xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 2455b585514887c104f5681381ced1847870d001)
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Assembly/Writer.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/PseudoSourceValue.h"
25 #include "llvm/Constants.h"
26 #include "llvm/DebugInfo.h"
27 #include "llvm/Function.h"
28 #include "llvm/InlineAsm.h"
29 #include "llvm/LLVMContext.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Metadata.h"
33 #include "llvm/Module.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/LeakDetector.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include "llvm/Target/TargetRegisterInfo.h"
42 #include "llvm/Type.h"
43 #include "llvm/Value.h"
44 using namespace llvm;
45 
46 //===----------------------------------------------------------------------===//
47 // MachineOperand Implementation
48 //===----------------------------------------------------------------------===//
49 
50 void MachineOperand::setReg(unsigned Reg) {
51   if (getReg() == Reg) return; // No change.
52 
53   // Otherwise, we have to change the register.  If this operand is embedded
54   // into a machine function, we need to update the old and new register's
55   // use/def lists.
56   if (MachineInstr *MI = getParent())
57     if (MachineBasicBlock *MBB = MI->getParent())
58       if (MachineFunction *MF = MBB->getParent()) {
59         MachineRegisterInfo &MRI = MF->getRegInfo();
60         MRI.removeRegOperandFromUseList(this);
61         SmallContents.RegNo = Reg;
62         MRI.addRegOperandToUseList(this);
63         return;
64       }
65 
66   // Otherwise, just change the register, no problem.  :)
67   SmallContents.RegNo = Reg;
68 }
69 
70 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
71                                   const TargetRegisterInfo &TRI) {
72   assert(TargetRegisterInfo::isVirtualRegister(Reg));
73   if (SubIdx && getSubReg())
74     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
75   setReg(Reg);
76   if (SubIdx)
77     setSubReg(SubIdx);
78 }
79 
80 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
81   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
82   if (getSubReg()) {
83     Reg = TRI.getSubReg(Reg, getSubReg());
84     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
85     // That won't happen in legal code.
86     setSubReg(0);
87   }
88   setReg(Reg);
89 }
90 
91 /// Change a def to a use, or a use to a def.
92 void MachineOperand::setIsDef(bool Val) {
93   assert(isReg() && "Wrong MachineOperand accessor");
94   assert((!Val || !isDebug()) && "Marking a debug operation as def");
95   if (IsDef == Val)
96     return;
97   // MRI may keep uses and defs in different list positions.
98   if (MachineInstr *MI = getParent())
99     if (MachineBasicBlock *MBB = MI->getParent())
100       if (MachineFunction *MF = MBB->getParent()) {
101         MachineRegisterInfo &MRI = MF->getRegInfo();
102         MRI.removeRegOperandFromUseList(this);
103         IsDef = Val;
104         MRI.addRegOperandToUseList(this);
105         return;
106       }
107   IsDef = Val;
108 }
109 
110 /// ChangeToImmediate - Replace this operand with a new immediate operand of
111 /// the specified value.  If an operand is known to be an immediate already,
112 /// the setImm method should be used.
113 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
114   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
115   // If this operand is currently a register operand, and if this is in a
116   // function, deregister the operand from the register's use/def list.
117   if (isReg() && isOnRegUseList())
118     if (MachineInstr *MI = getParent())
119       if (MachineBasicBlock *MBB = MI->getParent())
120         if (MachineFunction *MF = MBB->getParent())
121           MF->getRegInfo().removeRegOperandFromUseList(this);
122 
123   OpKind = MO_Immediate;
124   Contents.ImmVal = ImmVal;
125 }
126 
127 /// ChangeToRegister - Replace this operand with a new register operand of
128 /// the specified value.  If an operand is known to be an register already,
129 /// the setReg method should be used.
130 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
131                                       bool isKill, bool isDead, bool isUndef,
132                                       bool isDebug) {
133   MachineRegisterInfo *RegInfo = 0;
134   if (MachineInstr *MI = getParent())
135     if (MachineBasicBlock *MBB = MI->getParent())
136       if (MachineFunction *MF = MBB->getParent())
137         RegInfo = &MF->getRegInfo();
138   // If this operand is already a register operand, remove it from the
139   // register's use/def lists.
140   bool WasReg = isReg();
141   if (RegInfo && WasReg)
142     RegInfo->removeRegOperandFromUseList(this);
143 
144   // Change this to a register and set the reg#.
145   OpKind = MO_Register;
146   SmallContents.RegNo = Reg;
147   SubReg = 0;
148   IsDef = isDef;
149   IsImp = isImp;
150   IsKill = isKill;
151   IsDead = isDead;
152   IsUndef = isUndef;
153   IsInternalRead = false;
154   IsEarlyClobber = false;
155   IsDebug = isDebug;
156   // Ensure isOnRegUseList() returns false.
157   Contents.Reg.Prev = 0;
158   // Preserve the tie when the operand was already a register.
159   if (!WasReg)
160     TiedTo = 0;
161 
162   // If this operand is embedded in a function, add the operand to the
163   // register's use/def list.
164   if (RegInfo)
165     RegInfo->addRegOperandToUseList(this);
166 }
167 
168 /// isIdenticalTo - Return true if this operand is identical to the specified
169 /// operand. Note that this should stay in sync with the hash_value overload
170 /// below.
171 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
172   if (getType() != Other.getType() ||
173       getTargetFlags() != Other.getTargetFlags())
174     return false;
175 
176   switch (getType()) {
177   case MachineOperand::MO_Register:
178     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
179            getSubReg() == Other.getSubReg();
180   case MachineOperand::MO_Immediate:
181     return getImm() == Other.getImm();
182   case MachineOperand::MO_CImmediate:
183     return getCImm() == Other.getCImm();
184   case MachineOperand::MO_FPImmediate:
185     return getFPImm() == Other.getFPImm();
186   case MachineOperand::MO_MachineBasicBlock:
187     return getMBB() == Other.getMBB();
188   case MachineOperand::MO_FrameIndex:
189     return getIndex() == Other.getIndex();
190   case MachineOperand::MO_ConstantPoolIndex:
191   case MachineOperand::MO_TargetIndex:
192     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
193   case MachineOperand::MO_JumpTableIndex:
194     return getIndex() == Other.getIndex();
195   case MachineOperand::MO_GlobalAddress:
196     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
197   case MachineOperand::MO_ExternalSymbol:
198     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
199            getOffset() == Other.getOffset();
200   case MachineOperand::MO_BlockAddress:
201     return getBlockAddress() == Other.getBlockAddress() &&
202            getOffset() == Other.getOffset();
203   case MO_RegisterMask:
204     return getRegMask() == Other.getRegMask();
205   case MachineOperand::MO_MCSymbol:
206     return getMCSymbol() == Other.getMCSymbol();
207   case MachineOperand::MO_Metadata:
208     return getMetadata() == Other.getMetadata();
209   }
210   llvm_unreachable("Invalid machine operand type");
211 }
212 
213 // Note: this must stay exactly in sync with isIdenticalTo above.
214 hash_code llvm::hash_value(const MachineOperand &MO) {
215   switch (MO.getType()) {
216   case MachineOperand::MO_Register:
217     // Register operands don't have target flags.
218     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
219   case MachineOperand::MO_Immediate:
220     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
221   case MachineOperand::MO_CImmediate:
222     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
223   case MachineOperand::MO_FPImmediate:
224     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
225   case MachineOperand::MO_MachineBasicBlock:
226     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
227   case MachineOperand::MO_FrameIndex:
228     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
229   case MachineOperand::MO_ConstantPoolIndex:
230   case MachineOperand::MO_TargetIndex:
231     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
232                         MO.getOffset());
233   case MachineOperand::MO_JumpTableIndex:
234     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
235   case MachineOperand::MO_ExternalSymbol:
236     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
237                         MO.getSymbolName());
238   case MachineOperand::MO_GlobalAddress:
239     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
240                         MO.getOffset());
241   case MachineOperand::MO_BlockAddress:
242     return hash_combine(MO.getType(), MO.getTargetFlags(),
243                         MO.getBlockAddress(), MO.getOffset());
244   case MachineOperand::MO_RegisterMask:
245     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
246   case MachineOperand::MO_Metadata:
247     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
248   case MachineOperand::MO_MCSymbol:
249     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
250   }
251   llvm_unreachable("Invalid machine operand type");
252 }
253 
254 /// print - Print the specified machine operand.
255 ///
256 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
257   // If the instruction is embedded into a basic block, we can find the
258   // target info for the instruction.
259   if (!TM)
260     if (const MachineInstr *MI = getParent())
261       if (const MachineBasicBlock *MBB = MI->getParent())
262         if (const MachineFunction *MF = MBB->getParent())
263           TM = &MF->getTarget();
264   const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
265 
266   switch (getType()) {
267   case MachineOperand::MO_Register:
268     OS << PrintReg(getReg(), TRI, getSubReg());
269 
270     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
271         isInternalRead() || isEarlyClobber() || isTied()) {
272       OS << '<';
273       bool NeedComma = false;
274       if (isDef()) {
275         if (NeedComma) OS << ',';
276         if (isEarlyClobber())
277           OS << "earlyclobber,";
278         if (isImplicit())
279           OS << "imp-";
280         OS << "def";
281         NeedComma = true;
282         // <def,read-undef> only makes sense when getSubReg() is set.
283         // Don't clutter the output otherwise.
284         if (isUndef() && getSubReg())
285           OS << ",read-undef";
286       } else if (isImplicit()) {
287           OS << "imp-use";
288           NeedComma = true;
289       }
290 
291       if (isKill()) {
292         if (NeedComma) OS << ',';
293         OS << "kill";
294         NeedComma = true;
295       }
296       if (isDead()) {
297         if (NeedComma) OS << ',';
298         OS << "dead";
299         NeedComma = true;
300       }
301       if (isUndef() && isUse()) {
302         if (NeedComma) OS << ',';
303         OS << "undef";
304         NeedComma = true;
305       }
306       if (isInternalRead()) {
307         if (NeedComma) OS << ',';
308         OS << "internal";
309         NeedComma = true;
310       }
311       if (isTied()) {
312         if (NeedComma) OS << ',';
313         OS << "tied";
314         if (TiedTo != 15)
315           OS << unsigned(TiedTo - 1);
316         NeedComma = true;
317       }
318       OS << '>';
319     }
320     break;
321   case MachineOperand::MO_Immediate:
322     OS << getImm();
323     break;
324   case MachineOperand::MO_CImmediate:
325     getCImm()->getValue().print(OS, false);
326     break;
327   case MachineOperand::MO_FPImmediate:
328     if (getFPImm()->getType()->isFloatTy())
329       OS << getFPImm()->getValueAPF().convertToFloat();
330     else
331       OS << getFPImm()->getValueAPF().convertToDouble();
332     break;
333   case MachineOperand::MO_MachineBasicBlock:
334     OS << "<BB#" << getMBB()->getNumber() << ">";
335     break;
336   case MachineOperand::MO_FrameIndex:
337     OS << "<fi#" << getIndex() << '>';
338     break;
339   case MachineOperand::MO_ConstantPoolIndex:
340     OS << "<cp#" << getIndex();
341     if (getOffset()) OS << "+" << getOffset();
342     OS << '>';
343     break;
344   case MachineOperand::MO_TargetIndex:
345     OS << "<ti#" << getIndex();
346     if (getOffset()) OS << "+" << getOffset();
347     OS << '>';
348     break;
349   case MachineOperand::MO_JumpTableIndex:
350     OS << "<jt#" << getIndex() << '>';
351     break;
352   case MachineOperand::MO_GlobalAddress:
353     OS << "<ga:";
354     WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
355     if (getOffset()) OS << "+" << getOffset();
356     OS << '>';
357     break;
358   case MachineOperand::MO_ExternalSymbol:
359     OS << "<es:" << getSymbolName();
360     if (getOffset()) OS << "+" << getOffset();
361     OS << '>';
362     break;
363   case MachineOperand::MO_BlockAddress:
364     OS << '<';
365     WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
366     if (getOffset()) OS << "+" << getOffset();
367     OS << '>';
368     break;
369   case MachineOperand::MO_RegisterMask:
370     OS << "<regmask>";
371     break;
372   case MachineOperand::MO_Metadata:
373     OS << '<';
374     WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
375     OS << '>';
376     break;
377   case MachineOperand::MO_MCSymbol:
378     OS << "<MCSym=" << *getMCSymbol() << '>';
379     break;
380   }
381 
382   if (unsigned TF = getTargetFlags())
383     OS << "[TF=" << TF << ']';
384 }
385 
386 //===----------------------------------------------------------------------===//
387 // MachineMemOperand Implementation
388 //===----------------------------------------------------------------------===//
389 
390 /// getAddrSpace - Return the LLVM IR address space number that this pointer
391 /// points into.
392 unsigned MachinePointerInfo::getAddrSpace() const {
393   if (V == 0) return 0;
394   return cast<PointerType>(V->getType())->getAddressSpace();
395 }
396 
397 /// getConstantPool - Return a MachinePointerInfo record that refers to the
398 /// constant pool.
399 MachinePointerInfo MachinePointerInfo::getConstantPool() {
400   return MachinePointerInfo(PseudoSourceValue::getConstantPool());
401 }
402 
403 /// getFixedStack - Return a MachinePointerInfo record that refers to the
404 /// the specified FrameIndex.
405 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
406   return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
407 }
408 
409 MachinePointerInfo MachinePointerInfo::getJumpTable() {
410   return MachinePointerInfo(PseudoSourceValue::getJumpTable());
411 }
412 
413 MachinePointerInfo MachinePointerInfo::getGOT() {
414   return MachinePointerInfo(PseudoSourceValue::getGOT());
415 }
416 
417 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
418   return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
419 }
420 
421 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
422                                      uint64_t s, unsigned int a,
423                                      const MDNode *TBAAInfo,
424                                      const MDNode *Ranges)
425   : PtrInfo(ptrinfo), Size(s),
426     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
427     TBAAInfo(TBAAInfo), Ranges(Ranges) {
428   assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
429          "invalid pointer value");
430   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
431   assert((isLoad() || isStore()) && "Not a load/store!");
432 }
433 
434 /// Profile - Gather unique data for the object.
435 ///
436 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
437   ID.AddInteger(getOffset());
438   ID.AddInteger(Size);
439   ID.AddPointer(getValue());
440   ID.AddInteger(Flags);
441 }
442 
443 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
444   // The Value and Offset may differ due to CSE. But the flags and size
445   // should be the same.
446   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
447   assert(MMO->getSize() == getSize() && "Size mismatch!");
448 
449   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
450     // Update the alignment value.
451     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
452       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
453     // Also update the base and offset, because the new alignment may
454     // not be applicable with the old ones.
455     PtrInfo = MMO->PtrInfo;
456   }
457 }
458 
459 /// getAlignment - Return the minimum known alignment in bytes of the
460 /// actual memory reference.
461 uint64_t MachineMemOperand::getAlignment() const {
462   return MinAlign(getBaseAlignment(), getOffset());
463 }
464 
465 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
466   assert((MMO.isLoad() || MMO.isStore()) &&
467          "SV has to be a load, store or both.");
468 
469   if (MMO.isVolatile())
470     OS << "Volatile ";
471 
472   if (MMO.isLoad())
473     OS << "LD";
474   if (MMO.isStore())
475     OS << "ST";
476   OS << MMO.getSize();
477 
478   // Print the address information.
479   OS << "[";
480   if (!MMO.getValue())
481     OS << "<unknown>";
482   else
483     WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
484 
485   // If the alignment of the memory reference itself differs from the alignment
486   // of the base pointer, print the base alignment explicitly, next to the base
487   // pointer.
488   if (MMO.getBaseAlignment() != MMO.getAlignment())
489     OS << "(align=" << MMO.getBaseAlignment() << ")";
490 
491   if (MMO.getOffset() != 0)
492     OS << "+" << MMO.getOffset();
493   OS << "]";
494 
495   // Print the alignment of the reference.
496   if (MMO.getBaseAlignment() != MMO.getAlignment() ||
497       MMO.getBaseAlignment() != MMO.getSize())
498     OS << "(align=" << MMO.getAlignment() << ")";
499 
500   // Print TBAA info.
501   if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
502     OS << "(tbaa=";
503     if (TBAAInfo->getNumOperands() > 0)
504       WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
505     else
506       OS << "<unknown>";
507     OS << ")";
508   }
509 
510   // Print nontemporal info.
511   if (MMO.isNonTemporal())
512     OS << "(nontemporal)";
513 
514   return OS;
515 }
516 
517 //===----------------------------------------------------------------------===//
518 // MachineInstr Implementation
519 //===----------------------------------------------------------------------===//
520 
521 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
522   if (MCID->ImplicitDefs)
523     for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
524       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
525   if (MCID->ImplicitUses)
526     for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
527       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
528 }
529 
530 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
531 /// implicit operands. It reserves space for the number of operands specified by
532 /// the MCInstrDesc.
533 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
534                            const DebugLoc dl, bool NoImp)
535   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
536     NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
537   unsigned NumImplicitOps = 0;
538   if (!NoImp)
539     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
540   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
541   if (!NoImp)
542     addImplicitDefUseOperands(MF);
543   // Make sure that we get added to a machine basicblock
544   LeakDetector::addGarbageObject(this);
545 }
546 
547 /// MachineInstr ctor - Copies MachineInstr arg exactly
548 ///
549 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
550   : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
551     NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
552     Parent(0), debugLoc(MI.getDebugLoc()) {
553   Operands.reserve(MI.getNumOperands());
554 
555   // Add operands
556   for (unsigned i = 0; i != MI.getNumOperands(); ++i)
557     addOperand(MF, MI.getOperand(i));
558 
559   // Copy all the sensible flags.
560   setFlags(MI.Flags);
561 
562   // Set parent to null.
563   Parent = 0;
564 
565   LeakDetector::addGarbageObject(this);
566 }
567 
568 MachineInstr::~MachineInstr() {
569   LeakDetector::removeGarbageObject(this);
570 #ifndef NDEBUG
571   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
572     assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
573     assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
574            "Reg operand def/use list corrupted");
575   }
576 #endif
577 }
578 
579 /// getRegInfo - If this instruction is embedded into a MachineFunction,
580 /// return the MachineRegisterInfo object for the current function, otherwise
581 /// return null.
582 MachineRegisterInfo *MachineInstr::getRegInfo() {
583   if (MachineBasicBlock *MBB = getParent())
584     return &MBB->getParent()->getRegInfo();
585   return 0;
586 }
587 
588 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
589 /// this instruction from their respective use lists.  This requires that the
590 /// operands already be on their use lists.
591 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
592   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
593     if (Operands[i].isReg())
594       MRI.removeRegOperandFromUseList(&Operands[i]);
595 }
596 
597 /// AddRegOperandsToUseLists - Add all of the register operands in
598 /// this instruction from their respective use lists.  This requires that the
599 /// operands not be on their use lists yet.
600 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
601   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
602     if (Operands[i].isReg())
603       MRI.addRegOperandToUseList(&Operands[i]);
604 }
605 
606 void MachineInstr::addOperand(const MachineOperand &Op) {
607   MachineBasicBlock *MBB = getParent();
608   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
609   MachineFunction *MF = MBB->getParent();
610   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
611   addOperand(*MF, Op);
612 }
613 
614 /// addOperand - Add the specified operand to the instruction.  If it is an
615 /// implicit operand, it is added to the end of the operand list.  If it is
616 /// an explicit operand it is added at the end of the explicit operand list
617 /// (before the first implicit operand).
618 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
619   assert(MCID && "Cannot add operands before providing an instr descriptor");
620   bool isImpReg = Op.isReg() && Op.isImplicit();
621   MachineRegisterInfo *RegInfo = getRegInfo();
622 
623   // If the Operands backing store is reallocated, all register operands must
624   // be removed and re-added to RegInfo.  It is storing pointers to operands.
625   bool Reallocate = RegInfo &&
626     !Operands.empty() && Operands.size() == Operands.capacity();
627 
628   // Find the insert location for the new operand.  Implicit registers go at
629   // the end, everything goes before the implicit regs.
630   unsigned OpNo = Operands.size();
631 
632   // Remove all the implicit operands from RegInfo if they need to be shifted.
633   // FIXME: Allow mixed explicit and implicit operands on inline asm.
634   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
635   // implicit-defs, but they must not be moved around.  See the FIXME in
636   // InstrEmitter.cpp.
637   if (!isImpReg && !isInlineAsm()) {
638     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
639       --OpNo;
640       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
641       if (RegInfo)
642         RegInfo->removeRegOperandFromUseList(&Operands[OpNo]);
643     }
644   }
645 
646   // OpNo now points as the desired insertion point.  Unless this is a variadic
647   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
648   // RegMask operands go between the explicit and implicit operands.
649   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
650           OpNo < MCID->getNumOperands()) &&
651          "Trying to add an operand to a machine instr that is already done!");
652 
653   // All operands from OpNo have been removed from RegInfo.  If the Operands
654   // backing store needs to be reallocated, we also need to remove any other
655   // register operands.
656   if (Reallocate)
657     for (unsigned i = 0; i != OpNo; ++i)
658       if (Operands[i].isReg())
659         RegInfo->removeRegOperandFromUseList(&Operands[i]);
660 
661   // Insert the new operand at OpNo.
662   Operands.insert(Operands.begin() + OpNo, Op);
663   Operands[OpNo].ParentMI = this;
664 
665   // The Operands backing store has now been reallocated, so we can re-add the
666   // operands before OpNo.
667   if (Reallocate)
668     for (unsigned i = 0; i != OpNo; ++i)
669       if (Operands[i].isReg())
670         RegInfo->addRegOperandToUseList(&Operands[i]);
671 
672   // When adding a register operand, tell RegInfo about it.
673   if (Operands[OpNo].isReg()) {
674     // Ensure isOnRegUseList() returns false, regardless of Op's status.
675     Operands[OpNo].Contents.Reg.Prev = 0;
676     // Ignore existing ties. This is not a property that can be copied.
677     Operands[OpNo].TiedTo = 0;
678     // Add the new operand to RegInfo.
679     if (RegInfo)
680       RegInfo->addRegOperandToUseList(&Operands[OpNo]);
681     // The MCID operand information isn't accurate until we start adding
682     // explicit operands. The implicit operands are added first, then the
683     // explicits are inserted before them.
684     if (!isImpReg) {
685       // Tie uses to defs as indicated in MCInstrDesc.
686       if (Operands[OpNo].isUse()) {
687         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
688         if (DefIdx != -1)
689           tieOperands(DefIdx, OpNo);
690       }
691       // If the register operand is flagged as early, mark the operand as such.
692       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
693         Operands[OpNo].setIsEarlyClobber(true);
694     }
695   }
696 
697   // Re-add all the implicit ops.
698   if (RegInfo) {
699     for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
700       assert(Operands[i].isReg() && "Should only be an implicit reg!");
701       RegInfo->addRegOperandToUseList(&Operands[i]);
702     }
703   }
704 }
705 
706 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
707 /// fewer operand than it started with.
708 ///
709 void MachineInstr::RemoveOperand(unsigned OpNo) {
710   assert(OpNo < Operands.size() && "Invalid operand number");
711   untieRegOperand(OpNo);
712   MachineRegisterInfo *RegInfo = getRegInfo();
713 
714   // Special case removing the last one.
715   if (OpNo == Operands.size()-1) {
716     // If needed, remove from the reg def/use list.
717     if (RegInfo && Operands.back().isReg() && Operands.back().isOnRegUseList())
718       RegInfo->removeRegOperandFromUseList(&Operands.back());
719 
720     Operands.pop_back();
721     return;
722   }
723 
724   // Otherwise, we are removing an interior operand.  If we have reginfo to
725   // update, remove all operands that will be shifted down from their reg lists,
726   // move everything down, then re-add them.
727   if (RegInfo) {
728     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
729       if (Operands[i].isReg())
730         RegInfo->removeRegOperandFromUseList(&Operands[i]);
731     }
732   }
733 
734 #ifndef NDEBUG
735   // Moving tied operands would break the ties.
736   for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i)
737     if (Operands[i].isReg())
738       assert(!Operands[i].isTied() && "Cannot move tied operands");
739 #endif
740 
741   Operands.erase(Operands.begin()+OpNo);
742 
743   if (RegInfo) {
744     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
745       if (Operands[i].isReg())
746         RegInfo->addRegOperandToUseList(&Operands[i]);
747     }
748   }
749 }
750 
751 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
752 /// This function should be used only occasionally. The setMemRefs function
753 /// is the primary method for setting up a MachineInstr's MemRefs list.
754 void MachineInstr::addMemOperand(MachineFunction &MF,
755                                  MachineMemOperand *MO) {
756   mmo_iterator OldMemRefs = MemRefs;
757   uint16_t OldNumMemRefs = NumMemRefs;
758 
759   uint16_t NewNum = NumMemRefs + 1;
760   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
761 
762   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
763   NewMemRefs[NewNum - 1] = MO;
764 
765   MemRefs = NewMemRefs;
766   NumMemRefs = NewNum;
767 }
768 
769 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
770   const MachineBasicBlock *MBB = getParent();
771   MachineBasicBlock::const_instr_iterator MII = *this; ++MII;
772   while (MII != MBB->end() && MII->isInsideBundle()) {
773     if (MII->getDesc().getFlags() & Mask) {
774       if (Type == AnyInBundle)
775         return true;
776     } else {
777       if (Type == AllInBundle)
778         return false;
779     }
780     ++MII;
781   }
782 
783   return Type == AllInBundle;
784 }
785 
786 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
787                                  MICheckType Check) const {
788   // If opcodes or number of operands are not the same then the two
789   // instructions are obviously not identical.
790   if (Other->getOpcode() != getOpcode() ||
791       Other->getNumOperands() != getNumOperands())
792     return false;
793 
794   if (isBundle()) {
795     // Both instructions are bundles, compare MIs inside the bundle.
796     MachineBasicBlock::const_instr_iterator I1 = *this;
797     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
798     MachineBasicBlock::const_instr_iterator I2 = *Other;
799     MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
800     while (++I1 != E1 && I1->isInsideBundle()) {
801       ++I2;
802       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
803         return false;
804     }
805   }
806 
807   // Check operands to make sure they match.
808   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
809     const MachineOperand &MO = getOperand(i);
810     const MachineOperand &OMO = Other->getOperand(i);
811     if (!MO.isReg()) {
812       if (!MO.isIdenticalTo(OMO))
813         return false;
814       continue;
815     }
816 
817     // Clients may or may not want to ignore defs when testing for equality.
818     // For example, machine CSE pass only cares about finding common
819     // subexpressions, so it's safe to ignore virtual register defs.
820     if (MO.isDef()) {
821       if (Check == IgnoreDefs)
822         continue;
823       else if (Check == IgnoreVRegDefs) {
824         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
825             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
826           if (MO.getReg() != OMO.getReg())
827             return false;
828       } else {
829         if (!MO.isIdenticalTo(OMO))
830           return false;
831         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
832           return false;
833       }
834     } else {
835       if (!MO.isIdenticalTo(OMO))
836         return false;
837       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
838         return false;
839     }
840   }
841   // If DebugLoc does not match then two dbg.values are not identical.
842   if (isDebugValue())
843     if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
844         && getDebugLoc() != Other->getDebugLoc())
845       return false;
846   return true;
847 }
848 
849 MachineInstr *MachineInstr::removeFromParent() {
850   assert(getParent() && "Not embedded in a basic block!");
851   return getParent()->remove(this);
852 }
853 
854 MachineInstr *MachineInstr::removeFromBundle() {
855   assert(getParent() && "Not embedded in a basic block!");
856   return getParent()->remove_instr(this);
857 }
858 
859 void MachineInstr::eraseFromParent() {
860   assert(getParent() && "Not embedded in a basic block!");
861   getParent()->erase(this);
862 }
863 
864 void MachineInstr::eraseFromBundle() {
865   assert(getParent() && "Not embedded in a basic block!");
866   getParent()->erase_instr(this);
867 }
868 
869 /// getNumExplicitOperands - Returns the number of non-implicit operands.
870 ///
871 unsigned MachineInstr::getNumExplicitOperands() const {
872   unsigned NumOperands = MCID->getNumOperands();
873   if (!MCID->isVariadic())
874     return NumOperands;
875 
876   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
877     const MachineOperand &MO = getOperand(i);
878     if (!MO.isReg() || !MO.isImplicit())
879       NumOperands++;
880   }
881   return NumOperands;
882 }
883 
884 void MachineInstr::bundleWithPred() {
885   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
886   setFlag(BundledPred);
887   MachineBasicBlock::instr_iterator Pred = this;
888   --Pred;
889   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
890   Pred->setFlag(BundledSucc);
891 }
892 
893 void MachineInstr::bundleWithSucc() {
894   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
895   setFlag(BundledSucc);
896   MachineBasicBlock::instr_iterator Succ = this;
897   ++Succ;
898   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
899   Succ->setFlag(BundledPred);
900 }
901 
902 void MachineInstr::unbundleFromPred() {
903   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
904   clearFlag(BundledPred);
905   MachineBasicBlock::instr_iterator Pred = this;
906   --Pred;
907   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
908   Pred->clearFlag(BundledSucc);
909 }
910 
911 void MachineInstr::unbundleFromSucc() {
912   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
913   clearFlag(BundledSucc);
914   MachineBasicBlock::instr_iterator Succ = this;
915   --Succ;
916   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
917   Succ->clearFlag(BundledPred);
918 }
919 
920 bool MachineInstr::isStackAligningInlineAsm() const {
921   if (isInlineAsm()) {
922     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
923     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
924       return true;
925   }
926   return false;
927 }
928 
929 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
930   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
931   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
932   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
933 }
934 
935 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
936                                        unsigned *GroupNo) const {
937   assert(isInlineAsm() && "Expected an inline asm instruction");
938   assert(OpIdx < getNumOperands() && "OpIdx out of range");
939 
940   // Ignore queries about the initial operands.
941   if (OpIdx < InlineAsm::MIOp_FirstOperand)
942     return -1;
943 
944   unsigned Group = 0;
945   unsigned NumOps;
946   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
947        i += NumOps) {
948     const MachineOperand &FlagMO = getOperand(i);
949     // If we reach the implicit register operands, stop looking.
950     if (!FlagMO.isImm())
951       return -1;
952     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
953     if (i + NumOps > OpIdx) {
954       if (GroupNo)
955         *GroupNo = Group;
956       return i;
957     }
958     ++Group;
959   }
960   return -1;
961 }
962 
963 const TargetRegisterClass*
964 MachineInstr::getRegClassConstraint(unsigned OpIdx,
965                                     const TargetInstrInfo *TII,
966                                     const TargetRegisterInfo *TRI) const {
967   assert(getParent() && "Can't have an MBB reference here!");
968   assert(getParent()->getParent() && "Can't have an MF reference here!");
969   const MachineFunction &MF = *getParent()->getParent();
970 
971   // Most opcodes have fixed constraints in their MCInstrDesc.
972   if (!isInlineAsm())
973     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
974 
975   if (!getOperand(OpIdx).isReg())
976     return NULL;
977 
978   // For tied uses on inline asm, get the constraint from the def.
979   unsigned DefIdx;
980   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
981     OpIdx = DefIdx;
982 
983   // Inline asm stores register class constraints in the flag word.
984   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
985   if (FlagIdx < 0)
986     return NULL;
987 
988   unsigned Flag = getOperand(FlagIdx).getImm();
989   unsigned RCID;
990   if (InlineAsm::hasRegClassConstraint(Flag, RCID))
991     return TRI->getRegClass(RCID);
992 
993   // Assume that all registers in a memory operand are pointers.
994   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
995     return TRI->getPointerRegClass(MF);
996 
997   return NULL;
998 }
999 
1000 /// getBundleSize - Return the number of instructions inside the MI bundle.
1001 unsigned MachineInstr::getBundleSize() const {
1002   assert(isBundle() && "Expecting a bundle");
1003 
1004   const MachineBasicBlock *MBB = getParent();
1005   MachineBasicBlock::const_instr_iterator I = *this, E = MBB->instr_end();
1006   unsigned Size = 0;
1007   while ((++I != E) && I->isInsideBundle()) {
1008     ++Size;
1009   }
1010   assert(Size > 1 && "Malformed bundle");
1011 
1012   return Size;
1013 }
1014 
1015 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1016 /// the specific register or -1 if it is not found. It further tightens
1017 /// the search criteria to a use that kills the register if isKill is true.
1018 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1019                                           const TargetRegisterInfo *TRI) const {
1020   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1021     const MachineOperand &MO = getOperand(i);
1022     if (!MO.isReg() || !MO.isUse())
1023       continue;
1024     unsigned MOReg = MO.getReg();
1025     if (!MOReg)
1026       continue;
1027     if (MOReg == Reg ||
1028         (TRI &&
1029          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1030          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1031          TRI->isSubRegister(MOReg, Reg)))
1032       if (!isKill || MO.isKill())
1033         return i;
1034   }
1035   return -1;
1036 }
1037 
1038 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1039 /// indicating if this instruction reads or writes Reg. This also considers
1040 /// partial defines.
1041 std::pair<bool,bool>
1042 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1043                                          SmallVectorImpl<unsigned> *Ops) const {
1044   bool PartDef = false; // Partial redefine.
1045   bool FullDef = false; // Full define.
1046   bool Use = false;
1047 
1048   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1049     const MachineOperand &MO = getOperand(i);
1050     if (!MO.isReg() || MO.getReg() != Reg)
1051       continue;
1052     if (Ops)
1053       Ops->push_back(i);
1054     if (MO.isUse())
1055       Use |= !MO.isUndef();
1056     else if (MO.getSubReg() && !MO.isUndef())
1057       // A partial <def,undef> doesn't count as reading the register.
1058       PartDef = true;
1059     else
1060       FullDef = true;
1061   }
1062   // A partial redefine uses Reg unless there is also a full define.
1063   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1064 }
1065 
1066 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1067 /// the specified register or -1 if it is not found. If isDead is true, defs
1068 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1069 /// also checks if there is a def of a super-register.
1070 int
1071 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1072                                         const TargetRegisterInfo *TRI) const {
1073   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1074   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1075     const MachineOperand &MO = getOperand(i);
1076     // Accept regmask operands when Overlap is set.
1077     // Ignore them when looking for a specific def operand (Overlap == false).
1078     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1079       return i;
1080     if (!MO.isReg() || !MO.isDef())
1081       continue;
1082     unsigned MOReg = MO.getReg();
1083     bool Found = (MOReg == Reg);
1084     if (!Found && TRI && isPhys &&
1085         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1086       if (Overlap)
1087         Found = TRI->regsOverlap(MOReg, Reg);
1088       else
1089         Found = TRI->isSubRegister(MOReg, Reg);
1090     }
1091     if (Found && (!isDead || MO.isDead()))
1092       return i;
1093   }
1094   return -1;
1095 }
1096 
1097 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1098 /// operand list that is used to represent the predicate. It returns -1 if
1099 /// none is found.
1100 int MachineInstr::findFirstPredOperandIdx() const {
1101   // Don't call MCID.findFirstPredOperandIdx() because this variant
1102   // is sometimes called on an instruction that's not yet complete, and
1103   // so the number of operands is less than the MCID indicates. In
1104   // particular, the PTX target does this.
1105   const MCInstrDesc &MCID = getDesc();
1106   if (MCID.isPredicable()) {
1107     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1108       if (MCID.OpInfo[i].isPredicate())
1109         return i;
1110   }
1111 
1112   return -1;
1113 }
1114 
1115 // MachineOperand::TiedTo is 4 bits wide.
1116 const unsigned TiedMax = 15;
1117 
1118 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1119 ///
1120 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1121 /// field. TiedTo can have these values:
1122 ///
1123 /// 0:              Operand is not tied to anything.
1124 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1125 /// TiedMax:        Tied to an operand >= TiedMax-1.
1126 ///
1127 /// The tied def must be one of the first TiedMax operands on a normal
1128 /// instruction. INLINEASM instructions allow more tied defs.
1129 ///
1130 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1131   MachineOperand &DefMO = getOperand(DefIdx);
1132   MachineOperand &UseMO = getOperand(UseIdx);
1133   assert(DefMO.isDef() && "DefIdx must be a def operand");
1134   assert(UseMO.isUse() && "UseIdx must be a use operand");
1135   assert(!DefMO.isTied() && "Def is already tied to another use");
1136   assert(!UseMO.isTied() && "Use is already tied to another def");
1137 
1138   if (DefIdx < TiedMax)
1139     UseMO.TiedTo = DefIdx + 1;
1140   else {
1141     // Inline asm can use the group descriptors to find tied operands, but on
1142     // normal instruction, the tied def must be within the first TiedMax
1143     // operands.
1144     assert(isInlineAsm() && "DefIdx out of range");
1145     UseMO.TiedTo = TiedMax;
1146   }
1147 
1148   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1149   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1150 }
1151 
1152 /// Given the index of a tied register operand, find the operand it is tied to.
1153 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1154 /// which must exist.
1155 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1156   const MachineOperand &MO = getOperand(OpIdx);
1157   assert(MO.isTied() && "Operand isn't tied");
1158 
1159   // Normally TiedTo is in range.
1160   if (MO.TiedTo < TiedMax)
1161     return MO.TiedTo - 1;
1162 
1163   // Uses on normal instructions can be out of range.
1164   if (!isInlineAsm()) {
1165     // Normal tied defs must be in the 0..TiedMax-1 range.
1166     if (MO.isUse())
1167       return TiedMax - 1;
1168     // MO is a def. Search for the tied use.
1169     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1170       const MachineOperand &UseMO = getOperand(i);
1171       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1172         return i;
1173     }
1174     llvm_unreachable("Can't find tied use");
1175   }
1176 
1177   // Now deal with inline asm by parsing the operand group descriptor flags.
1178   // Find the beginning of each operand group.
1179   SmallVector<unsigned, 8> GroupIdx;
1180   unsigned OpIdxGroup = ~0u;
1181   unsigned NumOps;
1182   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1183        i += NumOps) {
1184     const MachineOperand &FlagMO = getOperand(i);
1185     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1186     unsigned CurGroup = GroupIdx.size();
1187     GroupIdx.push_back(i);
1188     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1189     // OpIdx belongs to this operand group.
1190     if (OpIdx > i && OpIdx < i + NumOps)
1191       OpIdxGroup = CurGroup;
1192     unsigned TiedGroup;
1193     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1194       continue;
1195     // Operands in this group are tied to operands in TiedGroup which must be
1196     // earlier. Find the number of operands between the two groups.
1197     unsigned Delta = i - GroupIdx[TiedGroup];
1198 
1199     // OpIdx is a use tied to TiedGroup.
1200     if (OpIdxGroup == CurGroup)
1201       return OpIdx - Delta;
1202 
1203     // OpIdx is a def tied to this use group.
1204     if (OpIdxGroup == TiedGroup)
1205       return OpIdx + Delta;
1206   }
1207   llvm_unreachable("Invalid tied operand on inline asm");
1208 }
1209 
1210 /// clearKillInfo - Clears kill flags on all operands.
1211 ///
1212 void MachineInstr::clearKillInfo() {
1213   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1214     MachineOperand &MO = getOperand(i);
1215     if (MO.isReg() && MO.isUse())
1216       MO.setIsKill(false);
1217   }
1218 }
1219 
1220 void MachineInstr::substituteRegister(unsigned FromReg,
1221                                       unsigned ToReg,
1222                                       unsigned SubIdx,
1223                                       const TargetRegisterInfo &RegInfo) {
1224   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1225     if (SubIdx)
1226       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1227     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1228       MachineOperand &MO = getOperand(i);
1229       if (!MO.isReg() || MO.getReg() != FromReg)
1230         continue;
1231       MO.substPhysReg(ToReg, RegInfo);
1232     }
1233   } else {
1234     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1235       MachineOperand &MO = getOperand(i);
1236       if (!MO.isReg() || MO.getReg() != FromReg)
1237         continue;
1238       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1239     }
1240   }
1241 }
1242 
1243 /// isSafeToMove - Return true if it is safe to move this instruction. If
1244 /// SawStore is set to true, it means that there is a store (or call) between
1245 /// the instruction's location and its intended destination.
1246 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1247                                 AliasAnalysis *AA,
1248                                 bool &SawStore) const {
1249   // Ignore stuff that we obviously can't move.
1250   //
1251   // Treat volatile loads as stores. This is not strictly necessary for
1252   // volatiles, but it is required for atomic loads. It is not allowed to move
1253   // a load across an atomic load with Ordering > Monotonic.
1254   if (mayStore() || isCall() ||
1255       (mayLoad() && hasOrderedMemoryRef())) {
1256     SawStore = true;
1257     return false;
1258   }
1259 
1260   if (isLabel() || isDebugValue() ||
1261       isTerminator() || hasUnmodeledSideEffects())
1262     return false;
1263 
1264   // See if this instruction does a load.  If so, we have to guarantee that the
1265   // loaded value doesn't change between the load and the its intended
1266   // destination. The check for isInvariantLoad gives the targe the chance to
1267   // classify the load as always returning a constant, e.g. a constant pool
1268   // load.
1269   if (mayLoad() && !isInvariantLoad(AA))
1270     // Otherwise, this is a real load.  If there is a store between the load and
1271     // end of block, we can't move it.
1272     return !SawStore;
1273 
1274   return true;
1275 }
1276 
1277 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
1278 /// instruction which defined the specified register instead of copying it.
1279 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1280                                  AliasAnalysis *AA,
1281                                  unsigned DstReg) const {
1282   bool SawStore = false;
1283   if (!TII->isTriviallyReMaterializable(this, AA) ||
1284       !isSafeToMove(TII, AA, SawStore))
1285     return false;
1286   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1287     const MachineOperand &MO = getOperand(i);
1288     if (!MO.isReg())
1289       continue;
1290     // FIXME: For now, do not remat any instruction with register operands.
1291     // Later on, we can loosen the restriction is the register operands have
1292     // not been modified between the def and use. Note, this is different from
1293     // MachineSink because the code is no longer in two-address form (at least
1294     // partially).
1295     if (MO.isUse())
1296       return false;
1297     else if (!MO.isDead() && MO.getReg() != DstReg)
1298       return false;
1299   }
1300   return true;
1301 }
1302 
1303 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1304 /// or volatile memory reference, or if the information describing the memory
1305 /// reference is not available. Return false if it is known to have no ordered
1306 /// memory references.
1307 bool MachineInstr::hasOrderedMemoryRef() const {
1308   // An instruction known never to access memory won't have a volatile access.
1309   if (!mayStore() &&
1310       !mayLoad() &&
1311       !isCall() &&
1312       !hasUnmodeledSideEffects())
1313     return false;
1314 
1315   // Otherwise, if the instruction has no memory reference information,
1316   // conservatively assume it wasn't preserved.
1317   if (memoperands_empty())
1318     return true;
1319 
1320   // Check the memory reference information for ordered references.
1321   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1322     if (!(*I)->isUnordered())
1323       return true;
1324 
1325   return false;
1326 }
1327 
1328 /// isInvariantLoad - Return true if this instruction is loading from a
1329 /// location whose value is invariant across the function.  For example,
1330 /// loading a value from the constant pool or from the argument area
1331 /// of a function if it does not change.  This should only return true of
1332 /// *all* loads the instruction does are invariant (if it does multiple loads).
1333 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1334   // If the instruction doesn't load at all, it isn't an invariant load.
1335   if (!mayLoad())
1336     return false;
1337 
1338   // If the instruction has lost its memoperands, conservatively assume that
1339   // it may not be an invariant load.
1340   if (memoperands_empty())
1341     return false;
1342 
1343   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1344 
1345   for (mmo_iterator I = memoperands_begin(),
1346        E = memoperands_end(); I != E; ++I) {
1347     if ((*I)->isVolatile()) return false;
1348     if ((*I)->isStore()) return false;
1349     if ((*I)->isInvariant()) return true;
1350 
1351     if (const Value *V = (*I)->getValue()) {
1352       // A load from a constant PseudoSourceValue is invariant.
1353       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1354         if (PSV->isConstant(MFI))
1355           continue;
1356       // If we have an AliasAnalysis, ask it whether the memory is constant.
1357       if (AA && AA->pointsToConstantMemory(
1358                       AliasAnalysis::Location(V, (*I)->getSize(),
1359                                               (*I)->getTBAAInfo())))
1360         continue;
1361     }
1362 
1363     // Otherwise assume conservatively.
1364     return false;
1365   }
1366 
1367   // Everything checks out.
1368   return true;
1369 }
1370 
1371 /// isConstantValuePHI - If the specified instruction is a PHI that always
1372 /// merges together the same virtual register, return the register, otherwise
1373 /// return 0.
1374 unsigned MachineInstr::isConstantValuePHI() const {
1375   if (!isPHI())
1376     return 0;
1377   assert(getNumOperands() >= 3 &&
1378          "It's illegal to have a PHI without source operands");
1379 
1380   unsigned Reg = getOperand(1).getReg();
1381   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1382     if (getOperand(i).getReg() != Reg)
1383       return 0;
1384   return Reg;
1385 }
1386 
1387 bool MachineInstr::hasUnmodeledSideEffects() const {
1388   if (hasProperty(MCID::UnmodeledSideEffects))
1389     return true;
1390   if (isInlineAsm()) {
1391     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1392     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1393       return true;
1394   }
1395 
1396   return false;
1397 }
1398 
1399 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1400 ///
1401 bool MachineInstr::allDefsAreDead() const {
1402   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1403     const MachineOperand &MO = getOperand(i);
1404     if (!MO.isReg() || MO.isUse())
1405       continue;
1406     if (!MO.isDead())
1407       return false;
1408   }
1409   return true;
1410 }
1411 
1412 /// copyImplicitOps - Copy implicit register operands from specified
1413 /// instruction to this instruction.
1414 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1415                                    const MachineInstr *MI) {
1416   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1417        i != e; ++i) {
1418     const MachineOperand &MO = MI->getOperand(i);
1419     if (MO.isReg() && MO.isImplicit())
1420       addOperand(MF, MO);
1421   }
1422 }
1423 
1424 void MachineInstr::dump() const {
1425 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1426   dbgs() << "  " << *this;
1427 #endif
1428 }
1429 
1430 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1431                          raw_ostream &CommentOS) {
1432   const LLVMContext &Ctx = MF->getFunction()->getContext();
1433   if (!DL.isUnknown()) {          // Print source line info.
1434     DIScope Scope(DL.getScope(Ctx));
1435     // Omit the directory, because it's likely to be long and uninteresting.
1436     if (Scope.Verify())
1437       CommentOS << Scope.getFilename();
1438     else
1439       CommentOS << "<unknown>";
1440     CommentOS << ':' << DL.getLine();
1441     if (DL.getCol() != 0)
1442       CommentOS << ':' << DL.getCol();
1443     DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1444     if (!InlinedAtDL.isUnknown()) {
1445       CommentOS << " @[ ";
1446       printDebugLoc(InlinedAtDL, MF, CommentOS);
1447       CommentOS << " ]";
1448     }
1449   }
1450 }
1451 
1452 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1453   // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1454   const MachineFunction *MF = 0;
1455   const MachineRegisterInfo *MRI = 0;
1456   if (const MachineBasicBlock *MBB = getParent()) {
1457     MF = MBB->getParent();
1458     if (!TM && MF)
1459       TM = &MF->getTarget();
1460     if (MF)
1461       MRI = &MF->getRegInfo();
1462   }
1463 
1464   // Save a list of virtual registers.
1465   SmallVector<unsigned, 8> VirtRegs;
1466 
1467   // Print explicitly defined operands on the left of an assignment syntax.
1468   unsigned StartOp = 0, e = getNumOperands();
1469   for (; StartOp < e && getOperand(StartOp).isReg() &&
1470          getOperand(StartOp).isDef() &&
1471          !getOperand(StartOp).isImplicit();
1472        ++StartOp) {
1473     if (StartOp != 0) OS << ", ";
1474     getOperand(StartOp).print(OS, TM);
1475     unsigned Reg = getOperand(StartOp).getReg();
1476     if (TargetRegisterInfo::isVirtualRegister(Reg))
1477       VirtRegs.push_back(Reg);
1478   }
1479 
1480   if (StartOp != 0)
1481     OS << " = ";
1482 
1483   // Print the opcode name.
1484   if (TM && TM->getInstrInfo())
1485     OS << TM->getInstrInfo()->getName(getOpcode());
1486   else
1487     OS << "UNKNOWN";
1488 
1489   // Print the rest of the operands.
1490   bool OmittedAnyCallClobbers = false;
1491   bool FirstOp = true;
1492   unsigned AsmDescOp = ~0u;
1493   unsigned AsmOpCount = 0;
1494 
1495   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1496     // Print asm string.
1497     OS << " ";
1498     getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1499 
1500     // Print HasSideEffects, IsAlignStack
1501     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1502     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1503       OS << " [sideeffect]";
1504     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1505       OS << " [alignstack]";
1506     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1507       OS << " [attdialect]";
1508     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1509       OS << " [inteldialect]";
1510 
1511     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1512     FirstOp = false;
1513   }
1514 
1515 
1516   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1517     const MachineOperand &MO = getOperand(i);
1518 
1519     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1520       VirtRegs.push_back(MO.getReg());
1521 
1522     // Omit call-clobbered registers which aren't used anywhere. This makes
1523     // call instructions much less noisy on targets where calls clobber lots
1524     // of registers. Don't rely on MO.isDead() because we may be called before
1525     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1526     if (MF && isCall() &&
1527         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1528       unsigned Reg = MO.getReg();
1529       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1530         const MachineRegisterInfo &MRI = MF->getRegInfo();
1531         if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1532           bool HasAliasLive = false;
1533           for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true);
1534                AI.isValid(); ++AI) {
1535             unsigned AliasReg = *AI;
1536             if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1537               HasAliasLive = true;
1538               break;
1539             }
1540           }
1541           if (!HasAliasLive) {
1542             OmittedAnyCallClobbers = true;
1543             continue;
1544           }
1545         }
1546       }
1547     }
1548 
1549     if (FirstOp) FirstOp = false; else OS << ",";
1550     OS << " ";
1551     if (i < getDesc().NumOperands) {
1552       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1553       if (MCOI.isPredicate())
1554         OS << "pred:";
1555       if (MCOI.isOptionalDef())
1556         OS << "opt:";
1557     }
1558     if (isDebugValue() && MO.isMetadata()) {
1559       // Pretty print DBG_VALUE instructions.
1560       const MDNode *MD = MO.getMetadata();
1561       if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1562         OS << "!\"" << MDS->getString() << '\"';
1563       else
1564         MO.print(OS, TM);
1565     } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1566       OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1567     } else if (i == AsmDescOp && MO.isImm()) {
1568       // Pretty print the inline asm operand descriptor.
1569       OS << '$' << AsmOpCount++;
1570       unsigned Flag = MO.getImm();
1571       switch (InlineAsm::getKind(Flag)) {
1572       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1573       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1574       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1575       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1576       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1577       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1578       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1579       }
1580 
1581       unsigned RCID = 0;
1582       if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1583         if (TM)
1584           OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
1585         else
1586           OS << ":RC" << RCID;
1587       }
1588 
1589       unsigned TiedTo = 0;
1590       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1591         OS << " tiedto:$" << TiedTo;
1592 
1593       OS << ']';
1594 
1595       // Compute the index of the next operand descriptor.
1596       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1597     } else
1598       MO.print(OS, TM);
1599   }
1600 
1601   // Briefly indicate whether any call clobbers were omitted.
1602   if (OmittedAnyCallClobbers) {
1603     if (!FirstOp) OS << ",";
1604     OS << " ...";
1605   }
1606 
1607   bool HaveSemi = false;
1608   if (Flags) {
1609     if (!HaveSemi) OS << ";"; HaveSemi = true;
1610     OS << " flags: ";
1611 
1612     if (Flags & FrameSetup)
1613       OS << "FrameSetup";
1614   }
1615 
1616   if (!memoperands_empty()) {
1617     if (!HaveSemi) OS << ";"; HaveSemi = true;
1618 
1619     OS << " mem:";
1620     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1621          i != e; ++i) {
1622       OS << **i;
1623       if (llvm::next(i) != e)
1624         OS << " ";
1625     }
1626   }
1627 
1628   // Print the regclass of any virtual registers encountered.
1629   if (MRI && !VirtRegs.empty()) {
1630     if (!HaveSemi) OS << ";"; HaveSemi = true;
1631     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1632       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1633       OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1634       for (unsigned j = i+1; j != VirtRegs.size();) {
1635         if (MRI->getRegClass(VirtRegs[j]) != RC) {
1636           ++j;
1637           continue;
1638         }
1639         if (VirtRegs[i] != VirtRegs[j])
1640           OS << "," << PrintReg(VirtRegs[j]);
1641         VirtRegs.erase(VirtRegs.begin()+j);
1642       }
1643     }
1644   }
1645 
1646   // Print debug location information.
1647   if (isDebugValue() && getOperand(e - 1).isMetadata()) {
1648     if (!HaveSemi) OS << ";"; HaveSemi = true;
1649     DIVariable DV(getOperand(e - 1).getMetadata());
1650     OS << " line no:" <<  DV.getLineNumber();
1651     if (MDNode *InlinedAt = DV.getInlinedAt()) {
1652       DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
1653       if (!InlinedAtDL.isUnknown()) {
1654         OS << " inlined @[ ";
1655         printDebugLoc(InlinedAtDL, MF, OS);
1656         OS << " ]";
1657       }
1658     }
1659   } else if (!debugLoc.isUnknown() && MF) {
1660     if (!HaveSemi) OS << ";"; HaveSemi = true;
1661     OS << " dbg:";
1662     printDebugLoc(debugLoc, MF, OS);
1663   }
1664 
1665   OS << '\n';
1666 }
1667 
1668 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1669                                      const TargetRegisterInfo *RegInfo,
1670                                      bool AddIfNotFound) {
1671   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1672   bool hasAliases = isPhysReg &&
1673     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1674   bool Found = false;
1675   SmallVector<unsigned,4> DeadOps;
1676   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1677     MachineOperand &MO = getOperand(i);
1678     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1679       continue;
1680     unsigned Reg = MO.getReg();
1681     if (!Reg)
1682       continue;
1683 
1684     if (Reg == IncomingReg) {
1685       if (!Found) {
1686         if (MO.isKill())
1687           // The register is already marked kill.
1688           return true;
1689         if (isPhysReg && isRegTiedToDefOperand(i))
1690           // Two-address uses of physregs must not be marked kill.
1691           return true;
1692         MO.setIsKill();
1693         Found = true;
1694       }
1695     } else if (hasAliases && MO.isKill() &&
1696                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1697       // A super-register kill already exists.
1698       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1699         return true;
1700       if (RegInfo->isSubRegister(IncomingReg, Reg))
1701         DeadOps.push_back(i);
1702     }
1703   }
1704 
1705   // Trim unneeded kill operands.
1706   while (!DeadOps.empty()) {
1707     unsigned OpIdx = DeadOps.back();
1708     if (getOperand(OpIdx).isImplicit())
1709       RemoveOperand(OpIdx);
1710     else
1711       getOperand(OpIdx).setIsKill(false);
1712     DeadOps.pop_back();
1713   }
1714 
1715   // If not found, this means an alias of one of the operands is killed. Add a
1716   // new implicit operand if required.
1717   if (!Found && AddIfNotFound) {
1718     addOperand(MachineOperand::CreateReg(IncomingReg,
1719                                          false /*IsDef*/,
1720                                          true  /*IsImp*/,
1721                                          true  /*IsKill*/));
1722     return true;
1723   }
1724   return Found;
1725 }
1726 
1727 void MachineInstr::clearRegisterKills(unsigned Reg,
1728                                       const TargetRegisterInfo *RegInfo) {
1729   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1730     RegInfo = 0;
1731   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1732     MachineOperand &MO = getOperand(i);
1733     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1734       continue;
1735     unsigned OpReg = MO.getReg();
1736     if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1737       MO.setIsKill(false);
1738   }
1739 }
1740 
1741 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1742                                    const TargetRegisterInfo *RegInfo,
1743                                    bool AddIfNotFound) {
1744   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1745   bool hasAliases = isPhysReg &&
1746     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1747   bool Found = false;
1748   SmallVector<unsigned,4> DeadOps;
1749   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1750     MachineOperand &MO = getOperand(i);
1751     if (!MO.isReg() || !MO.isDef())
1752       continue;
1753     unsigned Reg = MO.getReg();
1754     if (!Reg)
1755       continue;
1756 
1757     if (Reg == IncomingReg) {
1758       MO.setIsDead();
1759       Found = true;
1760     } else if (hasAliases && MO.isDead() &&
1761                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1762       // There exists a super-register that's marked dead.
1763       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1764         return true;
1765       if (RegInfo->isSubRegister(IncomingReg, Reg))
1766         DeadOps.push_back(i);
1767     }
1768   }
1769 
1770   // Trim unneeded dead operands.
1771   while (!DeadOps.empty()) {
1772     unsigned OpIdx = DeadOps.back();
1773     if (getOperand(OpIdx).isImplicit())
1774       RemoveOperand(OpIdx);
1775     else
1776       getOperand(OpIdx).setIsDead(false);
1777     DeadOps.pop_back();
1778   }
1779 
1780   // If not found, this means an alias of one of the operands is dead. Add a
1781   // new implicit operand if required.
1782   if (Found || !AddIfNotFound)
1783     return Found;
1784 
1785   addOperand(MachineOperand::CreateReg(IncomingReg,
1786                                        true  /*IsDef*/,
1787                                        true  /*IsImp*/,
1788                                        false /*IsKill*/,
1789                                        true  /*IsDead*/));
1790   return true;
1791 }
1792 
1793 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1794                                       const TargetRegisterInfo *RegInfo) {
1795   if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1796     MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1797     if (MO)
1798       return;
1799   } else {
1800     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1801       const MachineOperand &MO = getOperand(i);
1802       if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1803           MO.getSubReg() == 0)
1804         return;
1805     }
1806   }
1807   addOperand(MachineOperand::CreateReg(IncomingReg,
1808                                        true  /*IsDef*/,
1809                                        true  /*IsImp*/));
1810 }
1811 
1812 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1813                                          const TargetRegisterInfo &TRI) {
1814   bool HasRegMask = false;
1815   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1816     MachineOperand &MO = getOperand(i);
1817     if (MO.isRegMask()) {
1818       HasRegMask = true;
1819       continue;
1820     }
1821     if (!MO.isReg() || !MO.isDef()) continue;
1822     unsigned Reg = MO.getReg();
1823     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1824     bool Dead = true;
1825     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1826          I != E; ++I)
1827       if (TRI.regsOverlap(*I, Reg)) {
1828         Dead = false;
1829         break;
1830       }
1831     // If there are no uses, including partial uses, the def is dead.
1832     if (Dead) MO.setIsDead();
1833   }
1834 
1835   // This is a call with a register mask operand.
1836   // Mask clobbers are always dead, so add defs for the non-dead defines.
1837   if (HasRegMask)
1838     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1839          I != E; ++I)
1840       addRegisterDefined(*I, &TRI);
1841 }
1842 
1843 unsigned
1844 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1845   // Build up a buffer of hash code components.
1846   SmallVector<size_t, 8> HashComponents;
1847   HashComponents.reserve(MI->getNumOperands() + 1);
1848   HashComponents.push_back(MI->getOpcode());
1849   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1850     const MachineOperand &MO = MI->getOperand(i);
1851     if (MO.isReg() && MO.isDef() &&
1852         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1853       continue;  // Skip virtual register defs.
1854 
1855     HashComponents.push_back(hash_value(MO));
1856   }
1857   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1858 }
1859 
1860 void MachineInstr::emitError(StringRef Msg) const {
1861   // Find the source location cookie.
1862   unsigned LocCookie = 0;
1863   const MDNode *LocMD = 0;
1864   for (unsigned i = getNumOperands(); i != 0; --i) {
1865     if (getOperand(i-1).isMetadata() &&
1866         (LocMD = getOperand(i-1).getMetadata()) &&
1867         LocMD->getNumOperands() != 0) {
1868       if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1869         LocCookie = CI->getZExtValue();
1870         break;
1871       }
1872     }
1873   }
1874 
1875   if (const MachineBasicBlock *MBB = getParent())
1876     if (const MachineFunction *MF = MBB->getParent())
1877       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1878   report_fatal_error(Msg);
1879 }
1880