1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallBitVector.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Operator.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCInstrDesc.h" 57 #include "llvm/MC/MCRegisterInfo.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/LowLevelTypeImpl.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetIntrinsicInfo.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <cstring> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 79 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 80 if (const MachineBasicBlock *MBB = MI.getParent()) 81 if (const MachineFunction *MF = MBB->getParent()) 82 return MF; 83 return nullptr; 84 } 85 86 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 87 // it. 88 static void tryToGetTargetInfo(const MachineInstr &MI, 89 const TargetRegisterInfo *&TRI, 90 const MachineRegisterInfo *&MRI, 91 const TargetIntrinsicInfo *&IntrinsicInfo, 92 const TargetInstrInfo *&TII) { 93 94 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 95 TRI = MF->getSubtarget().getRegisterInfo(); 96 MRI = &MF->getRegInfo(); 97 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 98 TII = MF->getSubtarget().getInstrInfo(); 99 } 100 } 101 102 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 103 if (MCID->ImplicitDefs) 104 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 105 ++ImpDefs) 106 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 107 if (MCID->ImplicitUses) 108 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 109 ++ImpUses) 110 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 111 } 112 113 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 114 /// implicit operands. It reserves space for the number of operands specified by 115 /// the MCInstrDesc. 116 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 117 DebugLoc dl, bool NoImp) 118 : MCID(&tid), debugLoc(std::move(dl)) { 119 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 120 121 // Reserve space for the expected number of operands. 122 if (unsigned NumOps = MCID->getNumOperands() + 123 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 124 CapOperands = OperandCapacity::get(NumOps); 125 Operands = MF.allocateOperandArray(CapOperands); 126 } 127 128 if (!NoImp) 129 addImplicitDefUseOperands(MF); 130 } 131 132 /// MachineInstr ctor - Copies MachineInstr arg exactly 133 /// 134 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 135 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) { 136 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 137 138 CapOperands = OperandCapacity::get(MI.getNumOperands()); 139 Operands = MF.allocateOperandArray(CapOperands); 140 141 // Copy operands. 142 for (const MachineOperand &MO : MI.operands()) 143 addOperand(MF, MO); 144 145 // Copy all the sensible flags. 146 setFlags(MI.Flags); 147 } 148 149 /// getRegInfo - If this instruction is embedded into a MachineFunction, 150 /// return the MachineRegisterInfo object for the current function, otherwise 151 /// return null. 152 MachineRegisterInfo *MachineInstr::getRegInfo() { 153 if (MachineBasicBlock *MBB = getParent()) 154 return &MBB->getParent()->getRegInfo(); 155 return nullptr; 156 } 157 158 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 159 /// this instruction from their respective use lists. This requires that the 160 /// operands already be on their use lists. 161 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 162 for (MachineOperand &MO : operands()) 163 if (MO.isReg()) 164 MRI.removeRegOperandFromUseList(&MO); 165 } 166 167 /// AddRegOperandsToUseLists - Add all of the register operands in 168 /// this instruction from their respective use lists. This requires that the 169 /// operands not be on their use lists yet. 170 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 171 for (MachineOperand &MO : operands()) 172 if (MO.isReg()) 173 MRI.addRegOperandToUseList(&MO); 174 } 175 176 void MachineInstr::addOperand(const MachineOperand &Op) { 177 MachineBasicBlock *MBB = getParent(); 178 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 179 MachineFunction *MF = MBB->getParent(); 180 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 181 addOperand(*MF, Op); 182 } 183 184 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 185 /// ranges. If MRI is non-null also update use-def chains. 186 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 187 unsigned NumOps, MachineRegisterInfo *MRI) { 188 if (MRI) 189 return MRI->moveOperands(Dst, Src, NumOps); 190 191 // MachineOperand is a trivially copyable type so we can just use memmove. 192 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 193 } 194 195 /// addOperand - Add the specified operand to the instruction. If it is an 196 /// implicit operand, it is added to the end of the operand list. If it is 197 /// an explicit operand it is added at the end of the explicit operand list 198 /// (before the first implicit operand). 199 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 200 assert(MCID && "Cannot add operands before providing an instr descriptor"); 201 202 // Check if we're adding one of our existing operands. 203 if (&Op >= Operands && &Op < Operands + NumOperands) { 204 // This is unusual: MI->addOperand(MI->getOperand(i)). 205 // If adding Op requires reallocating or moving existing operands around, 206 // the Op reference could go stale. Support it by copying Op. 207 MachineOperand CopyOp(Op); 208 return addOperand(MF, CopyOp); 209 } 210 211 // Find the insert location for the new operand. Implicit registers go at 212 // the end, everything else goes before the implicit regs. 213 // 214 // FIXME: Allow mixed explicit and implicit operands on inline asm. 215 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 216 // implicit-defs, but they must not be moved around. See the FIXME in 217 // InstrEmitter.cpp. 218 unsigned OpNo = getNumOperands(); 219 bool isImpReg = Op.isReg() && Op.isImplicit(); 220 if (!isImpReg && !isInlineAsm()) { 221 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 222 --OpNo; 223 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 224 } 225 } 226 227 #ifndef NDEBUG 228 bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || 229 Op.getType() == MachineOperand::MO_MCSymbol; 230 // OpNo now points as the desired insertion point. Unless this is a variadic 231 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 232 // RegMask operands go between the explicit and implicit operands. 233 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 234 OpNo < MCID->getNumOperands() || isDebugOp) && 235 "Trying to add an operand to a machine instr that is already done!"); 236 #endif 237 238 MachineRegisterInfo *MRI = getRegInfo(); 239 240 // Determine if the Operands array needs to be reallocated. 241 // Save the old capacity and operand array. 242 OperandCapacity OldCap = CapOperands; 243 MachineOperand *OldOperands = Operands; 244 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 245 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 246 Operands = MF.allocateOperandArray(CapOperands); 247 // Move the operands before the insertion point. 248 if (OpNo) 249 moveOperands(Operands, OldOperands, OpNo, MRI); 250 } 251 252 // Move the operands following the insertion point. 253 if (OpNo != NumOperands) 254 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 255 MRI); 256 ++NumOperands; 257 258 // Deallocate the old operand array. 259 if (OldOperands != Operands && OldOperands) 260 MF.deallocateOperandArray(OldCap, OldOperands); 261 262 // Copy Op into place. It still needs to be inserted into the MRI use lists. 263 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 264 NewMO->ParentMI = this; 265 266 // When adding a register operand, tell MRI about it. 267 if (NewMO->isReg()) { 268 // Ensure isOnRegUseList() returns false, regardless of Op's status. 269 NewMO->Contents.Reg.Prev = nullptr; 270 // Ignore existing ties. This is not a property that can be copied. 271 NewMO->TiedTo = 0; 272 // Add the new operand to MRI, but only for instructions in an MBB. 273 if (MRI) 274 MRI->addRegOperandToUseList(NewMO); 275 // The MCID operand information isn't accurate until we start adding 276 // explicit operands. The implicit operands are added first, then the 277 // explicits are inserted before them. 278 if (!isImpReg) { 279 // Tie uses to defs as indicated in MCInstrDesc. 280 if (NewMO->isUse()) { 281 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 282 if (DefIdx != -1) 283 tieOperands(DefIdx, OpNo); 284 } 285 // If the register operand is flagged as early, mark the operand as such. 286 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 287 NewMO->setIsEarlyClobber(true); 288 } 289 } 290 } 291 292 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 293 /// fewer operand than it started with. 294 /// 295 void MachineInstr::RemoveOperand(unsigned OpNo) { 296 assert(OpNo < getNumOperands() && "Invalid operand number"); 297 untieRegOperand(OpNo); 298 299 #ifndef NDEBUG 300 // Moving tied operands would break the ties. 301 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 302 if (Operands[i].isReg()) 303 assert(!Operands[i].isTied() && "Cannot move tied operands"); 304 #endif 305 306 MachineRegisterInfo *MRI = getRegInfo(); 307 if (MRI && Operands[OpNo].isReg()) 308 MRI->removeRegOperandFromUseList(Operands + OpNo); 309 310 // Don't call the MachineOperand destructor. A lot of this code depends on 311 // MachineOperand having a trivial destructor anyway, and adding a call here 312 // wouldn't make it 'destructor-correct'. 313 314 if (unsigned N = NumOperands - 1 - OpNo) 315 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 316 --NumOperands; 317 } 318 319 void MachineInstr::dropMemRefs(MachineFunction &MF) { 320 if (memoperands_empty()) 321 return; 322 323 // See if we can just drop all of our extra info. 324 if (!getPreInstrSymbol() && !getPostInstrSymbol()) { 325 Info.clear(); 326 return; 327 } 328 if (!getPostInstrSymbol()) { 329 Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol()); 330 return; 331 } 332 if (!getPreInstrSymbol()) { 333 Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol()); 334 return; 335 } 336 337 // Otherwise allocate a fresh extra info with just these symbols. 338 Info.set<EIIK_OutOfLine>( 339 MF.createMIExtraInfo({}, getPreInstrSymbol(), getPostInstrSymbol())); 340 } 341 342 void MachineInstr::setMemRefs(MachineFunction &MF, 343 ArrayRef<MachineMemOperand *> MMOs) { 344 if (MMOs.empty()) { 345 dropMemRefs(MF); 346 return; 347 } 348 349 // Try to store a single MMO inline. 350 if (MMOs.size() == 1 && !getPreInstrSymbol() && !getPostInstrSymbol()) { 351 Info.set<EIIK_MMO>(MMOs[0]); 352 return; 353 } 354 355 // Otherwise create an extra info struct with all of our info. 356 Info.set<EIIK_OutOfLine>( 357 MF.createMIExtraInfo(MMOs, getPreInstrSymbol(), getPostInstrSymbol())); 358 } 359 360 void MachineInstr::addMemOperand(MachineFunction &MF, 361 MachineMemOperand *MO) { 362 SmallVector<MachineMemOperand *, 2> MMOs; 363 MMOs.append(memoperands_begin(), memoperands_end()); 364 MMOs.push_back(MO); 365 setMemRefs(MF, MMOs); 366 } 367 368 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 369 if (this == &MI) 370 // Nothing to do for a self-clone! 371 return; 372 373 assert(&MF == MI.getMF() && 374 "Invalid machine functions when cloning memory refrences!"); 375 // See if we can just steal the extra info already allocated for the 376 // instruction. We can do this whenever the pre- and post-instruction symbols 377 // are the same (including null). 378 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 379 getPostInstrSymbol() == MI.getPostInstrSymbol()) { 380 Info = MI.Info; 381 return; 382 } 383 384 // Otherwise, fall back on a copy-based clone. 385 setMemRefs(MF, MI.memoperands()); 386 } 387 388 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 389 /// identical. 390 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 391 ArrayRef<MachineMemOperand *> RHS) { 392 if (LHS.size() != RHS.size()) 393 return false; 394 395 auto LHSPointees = make_pointee_range(LHS); 396 auto RHSPointees = make_pointee_range(RHS); 397 return std::equal(LHSPointees.begin(), LHSPointees.end(), 398 RHSPointees.begin()); 399 } 400 401 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 402 ArrayRef<const MachineInstr *> MIs) { 403 // Try handling easy numbers of MIs with simpler mechanisms. 404 if (MIs.empty()) { 405 dropMemRefs(MF); 406 return; 407 } 408 if (MIs.size() == 1) { 409 cloneMemRefs(MF, *MIs[0]); 410 return; 411 } 412 // Because an empty memoperands list provides *no* information and must be 413 // handled conservatively (assuming the instruction can do anything), the only 414 // way to merge with it is to drop all other memoperands. 415 if (MIs[0]->memoperands_empty()) { 416 dropMemRefs(MF); 417 return; 418 } 419 420 // Handle the general case. 421 SmallVector<MachineMemOperand *, 2> MergedMMOs; 422 // Start with the first instruction. 423 assert(&MF == MIs[0]->getMF() && 424 "Invalid machine functions when cloning memory references!"); 425 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 426 // Now walk all the other instructions and accumulate any different MMOs. 427 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 428 assert(&MF == MI.getMF() && 429 "Invalid machine functions when cloning memory references!"); 430 431 // Skip MIs with identical operands to the first. This is a somewhat 432 // arbitrary hack but will catch common cases without being quadratic. 433 // TODO: We could fully implement merge semantics here if needed. 434 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 435 continue; 436 437 // Because an empty memoperands list provides *no* information and must be 438 // handled conservatively (assuming the instruction can do anything), the 439 // only way to merge with it is to drop all other memoperands. 440 if (MI.memoperands_empty()) { 441 dropMemRefs(MF); 442 return; 443 } 444 445 // Otherwise accumulate these into our temporary buffer of the merged state. 446 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 447 } 448 449 setMemRefs(MF, MergedMMOs); 450 } 451 452 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 453 MCSymbol *OldSymbol = getPreInstrSymbol(); 454 if (OldSymbol == Symbol) 455 return; 456 if (OldSymbol && !Symbol) { 457 // We're removing a symbol rather than adding one. Try to clean up any 458 // extra info carried around. 459 if (Info.is<EIIK_PreInstrSymbol>()) { 460 Info.clear(); 461 return; 462 } 463 464 if (memoperands_empty()) { 465 assert(getPostInstrSymbol() && 466 "Should never have only a single symbol allocated out-of-line!"); 467 Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol()); 468 return; 469 } 470 471 // Otherwise fallback on the generic update. 472 } else if (!Info || Info.is<EIIK_PreInstrSymbol>()) { 473 // If we don't have any other extra info, we can store this inline. 474 Info.set<EIIK_PreInstrSymbol>(Symbol); 475 return; 476 } 477 478 // Otherwise, allocate a full new set of extra info. 479 // FIXME: Maybe we should make the symbols in the extra info mutable? 480 Info.set<EIIK_OutOfLine>( 481 MF.createMIExtraInfo(memoperands(), Symbol, getPostInstrSymbol())); 482 } 483 484 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 485 MCSymbol *OldSymbol = getPostInstrSymbol(); 486 if (OldSymbol == Symbol) 487 return; 488 if (OldSymbol && !Symbol) { 489 // We're removing a symbol rather than adding one. Try to clean up any 490 // extra info carried around. 491 if (Info.is<EIIK_PostInstrSymbol>()) { 492 Info.clear(); 493 return; 494 } 495 496 if (memoperands_empty()) { 497 assert(getPreInstrSymbol() && 498 "Should never have only a single symbol allocated out-of-line!"); 499 Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol()); 500 return; 501 } 502 503 // Otherwise fallback on the generic update. 504 } else if (!Info || Info.is<EIIK_PostInstrSymbol>()) { 505 // If we don't have any other extra info, we can store this inline. 506 Info.set<EIIK_PostInstrSymbol>(Symbol); 507 return; 508 } 509 510 // Otherwise, allocate a full new set of extra info. 511 // FIXME: Maybe we should make the symbols in the extra info mutable? 512 Info.set<EIIK_OutOfLine>( 513 MF.createMIExtraInfo(memoperands(), getPreInstrSymbol(), Symbol)); 514 } 515 516 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 517 const MachineInstr &MI) { 518 if (this == &MI) 519 // Nothing to do for a self-clone! 520 return; 521 522 assert(&MF == MI.getMF() && 523 "Invalid machine functions when cloning instruction symbols!"); 524 525 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 526 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 527 } 528 529 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 530 // For now, the just return the union of the flags. If the flags get more 531 // complicated over time, we might need more logic here. 532 return getFlags() | Other.getFlags(); 533 } 534 535 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 536 uint16_t MIFlags = 0; 537 // Copy the wrapping flags. 538 if (const OverflowingBinaryOperator *OB = 539 dyn_cast<OverflowingBinaryOperator>(&I)) { 540 if (OB->hasNoSignedWrap()) 541 MIFlags |= MachineInstr::MIFlag::NoSWrap; 542 if (OB->hasNoUnsignedWrap()) 543 MIFlags |= MachineInstr::MIFlag::NoUWrap; 544 } 545 546 // Copy the exact flag. 547 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 548 if (PE->isExact()) 549 MIFlags |= MachineInstr::MIFlag::IsExact; 550 551 // Copy the fast-math flags. 552 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 553 const FastMathFlags Flags = FP->getFastMathFlags(); 554 if (Flags.noNaNs()) 555 MIFlags |= MachineInstr::MIFlag::FmNoNans; 556 if (Flags.noInfs()) 557 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 558 if (Flags.noSignedZeros()) 559 MIFlags |= MachineInstr::MIFlag::FmNsz; 560 if (Flags.allowReciprocal()) 561 MIFlags |= MachineInstr::MIFlag::FmArcp; 562 if (Flags.allowContract()) 563 MIFlags |= MachineInstr::MIFlag::FmContract; 564 if (Flags.approxFunc()) 565 MIFlags |= MachineInstr::MIFlag::FmAfn; 566 if (Flags.allowReassoc()) 567 MIFlags |= MachineInstr::MIFlag::FmReassoc; 568 } 569 570 return MIFlags; 571 } 572 573 void MachineInstr::copyIRFlags(const Instruction &I) { 574 Flags = copyFlagsFromInstruction(I); 575 } 576 577 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 578 assert(!isBundledWithPred() && "Must be called on bundle header"); 579 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 580 if (MII->getDesc().getFlags() & Mask) { 581 if (Type == AnyInBundle) 582 return true; 583 } else { 584 if (Type == AllInBundle && !MII->isBundle()) 585 return false; 586 } 587 // This was the last instruction in the bundle. 588 if (!MII->isBundledWithSucc()) 589 return Type == AllInBundle; 590 } 591 } 592 593 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 594 MICheckType Check) const { 595 // If opcodes or number of operands are not the same then the two 596 // instructions are obviously not identical. 597 if (Other.getOpcode() != getOpcode() || 598 Other.getNumOperands() != getNumOperands()) 599 return false; 600 601 if (isBundle()) { 602 // We have passed the test above that both instructions have the same 603 // opcode, so we know that both instructions are bundles here. Let's compare 604 // MIs inside the bundle. 605 assert(Other.isBundle() && "Expected that both instructions are bundles."); 606 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 607 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 608 // Loop until we analysed the last intruction inside at least one of the 609 // bundles. 610 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 611 ++I1; 612 ++I2; 613 if (!I1->isIdenticalTo(*I2, Check)) 614 return false; 615 } 616 // If we've reached the end of just one of the two bundles, but not both, 617 // the instructions are not identical. 618 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 619 return false; 620 } 621 622 // Check operands to make sure they match. 623 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 624 const MachineOperand &MO = getOperand(i); 625 const MachineOperand &OMO = Other.getOperand(i); 626 if (!MO.isReg()) { 627 if (!MO.isIdenticalTo(OMO)) 628 return false; 629 continue; 630 } 631 632 // Clients may or may not want to ignore defs when testing for equality. 633 // For example, machine CSE pass only cares about finding common 634 // subexpressions, so it's safe to ignore virtual register defs. 635 if (MO.isDef()) { 636 if (Check == IgnoreDefs) 637 continue; 638 else if (Check == IgnoreVRegDefs) { 639 if (!Register::isVirtualRegister(MO.getReg()) || 640 !Register::isVirtualRegister(OMO.getReg())) 641 if (!MO.isIdenticalTo(OMO)) 642 return false; 643 } else { 644 if (!MO.isIdenticalTo(OMO)) 645 return false; 646 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 647 return false; 648 } 649 } else { 650 if (!MO.isIdenticalTo(OMO)) 651 return false; 652 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 653 return false; 654 } 655 } 656 // If DebugLoc does not match then two debug instructions are not identical. 657 if (isDebugInstr()) 658 if (getDebugLoc() && Other.getDebugLoc() && 659 getDebugLoc() != Other.getDebugLoc()) 660 return false; 661 return true; 662 } 663 664 const MachineFunction *MachineInstr::getMF() const { 665 return getParent()->getParent(); 666 } 667 668 MachineInstr *MachineInstr::removeFromParent() { 669 assert(getParent() && "Not embedded in a basic block!"); 670 return getParent()->remove(this); 671 } 672 673 MachineInstr *MachineInstr::removeFromBundle() { 674 assert(getParent() && "Not embedded in a basic block!"); 675 return getParent()->remove_instr(this); 676 } 677 678 void MachineInstr::eraseFromParent() { 679 assert(getParent() && "Not embedded in a basic block!"); 680 getParent()->erase(this); 681 } 682 683 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 684 assert(getParent() && "Not embedded in a basic block!"); 685 MachineBasicBlock *MBB = getParent(); 686 MachineFunction *MF = MBB->getParent(); 687 assert(MF && "Not embedded in a function!"); 688 689 MachineInstr *MI = (MachineInstr *)this; 690 MachineRegisterInfo &MRI = MF->getRegInfo(); 691 692 for (const MachineOperand &MO : MI->operands()) { 693 if (!MO.isReg() || !MO.isDef()) 694 continue; 695 Register Reg = MO.getReg(); 696 if (!Reg.isVirtual()) 697 continue; 698 MRI.markUsesInDebugValueAsUndef(Reg); 699 } 700 MI->eraseFromParent(); 701 } 702 703 void MachineInstr::eraseFromBundle() { 704 assert(getParent() && "Not embedded in a basic block!"); 705 getParent()->erase_instr(this); 706 } 707 708 unsigned MachineInstr::getNumExplicitOperands() const { 709 unsigned NumOperands = MCID->getNumOperands(); 710 if (!MCID->isVariadic()) 711 return NumOperands; 712 713 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 714 const MachineOperand &MO = getOperand(I); 715 // The operands must always be in the following order: 716 // - explicit reg defs, 717 // - other explicit operands (reg uses, immediates, etc.), 718 // - implicit reg defs 719 // - implicit reg uses 720 if (MO.isReg() && MO.isImplicit()) 721 break; 722 ++NumOperands; 723 } 724 return NumOperands; 725 } 726 727 unsigned MachineInstr::getNumExplicitDefs() const { 728 unsigned NumDefs = MCID->getNumDefs(); 729 if (!MCID->isVariadic()) 730 return NumDefs; 731 732 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 733 const MachineOperand &MO = getOperand(I); 734 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 735 break; 736 ++NumDefs; 737 } 738 return NumDefs; 739 } 740 741 void MachineInstr::bundleWithPred() { 742 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 743 setFlag(BundledPred); 744 MachineBasicBlock::instr_iterator Pred = getIterator(); 745 --Pred; 746 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 747 Pred->setFlag(BundledSucc); 748 } 749 750 void MachineInstr::bundleWithSucc() { 751 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 752 setFlag(BundledSucc); 753 MachineBasicBlock::instr_iterator Succ = getIterator(); 754 ++Succ; 755 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 756 Succ->setFlag(BundledPred); 757 } 758 759 void MachineInstr::unbundleFromPred() { 760 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 761 clearFlag(BundledPred); 762 MachineBasicBlock::instr_iterator Pred = getIterator(); 763 --Pred; 764 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 765 Pred->clearFlag(BundledSucc); 766 } 767 768 void MachineInstr::unbundleFromSucc() { 769 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 770 clearFlag(BundledSucc); 771 MachineBasicBlock::instr_iterator Succ = getIterator(); 772 ++Succ; 773 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 774 Succ->clearFlag(BundledPred); 775 } 776 777 bool MachineInstr::isStackAligningInlineAsm() const { 778 if (isInlineAsm()) { 779 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 780 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 781 return true; 782 } 783 return false; 784 } 785 786 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 787 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 788 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 789 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 790 } 791 792 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 793 unsigned *GroupNo) const { 794 assert(isInlineAsm() && "Expected an inline asm instruction"); 795 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 796 797 // Ignore queries about the initial operands. 798 if (OpIdx < InlineAsm::MIOp_FirstOperand) 799 return -1; 800 801 unsigned Group = 0; 802 unsigned NumOps; 803 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 804 i += NumOps) { 805 const MachineOperand &FlagMO = getOperand(i); 806 // If we reach the implicit register operands, stop looking. 807 if (!FlagMO.isImm()) 808 return -1; 809 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 810 if (i + NumOps > OpIdx) { 811 if (GroupNo) 812 *GroupNo = Group; 813 return i; 814 } 815 ++Group; 816 } 817 return -1; 818 } 819 820 const DILabel *MachineInstr::getDebugLabel() const { 821 assert(isDebugLabel() && "not a DBG_LABEL"); 822 return cast<DILabel>(getOperand(0).getMetadata()); 823 } 824 825 const DILocalVariable *MachineInstr::getDebugVariable() const { 826 assert(isDebugValue() && "not a DBG_VALUE"); 827 return cast<DILocalVariable>(getOperand(2).getMetadata()); 828 } 829 830 const DIExpression *MachineInstr::getDebugExpression() const { 831 assert(isDebugValue() && "not a DBG_VALUE"); 832 return cast<DIExpression>(getOperand(3).getMetadata()); 833 } 834 835 const TargetRegisterClass* 836 MachineInstr::getRegClassConstraint(unsigned OpIdx, 837 const TargetInstrInfo *TII, 838 const TargetRegisterInfo *TRI) const { 839 assert(getParent() && "Can't have an MBB reference here!"); 840 assert(getMF() && "Can't have an MF reference here!"); 841 const MachineFunction &MF = *getMF(); 842 843 // Most opcodes have fixed constraints in their MCInstrDesc. 844 if (!isInlineAsm()) 845 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 846 847 if (!getOperand(OpIdx).isReg()) 848 return nullptr; 849 850 // For tied uses on inline asm, get the constraint from the def. 851 unsigned DefIdx; 852 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 853 OpIdx = DefIdx; 854 855 // Inline asm stores register class constraints in the flag word. 856 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 857 if (FlagIdx < 0) 858 return nullptr; 859 860 unsigned Flag = getOperand(FlagIdx).getImm(); 861 unsigned RCID; 862 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 863 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 864 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 865 InlineAsm::hasRegClassConstraint(Flag, RCID)) 866 return TRI->getRegClass(RCID); 867 868 // Assume that all registers in a memory operand are pointers. 869 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 870 return TRI->getPointerRegClass(MF); 871 872 return nullptr; 873 } 874 875 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 876 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 877 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 878 // Check every operands inside the bundle if we have 879 // been asked to. 880 if (ExploreBundle) 881 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 882 ++OpndIt) 883 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 884 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 885 else 886 // Otherwise, just check the current operands. 887 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 888 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 889 return CurRC; 890 } 891 892 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 893 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 894 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 895 assert(CurRC && "Invalid initial register class"); 896 // Check if Reg is constrained by some of its use/def from MI. 897 const MachineOperand &MO = getOperand(OpIdx); 898 if (!MO.isReg() || MO.getReg() != Reg) 899 return CurRC; 900 // If yes, accumulate the constraints through the operand. 901 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 902 } 903 904 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 905 unsigned OpIdx, const TargetRegisterClass *CurRC, 906 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 907 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 908 const MachineOperand &MO = getOperand(OpIdx); 909 assert(MO.isReg() && 910 "Cannot get register constraints for non-register operand"); 911 assert(CurRC && "Invalid initial register class"); 912 if (unsigned SubIdx = MO.getSubReg()) { 913 if (OpRC) 914 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 915 else 916 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 917 } else if (OpRC) 918 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 919 return CurRC; 920 } 921 922 /// Return the number of instructions inside the MI bundle, not counting the 923 /// header instruction. 924 unsigned MachineInstr::getBundleSize() const { 925 MachineBasicBlock::const_instr_iterator I = getIterator(); 926 unsigned Size = 0; 927 while (I->isBundledWithSucc()) { 928 ++Size; 929 ++I; 930 } 931 return Size; 932 } 933 934 /// Returns true if the MachineInstr has an implicit-use operand of exactly 935 /// the given register (not considering sub/super-registers). 936 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 937 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 938 const MachineOperand &MO = getOperand(i); 939 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 940 return true; 941 } 942 return false; 943 } 944 945 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 946 /// the specific register or -1 if it is not found. It further tightens 947 /// the search criteria to a use that kills the register if isKill is true. 948 int MachineInstr::findRegisterUseOperandIdx( 949 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 950 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 951 const MachineOperand &MO = getOperand(i); 952 if (!MO.isReg() || !MO.isUse()) 953 continue; 954 Register MOReg = MO.getReg(); 955 if (!MOReg) 956 continue; 957 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 958 if (!isKill || MO.isKill()) 959 return i; 960 } 961 return -1; 962 } 963 964 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 965 /// indicating if this instruction reads or writes Reg. This also considers 966 /// partial defines. 967 std::pair<bool,bool> 968 MachineInstr::readsWritesVirtualRegister(Register Reg, 969 SmallVectorImpl<unsigned> *Ops) const { 970 bool PartDef = false; // Partial redefine. 971 bool FullDef = false; // Full define. 972 bool Use = false; 973 974 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 975 const MachineOperand &MO = getOperand(i); 976 if (!MO.isReg() || MO.getReg() != Reg) 977 continue; 978 if (Ops) 979 Ops->push_back(i); 980 if (MO.isUse()) 981 Use |= !MO.isUndef(); 982 else if (MO.getSubReg() && !MO.isUndef()) 983 // A partial def undef doesn't count as reading the register. 984 PartDef = true; 985 else 986 FullDef = true; 987 } 988 // A partial redefine uses Reg unless there is also a full define. 989 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 990 } 991 992 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 993 /// the specified register or -1 if it is not found. If isDead is true, defs 994 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 995 /// also checks if there is a def of a super-register. 996 int 997 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 998 const TargetRegisterInfo *TRI) const { 999 bool isPhys = Register::isPhysicalRegister(Reg); 1000 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1001 const MachineOperand &MO = getOperand(i); 1002 // Accept regmask operands when Overlap is set. 1003 // Ignore them when looking for a specific def operand (Overlap == false). 1004 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1005 return i; 1006 if (!MO.isReg() || !MO.isDef()) 1007 continue; 1008 Register MOReg = MO.getReg(); 1009 bool Found = (MOReg == Reg); 1010 if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { 1011 if (Overlap) 1012 Found = TRI->regsOverlap(MOReg, Reg); 1013 else 1014 Found = TRI->isSubRegister(MOReg, Reg); 1015 } 1016 if (Found && (!isDead || MO.isDead())) 1017 return i; 1018 } 1019 return -1; 1020 } 1021 1022 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1023 /// operand list that is used to represent the predicate. It returns -1 if 1024 /// none is found. 1025 int MachineInstr::findFirstPredOperandIdx() const { 1026 // Don't call MCID.findFirstPredOperandIdx() because this variant 1027 // is sometimes called on an instruction that's not yet complete, and 1028 // so the number of operands is less than the MCID indicates. In 1029 // particular, the PTX target does this. 1030 const MCInstrDesc &MCID = getDesc(); 1031 if (MCID.isPredicable()) { 1032 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1033 if (MCID.OpInfo[i].isPredicate()) 1034 return i; 1035 } 1036 1037 return -1; 1038 } 1039 1040 // MachineOperand::TiedTo is 4 bits wide. 1041 const unsigned TiedMax = 15; 1042 1043 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1044 /// 1045 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1046 /// field. TiedTo can have these values: 1047 /// 1048 /// 0: Operand is not tied to anything. 1049 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1050 /// TiedMax: Tied to an operand >= TiedMax-1. 1051 /// 1052 /// The tied def must be one of the first TiedMax operands on a normal 1053 /// instruction. INLINEASM instructions allow more tied defs. 1054 /// 1055 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1056 MachineOperand &DefMO = getOperand(DefIdx); 1057 MachineOperand &UseMO = getOperand(UseIdx); 1058 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1059 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1060 assert(!DefMO.isTied() && "Def is already tied to another use"); 1061 assert(!UseMO.isTied() && "Use is already tied to another def"); 1062 1063 if (DefIdx < TiedMax) 1064 UseMO.TiedTo = DefIdx + 1; 1065 else { 1066 // Inline asm can use the group descriptors to find tied operands, but on 1067 // normal instruction, the tied def must be within the first TiedMax 1068 // operands. 1069 assert(isInlineAsm() && "DefIdx out of range"); 1070 UseMO.TiedTo = TiedMax; 1071 } 1072 1073 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1074 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1075 } 1076 1077 /// Given the index of a tied register operand, find the operand it is tied to. 1078 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1079 /// which must exist. 1080 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1081 const MachineOperand &MO = getOperand(OpIdx); 1082 assert(MO.isTied() && "Operand isn't tied"); 1083 1084 // Normally TiedTo is in range. 1085 if (MO.TiedTo < TiedMax) 1086 return MO.TiedTo - 1; 1087 1088 // Uses on normal instructions can be out of range. 1089 if (!isInlineAsm()) { 1090 // Normal tied defs must be in the 0..TiedMax-1 range. 1091 if (MO.isUse()) 1092 return TiedMax - 1; 1093 // MO is a def. Search for the tied use. 1094 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1095 const MachineOperand &UseMO = getOperand(i); 1096 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1097 return i; 1098 } 1099 llvm_unreachable("Can't find tied use"); 1100 } 1101 1102 // Now deal with inline asm by parsing the operand group descriptor flags. 1103 // Find the beginning of each operand group. 1104 SmallVector<unsigned, 8> GroupIdx; 1105 unsigned OpIdxGroup = ~0u; 1106 unsigned NumOps; 1107 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1108 i += NumOps) { 1109 const MachineOperand &FlagMO = getOperand(i); 1110 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1111 unsigned CurGroup = GroupIdx.size(); 1112 GroupIdx.push_back(i); 1113 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1114 // OpIdx belongs to this operand group. 1115 if (OpIdx > i && OpIdx < i + NumOps) 1116 OpIdxGroup = CurGroup; 1117 unsigned TiedGroup; 1118 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1119 continue; 1120 // Operands in this group are tied to operands in TiedGroup which must be 1121 // earlier. Find the number of operands between the two groups. 1122 unsigned Delta = i - GroupIdx[TiedGroup]; 1123 1124 // OpIdx is a use tied to TiedGroup. 1125 if (OpIdxGroup == CurGroup) 1126 return OpIdx - Delta; 1127 1128 // OpIdx is a def tied to this use group. 1129 if (OpIdxGroup == TiedGroup) 1130 return OpIdx + Delta; 1131 } 1132 llvm_unreachable("Invalid tied operand on inline asm"); 1133 } 1134 1135 /// clearKillInfo - Clears kill flags on all operands. 1136 /// 1137 void MachineInstr::clearKillInfo() { 1138 for (MachineOperand &MO : operands()) { 1139 if (MO.isReg() && MO.isUse()) 1140 MO.setIsKill(false); 1141 } 1142 } 1143 1144 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1145 unsigned SubIdx, 1146 const TargetRegisterInfo &RegInfo) { 1147 if (Register::isPhysicalRegister(ToReg)) { 1148 if (SubIdx) 1149 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1150 for (MachineOperand &MO : operands()) { 1151 if (!MO.isReg() || MO.getReg() != FromReg) 1152 continue; 1153 MO.substPhysReg(ToReg, RegInfo); 1154 } 1155 } else { 1156 for (MachineOperand &MO : operands()) { 1157 if (!MO.isReg() || MO.getReg() != FromReg) 1158 continue; 1159 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1160 } 1161 } 1162 } 1163 1164 /// isSafeToMove - Return true if it is safe to move this instruction. If 1165 /// SawStore is set to true, it means that there is a store (or call) between 1166 /// the instruction's location and its intended destination. 1167 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1168 // Ignore stuff that we obviously can't move. 1169 // 1170 // Treat volatile loads as stores. This is not strictly necessary for 1171 // volatiles, but it is required for atomic loads. It is not allowed to move 1172 // a load across an atomic load with Ordering > Monotonic. 1173 if (mayStore() || isCall() || isPHI() || 1174 (mayLoad() && hasOrderedMemoryRef())) { 1175 SawStore = true; 1176 return false; 1177 } 1178 1179 if (isPosition() || isDebugInstr() || isTerminator() || 1180 mayRaiseFPException() || hasUnmodeledSideEffects()) 1181 return false; 1182 1183 // See if this instruction does a load. If so, we have to guarantee that the 1184 // loaded value doesn't change between the load and the its intended 1185 // destination. The check for isInvariantLoad gives the targe the chance to 1186 // classify the load as always returning a constant, e.g. a constant pool 1187 // load. 1188 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1189 // Otherwise, this is a real load. If there is a store between the load and 1190 // end of block, we can't move it. 1191 return !SawStore; 1192 1193 return true; 1194 } 1195 1196 bool MachineInstr::mayAlias(AliasAnalysis *AA, const MachineInstr &Other, 1197 bool UseTBAA) const { 1198 const MachineFunction *MF = getMF(); 1199 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1200 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1201 1202 // If neither instruction stores to memory, they can't alias in any 1203 // meaningful way, even if they read from the same address. 1204 if (!mayStore() && !Other.mayStore()) 1205 return false; 1206 1207 // Let the target decide if memory accesses cannot possibly overlap. 1208 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA)) 1209 return false; 1210 1211 // FIXME: Need to handle multiple memory operands to support all targets. 1212 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1213 return true; 1214 1215 MachineMemOperand *MMOa = *memoperands_begin(); 1216 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1217 1218 // The following interface to AA is fashioned after DAGCombiner::isAlias 1219 // and operates with MachineMemOperand offset with some important 1220 // assumptions: 1221 // - LLVM fundamentally assumes flat address spaces. 1222 // - MachineOperand offset can *only* result from legalization and 1223 // cannot affect queries other than the trivial case of overlap 1224 // checking. 1225 // - These offsets never wrap and never step outside 1226 // of allocated objects. 1227 // - There should never be any negative offsets here. 1228 // 1229 // FIXME: Modify API to hide this math from "user" 1230 // Even before we go to AA we can reason locally about some 1231 // memory objects. It can save compile time, and possibly catch some 1232 // corner cases not currently covered. 1233 1234 int64_t OffsetA = MMOa->getOffset(); 1235 int64_t OffsetB = MMOb->getOffset(); 1236 int64_t MinOffset = std::min(OffsetA, OffsetB); 1237 1238 uint64_t WidthA = MMOa->getSize(); 1239 uint64_t WidthB = MMOb->getSize(); 1240 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1241 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1242 1243 const Value *ValA = MMOa->getValue(); 1244 const Value *ValB = MMOb->getValue(); 1245 bool SameVal = (ValA && ValB && (ValA == ValB)); 1246 if (!SameVal) { 1247 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1248 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1249 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1250 return false; 1251 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1252 return false; 1253 if (PSVa && PSVb && (PSVa == PSVb)) 1254 SameVal = true; 1255 } 1256 1257 if (SameVal) { 1258 if (!KnownWidthA || !KnownWidthB) 1259 return true; 1260 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1261 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1262 return (MinOffset + LowWidth > MaxOffset); 1263 } 1264 1265 if (!AA) 1266 return true; 1267 1268 if (!ValA || !ValB) 1269 return true; 1270 1271 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1272 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1273 1274 int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset 1275 : MemoryLocation::UnknownSize; 1276 int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset 1277 : MemoryLocation::UnknownSize; 1278 1279 AliasResult AAResult = AA->alias( 1280 MemoryLocation(ValA, OverlapA, 1281 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1282 MemoryLocation(ValB, OverlapB, 1283 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1284 1285 return (AAResult != NoAlias); 1286 } 1287 1288 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1289 /// or volatile memory reference, or if the information describing the memory 1290 /// reference is not available. Return false if it is known to have no ordered 1291 /// memory references. 1292 bool MachineInstr::hasOrderedMemoryRef() const { 1293 // An instruction known never to access memory won't have a volatile access. 1294 if (!mayStore() && 1295 !mayLoad() && 1296 !isCall() && 1297 !hasUnmodeledSideEffects()) 1298 return false; 1299 1300 // Otherwise, if the instruction has no memory reference information, 1301 // conservatively assume it wasn't preserved. 1302 if (memoperands_empty()) 1303 return true; 1304 1305 // Check if any of our memory operands are ordered. 1306 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1307 return !MMO->isUnordered(); 1308 }); 1309 } 1310 1311 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1312 /// trap and is loading from a location whose value is invariant across a run of 1313 /// this function. 1314 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { 1315 // If the instruction doesn't load at all, it isn't an invariant load. 1316 if (!mayLoad()) 1317 return false; 1318 1319 // If the instruction has lost its memoperands, conservatively assume that 1320 // it may not be an invariant load. 1321 if (memoperands_empty()) 1322 return false; 1323 1324 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1325 1326 for (MachineMemOperand *MMO : memoperands()) { 1327 if (!MMO->isUnordered()) 1328 // If the memory operand has ordering side effects, we can't move the 1329 // instruction. Such an instruction is technically an invariant load, 1330 // but the caller code would need updated to expect that. 1331 return false; 1332 if (MMO->isStore()) return false; 1333 if (MMO->isInvariant() && MMO->isDereferenceable()) 1334 continue; 1335 1336 // A load from a constant PseudoSourceValue is invariant. 1337 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1338 if (PSV->isConstant(&MFI)) 1339 continue; 1340 1341 if (const Value *V = MMO->getValue()) { 1342 // If we have an AliasAnalysis, ask it whether the memory is constant. 1343 if (AA && 1344 AA->pointsToConstantMemory( 1345 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1346 continue; 1347 } 1348 1349 // Otherwise assume conservatively. 1350 return false; 1351 } 1352 1353 // Everything checks out. 1354 return true; 1355 } 1356 1357 /// isConstantValuePHI - If the specified instruction is a PHI that always 1358 /// merges together the same virtual register, return the register, otherwise 1359 /// return 0. 1360 unsigned MachineInstr::isConstantValuePHI() const { 1361 if (!isPHI()) 1362 return 0; 1363 assert(getNumOperands() >= 3 && 1364 "It's illegal to have a PHI without source operands"); 1365 1366 Register Reg = getOperand(1).getReg(); 1367 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1368 if (getOperand(i).getReg() != Reg) 1369 return 0; 1370 return Reg; 1371 } 1372 1373 bool MachineInstr::hasUnmodeledSideEffects() const { 1374 if (hasProperty(MCID::UnmodeledSideEffects)) 1375 return true; 1376 if (isInlineAsm()) { 1377 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1378 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1379 return true; 1380 } 1381 1382 return false; 1383 } 1384 1385 bool MachineInstr::isLoadFoldBarrier() const { 1386 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1387 } 1388 1389 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1390 /// 1391 bool MachineInstr::allDefsAreDead() const { 1392 for (const MachineOperand &MO : operands()) { 1393 if (!MO.isReg() || MO.isUse()) 1394 continue; 1395 if (!MO.isDead()) 1396 return false; 1397 } 1398 return true; 1399 } 1400 1401 /// copyImplicitOps - Copy implicit register operands from specified 1402 /// instruction to this instruction. 1403 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1404 const MachineInstr &MI) { 1405 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1406 i != e; ++i) { 1407 const MachineOperand &MO = MI.getOperand(i); 1408 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1409 addOperand(MF, MO); 1410 } 1411 } 1412 1413 bool MachineInstr::hasComplexRegisterTies() const { 1414 const MCInstrDesc &MCID = getDesc(); 1415 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1416 const auto &Operand = getOperand(I); 1417 if (!Operand.isReg() || Operand.isDef()) 1418 // Ignore the defined registers as MCID marks only the uses as tied. 1419 continue; 1420 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1421 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1422 if (ExpectedTiedIdx != TiedIdx) 1423 return true; 1424 } 1425 return false; 1426 } 1427 1428 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1429 const MachineRegisterInfo &MRI) const { 1430 const MachineOperand &Op = getOperand(OpIdx); 1431 if (!Op.isReg()) 1432 return LLT{}; 1433 1434 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1435 return MRI.getType(Op.getReg()); 1436 1437 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1438 if (!OpInfo.isGenericType()) 1439 return MRI.getType(Op.getReg()); 1440 1441 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1442 return LLT{}; 1443 1444 LLT TypeToPrint = MRI.getType(Op.getReg()); 1445 // Don't mark the type index printed if it wasn't actually printed: maybe 1446 // another operand with the same type index has an actual type attached: 1447 if (TypeToPrint.isValid()) 1448 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1449 return TypeToPrint; 1450 } 1451 1452 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1453 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1454 dbgs() << " "; 1455 print(dbgs()); 1456 } 1457 #endif 1458 1459 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1460 bool SkipDebugLoc, bool AddNewLine, 1461 const TargetInstrInfo *TII) const { 1462 const Module *M = nullptr; 1463 const Function *F = nullptr; 1464 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1465 F = &MF->getFunction(); 1466 M = F->getParent(); 1467 if (!TII) 1468 TII = MF->getSubtarget().getInstrInfo(); 1469 } 1470 1471 ModuleSlotTracker MST(M); 1472 if (F) 1473 MST.incorporateFunction(*F); 1474 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1475 } 1476 1477 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1478 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1479 bool AddNewLine, const TargetInstrInfo *TII) const { 1480 // We can be a bit tidier if we know the MachineFunction. 1481 const MachineFunction *MF = nullptr; 1482 const TargetRegisterInfo *TRI = nullptr; 1483 const MachineRegisterInfo *MRI = nullptr; 1484 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1485 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1486 1487 if (isCFIInstruction()) 1488 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1489 1490 SmallBitVector PrintedTypes(8); 1491 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1492 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1493 if (!ShouldPrintRegisterTies) 1494 return 0U; 1495 const MachineOperand &MO = getOperand(OpIdx); 1496 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1497 return findTiedOperandIdx(OpIdx); 1498 return 0U; 1499 }; 1500 unsigned StartOp = 0; 1501 unsigned e = getNumOperands(); 1502 1503 // Print explicitly defined operands on the left of an assignment syntax. 1504 while (StartOp < e) { 1505 const MachineOperand &MO = getOperand(StartOp); 1506 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1507 break; 1508 1509 if (StartOp != 0) 1510 OS << ", "; 1511 1512 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1513 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1514 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone, 1515 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1516 ++StartOp; 1517 } 1518 1519 if (StartOp != 0) 1520 OS << " = "; 1521 1522 if (getFlag(MachineInstr::FrameSetup)) 1523 OS << "frame-setup "; 1524 if (getFlag(MachineInstr::FrameDestroy)) 1525 OS << "frame-destroy "; 1526 if (getFlag(MachineInstr::FmNoNans)) 1527 OS << "nnan "; 1528 if (getFlag(MachineInstr::FmNoInfs)) 1529 OS << "ninf "; 1530 if (getFlag(MachineInstr::FmNsz)) 1531 OS << "nsz "; 1532 if (getFlag(MachineInstr::FmArcp)) 1533 OS << "arcp "; 1534 if (getFlag(MachineInstr::FmContract)) 1535 OS << "contract "; 1536 if (getFlag(MachineInstr::FmAfn)) 1537 OS << "afn "; 1538 if (getFlag(MachineInstr::FmReassoc)) 1539 OS << "reassoc "; 1540 if (getFlag(MachineInstr::NoUWrap)) 1541 OS << "nuw "; 1542 if (getFlag(MachineInstr::NoSWrap)) 1543 OS << "nsw "; 1544 if (getFlag(MachineInstr::IsExact)) 1545 OS << "exact "; 1546 if (getFlag(MachineInstr::FPExcept)) 1547 OS << "fpexcept "; 1548 1549 // Print the opcode name. 1550 if (TII) 1551 OS << TII->getName(getOpcode()); 1552 else 1553 OS << "UNKNOWN"; 1554 1555 if (SkipOpers) 1556 return; 1557 1558 // Print the rest of the operands. 1559 bool FirstOp = true; 1560 unsigned AsmDescOp = ~0u; 1561 unsigned AsmOpCount = 0; 1562 1563 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1564 // Print asm string. 1565 OS << " "; 1566 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1567 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1568 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1569 getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1570 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1571 IntrinsicInfo); 1572 1573 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1574 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1575 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1576 OS << " [sideeffect]"; 1577 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1578 OS << " [mayload]"; 1579 if (ExtraInfo & InlineAsm::Extra_MayStore) 1580 OS << " [maystore]"; 1581 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1582 OS << " [isconvergent]"; 1583 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1584 OS << " [alignstack]"; 1585 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1586 OS << " [attdialect]"; 1587 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1588 OS << " [inteldialect]"; 1589 1590 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1591 FirstOp = false; 1592 } 1593 1594 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1595 const MachineOperand &MO = getOperand(i); 1596 1597 if (FirstOp) FirstOp = false; else OS << ","; 1598 OS << " "; 1599 1600 if (isDebugValue() && MO.isMetadata()) { 1601 // Pretty print DBG_VALUE instructions. 1602 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1603 if (DIV && !DIV->getName().empty()) 1604 OS << "!\"" << DIV->getName() << '\"'; 1605 else { 1606 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1607 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1608 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1609 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1610 } 1611 } else if (isDebugLabel() && MO.isMetadata()) { 1612 // Pretty print DBG_LABEL instructions. 1613 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1614 if (DIL && !DIL->getName().empty()) 1615 OS << "\"" << DIL->getName() << '\"'; 1616 else { 1617 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1618 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1619 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1620 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1621 } 1622 } else if (i == AsmDescOp && MO.isImm()) { 1623 // Pretty print the inline asm operand descriptor. 1624 OS << '$' << AsmOpCount++; 1625 unsigned Flag = MO.getImm(); 1626 switch (InlineAsm::getKind(Flag)) { 1627 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1628 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1629 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1630 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1631 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1632 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1633 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1634 } 1635 1636 unsigned RCID = 0; 1637 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1638 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1639 if (TRI) { 1640 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1641 } else 1642 OS << ":RC" << RCID; 1643 } 1644 1645 if (InlineAsm::isMemKind(Flag)) { 1646 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1647 switch (MCID) { 1648 case InlineAsm::Constraint_es: OS << ":es"; break; 1649 case InlineAsm::Constraint_i: OS << ":i"; break; 1650 case InlineAsm::Constraint_m: OS << ":m"; break; 1651 case InlineAsm::Constraint_o: OS << ":o"; break; 1652 case InlineAsm::Constraint_v: OS << ":v"; break; 1653 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1654 case InlineAsm::Constraint_R: OS << ":R"; break; 1655 case InlineAsm::Constraint_S: OS << ":S"; break; 1656 case InlineAsm::Constraint_T: OS << ":T"; break; 1657 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1658 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1659 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1660 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1661 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1662 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1663 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1664 case InlineAsm::Constraint_X: OS << ":X"; break; 1665 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1666 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1667 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1668 default: OS << ":?"; break; 1669 } 1670 } 1671 1672 unsigned TiedTo = 0; 1673 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1674 OS << " tiedto:$" << TiedTo; 1675 1676 OS << ']'; 1677 1678 // Compute the index of the next operand descriptor. 1679 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1680 } else { 1681 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1682 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1683 if (MO.isImm() && isOperandSubregIdx(i)) 1684 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1685 else 1686 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1687 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1688 } 1689 } 1690 1691 // Print any optional symbols attached to this instruction as-if they were 1692 // operands. 1693 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1694 if (!FirstOp) { 1695 FirstOp = false; 1696 OS << ','; 1697 } 1698 OS << " pre-instr-symbol "; 1699 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1700 } 1701 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1702 if (!FirstOp) { 1703 FirstOp = false; 1704 OS << ','; 1705 } 1706 OS << " post-instr-symbol "; 1707 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1708 } 1709 1710 if (!SkipDebugLoc) { 1711 if (const DebugLoc &DL = getDebugLoc()) { 1712 if (!FirstOp) 1713 OS << ','; 1714 OS << " debug-location "; 1715 DL->printAsOperand(OS, MST); 1716 } 1717 } 1718 1719 if (!memoperands_empty()) { 1720 SmallVector<StringRef, 0> SSNs; 1721 const LLVMContext *Context = nullptr; 1722 std::unique_ptr<LLVMContext> CtxPtr; 1723 const MachineFrameInfo *MFI = nullptr; 1724 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1725 MFI = &MF->getFrameInfo(); 1726 Context = &MF->getFunction().getContext(); 1727 } else { 1728 CtxPtr = std::make_unique<LLVMContext>(); 1729 Context = CtxPtr.get(); 1730 } 1731 1732 OS << " :: "; 1733 bool NeedComma = false; 1734 for (const MachineMemOperand *Op : memoperands()) { 1735 if (NeedComma) 1736 OS << ", "; 1737 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1738 NeedComma = true; 1739 } 1740 } 1741 1742 if (SkipDebugLoc) 1743 return; 1744 1745 bool HaveSemi = false; 1746 1747 // Print debug location information. 1748 if (const DebugLoc &DL = getDebugLoc()) { 1749 if (!HaveSemi) { 1750 OS << ';'; 1751 HaveSemi = true; 1752 } 1753 OS << ' '; 1754 DL.print(OS); 1755 } 1756 1757 // Print extra comments for DEBUG_VALUE. 1758 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1759 if (!HaveSemi) { 1760 OS << ";"; 1761 HaveSemi = true; 1762 } 1763 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1764 OS << " line no:" << DV->getLine(); 1765 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1766 DebugLoc InlinedAtDL(InlinedAt); 1767 if (InlinedAtDL && MF) { 1768 OS << " inlined @[ "; 1769 InlinedAtDL.print(OS); 1770 OS << " ]"; 1771 } 1772 } 1773 if (isIndirectDebugValue()) 1774 OS << " indirect"; 1775 } 1776 // TODO: DBG_LABEL 1777 1778 if (AddNewLine) 1779 OS << '\n'; 1780 } 1781 1782 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1783 const TargetRegisterInfo *RegInfo, 1784 bool AddIfNotFound) { 1785 bool isPhysReg = Register::isPhysicalRegister(IncomingReg); 1786 bool hasAliases = isPhysReg && 1787 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1788 bool Found = false; 1789 SmallVector<unsigned,4> DeadOps; 1790 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1791 MachineOperand &MO = getOperand(i); 1792 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1793 continue; 1794 1795 // DEBUG_VALUE nodes do not contribute to code generation and should 1796 // always be ignored. Failure to do so may result in trying to modify 1797 // KILL flags on DEBUG_VALUE nodes. 1798 if (MO.isDebug()) 1799 continue; 1800 1801 Register Reg = MO.getReg(); 1802 if (!Reg) 1803 continue; 1804 1805 if (Reg == IncomingReg) { 1806 if (!Found) { 1807 if (MO.isKill()) 1808 // The register is already marked kill. 1809 return true; 1810 if (isPhysReg && isRegTiedToDefOperand(i)) 1811 // Two-address uses of physregs must not be marked kill. 1812 return true; 1813 MO.setIsKill(); 1814 Found = true; 1815 } 1816 } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { 1817 // A super-register kill already exists. 1818 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1819 return true; 1820 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1821 DeadOps.push_back(i); 1822 } 1823 } 1824 1825 // Trim unneeded kill operands. 1826 while (!DeadOps.empty()) { 1827 unsigned OpIdx = DeadOps.back(); 1828 if (getOperand(OpIdx).isImplicit() && 1829 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1830 RemoveOperand(OpIdx); 1831 else 1832 getOperand(OpIdx).setIsKill(false); 1833 DeadOps.pop_back(); 1834 } 1835 1836 // If not found, this means an alias of one of the operands is killed. Add a 1837 // new implicit operand if required. 1838 if (!Found && AddIfNotFound) { 1839 addOperand(MachineOperand::CreateReg(IncomingReg, 1840 false /*IsDef*/, 1841 true /*IsImp*/, 1842 true /*IsKill*/)); 1843 return true; 1844 } 1845 return Found; 1846 } 1847 1848 void MachineInstr::clearRegisterKills(Register Reg, 1849 const TargetRegisterInfo *RegInfo) { 1850 if (!Register::isPhysicalRegister(Reg)) 1851 RegInfo = nullptr; 1852 for (MachineOperand &MO : operands()) { 1853 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1854 continue; 1855 Register OpReg = MO.getReg(); 1856 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1857 MO.setIsKill(false); 1858 } 1859 } 1860 1861 bool MachineInstr::addRegisterDead(Register Reg, 1862 const TargetRegisterInfo *RegInfo, 1863 bool AddIfNotFound) { 1864 bool isPhysReg = Register::isPhysicalRegister(Reg); 1865 bool hasAliases = isPhysReg && 1866 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1867 bool Found = false; 1868 SmallVector<unsigned,4> DeadOps; 1869 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1870 MachineOperand &MO = getOperand(i); 1871 if (!MO.isReg() || !MO.isDef()) 1872 continue; 1873 Register MOReg = MO.getReg(); 1874 if (!MOReg) 1875 continue; 1876 1877 if (MOReg == Reg) { 1878 MO.setIsDead(); 1879 Found = true; 1880 } else if (hasAliases && MO.isDead() && 1881 Register::isPhysicalRegister(MOReg)) { 1882 // There exists a super-register that's marked dead. 1883 if (RegInfo->isSuperRegister(Reg, MOReg)) 1884 return true; 1885 if (RegInfo->isSubRegister(Reg, MOReg)) 1886 DeadOps.push_back(i); 1887 } 1888 } 1889 1890 // Trim unneeded dead operands. 1891 while (!DeadOps.empty()) { 1892 unsigned OpIdx = DeadOps.back(); 1893 if (getOperand(OpIdx).isImplicit() && 1894 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1895 RemoveOperand(OpIdx); 1896 else 1897 getOperand(OpIdx).setIsDead(false); 1898 DeadOps.pop_back(); 1899 } 1900 1901 // If not found, this means an alias of one of the operands is dead. Add a 1902 // new implicit operand if required. 1903 if (Found || !AddIfNotFound) 1904 return Found; 1905 1906 addOperand(MachineOperand::CreateReg(Reg, 1907 true /*IsDef*/, 1908 true /*IsImp*/, 1909 false /*IsKill*/, 1910 true /*IsDead*/)); 1911 return true; 1912 } 1913 1914 void MachineInstr::clearRegisterDeads(Register Reg) { 1915 for (MachineOperand &MO : operands()) { 1916 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 1917 continue; 1918 MO.setIsDead(false); 1919 } 1920 } 1921 1922 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 1923 for (MachineOperand &MO : operands()) { 1924 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 1925 continue; 1926 MO.setIsUndef(IsUndef); 1927 } 1928 } 1929 1930 void MachineInstr::addRegisterDefined(Register Reg, 1931 const TargetRegisterInfo *RegInfo) { 1932 if (Register::isPhysicalRegister(Reg)) { 1933 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 1934 if (MO) 1935 return; 1936 } else { 1937 for (const MachineOperand &MO : operands()) { 1938 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1939 MO.getSubReg() == 0) 1940 return; 1941 } 1942 } 1943 addOperand(MachineOperand::CreateReg(Reg, 1944 true /*IsDef*/, 1945 true /*IsImp*/)); 1946 } 1947 1948 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 1949 const TargetRegisterInfo &TRI) { 1950 bool HasRegMask = false; 1951 for (MachineOperand &MO : operands()) { 1952 if (MO.isRegMask()) { 1953 HasRegMask = true; 1954 continue; 1955 } 1956 if (!MO.isReg() || !MO.isDef()) continue; 1957 Register Reg = MO.getReg(); 1958 if (!Reg.isPhysical()) 1959 continue; 1960 // If there are no uses, including partial uses, the def is dead. 1961 if (llvm::none_of(UsedRegs, 1962 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 1963 MO.setIsDead(); 1964 } 1965 1966 // This is a call with a register mask operand. 1967 // Mask clobbers are always dead, so add defs for the non-dead defines. 1968 if (HasRegMask) 1969 for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1970 I != E; ++I) 1971 addRegisterDefined(*I, &TRI); 1972 } 1973 1974 unsigned 1975 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1976 // Build up a buffer of hash code components. 1977 SmallVector<size_t, 8> HashComponents; 1978 HashComponents.reserve(MI->getNumOperands() + 1); 1979 HashComponents.push_back(MI->getOpcode()); 1980 for (const MachineOperand &MO : MI->operands()) { 1981 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 1982 continue; // Skip virtual register defs. 1983 1984 HashComponents.push_back(hash_value(MO)); 1985 } 1986 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1987 } 1988 1989 void MachineInstr::emitError(StringRef Msg) const { 1990 // Find the source location cookie. 1991 unsigned LocCookie = 0; 1992 const MDNode *LocMD = nullptr; 1993 for (unsigned i = getNumOperands(); i != 0; --i) { 1994 if (getOperand(i-1).isMetadata() && 1995 (LocMD = getOperand(i-1).getMetadata()) && 1996 LocMD->getNumOperands() != 0) { 1997 if (const ConstantInt *CI = 1998 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 1999 LocCookie = CI->getZExtValue(); 2000 break; 2001 } 2002 } 2003 } 2004 2005 if (const MachineBasicBlock *MBB = getParent()) 2006 if (const MachineFunction *MF = MBB->getParent()) 2007 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2008 report_fatal_error(Msg); 2009 } 2010 2011 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2012 const MCInstrDesc &MCID, bool IsIndirect, 2013 Register Reg, const MDNode *Variable, 2014 const MDNode *Expr) { 2015 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2016 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2017 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2018 "Expected inlined-at fields to agree"); 2019 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); 2020 if (IsIndirect) 2021 MIB.addImm(0U); 2022 else 2023 MIB.addReg(0U, RegState::Debug); 2024 return MIB.addMetadata(Variable).addMetadata(Expr); 2025 } 2026 2027 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2028 const MCInstrDesc &MCID, bool IsIndirect, 2029 MachineOperand &MO, const MDNode *Variable, 2030 const MDNode *Expr) { 2031 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2032 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2033 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2034 "Expected inlined-at fields to agree"); 2035 if (MO.isReg()) 2036 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); 2037 2038 auto MIB = BuildMI(MF, DL, MCID).add(MO); 2039 if (IsIndirect) 2040 MIB.addImm(0U); 2041 else 2042 MIB.addReg(0U, RegState::Debug); 2043 return MIB.addMetadata(Variable).addMetadata(Expr); 2044 } 2045 2046 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2047 MachineBasicBlock::iterator I, 2048 const DebugLoc &DL, const MCInstrDesc &MCID, 2049 bool IsIndirect, Register Reg, 2050 const MDNode *Variable, const MDNode *Expr) { 2051 MachineFunction &MF = *BB.getParent(); 2052 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2053 BB.insert(I, MI); 2054 return MachineInstrBuilder(MF, MI); 2055 } 2056 2057 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2058 MachineBasicBlock::iterator I, 2059 const DebugLoc &DL, const MCInstrDesc &MCID, 2060 bool IsIndirect, MachineOperand &MO, 2061 const MDNode *Variable, const MDNode *Expr) { 2062 MachineFunction &MF = *BB.getParent(); 2063 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); 2064 BB.insert(I, MI); 2065 return MachineInstrBuilder(MF, *MI); 2066 } 2067 2068 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2069 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2070 static const DIExpression *computeExprForSpill(const MachineInstr &MI) { 2071 assert(MI.getOperand(0).isReg() && "can't spill non-register"); 2072 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2073 "Expected inlined-at fields to agree"); 2074 2075 const DIExpression *Expr = MI.getDebugExpression(); 2076 if (MI.isIndirectDebugValue()) { 2077 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 2078 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2079 } 2080 return Expr; 2081 } 2082 2083 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2084 MachineBasicBlock::iterator I, 2085 const MachineInstr &Orig, 2086 int FrameIndex) { 2087 const DIExpression *Expr = computeExprForSpill(Orig); 2088 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) 2089 .addFrameIndex(FrameIndex) 2090 .addImm(0U) 2091 .addMetadata(Orig.getDebugVariable()) 2092 .addMetadata(Expr); 2093 } 2094 2095 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { 2096 const DIExpression *Expr = computeExprForSpill(Orig); 2097 Orig.getOperand(0).ChangeToFrameIndex(FrameIndex); 2098 Orig.getOperand(1).ChangeToImmediate(0U); 2099 Orig.getOperand(3).setMetadata(Expr); 2100 } 2101 2102 void MachineInstr::collectDebugValues( 2103 SmallVectorImpl<MachineInstr *> &DbgValues) { 2104 MachineInstr &MI = *this; 2105 if (!MI.getOperand(0).isReg()) 2106 return; 2107 2108 MachineBasicBlock::iterator DI = MI; ++DI; 2109 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2110 DI != DE; ++DI) { 2111 if (!DI->isDebugValue()) 2112 return; 2113 if (DI->getOperand(0).isReg() && 2114 DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) 2115 DbgValues.push_back(&*DI); 2116 } 2117 } 2118 2119 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2120 // Collect matching debug values. 2121 SmallVector<MachineInstr *, 2> DbgValues; 2122 2123 if (!getOperand(0).isReg()) 2124 return; 2125 2126 unsigned DefReg = getOperand(0).getReg(); 2127 auto *MRI = getRegInfo(); 2128 for (auto &MO : MRI->use_operands(DefReg)) { 2129 auto *DI = MO.getParent(); 2130 if (!DI->isDebugValue()) 2131 continue; 2132 if (DI->getOperand(0).isReg() && 2133 DI->getOperand(0).getReg() == DefReg){ 2134 DbgValues.push_back(DI); 2135 } 2136 } 2137 2138 // Propagate Reg to debug value instructions. 2139 for (auto *DBI : DbgValues) 2140 DBI->getOperand(0).setReg(Reg); 2141 } 2142 2143 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2144 2145 static unsigned getSpillSlotSize(MMOList &Accesses, 2146 const MachineFrameInfo &MFI) { 2147 unsigned Size = 0; 2148 for (auto A : Accesses) 2149 if (MFI.isSpillSlotObjectIndex( 2150 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2151 ->getFrameIndex())) 2152 Size += A->getSize(); 2153 return Size; 2154 } 2155 2156 Optional<unsigned> 2157 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2158 int FI; 2159 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2160 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2161 if (MFI.isSpillSlotObjectIndex(FI)) 2162 return (*memoperands_begin())->getSize(); 2163 } 2164 return None; 2165 } 2166 2167 Optional<unsigned> 2168 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2169 MMOList Accesses; 2170 if (TII->hasStoreToStackSlot(*this, Accesses)) 2171 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2172 return None; 2173 } 2174 2175 Optional<unsigned> 2176 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2177 int FI; 2178 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2179 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2180 if (MFI.isSpillSlotObjectIndex(FI)) 2181 return (*memoperands_begin())->getSize(); 2182 } 2183 return None; 2184 } 2185 2186 Optional<unsigned> 2187 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2188 MMOList Accesses; 2189 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2190 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2191 return None; 2192 } 2193