xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 2318d1e0e93bf6036a64142a1eb5643f1808bf53)
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Function.h"
17 #include "llvm/InlineAsm.h"
18 #include "llvm/LLVMContext.h"
19 #include "llvm/Metadata.h"
20 #include "llvm/Module.h"
21 #include "llvm/Type.h"
22 #include "llvm/Value.h"
23 #include "llvm/Assembly/Writer.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/DebugInfo.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/LeakDetector.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/ADT/FoldingSet.h"
43 using namespace llvm;
44 
45 //===----------------------------------------------------------------------===//
46 // MachineOperand Implementation
47 //===----------------------------------------------------------------------===//
48 
49 /// AddRegOperandToRegInfo - Add this register operand to the specified
50 /// MachineRegisterInfo.  If it is null, then the next/prev fields should be
51 /// explicitly nulled out.
52 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
53   assert(isReg() && "Can only add reg operand to use lists");
54 
55   // If the reginfo pointer is null, just explicitly null out or next/prev
56   // pointers, to ensure they are not garbage.
57   if (RegInfo == 0) {
58     Contents.Reg.Prev = 0;
59     Contents.Reg.Next = 0;
60     return;
61   }
62 
63   // Otherwise, add this operand to the head of the registers use/def list.
64   MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
65 
66   // For SSA values, we prefer to keep the definition at the start of the list.
67   // we do this by skipping over the definition if it is at the head of the
68   // list.
69   if (*Head && (*Head)->isDef())
70     Head = &(*Head)->Contents.Reg.Next;
71 
72   Contents.Reg.Next = *Head;
73   if (Contents.Reg.Next) {
74     assert(getReg() == Contents.Reg.Next->getReg() &&
75            "Different regs on the same list!");
76     Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
77   }
78 
79   Contents.Reg.Prev = Head;
80   *Head = this;
81 }
82 
83 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
84 /// MachineRegisterInfo it is linked with.
85 void MachineOperand::RemoveRegOperandFromRegInfo() {
86   assert(isOnRegUseList() && "Reg operand is not on a use list");
87   // Unlink this from the doubly linked list of operands.
88   MachineOperand *NextOp = Contents.Reg.Next;
89   *Contents.Reg.Prev = NextOp;
90   if (NextOp) {
91     assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
92     NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
93   }
94   Contents.Reg.Prev = 0;
95   Contents.Reg.Next = 0;
96 }
97 
98 void MachineOperand::setReg(unsigned Reg) {
99   if (getReg() == Reg) return; // No change.
100 
101   // Otherwise, we have to change the register.  If this operand is embedded
102   // into a machine function, we need to update the old and new register's
103   // use/def lists.
104   if (MachineInstr *MI = getParent())
105     if (MachineBasicBlock *MBB = MI->getParent())
106       if (MachineFunction *MF = MBB->getParent()) {
107         RemoveRegOperandFromRegInfo();
108         SmallContents.RegNo = Reg;
109         AddRegOperandToRegInfo(&MF->getRegInfo());
110         return;
111       }
112 
113   // Otherwise, just change the register, no problem.  :)
114   SmallContents.RegNo = Reg;
115 }
116 
117 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
118                                   const TargetRegisterInfo &TRI) {
119   assert(TargetRegisterInfo::isVirtualRegister(Reg));
120   if (SubIdx && getSubReg())
121     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
122   setReg(Reg);
123   if (SubIdx)
124     setSubReg(SubIdx);
125 }
126 
127 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
128   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
129   if (getSubReg()) {
130     Reg = TRI.getSubReg(Reg, getSubReg());
131     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
132     // That won't happen in legal code.
133     setSubReg(0);
134   }
135   setReg(Reg);
136 }
137 
138 /// ChangeToImmediate - Replace this operand with a new immediate operand of
139 /// the specified value.  If an operand is known to be an immediate already,
140 /// the setImm method should be used.
141 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
142   // If this operand is currently a register operand, and if this is in a
143   // function, deregister the operand from the register's use/def list.
144   if (isReg() && getParent() && getParent()->getParent() &&
145       getParent()->getParent()->getParent())
146     RemoveRegOperandFromRegInfo();
147 
148   OpKind = MO_Immediate;
149   Contents.ImmVal = ImmVal;
150 }
151 
152 /// ChangeToRegister - Replace this operand with a new register operand of
153 /// the specified value.  If an operand is known to be an register already,
154 /// the setReg method should be used.
155 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
156                                       bool isKill, bool isDead, bool isUndef,
157                                       bool isDebug) {
158   // If this operand is already a register operand, use setReg to update the
159   // register's use/def lists.
160   if (isReg()) {
161     assert(!isEarlyClobber());
162     setReg(Reg);
163   } else {
164     // Otherwise, change this to a register and set the reg#.
165     OpKind = MO_Register;
166     SmallContents.RegNo = Reg;
167 
168     // If this operand is embedded in a function, add the operand to the
169     // register's use/def list.
170     if (MachineInstr *MI = getParent())
171       if (MachineBasicBlock *MBB = MI->getParent())
172         if (MachineFunction *MF = MBB->getParent())
173           AddRegOperandToRegInfo(&MF->getRegInfo());
174   }
175 
176   IsDef = isDef;
177   IsImp = isImp;
178   IsKill = isKill;
179   IsDead = isDead;
180   IsUndef = isUndef;
181   IsEarlyClobber = false;
182   IsDebug = isDebug;
183   SubReg = 0;
184 }
185 
186 /// isIdenticalTo - Return true if this operand is identical to the specified
187 /// operand.
188 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
189   if (getType() != Other.getType() ||
190       getTargetFlags() != Other.getTargetFlags())
191     return false;
192 
193   switch (getType()) {
194   default: llvm_unreachable("Unrecognized operand type");
195   case MachineOperand::MO_Register:
196     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
197            getSubReg() == Other.getSubReg();
198   case MachineOperand::MO_Immediate:
199     return getImm() == Other.getImm();
200   case MachineOperand::MO_CImmediate:
201     return getCImm() == Other.getCImm();
202   case MachineOperand::MO_FPImmediate:
203     return getFPImm() == Other.getFPImm();
204   case MachineOperand::MO_MachineBasicBlock:
205     return getMBB() == Other.getMBB();
206   case MachineOperand::MO_FrameIndex:
207     return getIndex() == Other.getIndex();
208   case MachineOperand::MO_ConstantPoolIndex:
209     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
210   case MachineOperand::MO_JumpTableIndex:
211     return getIndex() == Other.getIndex();
212   case MachineOperand::MO_GlobalAddress:
213     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
214   case MachineOperand::MO_ExternalSymbol:
215     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
216            getOffset() == Other.getOffset();
217   case MachineOperand::MO_BlockAddress:
218     return getBlockAddress() == Other.getBlockAddress();
219   case MachineOperand::MO_MCSymbol:
220     return getMCSymbol() == Other.getMCSymbol();
221   case MachineOperand::MO_Metadata:
222     return getMetadata() == Other.getMetadata();
223   }
224 }
225 
226 /// print - Print the specified machine operand.
227 ///
228 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
229   // If the instruction is embedded into a basic block, we can find the
230   // target info for the instruction.
231   if (!TM)
232     if (const MachineInstr *MI = getParent())
233       if (const MachineBasicBlock *MBB = MI->getParent())
234         if (const MachineFunction *MF = MBB->getParent())
235           TM = &MF->getTarget();
236   const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
237 
238   switch (getType()) {
239   case MachineOperand::MO_Register:
240     OS << PrintReg(getReg(), TRI, getSubReg());
241 
242     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
243         isEarlyClobber()) {
244       OS << '<';
245       bool NeedComma = false;
246       if (isDef()) {
247         if (NeedComma) OS << ',';
248         if (isEarlyClobber())
249           OS << "earlyclobber,";
250         if (isImplicit())
251           OS << "imp-";
252         OS << "def";
253         NeedComma = true;
254       } else if (isImplicit()) {
255           OS << "imp-use";
256           NeedComma = true;
257       }
258 
259       if (isKill() || isDead() || isUndef()) {
260         if (NeedComma) OS << ',';
261         if (isKill())  OS << "kill";
262         if (isDead())  OS << "dead";
263         if (isUndef()) {
264           if (isKill() || isDead())
265             OS << ',';
266           OS << "undef";
267         }
268       }
269       OS << '>';
270     }
271     break;
272   case MachineOperand::MO_Immediate:
273     OS << getImm();
274     break;
275   case MachineOperand::MO_CImmediate:
276     getCImm()->getValue().print(OS, false);
277     break;
278   case MachineOperand::MO_FPImmediate:
279     if (getFPImm()->getType()->isFloatTy())
280       OS << getFPImm()->getValueAPF().convertToFloat();
281     else
282       OS << getFPImm()->getValueAPF().convertToDouble();
283     break;
284   case MachineOperand::MO_MachineBasicBlock:
285     OS << "<BB#" << getMBB()->getNumber() << ">";
286     break;
287   case MachineOperand::MO_FrameIndex:
288     OS << "<fi#" << getIndex() << '>';
289     break;
290   case MachineOperand::MO_ConstantPoolIndex:
291     OS << "<cp#" << getIndex();
292     if (getOffset()) OS << "+" << getOffset();
293     OS << '>';
294     break;
295   case MachineOperand::MO_JumpTableIndex:
296     OS << "<jt#" << getIndex() << '>';
297     break;
298   case MachineOperand::MO_GlobalAddress:
299     OS << "<ga:";
300     WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
301     if (getOffset()) OS << "+" << getOffset();
302     OS << '>';
303     break;
304   case MachineOperand::MO_ExternalSymbol:
305     OS << "<es:" << getSymbolName();
306     if (getOffset()) OS << "+" << getOffset();
307     OS << '>';
308     break;
309   case MachineOperand::MO_BlockAddress:
310     OS << '<';
311     WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
312     OS << '>';
313     break;
314   case MachineOperand::MO_Metadata:
315     OS << '<';
316     WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
317     OS << '>';
318     break;
319   case MachineOperand::MO_MCSymbol:
320     OS << "<MCSym=" << *getMCSymbol() << '>';
321     break;
322   default:
323     llvm_unreachable("Unrecognized operand type");
324   }
325 
326   if (unsigned TF = getTargetFlags())
327     OS << "[TF=" << TF << ']';
328 }
329 
330 //===----------------------------------------------------------------------===//
331 // MachineMemOperand Implementation
332 //===----------------------------------------------------------------------===//
333 
334 /// getAddrSpace - Return the LLVM IR address space number that this pointer
335 /// points into.
336 unsigned MachinePointerInfo::getAddrSpace() const {
337   if (V == 0) return 0;
338   return cast<PointerType>(V->getType())->getAddressSpace();
339 }
340 
341 /// getConstantPool - Return a MachinePointerInfo record that refers to the
342 /// constant pool.
343 MachinePointerInfo MachinePointerInfo::getConstantPool() {
344   return MachinePointerInfo(PseudoSourceValue::getConstantPool());
345 }
346 
347 /// getFixedStack - Return a MachinePointerInfo record that refers to the
348 /// the specified FrameIndex.
349 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
350   return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
351 }
352 
353 MachinePointerInfo MachinePointerInfo::getJumpTable() {
354   return MachinePointerInfo(PseudoSourceValue::getJumpTable());
355 }
356 
357 MachinePointerInfo MachinePointerInfo::getGOT() {
358   return MachinePointerInfo(PseudoSourceValue::getGOT());
359 }
360 
361 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
362   return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
363 }
364 
365 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
366                                      uint64_t s, unsigned int a,
367                                      const MDNode *TBAAInfo)
368   : PtrInfo(ptrinfo), Size(s),
369     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
370     TBAAInfo(TBAAInfo) {
371   assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
372          "invalid pointer value");
373   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
374   assert((isLoad() || isStore()) && "Not a load/store!");
375 }
376 
377 /// Profile - Gather unique data for the object.
378 ///
379 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
380   ID.AddInteger(getOffset());
381   ID.AddInteger(Size);
382   ID.AddPointer(getValue());
383   ID.AddInteger(Flags);
384 }
385 
386 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
387   // The Value and Offset may differ due to CSE. But the flags and size
388   // should be the same.
389   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
390   assert(MMO->getSize() == getSize() && "Size mismatch!");
391 
392   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
393     // Update the alignment value.
394     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
395       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
396     // Also update the base and offset, because the new alignment may
397     // not be applicable with the old ones.
398     PtrInfo = MMO->PtrInfo;
399   }
400 }
401 
402 /// getAlignment - Return the minimum known alignment in bytes of the
403 /// actual memory reference.
404 uint64_t MachineMemOperand::getAlignment() const {
405   return MinAlign(getBaseAlignment(), getOffset());
406 }
407 
408 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
409   assert((MMO.isLoad() || MMO.isStore()) &&
410          "SV has to be a load, store or both.");
411 
412   if (MMO.isVolatile())
413     OS << "Volatile ";
414 
415   if (MMO.isLoad())
416     OS << "LD";
417   if (MMO.isStore())
418     OS << "ST";
419   OS << MMO.getSize();
420 
421   // Print the address information.
422   OS << "[";
423   if (!MMO.getValue())
424     OS << "<unknown>";
425   else
426     WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
427 
428   // If the alignment of the memory reference itself differs from the alignment
429   // of the base pointer, print the base alignment explicitly, next to the base
430   // pointer.
431   if (MMO.getBaseAlignment() != MMO.getAlignment())
432     OS << "(align=" << MMO.getBaseAlignment() << ")";
433 
434   if (MMO.getOffset() != 0)
435     OS << "+" << MMO.getOffset();
436   OS << "]";
437 
438   // Print the alignment of the reference.
439   if (MMO.getBaseAlignment() != MMO.getAlignment() ||
440       MMO.getBaseAlignment() != MMO.getSize())
441     OS << "(align=" << MMO.getAlignment() << ")";
442 
443   // Print TBAA info.
444   if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
445     OS << "(tbaa=";
446     if (TBAAInfo->getNumOperands() > 0)
447       WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
448     else
449       OS << "<unknown>";
450     OS << ")";
451   }
452 
453   // Print nontemporal info.
454   if (MMO.isNonTemporal())
455     OS << "(nontemporal)";
456 
457   return OS;
458 }
459 
460 //===----------------------------------------------------------------------===//
461 // MachineInstr Implementation
462 //===----------------------------------------------------------------------===//
463 
464 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
465 /// MCID NULL and no operands.
466 MachineInstr::MachineInstr()
467   : MCID(0), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
468     MemRefs(0), MemRefsEnd(0),
469     Parent(0) {
470   // Make sure that we get added to a machine basicblock
471   LeakDetector::addGarbageObject(this);
472 }
473 
474 void MachineInstr::addImplicitDefUseOperands() {
475   if (MCID->ImplicitDefs)
476     for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs)
477       addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
478   if (MCID->ImplicitUses)
479     for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses)
480       addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
481 }
482 
483 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
484 /// implicit operands. It reserves space for the number of operands specified by
485 /// the MCInstrDesc.
486 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
487   : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
488     MemRefs(0), MemRefsEnd(0), Parent(0) {
489   if (!NoImp)
490     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
491   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
492   if (!NoImp)
493     addImplicitDefUseOperands();
494   // Make sure that we get added to a machine basicblock
495   LeakDetector::addGarbageObject(this);
496 }
497 
498 /// MachineInstr ctor - As above, but with a DebugLoc.
499 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
500                            bool NoImp)
501   : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
502     MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
503   if (!NoImp)
504     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
505   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
506   if (!NoImp)
507     addImplicitDefUseOperands();
508   // Make sure that we get added to a machine basicblock
509   LeakDetector::addGarbageObject(this);
510 }
511 
512 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
513 /// that the MachineInstr is created and added to the end of the specified
514 /// basic block.
515 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
516   : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
517     MemRefs(0), MemRefsEnd(0), Parent(0) {
518   assert(MBB && "Cannot use inserting ctor with null basic block!");
519   NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
520   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
521   addImplicitDefUseOperands();
522   // Make sure that we get added to a machine basicblock
523   LeakDetector::addGarbageObject(this);
524   MBB->push_back(this);  // Add instruction to end of basic block!
525 }
526 
527 /// MachineInstr ctor - As above, but with a DebugLoc.
528 ///
529 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
530                            const MCInstrDesc &tid)
531   : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
532     MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
533   assert(MBB && "Cannot use inserting ctor with null basic block!");
534   NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
535   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
536   addImplicitDefUseOperands();
537   // Make sure that we get added to a machine basicblock
538   LeakDetector::addGarbageObject(this);
539   MBB->push_back(this);  // Add instruction to end of basic block!
540 }
541 
542 /// MachineInstr ctor - Copies MachineInstr arg exactly
543 ///
544 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
545   : MCID(&MI.getDesc()), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
546     MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
547     Parent(0), debugLoc(MI.getDebugLoc()) {
548   Operands.reserve(MI.getNumOperands());
549 
550   // Add operands
551   for (unsigned i = 0; i != MI.getNumOperands(); ++i)
552     addOperand(MI.getOperand(i));
553   NumImplicitOps = MI.NumImplicitOps;
554 
555   // Copy all the flags.
556   Flags = MI.Flags;
557 
558   // Set parent to null.
559   Parent = 0;
560 
561   LeakDetector::addGarbageObject(this);
562 }
563 
564 MachineInstr::~MachineInstr() {
565   LeakDetector::removeGarbageObject(this);
566 #ifndef NDEBUG
567   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
568     assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
569     assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
570            "Reg operand def/use list corrupted");
571   }
572 #endif
573 }
574 
575 /// getRegInfo - If this instruction is embedded into a MachineFunction,
576 /// return the MachineRegisterInfo object for the current function, otherwise
577 /// return null.
578 MachineRegisterInfo *MachineInstr::getRegInfo() {
579   if (MachineBasicBlock *MBB = getParent())
580     return &MBB->getParent()->getRegInfo();
581   return 0;
582 }
583 
584 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
585 /// this instruction from their respective use lists.  This requires that the
586 /// operands already be on their use lists.
587 void MachineInstr::RemoveRegOperandsFromUseLists() {
588   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
589     if (Operands[i].isReg())
590       Operands[i].RemoveRegOperandFromRegInfo();
591   }
592 }
593 
594 /// AddRegOperandsToUseLists - Add all of the register operands in
595 /// this instruction from their respective use lists.  This requires that the
596 /// operands not be on their use lists yet.
597 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
598   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
599     if (Operands[i].isReg())
600       Operands[i].AddRegOperandToRegInfo(&RegInfo);
601   }
602 }
603 
604 
605 /// addOperand - Add the specified operand to the instruction.  If it is an
606 /// implicit operand, it is added to the end of the operand list.  If it is
607 /// an explicit operand it is added at the end of the explicit operand list
608 /// (before the first implicit operand).
609 void MachineInstr::addOperand(const MachineOperand &Op) {
610   assert(MCID && "Cannot add operands before providing an instr descriptor");
611   bool isImpReg = Op.isReg() && Op.isImplicit();
612   MachineRegisterInfo *RegInfo = getRegInfo();
613 
614   // If the Operands backing store is reallocated, all register operands must
615   // be removed and re-added to RegInfo.  It is storing pointers to operands.
616   bool Reallocate = RegInfo &&
617     !Operands.empty() && Operands.size() == Operands.capacity();
618 
619   // Find the insert location for the new operand.  Implicit registers go at
620   // the end, everything goes before the implicit regs.
621   unsigned OpNo = Operands.size();
622 
623   // Remove all the implicit operands from RegInfo if they need to be shifted.
624   // FIXME: Allow mixed explicit and implicit operands on inline asm.
625   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
626   // implicit-defs, but they must not be moved around.  See the FIXME in
627   // InstrEmitter.cpp.
628   if (!isImpReg && !isInlineAsm()) {
629     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
630       --OpNo;
631       if (RegInfo)
632         Operands[OpNo].RemoveRegOperandFromRegInfo();
633     }
634   }
635 
636   // OpNo now points as the desired insertion point.  Unless this is a variadic
637   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
638   assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) &&
639          "Trying to add an operand to a machine instr that is already done!");
640 
641   // All operands from OpNo have been removed from RegInfo.  If the Operands
642   // backing store needs to be reallocated, we also need to remove any other
643   // register operands.
644   if (Reallocate)
645     for (unsigned i = 0; i != OpNo; ++i)
646       if (Operands[i].isReg())
647         Operands[i].RemoveRegOperandFromRegInfo();
648 
649   // Insert the new operand at OpNo.
650   Operands.insert(Operands.begin() + OpNo, Op);
651   Operands[OpNo].ParentMI = this;
652 
653   // The Operands backing store has now been reallocated, so we can re-add the
654   // operands before OpNo.
655   if (Reallocate)
656     for (unsigned i = 0; i != OpNo; ++i)
657       if (Operands[i].isReg())
658         Operands[i].AddRegOperandToRegInfo(RegInfo);
659 
660   // When adding a register operand, tell RegInfo about it.
661   if (Operands[OpNo].isReg()) {
662     // Add the new operand to RegInfo, even when RegInfo is NULL.
663     // This will initialize the linked list pointers.
664     Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
665     // If the register operand is flagged as early, mark the operand as such.
666     if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
667       Operands[OpNo].setIsEarlyClobber(true);
668   }
669 
670   // Re-add all the implicit ops.
671   if (RegInfo) {
672     for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
673       assert(Operands[i].isReg() && "Should only be an implicit reg!");
674       Operands[i].AddRegOperandToRegInfo(RegInfo);
675     }
676   }
677 }
678 
679 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
680 /// fewer operand than it started with.
681 ///
682 void MachineInstr::RemoveOperand(unsigned OpNo) {
683   assert(OpNo < Operands.size() && "Invalid operand number");
684 
685   // Special case removing the last one.
686   if (OpNo == Operands.size()-1) {
687     // If needed, remove from the reg def/use list.
688     if (Operands.back().isReg() && Operands.back().isOnRegUseList())
689       Operands.back().RemoveRegOperandFromRegInfo();
690 
691     Operands.pop_back();
692     return;
693   }
694 
695   // Otherwise, we are removing an interior operand.  If we have reginfo to
696   // update, remove all operands that will be shifted down from their reg lists,
697   // move everything down, then re-add them.
698   MachineRegisterInfo *RegInfo = getRegInfo();
699   if (RegInfo) {
700     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
701       if (Operands[i].isReg())
702         Operands[i].RemoveRegOperandFromRegInfo();
703     }
704   }
705 
706   Operands.erase(Operands.begin()+OpNo);
707 
708   if (RegInfo) {
709     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
710       if (Operands[i].isReg())
711         Operands[i].AddRegOperandToRegInfo(RegInfo);
712     }
713   }
714 }
715 
716 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
717 /// This function should be used only occasionally. The setMemRefs function
718 /// is the primary method for setting up a MachineInstr's MemRefs list.
719 void MachineInstr::addMemOperand(MachineFunction &MF,
720                                  MachineMemOperand *MO) {
721   mmo_iterator OldMemRefs = MemRefs;
722   mmo_iterator OldMemRefsEnd = MemRefsEnd;
723 
724   size_t NewNum = (MemRefsEnd - MemRefs) + 1;
725   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
726   mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
727 
728   std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
729   NewMemRefs[NewNum - 1] = MO;
730 
731   MemRefs = NewMemRefs;
732   MemRefsEnd = NewMemRefsEnd;
733 }
734 
735 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
736                                  MICheckType Check) const {
737   // If opcodes or number of operands are not the same then the two
738   // instructions are obviously not identical.
739   if (Other->getOpcode() != getOpcode() ||
740       Other->getNumOperands() != getNumOperands())
741     return false;
742 
743   // Check operands to make sure they match.
744   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
745     const MachineOperand &MO = getOperand(i);
746     const MachineOperand &OMO = Other->getOperand(i);
747     if (!MO.isReg()) {
748       if (!MO.isIdenticalTo(OMO))
749         return false;
750       continue;
751     }
752 
753     // Clients may or may not want to ignore defs when testing for equality.
754     // For example, machine CSE pass only cares about finding common
755     // subexpressions, so it's safe to ignore virtual register defs.
756     if (MO.isDef()) {
757       if (Check == IgnoreDefs)
758         continue;
759       else if (Check == IgnoreVRegDefs) {
760         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
761             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
762           if (MO.getReg() != OMO.getReg())
763             return false;
764       } else {
765         if (!MO.isIdenticalTo(OMO))
766           return false;
767         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
768           return false;
769       }
770     } else {
771       if (!MO.isIdenticalTo(OMO))
772         return false;
773       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
774         return false;
775     }
776   }
777   // If DebugLoc does not match then two dbg.values are not identical.
778   if (isDebugValue())
779     if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
780         && getDebugLoc() != Other->getDebugLoc())
781       return false;
782   return true;
783 }
784 
785 /// removeFromParent - This method unlinks 'this' from the containing basic
786 /// block, and returns it, but does not delete it.
787 MachineInstr *MachineInstr::removeFromParent() {
788   assert(getParent() && "Not embedded in a basic block!");
789   getParent()->remove(this);
790   return this;
791 }
792 
793 
794 /// eraseFromParent - This method unlinks 'this' from the containing basic
795 /// block, and deletes it.
796 void MachineInstr::eraseFromParent() {
797   assert(getParent() && "Not embedded in a basic block!");
798   getParent()->erase(this);
799 }
800 
801 
802 /// OperandComplete - Return true if it's illegal to add a new operand
803 ///
804 bool MachineInstr::OperandsComplete() const {
805   unsigned short NumOperands = MCID->getNumOperands();
806   if (!MCID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
807     return true;  // Broken: we have all the operands of this instruction!
808   return false;
809 }
810 
811 /// getNumExplicitOperands - Returns the number of non-implicit operands.
812 ///
813 unsigned MachineInstr::getNumExplicitOperands() const {
814   unsigned NumOperands = MCID->getNumOperands();
815   if (!MCID->isVariadic())
816     return NumOperands;
817 
818   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
819     const MachineOperand &MO = getOperand(i);
820     if (!MO.isReg() || !MO.isImplicit())
821       NumOperands++;
822   }
823   return NumOperands;
824 }
825 
826 bool MachineInstr::isStackAligningInlineAsm() const {
827   if (isInlineAsm()) {
828     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
829     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
830       return true;
831   }
832   return false;
833 }
834 
835 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
836 /// the specific register or -1 if it is not found. It further tightens
837 /// the search criteria to a use that kills the register if isKill is true.
838 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
839                                           const TargetRegisterInfo *TRI) const {
840   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
841     const MachineOperand &MO = getOperand(i);
842     if (!MO.isReg() || !MO.isUse())
843       continue;
844     unsigned MOReg = MO.getReg();
845     if (!MOReg)
846       continue;
847     if (MOReg == Reg ||
848         (TRI &&
849          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
850          TargetRegisterInfo::isPhysicalRegister(Reg) &&
851          TRI->isSubRegister(MOReg, Reg)))
852       if (!isKill || MO.isKill())
853         return i;
854   }
855   return -1;
856 }
857 
858 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
859 /// indicating if this instruction reads or writes Reg. This also considers
860 /// partial defines.
861 std::pair<bool,bool>
862 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
863                                          SmallVectorImpl<unsigned> *Ops) const {
864   bool PartDef = false; // Partial redefine.
865   bool FullDef = false; // Full define.
866   bool Use = false;
867 
868   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
869     const MachineOperand &MO = getOperand(i);
870     if (!MO.isReg() || MO.getReg() != Reg)
871       continue;
872     if (Ops)
873       Ops->push_back(i);
874     if (MO.isUse())
875       Use |= !MO.isUndef();
876     else if (MO.getSubReg() && !MO.isUndef())
877       // A partial <def,undef> doesn't count as reading the register.
878       PartDef = true;
879     else
880       FullDef = true;
881   }
882   // A partial redefine uses Reg unless there is also a full define.
883   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
884 }
885 
886 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
887 /// the specified register or -1 if it is not found. If isDead is true, defs
888 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
889 /// also checks if there is a def of a super-register.
890 int
891 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
892                                         const TargetRegisterInfo *TRI) const {
893   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
894   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
895     const MachineOperand &MO = getOperand(i);
896     if (!MO.isReg() || !MO.isDef())
897       continue;
898     unsigned MOReg = MO.getReg();
899     bool Found = (MOReg == Reg);
900     if (!Found && TRI && isPhys &&
901         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
902       if (Overlap)
903         Found = TRI->regsOverlap(MOReg, Reg);
904       else
905         Found = TRI->isSubRegister(MOReg, Reg);
906     }
907     if (Found && (!isDead || MO.isDead()))
908       return i;
909   }
910   return -1;
911 }
912 
913 /// findFirstPredOperandIdx() - Find the index of the first operand in the
914 /// operand list that is used to represent the predicate. It returns -1 if
915 /// none is found.
916 int MachineInstr::findFirstPredOperandIdx() const {
917   // Don't call MCID.findFirstPredOperandIdx() because this variant
918   // is sometimes called on an instruction that's not yet complete, and
919   // so the number of operands is less than the MCID indicates. In
920   // particular, the PTX target does this.
921   const MCInstrDesc &MCID = getDesc();
922   if (MCID.isPredicable()) {
923     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
924       if (MCID.OpInfo[i].isPredicate())
925         return i;
926   }
927 
928   return -1;
929 }
930 
931 /// isRegTiedToUseOperand - Given the index of a register def operand,
932 /// check if the register def is tied to a source operand, due to either
933 /// two-address elimination or inline assembly constraints. Returns the
934 /// first tied use operand index by reference is UseOpIdx is not null.
935 bool MachineInstr::
936 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
937   if (isInlineAsm()) {
938     assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
939     const MachineOperand &MO = getOperand(DefOpIdx);
940     if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
941       return false;
942     // Determine the actual operand index that corresponds to this index.
943     unsigned DefNo = 0;
944     unsigned DefPart = 0;
945     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
946          i < e; ) {
947       const MachineOperand &FMO = getOperand(i);
948       // After the normal asm operands there may be additional imp-def regs.
949       if (!FMO.isImm())
950         return false;
951       // Skip over this def.
952       unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
953       unsigned PrevDef = i + 1;
954       i = PrevDef + NumOps;
955       if (i > DefOpIdx) {
956         DefPart = DefOpIdx - PrevDef;
957         break;
958       }
959       ++DefNo;
960     }
961     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
962          i != e; ++i) {
963       const MachineOperand &FMO = getOperand(i);
964       if (!FMO.isImm())
965         continue;
966       if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
967         continue;
968       unsigned Idx;
969       if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
970           Idx == DefNo) {
971         if (UseOpIdx)
972           *UseOpIdx = (unsigned)i + 1 + DefPart;
973         return true;
974       }
975     }
976     return false;
977   }
978 
979   assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
980   const MCInstrDesc &MCID = getDesc();
981   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
982     const MachineOperand &MO = getOperand(i);
983     if (MO.isReg() && MO.isUse() &&
984         MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
985       if (UseOpIdx)
986         *UseOpIdx = (unsigned)i;
987       return true;
988     }
989   }
990   return false;
991 }
992 
993 /// isRegTiedToDefOperand - Return true if the operand of the specified index
994 /// is a register use and it is tied to an def operand. It also returns the def
995 /// operand index by reference.
996 bool MachineInstr::
997 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
998   if (isInlineAsm()) {
999     const MachineOperand &MO = getOperand(UseOpIdx);
1000     if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
1001       return false;
1002 
1003     // Find the flag operand corresponding to UseOpIdx
1004     unsigned FlagIdx, NumOps=0;
1005     for (FlagIdx = InlineAsm::MIOp_FirstOperand;
1006          FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
1007       const MachineOperand &UFMO = getOperand(FlagIdx);
1008       // After the normal asm operands there may be additional imp-def regs.
1009       if (!UFMO.isImm())
1010         return false;
1011       NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
1012       assert(NumOps < getNumOperands() && "Invalid inline asm flag");
1013       if (UseOpIdx < FlagIdx+NumOps+1)
1014         break;
1015     }
1016     if (FlagIdx >= UseOpIdx)
1017       return false;
1018     const MachineOperand &UFMO = getOperand(FlagIdx);
1019     unsigned DefNo;
1020     if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
1021       if (!DefOpIdx)
1022         return true;
1023 
1024       unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
1025       // Remember to adjust the index. First operand is asm string, second is
1026       // the HasSideEffects and AlignStack bits, then there is a flag for each.
1027       while (DefNo) {
1028         const MachineOperand &FMO = getOperand(DefIdx);
1029         assert(FMO.isImm());
1030         // Skip over this def.
1031         DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
1032         --DefNo;
1033       }
1034       *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
1035       return true;
1036     }
1037     return false;
1038   }
1039 
1040   const MCInstrDesc &MCID = getDesc();
1041   if (UseOpIdx >= MCID.getNumOperands())
1042     return false;
1043   const MachineOperand &MO = getOperand(UseOpIdx);
1044   if (!MO.isReg() || !MO.isUse())
1045     return false;
1046   int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
1047   if (DefIdx == -1)
1048     return false;
1049   if (DefOpIdx)
1050     *DefOpIdx = (unsigned)DefIdx;
1051   return true;
1052 }
1053 
1054 /// clearKillInfo - Clears kill flags on all operands.
1055 ///
1056 void MachineInstr::clearKillInfo() {
1057   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1058     MachineOperand &MO = getOperand(i);
1059     if (MO.isReg() && MO.isUse())
1060       MO.setIsKill(false);
1061   }
1062 }
1063 
1064 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1065 ///
1066 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1067   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1068     const MachineOperand &MO = MI->getOperand(i);
1069     if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1070       continue;
1071     for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1072       MachineOperand &MOp = getOperand(j);
1073       if (!MOp.isIdenticalTo(MO))
1074         continue;
1075       if (MO.isKill())
1076         MOp.setIsKill();
1077       else
1078         MOp.setIsDead();
1079       break;
1080     }
1081   }
1082 }
1083 
1084 /// copyPredicates - Copies predicate operand(s) from MI.
1085 void MachineInstr::copyPredicates(const MachineInstr *MI) {
1086   const MCInstrDesc &MCID = MI->getDesc();
1087   if (!MCID.isPredicable())
1088     return;
1089   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1090     if (MCID.OpInfo[i].isPredicate()) {
1091       // Predicated operands must be last operands.
1092       addOperand(MI->getOperand(i));
1093     }
1094   }
1095 }
1096 
1097 void MachineInstr::substituteRegister(unsigned FromReg,
1098                                       unsigned ToReg,
1099                                       unsigned SubIdx,
1100                                       const TargetRegisterInfo &RegInfo) {
1101   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1102     if (SubIdx)
1103       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1104     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1105       MachineOperand &MO = getOperand(i);
1106       if (!MO.isReg() || MO.getReg() != FromReg)
1107         continue;
1108       MO.substPhysReg(ToReg, RegInfo);
1109     }
1110   } else {
1111     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1112       MachineOperand &MO = getOperand(i);
1113       if (!MO.isReg() || MO.getReg() != FromReg)
1114         continue;
1115       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1116     }
1117   }
1118 }
1119 
1120 /// isSafeToMove - Return true if it is safe to move this instruction. If
1121 /// SawStore is set to true, it means that there is a store (or call) between
1122 /// the instruction's location and its intended destination.
1123 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1124                                 AliasAnalysis *AA,
1125                                 bool &SawStore) const {
1126   // Ignore stuff that we obviously can't move.
1127   if (MCID->mayStore() || MCID->isCall()) {
1128     SawStore = true;
1129     return false;
1130   }
1131 
1132   if (isLabel() || isDebugValue() ||
1133       MCID->isTerminator() || hasUnmodeledSideEffects())
1134     return false;
1135 
1136   // See if this instruction does a load.  If so, we have to guarantee that the
1137   // loaded value doesn't change between the load and the its intended
1138   // destination. The check for isInvariantLoad gives the targe the chance to
1139   // classify the load as always returning a constant, e.g. a constant pool
1140   // load.
1141   if (MCID->mayLoad() && !isInvariantLoad(AA))
1142     // Otherwise, this is a real load.  If there is a store between the load and
1143     // end of block, or if the load is volatile, we can't move it.
1144     return !SawStore && !hasVolatileMemoryRef();
1145 
1146   return true;
1147 }
1148 
1149 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
1150 /// instruction which defined the specified register instead of copying it.
1151 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1152                                  AliasAnalysis *AA,
1153                                  unsigned DstReg) const {
1154   bool SawStore = false;
1155   if (!TII->isTriviallyReMaterializable(this, AA) ||
1156       !isSafeToMove(TII, AA, SawStore))
1157     return false;
1158   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1159     const MachineOperand &MO = getOperand(i);
1160     if (!MO.isReg())
1161       continue;
1162     // FIXME: For now, do not remat any instruction with register operands.
1163     // Later on, we can loosen the restriction is the register operands have
1164     // not been modified between the def and use. Note, this is different from
1165     // MachineSink because the code is no longer in two-address form (at least
1166     // partially).
1167     if (MO.isUse())
1168       return false;
1169     else if (!MO.isDead() && MO.getReg() != DstReg)
1170       return false;
1171   }
1172   return true;
1173 }
1174 
1175 /// hasVolatileMemoryRef - Return true if this instruction may have a
1176 /// volatile memory reference, or if the information describing the
1177 /// memory reference is not available. Return false if it is known to
1178 /// have no volatile memory references.
1179 bool MachineInstr::hasVolatileMemoryRef() const {
1180   // An instruction known never to access memory won't have a volatile access.
1181   if (!MCID->mayStore() &&
1182       !MCID->mayLoad() &&
1183       !MCID->isCall() &&
1184       !hasUnmodeledSideEffects())
1185     return false;
1186 
1187   // Otherwise, if the instruction has no memory reference information,
1188   // conservatively assume it wasn't preserved.
1189   if (memoperands_empty())
1190     return true;
1191 
1192   // Check the memory reference information for volatile references.
1193   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1194     if ((*I)->isVolatile())
1195       return true;
1196 
1197   return false;
1198 }
1199 
1200 /// isInvariantLoad - Return true if this instruction is loading from a
1201 /// location whose value is invariant across the function.  For example,
1202 /// loading a value from the constant pool or from the argument area
1203 /// of a function if it does not change.  This should only return true of
1204 /// *all* loads the instruction does are invariant (if it does multiple loads).
1205 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1206   // If the instruction doesn't load at all, it isn't an invariant load.
1207   if (!MCID->mayLoad())
1208     return false;
1209 
1210   // If the instruction has lost its memoperands, conservatively assume that
1211   // it may not be an invariant load.
1212   if (memoperands_empty())
1213     return false;
1214 
1215   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1216 
1217   for (mmo_iterator I = memoperands_begin(),
1218        E = memoperands_end(); I != E; ++I) {
1219     if ((*I)->isVolatile()) return false;
1220     if ((*I)->isStore()) return false;
1221 
1222     if (const Value *V = (*I)->getValue()) {
1223       // A load from a constant PseudoSourceValue is invariant.
1224       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1225         if (PSV->isConstant(MFI))
1226           continue;
1227       // If we have an AliasAnalysis, ask it whether the memory is constant.
1228       if (AA && AA->pointsToConstantMemory(
1229                       AliasAnalysis::Location(V, (*I)->getSize(),
1230                                               (*I)->getTBAAInfo())))
1231         continue;
1232     }
1233 
1234     // Otherwise assume conservatively.
1235     return false;
1236   }
1237 
1238   // Everything checks out.
1239   return true;
1240 }
1241 
1242 /// isConstantValuePHI - If the specified instruction is a PHI that always
1243 /// merges together the same virtual register, return the register, otherwise
1244 /// return 0.
1245 unsigned MachineInstr::isConstantValuePHI() const {
1246   if (!isPHI())
1247     return 0;
1248   assert(getNumOperands() >= 3 &&
1249          "It's illegal to have a PHI without source operands");
1250 
1251   unsigned Reg = getOperand(1).getReg();
1252   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1253     if (getOperand(i).getReg() != Reg)
1254       return 0;
1255   return Reg;
1256 }
1257 
1258 bool MachineInstr::hasUnmodeledSideEffects() const {
1259   if (getDesc().hasUnmodeledSideEffects())
1260     return true;
1261   if (isInlineAsm()) {
1262     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1263     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1264       return true;
1265   }
1266 
1267   return false;
1268 }
1269 
1270 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1271 ///
1272 bool MachineInstr::allDefsAreDead() const {
1273   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1274     const MachineOperand &MO = getOperand(i);
1275     if (!MO.isReg() || MO.isUse())
1276       continue;
1277     if (!MO.isDead())
1278       return false;
1279   }
1280   return true;
1281 }
1282 
1283 /// copyImplicitOps - Copy implicit register operands from specified
1284 /// instruction to this instruction.
1285 void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1286   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1287        i != e; ++i) {
1288     const MachineOperand &MO = MI->getOperand(i);
1289     if (MO.isReg() && MO.isImplicit())
1290       addOperand(MO);
1291   }
1292 }
1293 
1294 void MachineInstr::dump() const {
1295   dbgs() << "  " << *this;
1296 }
1297 
1298 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1299                          raw_ostream &CommentOS) {
1300   const LLVMContext &Ctx = MF->getFunction()->getContext();
1301   if (!DL.isUnknown()) {          // Print source line info.
1302     DIScope Scope(DL.getScope(Ctx));
1303     // Omit the directory, because it's likely to be long and uninteresting.
1304     if (Scope.Verify())
1305       CommentOS << Scope.getFilename();
1306     else
1307       CommentOS << "<unknown>";
1308     CommentOS << ':' << DL.getLine();
1309     if (DL.getCol() != 0)
1310       CommentOS << ':' << DL.getCol();
1311     DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1312     if (!InlinedAtDL.isUnknown()) {
1313       CommentOS << " @[ ";
1314       printDebugLoc(InlinedAtDL, MF, CommentOS);
1315       CommentOS << " ]";
1316     }
1317   }
1318 }
1319 
1320 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1321   // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1322   const MachineFunction *MF = 0;
1323   const MachineRegisterInfo *MRI = 0;
1324   if (const MachineBasicBlock *MBB = getParent()) {
1325     MF = MBB->getParent();
1326     if (!TM && MF)
1327       TM = &MF->getTarget();
1328     if (MF)
1329       MRI = &MF->getRegInfo();
1330   }
1331 
1332   // Save a list of virtual registers.
1333   SmallVector<unsigned, 8> VirtRegs;
1334 
1335   // Print explicitly defined operands on the left of an assignment syntax.
1336   unsigned StartOp = 0, e = getNumOperands();
1337   for (; StartOp < e && getOperand(StartOp).isReg() &&
1338          getOperand(StartOp).isDef() &&
1339          !getOperand(StartOp).isImplicit();
1340        ++StartOp) {
1341     if (StartOp != 0) OS << ", ";
1342     getOperand(StartOp).print(OS, TM);
1343     unsigned Reg = getOperand(StartOp).getReg();
1344     if (TargetRegisterInfo::isVirtualRegister(Reg))
1345       VirtRegs.push_back(Reg);
1346   }
1347 
1348   if (StartOp != 0)
1349     OS << " = ";
1350 
1351   // Print the opcode name.
1352   OS << getDesc().getName();
1353 
1354   // Print the rest of the operands.
1355   bool OmittedAnyCallClobbers = false;
1356   bool FirstOp = true;
1357   unsigned AsmDescOp = ~0u;
1358   unsigned AsmOpCount = 0;
1359 
1360   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1361     // Print asm string.
1362     OS << " ";
1363     getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1364 
1365     // Print HasSideEffects, IsAlignStack
1366     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1367     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1368       OS << " [sideeffect]";
1369     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1370       OS << " [alignstack]";
1371 
1372     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1373     FirstOp = false;
1374   }
1375 
1376 
1377   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1378     const MachineOperand &MO = getOperand(i);
1379 
1380     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1381       VirtRegs.push_back(MO.getReg());
1382 
1383     // Omit call-clobbered registers which aren't used anywhere. This makes
1384     // call instructions much less noisy on targets where calls clobber lots
1385     // of registers. Don't rely on MO.isDead() because we may be called before
1386     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1387     if (MF && getDesc().isCall() &&
1388         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1389       unsigned Reg = MO.getReg();
1390       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1391         const MachineRegisterInfo &MRI = MF->getRegInfo();
1392         if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1393           bool HasAliasLive = false;
1394           for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1395                unsigned AliasReg = *Alias; ++Alias)
1396             if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1397               HasAliasLive = true;
1398               break;
1399             }
1400           if (!HasAliasLive) {
1401             OmittedAnyCallClobbers = true;
1402             continue;
1403           }
1404         }
1405       }
1406     }
1407 
1408     if (FirstOp) FirstOp = false; else OS << ",";
1409     OS << " ";
1410     if (i < getDesc().NumOperands) {
1411       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1412       if (MCOI.isPredicate())
1413         OS << "pred:";
1414       if (MCOI.isOptionalDef())
1415         OS << "opt:";
1416     }
1417     if (isDebugValue() && MO.isMetadata()) {
1418       // Pretty print DBG_VALUE instructions.
1419       const MDNode *MD = MO.getMetadata();
1420       if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1421         OS << "!\"" << MDS->getString() << '\"';
1422       else
1423         MO.print(OS, TM);
1424     } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1425       OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1426     } else if (i == AsmDescOp && MO.isImm()) {
1427       // Pretty print the inline asm operand descriptor.
1428       OS << '$' << AsmOpCount++;
1429       unsigned Flag = MO.getImm();
1430       switch (InlineAsm::getKind(Flag)) {
1431       case InlineAsm::Kind_RegUse:             OS << ":[reguse]"; break;
1432       case InlineAsm::Kind_RegDef:             OS << ":[regdef]"; break;
1433       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec]"; break;
1434       case InlineAsm::Kind_Clobber:            OS << ":[clobber]"; break;
1435       case InlineAsm::Kind_Imm:                OS << ":[imm]"; break;
1436       case InlineAsm::Kind_Mem:                OS << ":[mem]"; break;
1437       default: OS << ":[??" << InlineAsm::getKind(Flag) << ']'; break;
1438       }
1439 
1440       unsigned TiedTo = 0;
1441       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1442         OS << " [tiedto:$" << TiedTo << ']';
1443 
1444       // Compute the index of the next operand descriptor.
1445       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1446     } else
1447       MO.print(OS, TM);
1448   }
1449 
1450   // Briefly indicate whether any call clobbers were omitted.
1451   if (OmittedAnyCallClobbers) {
1452     if (!FirstOp) OS << ",";
1453     OS << " ...";
1454   }
1455 
1456   bool HaveSemi = false;
1457   if (Flags) {
1458     if (!HaveSemi) OS << ";"; HaveSemi = true;
1459     OS << " flags: ";
1460 
1461     if (Flags & FrameSetup)
1462       OS << "FrameSetup";
1463   }
1464 
1465   if (!memoperands_empty()) {
1466     if (!HaveSemi) OS << ";"; HaveSemi = true;
1467 
1468     OS << " mem:";
1469     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1470          i != e; ++i) {
1471       OS << **i;
1472       if (llvm::next(i) != e)
1473         OS << " ";
1474     }
1475   }
1476 
1477   // Print the regclass of any virtual registers encountered.
1478   if (MRI && !VirtRegs.empty()) {
1479     if (!HaveSemi) OS << ";"; HaveSemi = true;
1480     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1481       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1482       OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1483       for (unsigned j = i+1; j != VirtRegs.size();) {
1484         if (MRI->getRegClass(VirtRegs[j]) != RC) {
1485           ++j;
1486           continue;
1487         }
1488         if (VirtRegs[i] != VirtRegs[j])
1489           OS << "," << PrintReg(VirtRegs[j]);
1490         VirtRegs.erase(VirtRegs.begin()+j);
1491       }
1492     }
1493   }
1494 
1495   // Print debug location information.
1496   if (isDebugValue() && getOperand(e - 1).isMetadata()) {
1497     if (!HaveSemi) OS << ";"; HaveSemi = true;
1498     DIVariable DV(getOperand(e - 1).getMetadata());
1499     OS << " line no:" <<  DV.getLineNumber();
1500     if (MDNode *InlinedAt = DV.getInlinedAt()) {
1501       DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
1502       if (!InlinedAtDL.isUnknown()) {
1503         OS << " inlined @[ ";
1504         printDebugLoc(InlinedAtDL, MF, OS);
1505         OS << " ]";
1506       }
1507     }
1508   } else if (!debugLoc.isUnknown() && MF) {
1509     if (!HaveSemi) OS << ";"; HaveSemi = true;
1510     OS << " dbg:";
1511     printDebugLoc(debugLoc, MF, OS);
1512   }
1513 
1514   OS << '\n';
1515 }
1516 
1517 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1518                                      const TargetRegisterInfo *RegInfo,
1519                                      bool AddIfNotFound) {
1520   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1521   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1522   bool Found = false;
1523   SmallVector<unsigned,4> DeadOps;
1524   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1525     MachineOperand &MO = getOperand(i);
1526     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1527       continue;
1528     unsigned Reg = MO.getReg();
1529     if (!Reg)
1530       continue;
1531 
1532     if (Reg == IncomingReg) {
1533       if (!Found) {
1534         if (MO.isKill())
1535           // The register is already marked kill.
1536           return true;
1537         if (isPhysReg && isRegTiedToDefOperand(i))
1538           // Two-address uses of physregs must not be marked kill.
1539           return true;
1540         MO.setIsKill();
1541         Found = true;
1542       }
1543     } else if (hasAliases && MO.isKill() &&
1544                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1545       // A super-register kill already exists.
1546       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1547         return true;
1548       if (RegInfo->isSubRegister(IncomingReg, Reg))
1549         DeadOps.push_back(i);
1550     }
1551   }
1552 
1553   // Trim unneeded kill operands.
1554   while (!DeadOps.empty()) {
1555     unsigned OpIdx = DeadOps.back();
1556     if (getOperand(OpIdx).isImplicit())
1557       RemoveOperand(OpIdx);
1558     else
1559       getOperand(OpIdx).setIsKill(false);
1560     DeadOps.pop_back();
1561   }
1562 
1563   // If not found, this means an alias of one of the operands is killed. Add a
1564   // new implicit operand if required.
1565   if (!Found && AddIfNotFound) {
1566     addOperand(MachineOperand::CreateReg(IncomingReg,
1567                                          false /*IsDef*/,
1568                                          true  /*IsImp*/,
1569                                          true  /*IsKill*/));
1570     return true;
1571   }
1572   return Found;
1573 }
1574 
1575 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1576                                    const TargetRegisterInfo *RegInfo,
1577                                    bool AddIfNotFound) {
1578   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1579   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1580   bool Found = false;
1581   SmallVector<unsigned,4> DeadOps;
1582   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1583     MachineOperand &MO = getOperand(i);
1584     if (!MO.isReg() || !MO.isDef())
1585       continue;
1586     unsigned Reg = MO.getReg();
1587     if (!Reg)
1588       continue;
1589 
1590     if (Reg == IncomingReg) {
1591       MO.setIsDead();
1592       Found = true;
1593     } else if (hasAliases && MO.isDead() &&
1594                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1595       // There exists a super-register that's marked dead.
1596       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1597         return true;
1598       if (RegInfo->getSubRegisters(IncomingReg) &&
1599           RegInfo->getSuperRegisters(Reg) &&
1600           RegInfo->isSubRegister(IncomingReg, Reg))
1601         DeadOps.push_back(i);
1602     }
1603   }
1604 
1605   // Trim unneeded dead operands.
1606   while (!DeadOps.empty()) {
1607     unsigned OpIdx = DeadOps.back();
1608     if (getOperand(OpIdx).isImplicit())
1609       RemoveOperand(OpIdx);
1610     else
1611       getOperand(OpIdx).setIsDead(false);
1612     DeadOps.pop_back();
1613   }
1614 
1615   // If not found, this means an alias of one of the operands is dead. Add a
1616   // new implicit operand if required.
1617   if (Found || !AddIfNotFound)
1618     return Found;
1619 
1620   addOperand(MachineOperand::CreateReg(IncomingReg,
1621                                        true  /*IsDef*/,
1622                                        true  /*IsImp*/,
1623                                        false /*IsKill*/,
1624                                        true  /*IsDead*/));
1625   return true;
1626 }
1627 
1628 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1629                                       const TargetRegisterInfo *RegInfo) {
1630   if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1631     MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1632     if (MO)
1633       return;
1634   } else {
1635     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1636       const MachineOperand &MO = getOperand(i);
1637       if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1638           MO.getSubReg() == 0)
1639         return;
1640     }
1641   }
1642   addOperand(MachineOperand::CreateReg(IncomingReg,
1643                                        true  /*IsDef*/,
1644                                        true  /*IsImp*/));
1645 }
1646 
1647 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
1648                                          const TargetRegisterInfo &TRI) {
1649   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1650     MachineOperand &MO = getOperand(i);
1651     if (!MO.isReg() || !MO.isDef()) continue;
1652     unsigned Reg = MO.getReg();
1653     if (Reg == 0) continue;
1654     bool Dead = true;
1655     for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(),
1656          E = UsedRegs.end(); I != E; ++I)
1657       if (TRI.regsOverlap(*I, Reg)) {
1658         Dead = false;
1659         break;
1660       }
1661     // If there are no uses, including partial uses, the def is dead.
1662     if (Dead) MO.setIsDead();
1663   }
1664 }
1665 
1666 unsigned
1667 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1668   unsigned Hash = MI->getOpcode() * 37;
1669   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1670     const MachineOperand &MO = MI->getOperand(i);
1671     uint64_t Key = (uint64_t)MO.getType() << 32;
1672     switch (MO.getType()) {
1673     default: break;
1674     case MachineOperand::MO_Register:
1675       if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1676         continue;  // Skip virtual register defs.
1677       Key |= MO.getReg();
1678       break;
1679     case MachineOperand::MO_Immediate:
1680       Key |= MO.getImm();
1681       break;
1682     case MachineOperand::MO_FrameIndex:
1683     case MachineOperand::MO_ConstantPoolIndex:
1684     case MachineOperand::MO_JumpTableIndex:
1685       Key |= MO.getIndex();
1686       break;
1687     case MachineOperand::MO_MachineBasicBlock:
1688       Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
1689       break;
1690     case MachineOperand::MO_GlobalAddress:
1691       Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
1692       break;
1693     case MachineOperand::MO_BlockAddress:
1694       Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
1695       break;
1696     case MachineOperand::MO_MCSymbol:
1697       Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
1698       break;
1699     }
1700     Key += ~(Key << 32);
1701     Key ^= (Key >> 22);
1702     Key += ~(Key << 13);
1703     Key ^= (Key >> 8);
1704     Key += (Key << 3);
1705     Key ^= (Key >> 15);
1706     Key += ~(Key << 27);
1707     Key ^= (Key >> 31);
1708     Hash = (unsigned)Key + Hash * 37;
1709   }
1710   return Hash;
1711 }
1712 
1713 void MachineInstr::emitError(StringRef Msg) const {
1714   // Find the source location cookie.
1715   unsigned LocCookie = 0;
1716   const MDNode *LocMD = 0;
1717   for (unsigned i = getNumOperands(); i != 0; --i) {
1718     if (getOperand(i-1).isMetadata() &&
1719         (LocMD = getOperand(i-1).getMetadata()) &&
1720         LocMD->getNumOperands() != 0) {
1721       if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1722         LocCookie = CI->getZExtValue();
1723         break;
1724       }
1725     }
1726   }
1727 
1728   if (const MachineBasicBlock *MBB = getParent())
1729     if (const MachineFunction *MF = MBB->getParent())
1730       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1731   report_fatal_error(Msg);
1732 }
1733