFIIndex:
478     OS << "<call frame instruction>";
479     break;
480   case MachineOperand::MO_IntrinsicID: {
481     Intrinsic::ID ID = getIntrinsicID();
482     if (ID < Intrinsic::num_intrinsics)
483       OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>';
484     else if (IntrinsicInfo)
485       OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>';
486     else
487       OS << "<intrinsic:" << ID << '>';
488     break;
489   }
490   case MachineOperand::MO_Predicate: {
491     auto Pred = static_cast<CmpInst::Predicate>(getPredicate());
492     OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred")
493        << CmpInst::getPredicateName(Pred) << '>';
494   }
495   }
496   if (unsigned TF = getTargetFlags())
497     OS << "[TF=" << TF << ']';
498 }
499 
500 //===----------------------------------------------------------------------===//
501 // MachineMemOperand Implementation
502 //===----------------------------------------------------------------------===//
503 
504 /// getAddrSpace - Return the LLVM IR address space number that this pointer
505 /// points into.
506 unsigned MachinePointerInfo::getAddrSpace() const {
507   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
508   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
509 }
510 
511 /// getConstantPool - Return a MachinePointerInfo record that refers to the
512 /// constant pool.
513 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
514   return MachinePointerInfo(MF.getPSVManager().getConstantPool());
515 }
516 
517 /// getFixedStack - Return a MachinePointerInfo record that refers to the
518 /// the specified FrameIndex.
519 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
520                                                      int FI, int64_t Offset) {
521   return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
522 }
523 
524 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
525   return MachinePointerInfo(MF.getPSVManager().getJumpTable());
526 }
527 
528 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
529   return MachinePointerInfo(MF.getPSVManager().getGOT());
530 }
531 
532 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
533                                                 int64_t Offset) {
534   return MachinePointerInfo(MF.getPSVManager().getStack(), Offset);
535 }
536 
537 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f,
538                                      uint64_t s, unsigned int a,
539                                      const AAMDNodes &AAInfo,
540                                      const MDNode *Ranges)
541     : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1),
542       AAInfo(AAInfo), Ranges(Ranges) {
543   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
544           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
545          "invalid pointer value");
546   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
547   assert((isLoad() || isStore()) && "Not a load/store!");
548 }
549 
550 /// Profile - Gather unique data for the object.
551 ///
552 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
553   ID.AddInteger(getOffset());
554   ID.AddInteger(Size);
555   ID.AddPointer(getOpaqueValue());
556   ID.AddInteger(getFlags());
557   ID.AddInteger(getBaseAlignment());
558 }
559 
560 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
561   // The Value and Offset may differ due to CSE. But the flags and size
562   // should be the same.
563   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
564   assert(MMO->getSize() == getSize() && "Size mismatch!");
565 
566   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
567     // Update the alignment value.
568     BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1;
569     // Also update the base and offset, because the new alignment may
570     // not be applicable with the old ones.
571     PtrInfo = MMO->PtrInfo;
572   }
573 }
574 
575 /// getAlignment - Return the minimum known alignment in bytes of the
576 /// actual memory reference.
577 uint64_t MachineMemOperand::getAlignment() const {
578   return MinAlign(getBaseAlignment(), getOffset());
579 }
580 
581 void MachineMemOperand::print(raw_ostream &OS) const {
582   ModuleSlotTracker DummyMST(nullptr);
583   print(OS, DummyMST);
584 }
585 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
586   assert((isLoad() || isStore()) &&
587          "SV has to be a load, store or both.");
588 
589   if (isVolatile())
590     OS << "Volatile ";
591 
592   if (isLoad())
593     OS << "LD";
594   if (isStore())
595     OS << "ST";
596   OS << getSize();
597 
598   // Print the address information.
599   OS << "[";
600   if (const Value *V = getValue())
601     V->printAsOperand(OS, /*PrintType=*/false, MST);
602   else if (const PseudoSourceValue *PSV = getPseudoValue())
603     PSV->printCustom(OS);
604   else
605     OS << "<unknown>";
606 
607   unsigned AS = getAddrSpace();
608   if (AS != 0)
609     OS << "(addrspace=" << AS << ')';
610 
611   // If the alignment of the memory reference itself differs from the alignment
612   // of the base pointer, print the base alignment explicitly, next to the base
613   // pointer.
614   if (getBaseAlignment() != getAlignment())
615     OS << "(align=" << getBaseAlignment() << ")";
616 
617   if (getOffset() != 0)
618     OS << "+" << getOffset();
619   OS << "]";
620 
621   // Print the alignment of the reference.
622   if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
623     OS << "(align=" << getAlignment() << ")";
624 
625   // Print TBAA info.
626   if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
627     OS << "(tbaa=";
628     if (TBAAInfo->getNumOperands() > 0)
629       TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
630     else
631       OS << "<unknown>";
632     OS << ")";
633   }
634 
635   // Print AA scope info.
636   if (const MDNode *ScopeInfo = getAAInfo().Scope) {
637     OS << "(alias.scope=";
638     if (ScopeInfo->getNumOperands() > 0)
639       for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
640         ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
641         if (i != ie-1)
642           OS << ",";
643       }
644     else
645       OS << "<unknown>";
646     OS << ")";
647   }
648 
649   // Print AA noalias scope info.
650   if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
651     OS << "(noalias=";
652     if (NoAliasInfo->getNumOperands() > 0)
653       for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
654         NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
655         if (i != ie-1)
656           OS << ",";
657       }
658     else
659       OS << "<unknown>";
660     OS << ")";
661   }
662 
663   if (isNonTemporal())
664     OS << "(nontemporal)";
665   if (isDereferenceable())
666     OS << "(dereferenceable)";
667   if (isInvariant())
668     OS << "(invariant)";
669 }
670 
671 //===----------------------------------------------------------------------===//
672 // MachineInstr Implementation
673 //===----------------------------------------------------------------------===//
674 
675 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
676   if (MCID->ImplicitDefs)
677     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
678            ++ImpDefs)
679       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
680   if (MCID->ImplicitUses)
681     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
682            ++ImpUses)
683       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
684 }
685 
686 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
687 /// implicit operands. It reserves space for the number of operands specified by
688 /// the MCInstrDesc.
689 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
690                            DebugLoc dl, bool NoImp)
691     : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0),
692       AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr),
693       debugLoc(std::move(dl)) {
694   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
695 
696   // Reserve space for the expected number of operands.
697   if (unsigned NumOps = MCID->getNumOperands() +
698     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
699     CapOperands = OperandCapacity::get(NumOps);
700     Operands = MF.allocateOperandArray(CapOperands);
701   }
702 
703   if (!NoImp)
704     addImplicitDefUseOperands(MF);
705 }
706 
707 /// MachineInstr ctor - Copies MachineInstr arg exactly
708 ///
709 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
710     : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
711       Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs),
712       MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) {
713   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
714 
715   CapOperands = OperandCapacity::get(MI.getNumOperands());
716   Operands = MF.allocateOperandArray(CapOperands);
717 
718   // Copy operands.
719   for (const MachineOperand &MO : MI.operands())
720     addOperand(MF, MO);
721 
722   // Copy all the sensible flags.
723   setFlags(MI.Flags);
724 }
725 
726 /// getRegInfo - If this instruction is embedded into a MachineFunction,
727 /// return the MachineRegisterInfo object for the current function, otherwise
728 /// return null.
729 MachineRegisterInfo *MachineInstr::getRegInfo() {
730   if (MachineBasicBlock *MBB = getParent())
731     return &MBB->getParent()->getRegInfo();
732   return nullptr;
733 }
734 
735 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
736 /// this instruction from their respective use lists.  This requires that the
737 /// operands already be on their use lists.
738 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
739   for (MachineOperand &MO : operands())
740     if (MO.isReg())
741       MRI.removeRegOperandFromUseList(&MO);
742 }
743 
744 /// AddRegOperandsToUseLists - Add all of the register operands in
745 /// this instruction from their respective use lists.  This requires that the
746 /// operands not be on their use lists yet.
747 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
748   for (MachineOperand &MO : operands())
749     if (MO.isReg())
750       MRI.addRegOperandToUseList(&MO);
751 }
752 
753 void MachineInstr::addOperand(const MachineOperand &Op) {
754   MachineBasicBlock *MBB = getParent();
755   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
756   MachineFunction *MF = MBB->getParent();
757   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
758   addOperand(*MF, Op);
759 }
760 
761 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
762 /// ranges. If MRI is non-null also update use-def chains.
763 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
764                          unsigned NumOps, MachineRegisterInfo *MRI) {
765   if (MRI)
766     return MRI->moveOperands(Dst, Src, NumOps);
767 
768   // MachineOperand is a trivially copyable type so we can just use memmove.
769   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
770 }
771 
772 /// addOperand - Add the specified operand to the instruction.  If it is an
773 /// implicit operand, it is added to the end of the operand list.  If it is
774 /// an explicit operand it is added at the end of the explicit operand list
775 /// (before the first implicit operand).
776 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
777   assert(MCID && "Cannot add operands before providing an instr descriptor");
778 
779   // Check if we're adding one of our existing operands.
780   if (&Op >= Operands && &Op < Operands + NumOperands) {
781     // This is unusual: MI->addOperand(MI->getOperand(i)).
782     // If adding Op requires reallocating or moving existing operands around,
783     // the Op reference could go stale. Support it by copying Op.
784     MachineOperand CopyOp(Op);
785     return addOperand(MF, CopyOp);
786   }
787 
788   // Find the insert location for the new operand.  Implicit registers go at
789   // the end, everything else goes before the implicit regs.
790   //
791   // FIXME: Allow mixed explicit and implicit operands on inline asm.
792   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
793   // implicit-defs, but they must not be moved around.  See the FIXME in
794   // InstrEmitter.cpp.
795   unsigned OpNo = getNumOperands();
796   bool isImpReg = Op.isReg() && Op.isImplicit();
797   if (!isImpReg && !isInlineAsm()) {
798     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
799       --OpNo;
800       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
801     }
802   }
803 
804 #ifndef NDEBUG
805   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
806   // OpNo now points as the desired insertion point.  Unless this is a variadic
807   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
808   // RegMask operands go between the explicit and implicit operands.
809   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
810           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
811          "Trying to add an operand to a machine instr that is already done!");
812 #endif
813 
814   MachineRegisterInfo *MRI = getRegInfo();
815 
816   // Determine if the Operands array needs to be reallocated.
817   // Save the old capacity and operand array.
818   OperandCapacity OldCap = CapOperands;
819   MachineOperand *OldOperands = Operands;
820   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
821     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
822     Operands = MF.allocateOperandArray(CapOperands);
823     // Move the operands before the insertion point.
824     if (OpNo)
825       moveOperands(Operands, OldOperands, OpNo, MRI);
826   }
827 
828   // Move the operands following the insertion point.
829   if (OpNo != NumOperands)
830     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
831                  MRI);
832   ++NumOperands;
833 
834   // Deallocate the old operand array.
835   if (OldOperands != Operands && OldOperands)
836     MF.deallocateOperandArray(OldCap, OldOperands);
837 
838   // Copy Op into place. It still needs to be inserted into the MRI use lists.
839   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
840   NewMO->ParentMI = this;
841 
842   // When adding a register operand, tell MRI about it.
843   if (NewMO->isReg()) {
844     // Ensure isOnRegUseList() returns false, regardless of Op's status.
845     NewMO->Contents.Reg.Prev = nullptr;
846     // Ignore existing ties. This is not a property that can be copied.
847     NewMO->TiedTo = 0;
848     // Add the new operand to MRI, but only for instructions in an MBB.
849     if (MRI)
850       MRI->addRegOperandToUseList(NewMO);
851     // The MCID operand information isn't accurate until we start adding
852     // explicit operands. The implicit operands are added first, then the
853     // explicits are inserted before them.
854     if (!isImpReg) {
855       // Tie uses to defs as indicated in MCInstrDesc.
856       if (NewMO->isUse()) {
857         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
858         if (DefIdx != -1)
859           tieOperands(DefIdx, OpNo);
860       }
861       // If the register operand is flagged as early, mark the operand as such.
862       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
863         NewMO->setIsEarlyClobber(true);
864     }
865   }
866 }
867 
868 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
869 /// fewer operand than it started with.
870 ///
871 void MachineInstr::RemoveOperand(unsigned OpNo) {
872   assert(OpNo < getNumOperands() && "Invalid operand number");
873   untieRegOperand(OpNo);
874 
875 #ifndef NDEBUG
876   // Moving tied operands would break the ties.
877   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
878     if (Operands[i].isReg())
879       assert(!Operands[i].isTied() && "Cannot move tied operands");
880 #endif
881 
882   MachineRegisterInfo *MRI = getRegInfo();
883   if (MRI && Operands[OpNo].isReg())
884     MRI->removeRegOperandFromUseList(Operands + OpNo);
885 
886   // Don't call the MachineOperand destructor. A lot of this code depends on
887   // MachineOperand having a trivial destructor anyway, and adding a call here
888   // wouldn't make it 'destructor-correct'.
889 
890   if (unsigned N = NumOperands - 1 - OpNo)
891     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
892   --NumOperands;
893 }
894 
895 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
896 /// This function should be used only occasionally. The setMemRefs function
897 /// is the primary method for setting up a MachineInstr's MemRefs list.
898 void MachineInstr::addMemOperand(MachineFunction &MF,
899                                  MachineMemOperand *MO) {
900   mmo_iterator OldMemRefs = MemRefs;
901   unsigned OldNumMemRefs = NumMemRefs;
902 
903   unsigned NewNum = NumMemRefs + 1;
904   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
905 
906   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
907   NewMemRefs[NewNum - 1] = MO;
908   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
909 }
910 
911 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
912 /// identical.
913 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
914   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
915   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
916   if ((E1 - I1) != (E2 - I2))
917     return false;
918   for (; I1 != E1; ++I1, ++I2) {
919     if (**I1 != **I2)
920       return false;
921   }
922   return true;
923 }
924 
925 std::pair<MachineInstr::mmo_iterator, unsigned>
926 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
927 
928   // If either of the incoming memrefs are empty, we must be conservative and
929   // treat this as if we've exhausted our space for memrefs and dropped them.
930   if (memoperands_empty() || Other.memoperands_empty())
931     return std::make_pair(nullptr, 0);
932 
933   // If both instructions have identical memrefs, we don't need to merge them.
934   // Since many instructions have a single memref, and we tend to merge things
935   // like pairs of loads from the same location, this catches a large number of
936   // cases in practice.
937   if (hasIdenticalMMOs(*this, Other))
938     return std::make_pair(MemRefs, NumMemRefs);
939 
940   // TODO: consider uniquing elements within the operand lists to reduce
941   // space usage and fall back to conservative information less often.
942   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
943 
944   // If we don't have enough room to store this many memrefs, be conservative
945   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
946   // the new instruction.
947   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
948     return std::make_pair(nullptr, 0);
949 
950   MachineFunction *MF = getParent()->getParent();
951   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
952   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
953                                   MemBegin);
954   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
955                      MemEnd);
956   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
957          "missing memrefs");
958 
959   return std::make_pair(MemBegin, CombinedNumMemRefs);
960 }
961 
962 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
963   assert(!isBundledWithPred() && "Must be called on bundle header");
964   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
965     if (MII->getDesc().getFlags() & Mask) {
966       if (Type == AnyInBundle)
967         return true;
968     } else {
969       if (Type == AllInBundle && !MII->isBundle())
970         return false;
971     }
972     // This was the last instruction in the bundle.
973     if (!MII->isBundledWithSucc())
974       return Type == AllInBundle;
975   }
976 }
977 
978 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
979                                  MICheckType Check) const {
980   // If opcodes or number of operands are not the same then the two
981   // instructions are obviously not identical.
982   if (Other.getOpcode() != getOpcode() ||
983       Other.getNumOperands() != getNumOperands())
984     return false;
985 
986   if (isBundle()) {
987     // Both instructions are bundles, compare MIs inside the bundle.
988     MachineBasicBlock::const_instr_iterator I1 = getIterator();
989     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
990     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
991     MachineBasicBlock::const_instr_iterator E2 = Other.getParent()->instr_end();
992     while (++I1 != E1 && I1->isInsideBundle()) {
993       ++I2;
994       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(*I2, Check))
995         return false;
996     }
997   }
998 
999   // Check operands to make sure they match.
1000   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1001     const MachineOperand &MO = getOperand(i);
1002     const MachineOperand &OMO = Other.getOperand(i);
1003     if (!MO.isReg()) {
1004       if (!MO.isIdenticalTo(OMO))
1005         return false;
1006       continue;
1007     }
1008 
1009     // Clients may or may not want to ignore defs when testing for equality.
1010     // For example, machine CSE pass only cares about finding common
1011     // subexpressions, so it's safe to ignore virtual register defs.
1012     if (MO.isDef()) {
1013       if (Check == IgnoreDefs)
1014         continue;
1015       else if (Check == IgnoreVRegDefs) {
1016         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1017             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
1018           if (MO.getReg() != OMO.getReg())
1019             return false;
1020       } else {
1021         if (!MO.isIdenticalTo(OMO))
1022           return false;
1023         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
1024           return false;
1025       }
1026     } else {
1027       if (!MO.isIdenticalTo(OMO))
1028         return false;
1029       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
1030         return false;
1031     }
1032   }
1033   // If DebugLoc does not match then two dbg.values are not identical.
1034   if (isDebugValue())
1035     if (getDebugLoc() && Other.getDebugLoc() &&
1036         getDebugLoc() != Other.getDebugLoc())
1037       return false;
1038   return true;
1039 }
1040 
1041 MachineInstr *MachineInstr::removeFromParent() {
1042   assert(getParent() && "Not embedded in a basic block!");
1043   return getParent()->remove(this);
1044 }
1045 
1046 MachineInstr *MachineInstr::removeFromBundle() {
1047   assert(getParent() && "Not embedded in a basic block!");
1048   return getParent()->remove_instr(this);
1049 }
1050 
1051 void MachineInstr::eraseFromParent() {
1052   assert(getParent() && "Not embedded in a basic block!");
1053   getParent()->erase(this);
1054 }
1055 
1056 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
1057   assert(getParent() && "Not embedded in a basic block!");
1058   MachineBasicBlock *MBB = getParent();
1059   MachineFunction *MF = MBB->getParent();
1060   assert(MF && "Not embedded in a function!");
1061 
1062   MachineInstr *MI = (MachineInstr *)this;
1063   MachineRegisterInfo &MRI = MF->getRegInfo();
1064 
1065   for (const MachineOperand &MO : MI->operands()) {
1066     if (!MO.isReg() || !MO.isDef())
1067       continue;
1068     unsigned Reg = MO.getReg();
1069     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1070       continue;
1071     MRI.markUsesInDebugValueAsUndef(Reg);
1072   }
1073   MI->eraseFromParent();
1074 }
1075 
1076 void MachineInstr::eraseFromBundle() {
1077   assert(getParent() && "Not embedded in a basic block!");
1078   getParent()->erase_instr(this);
1079 }
1080 
1081 /// getNumExplicitOperands - Returns the number of non-implicit operands.
1082 ///
1083 unsigned MachineInstr::getNumExplicitOperands() const {
1084   unsigned NumOperands = MCID->getNumOperands();
1085   if (!MCID->isVariadic())
1086     return NumOperands;
1087 
1088   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
1089     const MachineOperand &MO = getOperand(i);
1090     if (!MO.isReg() || !MO.isImplicit())
1091       NumOperands++;
1092   }
1093   return NumOperands;
1094 }
1095 
1096 void MachineInstr::bundleWithPred() {
1097   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
1098   setFlag(BundledPred);
1099   MachineBasicBlock::instr_iterator Pred = getIterator();
1100   --Pred;
1101   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1102   Pred->setFlag(BundledSucc);
1103 }
1104 
1105 void MachineInstr::bundleWithSucc() {
1106   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
1107   setFlag(BundledSucc);
1108   MachineBasicBlock::instr_iterator Succ = getIterator();
1109   ++Succ;
1110   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
1111   Succ->setFlag(BundledPred);
1112 }
1113 
1114 void MachineInstr::unbundleFromPred() {
1115   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
1116   clearFlag(BundledPred);
1117   MachineBasicBlock::instr_iterator Pred = getIterator();
1118   --Pred;
1119   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1120   Pred->clearFlag(BundledSucc);
1121 }
1122 
1123 void MachineInstr::unbundleFromSucc() {
1124   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
1125   clearFlag(BundledSucc);
1126   MachineBasicBlock::instr_iterator Succ = getIterator();
1127   ++Succ;
1128   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
1129   Succ->clearFlag(BundledPred);
1130 }
1131 
1132 bool MachineInstr::isStackAligningInlineAsm() const {
1133   if (isInlineAsm()) {
1134     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1135     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1136       return true;
1137   }
1138   return false;
1139 }
1140 
1141 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
1142   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
1143   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1144   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
1145 }
1146 
1147 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
1148                                        unsigned *GroupNo) const {
1149   assert(isInlineAsm() && "Expected an inline asm instruction");
1150   assert(OpIdx < getNumOperands() && "OpIdx out of range");
1151 
1152   // Ignore queries about the initial operands.
1153   if (OpIdx < InlineAsm::MIOp_FirstOperand)
1154     return -1;
1155 
1156   unsigned Group = 0;
1157   unsigned NumOps;
1158   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1159        i += NumOps) {
1160     const MachineOperand &FlagMO = getOperand(i);
1161     // If we reach the implicit register operands, stop looking.
1162     if (!FlagMO.isImm())
1163       return -1;
1164     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1165     if (i + NumOps > OpIdx) {
1166       if (GroupNo)
1167         *GroupNo = Group;
1168       return i;
1169     }
1170     ++Group;
1171   }
1172   return -1;
1173 }
1174 
1175 const DILocalVariable *MachineInstr::getDebugVariable() const {
1176   assert(isDebugValue() && "not a DBG_VALUE");
1177   return cast<DILocalVariable>(getOperand(2).getMetadata());
1178 }
1179 
1180 const DIExpression *MachineInstr::getDebugExpression() const {
1181   assert(isDebugValue() && "not a DBG_VALUE");
1182   return cast<DIExpression>(getOperand(3).getMetadata());
1183 }
1184 
1185 const TargetRegisterClass*
1186 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1187                                     const TargetInstrInfo *TII,
1188                                     const TargetRegisterInfo *TRI) const {
1189   assert(getParent() && "Can't have an MBB reference here!");
1190   assert(getParent()->getParent() && "Can't have an MF reference here!");
1191   const MachineFunction &MF = *getParent()->getParent();
1192 
1193   // Most opcodes have fixed constraints in their MCInstrDesc.
1194   if (!isInlineAsm())
1195     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1196 
1197   if (!getOperand(OpIdx).isReg())
1198     return nullptr;
1199 
1200   // For tied uses on inline asm, get the constraint from the def.
1201   unsigned DefIdx;
1202   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1203     OpIdx = DefIdx;
1204 
1205   // Inline asm stores register class constraints in the flag word.
1206   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1207   if (FlagIdx < 0)
1208     return nullptr;
1209 
1210   unsigned Flag = getOperand(FlagIdx).getImm();
1211   unsigned RCID;
1212   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
1213        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
1214        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
1215       InlineAsm::hasRegClassConstraint(Flag, RCID))
1216     return TRI->getRegClass(RCID);
1217 
1218   // Assume that all registers in a memory operand are pointers.
1219   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1220     return TRI->getPointerRegClass(MF);
1221 
1222   return nullptr;
1223 }
1224 
1225 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1226     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1227     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1228   // Check every operands inside the bundle if we have
1229   // been asked to.
1230   if (ExploreBundle)
1231     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
1232          ++OpndIt)
1233       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1234           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1235   else
1236     // Otherwise, just check the current operands.
1237     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1238       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1239   return CurRC;
1240 }
1241 
1242 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1243     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1244     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1245   assert(CurRC && "Invalid initial register class");
1246   // Check if Reg is constrained by some of its use/def from MI.
1247   const MachineOperand &MO = getOperand(OpIdx);
1248   if (!MO.isReg() || MO.getReg() != Reg)
1249     return CurRC;
1250   // If yes, accumulate the constraints through the operand.
1251   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1252 }
1253 
1254 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1255     unsigned OpIdx, const TargetRegisterClass *CurRC,
1256     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1257   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1258   const MachineOperand &MO = getOperand(OpIdx);
1259   assert(MO.isReg() &&
1260          "Cannot get register constraints for non-register operand");
1261   assert(CurRC && "Invalid initial register class");
1262   if (unsigned SubIdx = MO.getSubReg()) {
1263     if (OpRC)
1264       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1265     else
1266       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1267   } else if (OpRC)
1268     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1269   return CurRC;
1270 }
1271 
1272 /// Return the number of instructions inside the MI bundle, not counting the
1273 /// header instruction.
1274 unsigned MachineInstr::getBundleSize() const {
1275   MachineBasicBlock::const_instr_iterator I = getIterator();
1276   unsigned Size = 0;
1277   while (I->isBundledWithSucc()) {
1278     ++Size;
1279     ++I;
1280   }
1281   return Size;
1282 }
1283 
1284 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1285 /// the given register (not considering sub/super-registers).
1286 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
1287   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1288     const MachineOperand &MO = getOperand(i);
1289     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1290       return true;
1291   }
1292   return false;
1293 }
1294 
1295 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1296 /// the specific register or -1 if it is not found. It further tightens
1297 /// the search criteria to a use that kills the register if isKill is true.
1298 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1299                                           const TargetRegisterInfo *TRI) const {
1300   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1301     const MachineOperand &MO = getOperand(i);
1302     if (!MO.isReg() || !MO.isUse())
1303       continue;
1304     unsigned MOReg = MO.getReg();
1305     if (!MOReg)
1306       continue;
1307     if (MOReg == Reg ||
1308         (TRI &&
1309          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1310          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1311          TRI->isSubRegister(MOReg, Reg)))
1312       if (!isKill || MO.isKill())
1313         return i;
1314   }
1315   return -1;
1316 }
1317 
1318 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1319 /// indicating if this instruction reads or writes Reg. This also considers
1320 /// partial defines.
1321 std::pair<bool,bool>
1322 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1323                                          SmallVectorImpl<unsigned> *Ops) const {
1324   bool PartDef = false; // Partial redefine.
1325   bool FullDef = false; // Full define.
1326   bool Use = false;
1327 
1328   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1329     const MachineOperand &MO = getOperand(i);
1330     if (!MO.isReg() || MO.getReg() != Reg)
1331       continue;
1332     if (Ops)
1333       Ops->push_back(i);
1334     if (MO.isUse())
1335       Use |= !MO.isUndef();
1336     else if (MO.getSubReg() && !MO.isUndef())
1337       // A partial <def,undef> doesn't count as reading the register.
1338       PartDef = true;
1339     else
1340       FullDef = true;
1341   }
1342   // A partial redefine uses Reg unless there is also a full define.
1343   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1344 }
1345 
1346 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1347 /// the specified register or -1 if it is not found. If isDead is true, defs
1348 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1349 /// also checks if there is a def of a super-register.
1350 int
1351 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1352                                         const TargetRegisterInfo *TRI) const {
1353   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1354   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1355     const MachineOperand &MO = getOperand(i);
1356     // Accept regmask operands when Overlap is set.
1357     // Ignore them when looking for a specific def operand (Overlap == false).
1358     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1359       return i;
1360     if (!MO.isReg() || !MO.isDef())
1361       continue;
1362     unsigned MOReg = MO.getReg();
1363     bool Found = (MOReg == Reg);
1364     if (!Found && TRI && isPhys &&
1365         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1366       if (Overlap)
1367         Found = TRI->regsOverlap(MOReg, Reg);
1368       else
1369         Found = TRI->isSubRegister(MOReg, Reg);
1370     }
1371     if (Found && (!isDead || MO.isDead()))
1372       return i;
1373   }
1374   return -1;
1375 }
1376 
1377 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1378 /// operand list that is used to represent the predicate. It returns -1 if
1379 /// none is found.
1380 int MachineInstr::findFirstPredOperandIdx() const {
1381   // Don't call MCID.findFirstPredOperandIdx() because this variant
1382   // is sometimes called on an instruction that's not yet complete, and
1383   // so the number of operands is less than the MCID indicates. In
1384   // particular, the PTX target does this.
1385   const MCInstrDesc &MCID = getDesc();
1386   if (MCID.isPredicable()) {
1387     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1388       if (MCID.OpInfo[i].isPredicate())
1389         return i;
1390   }
1391 
1392   return -1;
1393 }
1394 
1395 // MachineOperand::TiedTo is 4 bits wide.
1396 const unsigned TiedMax = 15;
1397 
1398 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1399 ///
1400 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1401 /// field. TiedTo can have these values:
1402 ///
1403 /// 0:              Operand is not tied to anything.
1404 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1405 /// TiedMax:        Tied to an operand >= TiedMax-1.
1406 ///
1407 /// The tied def must be one of the first TiedMax operands on a normal
1408 /// instruction. INLINEASM instructions allow more tied defs.
1409 ///
1410 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1411   MachineOperand &DefMO = getOperand(DefIdx);
1412   MachineOperand &UseMO = getOperand(UseIdx);
1413   assert(DefMO.isDef() && "DefIdx must be a def operand");
1414   assert(UseMO.isUse() && "UseIdx must be a use operand");
1415   assert(!DefMO.isTied() && "Def is already tied to another use");
1416   assert(!UseMO.isTied() && "Use is already tied to another def");
1417 
1418   if (DefIdx < TiedMax)
1419     UseMO.TiedTo = DefIdx + 1;
1420   else {
1421     // Inline asm can use the group descriptors to find tied operands, but on
1422     // normal instruction, the tied def must be within the first TiedMax
1423     // operands.
1424     assert(isInlineAsm() && "DefIdx out of range");
1425     UseMO.TiedTo = TiedMax;
1426   }
1427 
1428   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1429   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1430 }
1431 
1432 /// Given the index of a tied register operand, find the operand it is tied to.
1433 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1434 /// which must exist.
1435 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1436   const MachineOperand &MO = getOperand(OpIdx);
1437   assert(MO.isTied() && "Operand isn't tied");
1438 
1439   // Normally TiedTo is in range.
1440   if (MO.TiedTo < TiedMax)
1441     return MO.TiedTo - 1;
1442 
1443   // Uses on normal instructions can be out of range.
1444   if (!isInlineAsm()) {
1445     // Normal tied defs must be in the 0..TiedMax-1 range.
1446     if (MO.isUse())
1447       return TiedMax - 1;
1448     // MO is a def. Search for the tied use.
1449     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1450       const MachineOperand &UseMO = getOperand(i);
1451       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1452         return i;
1453     }
1454     llvm_unreachable("Can't find tied use");
1455   }
1456 
1457   // Now deal with inline asm by parsing the operand group descriptor flags.
1458   // Find the beginning of each operand group.
1459   SmallVector<unsigned, 8> GroupIdx;
1460   unsigned OpIdxGroup = ~0u;
1461   unsigned NumOps;
1462   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1463        i += NumOps) {
1464     const MachineOperand &FlagMO = getOperand(i);
1465     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1466     unsigned CurGroup = GroupIdx.size();
1467     GroupIdx.push_back(i);
1468     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1469     // OpIdx belongs to this operand group.
1470     if (OpIdx > i && OpIdx < i + NumOps)
1471       OpIdxGroup = CurGroup;
1472     unsigned TiedGroup;
1473     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1474       continue;
1475     // Operands in this group are tied to operands in TiedGroup which must be
1476     // earlier. Find the number of operands between the two groups.
1477     unsigned Delta = i - GroupIdx[TiedGroup];
1478 
1479     // OpIdx is a use tied to TiedGroup.
1480     if (OpIdxGroup == CurGroup)
1481       return OpIdx - Delta;
1482 
1483     // OpIdx is a def tied to this use group.
1484     if (OpIdxGroup == TiedGroup)
1485       return OpIdx + Delta;
1486   }
1487   llvm_unreachable("Invalid tied operand on inline asm");
1488 }
1489 
1490 /// clearKillInfo - Clears kill flags on all operands.
1491 ///
1492 void MachineInstr::clearKillInfo() {
1493   for (MachineOperand &MO : operands()) {
1494     if (MO.isReg() && MO.isUse())
1495       MO.setIsKill(false);
1496   }
1497 }
1498 
1499 void MachineInstr::substituteRegister(unsigned FromReg,
1500                                       unsigned ToReg,
1501                                       unsigned SubIdx,
1502                                       const TargetRegisterInfo &RegInfo) {
1503   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1504     if (SubIdx)
1505       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1506     for (MachineOperand &MO : operands()) {
1507       if (!MO.isReg() || MO.getReg() != FromReg)
1508         continue;
1509       MO.substPhysReg(ToReg, RegInfo);
1510     }
1511   } else {
1512     for (MachineOperand &MO : operands()) {
1513       if (!MO.isReg() || MO.getReg() != FromReg)
1514         continue;
1515       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1516     }
1517   }
1518 }
1519 
1520 /// isSafeToMove - Return true if it is safe to move this instruction. If
1521 /// SawStore is set to true, it means that there is a store (or call) between
1522 /// the instruction's location and its intended destination.
1523 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1524   // Ignore stuff that we obviously can't move.
1525   //
1526   // Treat volatile loads as stores. This is not strictly necessary for
1527   // volatiles, but it is required for atomic loads. It is not allowed to move
1528   // a load across an atomic load with Ordering > Monotonic.
1529   if (mayStore() || isCall() ||
1530       (mayLoad() && hasOrderedMemoryRef())) {
1531     SawStore = true;
1532     return false;
1533   }
1534 
1535   if (isPosition() || isDebugValue() || isTerminator() ||
1536       hasUnmodeledSideEffects())
1537     return false;
1538 
1539   // See if this instruction does a load.  If so, we have to guarantee that the
1540   // loaded value doesn't change between the load and the its intended
1541   // destination. The check for isInvariantLoad gives the targe the chance to
1542   // classify the load as always returning a constant, e.g. a constant pool
1543   // load.
1544   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1545     // Otherwise, this is a real load.  If there is a store between the load and
1546     // end of block, we can't move it.
1547     return !SawStore;
1548 
1549   return true;
1550 }
1551 
1552 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1553 /// or volatile memory reference, or if the information describing the memory
1554 /// reference is not available. Return false if it is known to have no ordered
1555 /// memory references.
1556 bool MachineInstr::hasOrderedMemoryRef() const {
1557   // An instruction known never to access memory won't have a volatile access.
1558   if (!mayStore() &&
1559       !mayLoad() &&
1560       !isCall() &&
1561       !hasUnmodeledSideEffects())
1562     return false;
1563 
1564   // Otherwise, if the instruction has no memory reference information,
1565   // conservatively assume it wasn't preserved.
1566   if (memoperands_empty())
1567     return true;
1568 
1569   // Check if any of our memory operands are ordered.
1570   return any_of(memoperands(), [](const MachineMemOperand *MMO) {
1571     return !MMO->isUnordered();
1572   });
1573 }
1574 
1575 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1576 /// trap and is loading from a location whose value is invariant across a run of
1577 /// this function.
1578 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1579   // If the instruction doesn't load at all, it isn't an invariant load.
1580   if (!mayLoad())
1581     return false;
1582 
1583   // If the instruction has lost its memoperands, conservatively assume that
1584   // it may not be an invariant load.
1585   if (memoperands_empty())
1586     return false;
1587 
1588   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1589 
1590   for (MachineMemOperand *MMO : memoperands()) {
1591     if (MMO->isVolatile()) return false;
1592     if (MMO->isStore()) return false;
1593     if (MMO->isInvariant() && MMO->isDereferenceable())
1594       continue;
1595 
1596     // A load from a constant PseudoSourceValue is invariant.
1597     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1598       if (PSV->isConstant(&MFI))
1599         continue;
1600 
1601     if (const Value *V = MMO->getValue()) {
1602       // If we have an AliasAnalysis, ask it whether the memory is constant.
1603       if (AA &&
1604           AA->pointsToConstantMemory(
1605               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1606         continue;
1607     }
1608 
1609     // Otherwise assume conservatively.
1610     return false;
1611   }
1612 
1613   // Everything checks out.
1614   return true;
1615 }
1616 
1617 /// isConstantValuePHI - If the specified instruction is a PHI that always
1618 /// merges together the same virtual register, return the register, otherwise
1619 /// return 0.
1620 unsigned MachineInstr::isConstantValuePHI() const {
1621   if (!isPHI())
1622     return 0;
1623   assert(getNumOperands() >= 3 &&
1624          "It's illegal to have a PHI without source operands");
1625 
1626   unsigned Reg = getOperand(1).getReg();
1627   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1628     if (getOperand(i).getReg() != Reg)
1629       return 0;
1630   return Reg;
1631 }
1632 
1633 bool MachineInstr::hasUnmodeledSideEffects() const {
1634   if (hasProperty(MCID::UnmodeledSideEffects))
1635     return true;
1636   if (isInlineAsm()) {
1637     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1638     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1639       return true;
1640   }
1641 
1642   return false;
1643 }
1644 
1645 bool MachineInstr::isLoadFoldBarrier() const {
1646   return mayStore() || isCall() || hasUnmodeledSideEffects();
1647 }
1648 
1649 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1650 ///
1651 bool MachineInstr::allDefsAreDead() const {
1652   for (const MachineOperand &MO : operands()) {
1653     if (!MO.isReg() || MO.isUse())
1654       continue;
1655     if (!MO.isDead())
1656       return false;
1657   }
1658   return true;
1659 }
1660 
1661 /// copyImplicitOps - Copy implicit register operands from specified
1662 /// instruction to this instruction.
1663 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1664                                    const MachineInstr &MI) {
1665   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1666        i != e; ++i) {
1667     const MachineOperand &MO = MI.getOperand(i);
1668     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1669       addOperand(MF, MO);
1670   }
1671 }
1672 
1673 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1674 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1675   dbgs() << "  " << *this;
1676 #endif
1677 }
1678 
1679 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const {
1680   const Module *M = nullptr;
1681   if (const MachineBasicBlock *MBB = getParent())
1682     if (const MachineFunction *MF = MBB->getParent())
1683       M = MF->getFunction()->getParent();
1684 
1685   ModuleSlotTracker MST(M);
1686   print(OS, MST, SkipOpers);
1687 }
1688 
1689 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1690                          bool SkipOpers) const {
1691   // We can be a bit tidier if we know the MachineFunction.
1692   const MachineFunction *MF = nullptr;
1693   const TargetRegisterInfo *TRI = nullptr;
1694   const MachineRegisterInfo *MRI = nullptr;
1695   const TargetInstrInfo *TII = nullptr;
1696   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1697 
1698   if (const MachineBasicBlock *MBB = getParent()) {
1699     MF = MBB->getParent();
1700     if (MF) {
1701       MRI = &MF->getRegInfo();
1702       TRI = MF->getSubtarget().getRegisterInfo();
1703       TII = MF->getSubtarget().getInstrInfo();
1704       IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
1705     }
1706   }
1707 
1708   // Save a list of virtual registers.
1709   SmallVector<unsigned, 8> VirtRegs;
1710 
1711   // Print explicitly defined operands on the left of an assignment syntax.
1712   unsigned StartOp = 0, e = getNumOperands();
1713   for (; StartOp < e && getOperand(StartOp).isReg() &&
1714          getOperand(StartOp).isDef() &&
1715          !getOperand(StartOp).isImplicit();
1716        ++StartOp) {
1717     if (StartOp != 0) OS << ", ";
1718     getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo);
1719     unsigned Reg = getOperand(StartOp).getReg();
1720     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1721       VirtRegs.push_back(Reg);
1722       LLT Ty = MRI ? MRI->getType(Reg) : LLT{};
1723       if (Ty.isValid())
1724         OS << '(' << Ty << ')';
1725     }
1726   }
1727 
1728   if (StartOp != 0)
1729     OS << " = ";
1730 
1731   // Print the opcode name.
1732   if (TII)
1733     OS << TII->getName(getOpcode());
1734   else
1735     OS << "UNKNOWN";
1736 
1737   if (SkipOpers)
1738     return;
1739 
1740   // Print the rest of the operands.
1741   bool OmittedAnyCallClobbers = false;
1742   bool FirstOp = true;
1743   unsigned AsmDescOp = ~0u;
1744   unsigned AsmOpCount = 0;
1745 
1746   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1747     // Print asm string.
1748     OS << " ";
1749     getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
1750 
1751     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1752     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1753     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1754       OS << " [sideeffect]";
1755     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1756       OS << " [mayload]";
1757     if (ExtraInfo & InlineAsm::Extra_MayStore)
1758       OS << " [maystore]";
1759     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1760       OS << " [isconvergent]";
1761     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1762       OS << " [alignstack]";
1763     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1764       OS << " [attdialect]";
1765     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1766       OS << " [inteldialect]";
1767 
1768     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1769     FirstOp = false;
1770   }
1771 
1772   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1773     const MachineOperand &MO = getOperand(i);
1774 
1775     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1776       VirtRegs.push_back(MO.getReg());
1777 
1778     // Omit call-clobbered registers which aren't used anywhere. This makes
1779     // call instructions much less noisy on targets where calls clobber lots
1780     // of registers. Don't rely on MO.isDead() because we may be called before
1781     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1782     if (MRI && isCall() &&
1783         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1784       unsigned Reg = MO.getReg();
1785       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1786         if (MRI->use_empty(Reg)) {
1787           bool HasAliasLive = false;
1788           for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
1789             unsigned AliasReg = *AI;
1790             if (!MRI->use_empty(AliasReg)) {
1791               HasAliasLive = true;
1792               break;
1793             }
1794           }
1795           if (!HasAliasLive) {
1796             OmittedAnyCallClobbers = true;
1797             continue;
1798           }
1799         }
1800       }
1801     }
1802 
1803     if (FirstOp) FirstOp = false; else OS << ",";
1804     OS << " ";
1805     if (i < getDesc().NumOperands) {
1806       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1807       if (MCOI.isPredicate())
1808         OS << "pred:";
1809       if (MCOI.isOptionalDef())
1810         OS << "opt:";
1811     }
1812     if (isDebugValue() && MO.isMetadata()) {
1813       // Pretty print DBG_VALUE instructions.
1814       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1815       if (DIV && !DIV->getName().empty())
1816         OS << "!\"" << DIV->getName() << '\"';
1817       else
1818         MO.print(OS, MST, TRI);
1819     } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1820       OS << TRI->getSubRegIndexName(MO.getImm());
1821     } else if (i == AsmDescOp && MO.isImm()) {
1822       // Pretty print the inline asm operand descriptor.
1823       OS << '$' << AsmOpCount++;
1824       unsigned Flag = MO.getImm();
1825       switch (InlineAsm::getKind(Flag)) {
1826       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1827       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1828       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1829       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1830       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1831       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1832       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1833       }
1834 
1835       unsigned RCID = 0;
1836       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1837           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1838         if (TRI) {
1839           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1840         } else
1841           OS << ":RC" << RCID;
1842       }
1843 
1844       if (InlineAsm::isMemKind(Flag)) {
1845         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1846         switch (MCID) {
1847         case InlineAsm::Constraint_es: OS << ":es"; break;
1848         case InlineAsm::Constraint_i:  OS << ":i"; break;
1849         case InlineAsm::Constraint_m:  OS << ":m"; break;
1850         case InlineAsm::Constraint_o:  OS << ":o"; break;
1851         case InlineAsm::Constraint_v:  OS << ":v"; break;
1852         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1853         case InlineAsm::Constraint_R:  OS << ":R"; break;
1854         case InlineAsm::Constraint_S:  OS << ":S"; break;
1855         case InlineAsm::Constraint_T:  OS << ":T"; break;
1856         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1857         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1858         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1859         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1860         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1861         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1862         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1863         case InlineAsm::Constraint_X:  OS << ":X"; break;
1864         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1865         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1866         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1867         default: OS << ":?"; break;
1868         }
1869       }
1870 
1871       unsigned TiedTo = 0;
1872       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1873         OS << " tiedto:$" << TiedTo;
1874 
1875       OS << ']';
1876 
1877       // Compute the index of the next operand descriptor.
1878       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1879     } else
1880       MO.print(OS, MST, TRI);
1881   }
1882 
1883   // Briefly indicate whether any call clobbers were omitted.
1884   if (OmittedAnyCallClobbers) {
1885     if (!FirstOp) OS << ",";
1886     OS << " ...";
1887   }
1888 
1889   bool HaveSemi = false;
1890   const unsigned PrintableFlags = FrameSetup | FrameDestroy;
1891   if (Flags & PrintableFlags) {
1892     if (!HaveSemi) {
1893       OS << ";";
1894       HaveSemi = true;
1895     }
1896     OS << " flags: ";
1897 
1898     if (Flags & FrameSetup)
1899       OS << "FrameSetup";
1900 
1901     if (Flags & FrameDestroy)
1902       OS << "FrameDestroy";
1903   }
1904 
1905   if (!memoperands_empty()) {
1906     if (!HaveSemi) {
1907       OS << ";";
1908       HaveSemi = true;
1909     }
1910 
1911     OS << " mem:";
1912     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1913          i != e; ++i) {
1914       (*i)->print(OS, MST);
1915       if (std::next(i) != e)
1916         OS << " ";
1917     }
1918   }
1919 
1920   // Print the regclass of any virtual registers encountered.
1921   if (MRI && !VirtRegs.empty()) {
1922     if (!HaveSemi) {
1923       OS << ";";
1924       HaveSemi = true;
1925     }
1926     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1927       const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]);
1928       if (!RC)
1929         continue;
1930       // Generic virtual registers do not have register classes.
1931       if (RC.is<const RegisterBank *>())
1932         OS << " " << RC.get<const RegisterBank *>()->getName();
1933       else
1934         OS << " "
1935            << TRI->getRegClassName(RC.get<const TargetRegisterClass *>());
1936       OS << ':' << PrintReg(VirtRegs[i]);
1937       for (unsigned j = i+1; j != VirtRegs.size();) {
1938         if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) {
1939           ++j;
1940           continue;
1941         }
1942         if (VirtRegs[i] != VirtRegs[j])
1943           OS << "," << PrintReg(VirtRegs[j]);
1944         VirtRegs.erase(VirtRegs.begin()+j);
1945       }
1946     }
1947   }
1948 
1949   // Print debug location information.
1950   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1951     if (!HaveSemi)
1952       OS << ";";
1953     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1954     OS << " line no:" <<  DV->getLine();
1955     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1956       DebugLoc InlinedAtDL(InlinedAt);
1957       if (InlinedAtDL && MF) {
1958         OS << " inlined @[ ";
1959         InlinedAtDL.print(OS);
1960         OS << " ]";
1961       }
1962     }
1963     if (isIndirectDebugValue())
1964       OS << " indirect";
1965   } else if (debugLoc && MF) {
1966     if (!HaveSemi)
1967       OS << ";";
1968     OS << " dbg:";
1969     debugLoc.print(OS);
1970   }
1971 
1972   OS << '\n';
1973 }
1974 
1975 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1976                                      const TargetRegisterInfo *RegInfo,
1977                                      bool AddIfNotFound) {
1978   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1979   bool hasAliases = isPhysReg &&
1980     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1981   bool Found = false;
1982   SmallVector<unsigned,4> DeadOps;
1983   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1984     MachineOperand &MO = getOperand(i);
1985     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1986       continue;
1987 
1988     // DEBUG_VALUE nodes do not contribute to code generation and should
1989     // always be ignored. Failure to do so may result in trying to modify
1990     // KILL flags on DEBUG_VALUE nodes.
1991     if (MO.isDebug())
1992       continue;
1993 
1994     unsigned Reg = MO.getReg();
1995     if (!Reg)
1996       continue;
1997 
1998     if (Reg == IncomingReg) {
1999       if (!Found) {
2000         if (MO.isKill())
2001           // The register is already marked kill.
2002           return true;
2003         if (isPhysReg && isRegTiedToDefOperand(i))
2004           // Two-address uses of physregs must not be marked kill.
2005           return true;
2006         MO.setIsKill();
2007         Found = true;
2008       }
2009     } else if (hasAliases && MO.isKill() &&
2010                TargetRegisterInfo::isPhysicalRegister(Reg)) {
2011       // A super-register kill already exists.
2012       if (RegInfo->isSuperRegister(IncomingReg, Reg))
2013         return true;
2014       if (RegInfo->isSubRegister(IncomingReg, Reg))
2015         DeadOps.push_back(i);
2016     }
2017   }
2018 
2019   // Trim unneeded kill operands.
2020   while (!DeadOps.empty()) {
2021     unsigned OpIdx = DeadOps.back();
2022     if (getOperand(OpIdx).isImplicit())
2023       RemoveOperand(OpIdx);
2024     else
2025       getOperand(OpIdx).setIsKill(false);
2026     DeadOps.pop_back();
2027   }
2028 
2029   // If not found, this means an alias of one of the operands is killed. Add a
2030   // new implicit operand if required.
2031   if (!Found && AddIfNotFound) {
2032     addOperand(MachineOperand::CreateReg(IncomingReg,
2033                                          false /*IsDef*/,
2034                                          true  /*IsImp*/,
2035                                          true  /*IsKill*/));
2036     return true;
2037   }
2038   return Found;
2039 }
2040 
2041 void MachineInstr::clearRegisterKills(unsigned Reg,
2042                                       const TargetRegisterInfo *RegInfo) {
2043   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
2044     RegInfo = nullptr;
2045   for (MachineOperand &MO : operands()) {
2046     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2047       continue;
2048     unsigned OpReg = MO.getReg();
2049     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
2050       MO.setIsKill(false);
2051   }
2052 }
2053 
2054 bool MachineInstr::addRegisterDead(unsigned Reg,
2055                                    const TargetRegisterInfo *RegInfo,
2056                                    bool AddIfNotFound) {
2057   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
2058   bool hasAliases = isPhysReg &&
2059     MCRegAliasIterator(Reg, RegInfo, false).isValid();
2060   bool Found = false;
2061   SmallVector<unsigned,4> DeadOps;
2062   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2063     MachineOperand &MO = getOperand(i);
2064     if (!MO.isReg() || !MO.isDef())
2065       continue;
2066     unsigned MOReg = MO.getReg();
2067     if (!MOReg)
2068       continue;
2069 
2070     if (MOReg == Reg) {
2071       MO.setIsDead();
2072       Found = true;
2073     } else if (hasAliases && MO.isDead() &&
2074                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
2075       // There exists a super-register that's marked dead.
2076       if (RegInfo->isSuperRegister(Reg, MOReg))
2077         return true;
2078       if (RegInfo->isSubRegister(Reg, MOReg))
2079         DeadOps.push_back(i);
2080     }
2081   }
2082 
2083   // Trim unneeded dead operands.
2084   while (!DeadOps.empty()) {
2085     unsigned OpIdx = DeadOps.back();
2086     if (getOperand(OpIdx).isImplicit())
2087       RemoveOperand(OpIdx);
2088     else
2089       getOperand(OpIdx).setIsDead(false);
2090     DeadOps.pop_back();
2091   }
2092 
2093   // If not found, this means an alias of one of the operands is dead. Add a
2094   // new implicit operand if required.
2095   if (Found || !AddIfNotFound)
2096     return Found;
2097 
2098   addOperand(MachineOperand::CreateReg(Reg,
2099                                        true  /*IsDef*/,
2100                                        true  /*IsImp*/,
2101                                        false /*IsKill*/,
2102                                        true  /*IsDead*/));
2103   return true;
2104 }
2105 
2106 void MachineInstr::clearRegisterDeads(unsigned Reg) {
2107   for (MachineOperand &MO : operands()) {
2108     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2109       continue;
2110     MO.setIsDead(false);
2111   }
2112 }
2113 
2114 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
2115   for (MachineOperand &MO : operands()) {
2116     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2117       continue;
2118     MO.setIsUndef(IsUndef);
2119   }
2120 }
2121 
2122 void MachineInstr::addRegisterDefined(unsigned Reg,
2123                                       const TargetRegisterInfo *RegInfo) {
2124   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
2125     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
2126     if (MO)
2127       return;
2128   } else {
2129     for (const MachineOperand &MO : operands()) {
2130       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2131           MO.getSubReg() == 0)
2132         return;
2133     }
2134   }
2135   addOperand(MachineOperand::CreateReg(Reg,
2136                                        true  /*IsDef*/,
2137                                        true  /*IsImp*/));
2138 }
2139 
2140 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
2141                                          const TargetRegisterInfo &TRI) {
2142   bool HasRegMask = false;
2143   for (MachineOperand &MO : operands()) {
2144     if (MO.isRegMask()) {
2145       HasRegMask = true;
2146       continue;
2147     }
2148     if (!MO.isReg() || !MO.isDef()) continue;
2149     unsigned Reg = MO.getReg();
2150     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
2151     // If there are no uses, including partial uses, the def is dead.
2152     if (none_of(UsedRegs,
2153                 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
2154       MO.setIsDead();
2155   }
2156 
2157   // This is a call with a register mask operand.
2158   // Mask clobbers are always dead, so add defs for the non-dead defines.
2159   if (HasRegMask)
2160     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2161          I != E; ++I)
2162       addRegisterDefined(*I, &TRI);
2163 }
2164 
2165 unsigned
2166 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2167   // Build up a buffer of hash code components.
2168   SmallVector<size_t, 8> HashComponents;
2169   HashComponents.reserve(MI->getNumOperands() + 1);
2170   HashComponents.push_back(MI->getOpcode());
2171   for (const MachineOperand &MO : MI->operands()) {
2172     if (MO.isReg() && MO.isDef() &&
2173         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2174       continue;  // Skip virtual register defs.
2175 
2176     HashComponents.push_back(hash_value(MO));
2177   }
2178   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2179 }
2180 
2181 void MachineInstr::emitError(StringRef Msg) const {
2182   // Find the source location cookie.
2183   unsigned LocCookie = 0;
2184   const MDNode *LocMD = nullptr;
2185   for (unsigned i = getNumOperands(); i != 0; --i) {
2186     if (getOperand(i-1).isMetadata() &&
2187         (LocMD = getOperand(i-1).getMetadata()) &&
2188         LocMD->getNumOperands() != 0) {
2189       if (const ConstantInt *CI =
2190               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2191         LocCookie = CI->getZExtValue();
2192         break;
2193       }
2194     }
2195   }
2196 
2197   if (const MachineBasicBlock *MBB = getParent())
2198     if (const MachineFunction *MF = MBB->getParent())
2199       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2200   report_fatal_error(Msg);
2201 }
2202 
2203 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2204                                   const MCInstrDesc &MCID, bool IsIndirect,
2205                                   unsigned Reg, unsigned Offset,
2206                                   const MDNode *Variable, const MDNode *Expr) {
2207   assert(isa<DILocalVariable>(Variable) && "not a variable");
2208   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2209   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2210          "Expected inlined-at fields to agree");
2211   if (IsIndirect)
2212     return BuildMI(MF, DL, MCID)
2213         .addReg(Reg, RegState::Debug)
2214         .addImm(Offset)
2215         .addMetadata(Variable)
2216         .addMetadata(Expr);
2217   else {
2218     assert(Offset == 0 && "A direct address cannot have an offset.");
2219     return BuildMI(MF, DL, MCID)
2220         .addReg(Reg, RegState::Debug)
2221         .addReg(0U, RegState::Debug)
2222         .addMetadata(Variable)
2223         .addMetadata(Expr);
2224   }
2225 }
2226 
2227 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2228                                   MachineBasicBlock::iterator I,
2229                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2230                                   bool IsIndirect, unsigned Reg,
2231                                   unsigned Offset, const MDNode *Variable,
2232                                   const MDNode *Expr) {
2233   assert(isa<DILocalVariable>(Variable) && "not a variable");
2234   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2235   MachineFunction &MF = *BB.getParent();
2236   MachineInstr *MI =
2237       BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr);
2238   BB.insert(I, MI);
2239   return MachineInstrBuilder(MF, MI);
2240 }
2241