1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/Hashing.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/MemoryLocation.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/PseudoSourceValue.h" 32 #include "llvm/CodeGen/Register.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/ModuleSlotTracker.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/MC/MCInstrDesc.h" 48 #include "llvm/MC/MCRegisterInfo.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/FormattedStream.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstdint> 59 #include <cstring> 60 #include <utility> 61 62 using namespace llvm; 63 64 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 65 if (const MachineBasicBlock *MBB = MI.getParent()) 66 if (const MachineFunction *MF = MBB->getParent()) 67 return MF; 68 return nullptr; 69 } 70 71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 72 // it. 73 static void tryToGetTargetInfo(const MachineInstr &MI, 74 const TargetRegisterInfo *&TRI, 75 const MachineRegisterInfo *&MRI, 76 const TargetIntrinsicInfo *&IntrinsicInfo, 77 const TargetInstrInfo *&TII) { 78 79 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 80 TRI = MF->getSubtarget().getRegisterInfo(); 81 MRI = &MF->getRegInfo(); 82 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 83 TII = MF->getSubtarget().getInstrInfo(); 84 } 85 } 86 87 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 88 for (MCPhysReg ImpDef : MCID->implicit_defs()) 89 addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true)); 90 for (MCPhysReg ImpUse : MCID->implicit_uses()) 91 addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true)); 92 } 93 94 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 95 /// implicit operands. It reserves space for the number of operands specified by 96 /// the MCInstrDesc. 97 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, 98 DebugLoc DL, bool NoImp) 99 : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) { 100 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 101 102 // Reserve space for the expected number of operands. 103 if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() + 104 MCID->implicit_uses().size()) { 105 CapOperands = OperandCapacity::get(NumOps); 106 Operands = MF.allocateOperandArray(CapOperands); 107 } 108 109 if (!NoImp) 110 addImplicitDefUseOperands(MF); 111 } 112 113 /// MachineInstr ctor - Copies MachineInstr arg exactly. 114 /// Does not copy the number from debug instruction numbering, to preserve 115 /// uniqueness. 116 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 117 : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()), 118 DebugInstrNum(0) { 119 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 120 121 CapOperands = OperandCapacity::get(MI.getNumOperands()); 122 Operands = MF.allocateOperandArray(CapOperands); 123 124 // Copy operands. 125 for (const MachineOperand &MO : MI.operands()) 126 addOperand(MF, MO); 127 128 // Replicate ties between the operands, which addOperand was not 129 // able to do reliably. 130 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 131 MachineOperand &NewMO = getOperand(i); 132 const MachineOperand &OrigMO = MI.getOperand(i); 133 NewMO.TiedTo = OrigMO.TiedTo; 134 } 135 136 // Copy all the sensible flags. 137 setFlags(MI.Flags); 138 } 139 140 void MachineInstr::moveBefore(MachineInstr *MovePos) { 141 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 142 } 143 144 /// getRegInfo - If this instruction is embedded into a MachineFunction, 145 /// return the MachineRegisterInfo object for the current function, otherwise 146 /// return null. 147 MachineRegisterInfo *MachineInstr::getRegInfo() { 148 if (MachineBasicBlock *MBB = getParent()) 149 return &MBB->getParent()->getRegInfo(); 150 return nullptr; 151 } 152 153 const MachineRegisterInfo *MachineInstr::getRegInfo() const { 154 if (const MachineBasicBlock *MBB = getParent()) 155 return &MBB->getParent()->getRegInfo(); 156 return nullptr; 157 } 158 159 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 160 for (MachineOperand &MO : operands()) 161 if (MO.isReg()) 162 MRI.removeRegOperandFromUseList(&MO); 163 } 164 165 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) { 166 for (MachineOperand &MO : operands()) 167 if (MO.isReg()) 168 MRI.addRegOperandToUseList(&MO); 169 } 170 171 void MachineInstr::addOperand(const MachineOperand &Op) { 172 MachineBasicBlock *MBB = getParent(); 173 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 174 MachineFunction *MF = MBB->getParent(); 175 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 176 addOperand(*MF, Op); 177 } 178 179 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 180 /// ranges. If MRI is non-null also update use-def chains. 181 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 182 unsigned NumOps, MachineRegisterInfo *MRI) { 183 if (MRI) 184 return MRI->moveOperands(Dst, Src, NumOps); 185 // MachineOperand is a trivially copyable type so we can just use memmove. 186 assert(Dst && Src && "Unknown operands"); 187 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 188 } 189 190 /// addOperand - Add the specified operand to the instruction. If it is an 191 /// implicit operand, it is added to the end of the operand list. If it is 192 /// an explicit operand it is added at the end of the explicit operand list 193 /// (before the first implicit operand). 194 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 195 assert(NumOperands < USHRT_MAX && "Cannot add more operands."); 196 assert(MCID && "Cannot add operands before providing an instr descriptor"); 197 198 // Check if we're adding one of our existing operands. 199 if (&Op >= Operands && &Op < Operands + NumOperands) { 200 // This is unusual: MI->addOperand(MI->getOperand(i)). 201 // If adding Op requires reallocating or moving existing operands around, 202 // the Op reference could go stale. Support it by copying Op. 203 MachineOperand CopyOp(Op); 204 return addOperand(MF, CopyOp); 205 } 206 207 // Find the insert location for the new operand. Implicit registers go at 208 // the end, everything else goes before the implicit regs. 209 // 210 // FIXME: Allow mixed explicit and implicit operands on inline asm. 211 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 212 // implicit-defs, but they must not be moved around. See the FIXME in 213 // InstrEmitter.cpp. 214 unsigned OpNo = getNumOperands(); 215 bool isImpReg = Op.isReg() && Op.isImplicit(); 216 if (!isImpReg && !isInlineAsm()) { 217 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 218 --OpNo; 219 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 220 } 221 } 222 223 // OpNo now points as the desired insertion point. Unless this is a variadic 224 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 225 // RegMask operands go between the explicit and implicit operands. 226 assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() || 227 Op.isValidExcessOperand()) && 228 "Trying to add an operand to a machine instr that is already done!"); 229 230 MachineRegisterInfo *MRI = getRegInfo(); 231 232 // Determine if the Operands array needs to be reallocated. 233 // Save the old capacity and operand array. 234 OperandCapacity OldCap = CapOperands; 235 MachineOperand *OldOperands = Operands; 236 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 237 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 238 Operands = MF.allocateOperandArray(CapOperands); 239 // Move the operands before the insertion point. 240 if (OpNo) 241 moveOperands(Operands, OldOperands, OpNo, MRI); 242 } 243 244 // Move the operands following the insertion point. 245 if (OpNo != NumOperands) 246 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 247 MRI); 248 ++NumOperands; 249 250 // Deallocate the old operand array. 251 if (OldOperands != Operands && OldOperands) 252 MF.deallocateOperandArray(OldCap, OldOperands); 253 254 // Copy Op into place. It still needs to be inserted into the MRI use lists. 255 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 256 NewMO->ParentMI = this; 257 258 // When adding a register operand, tell MRI about it. 259 if (NewMO->isReg()) { 260 // Ensure isOnRegUseList() returns false, regardless of Op's status. 261 NewMO->Contents.Reg.Prev = nullptr; 262 // Ignore existing ties. This is not a property that can be copied. 263 NewMO->TiedTo = 0; 264 // Add the new operand to MRI, but only for instructions in an MBB. 265 if (MRI) 266 MRI->addRegOperandToUseList(NewMO); 267 // The MCID operand information isn't accurate until we start adding 268 // explicit operands. The implicit operands are added first, then the 269 // explicits are inserted before them. 270 if (!isImpReg) { 271 // Tie uses to defs as indicated in MCInstrDesc. 272 if (NewMO->isUse()) { 273 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 274 if (DefIdx != -1) 275 tieOperands(DefIdx, OpNo); 276 } 277 // If the register operand is flagged as early, mark the operand as such. 278 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 279 NewMO->setIsEarlyClobber(true); 280 } 281 // Ensure debug instructions set debug flag on register uses. 282 if (NewMO->isUse() && isDebugInstr()) 283 NewMO->setIsDebug(); 284 } 285 } 286 287 void MachineInstr::removeOperand(unsigned OpNo) { 288 assert(OpNo < getNumOperands() && "Invalid operand number"); 289 untieRegOperand(OpNo); 290 291 #ifndef NDEBUG 292 // Moving tied operands would break the ties. 293 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 294 if (Operands[i].isReg()) 295 assert(!Operands[i].isTied() && "Cannot move tied operands"); 296 #endif 297 298 MachineRegisterInfo *MRI = getRegInfo(); 299 if (MRI && Operands[OpNo].isReg()) 300 MRI->removeRegOperandFromUseList(Operands + OpNo); 301 302 // Don't call the MachineOperand destructor. A lot of this code depends on 303 // MachineOperand having a trivial destructor anyway, and adding a call here 304 // wouldn't make it 'destructor-correct'. 305 306 if (unsigned N = NumOperands - 1 - OpNo) 307 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 308 --NumOperands; 309 } 310 311 void MachineInstr::setExtraInfo(MachineFunction &MF, 312 ArrayRef<MachineMemOperand *> MMOs, 313 MCSymbol *PreInstrSymbol, 314 MCSymbol *PostInstrSymbol, 315 MDNode *HeapAllocMarker, MDNode *PCSections, 316 uint32_t CFIType) { 317 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 318 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 319 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 320 bool HasPCSections = PCSections != nullptr; 321 bool HasCFIType = CFIType != 0; 322 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + 323 HasHeapAllocMarker + HasPCSections + HasCFIType; 324 325 // Drop all extra info if there is none. 326 if (NumPointers <= 0) { 327 Info.clear(); 328 return; 329 } 330 331 // If more than one pointer, then store out of line. Store heap alloc markers 332 // out of line because PointerSumType cannot hold more than 4 tag types with 333 // 32-bit pointers. 334 // FIXME: Maybe we should make the symbols in the extra info mutable? 335 else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections || 336 HasCFIType) { 337 Info.set<EIIK_OutOfLine>( 338 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol, 339 HeapAllocMarker, PCSections, CFIType)); 340 return; 341 } 342 343 // Otherwise store the single pointer inline. 344 if (HasPreInstrSymbol) 345 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 346 else if (HasPostInstrSymbol) 347 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 348 else 349 Info.set<EIIK_MMO>(MMOs[0]); 350 } 351 352 void MachineInstr::dropMemRefs(MachineFunction &MF) { 353 if (memoperands_empty()) 354 return; 355 356 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 357 getHeapAllocMarker(), getPCSections(), getCFIType()); 358 } 359 360 void MachineInstr::setMemRefs(MachineFunction &MF, 361 ArrayRef<MachineMemOperand *> MMOs) { 362 if (MMOs.empty()) { 363 dropMemRefs(MF); 364 return; 365 } 366 367 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 368 getHeapAllocMarker(), getPCSections(), getCFIType()); 369 } 370 371 void MachineInstr::addMemOperand(MachineFunction &MF, 372 MachineMemOperand *MO) { 373 SmallVector<MachineMemOperand *, 2> MMOs; 374 MMOs.append(memoperands_begin(), memoperands_end()); 375 MMOs.push_back(MO); 376 setMemRefs(MF, MMOs); 377 } 378 379 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 380 if (this == &MI) 381 // Nothing to do for a self-clone! 382 return; 383 384 assert(&MF == MI.getMF() && 385 "Invalid machine functions when cloning memory refrences!"); 386 // See if we can just steal the extra info already allocated for the 387 // instruction. We can do this whenever the pre- and post-instruction symbols 388 // are the same (including null). 389 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 390 getPostInstrSymbol() == MI.getPostInstrSymbol() && 391 getHeapAllocMarker() == MI.getHeapAllocMarker() && 392 getPCSections() == MI.getPCSections()) { 393 Info = MI.Info; 394 return; 395 } 396 397 // Otherwise, fall back on a copy-based clone. 398 setMemRefs(MF, MI.memoperands()); 399 } 400 401 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 402 /// identical. 403 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 404 ArrayRef<MachineMemOperand *> RHS) { 405 if (LHS.size() != RHS.size()) 406 return false; 407 408 auto LHSPointees = make_pointee_range(LHS); 409 auto RHSPointees = make_pointee_range(RHS); 410 return std::equal(LHSPointees.begin(), LHSPointees.end(), 411 RHSPointees.begin()); 412 } 413 414 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 415 ArrayRef<const MachineInstr *> MIs) { 416 // Try handling easy numbers of MIs with simpler mechanisms. 417 if (MIs.empty()) { 418 dropMemRefs(MF); 419 return; 420 } 421 if (MIs.size() == 1) { 422 cloneMemRefs(MF, *MIs[0]); 423 return; 424 } 425 // Because an empty memoperands list provides *no* information and must be 426 // handled conservatively (assuming the instruction can do anything), the only 427 // way to merge with it is to drop all other memoperands. 428 if (MIs[0]->memoperands_empty()) { 429 dropMemRefs(MF); 430 return; 431 } 432 433 // Handle the general case. 434 SmallVector<MachineMemOperand *, 2> MergedMMOs; 435 // Start with the first instruction. 436 assert(&MF == MIs[0]->getMF() && 437 "Invalid machine functions when cloning memory references!"); 438 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 439 // Now walk all the other instructions and accumulate any different MMOs. 440 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 441 assert(&MF == MI.getMF() && 442 "Invalid machine functions when cloning memory references!"); 443 444 // Skip MIs with identical operands to the first. This is a somewhat 445 // arbitrary hack but will catch common cases without being quadratic. 446 // TODO: We could fully implement merge semantics here if needed. 447 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 448 continue; 449 450 // Because an empty memoperands list provides *no* information and must be 451 // handled conservatively (assuming the instruction can do anything), the 452 // only way to merge with it is to drop all other memoperands. 453 if (MI.memoperands_empty()) { 454 dropMemRefs(MF); 455 return; 456 } 457 458 // Otherwise accumulate these into our temporary buffer of the merged state. 459 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 460 } 461 462 setMemRefs(MF, MergedMMOs); 463 } 464 465 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 466 // Do nothing if old and new symbols are the same. 467 if (Symbol == getPreInstrSymbol()) 468 return; 469 470 // If there was only one symbol and we're removing it, just clear info. 471 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 472 Info.clear(); 473 return; 474 } 475 476 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 477 getHeapAllocMarker(), getPCSections(), getCFIType()); 478 } 479 480 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 481 // Do nothing if old and new symbols are the same. 482 if (Symbol == getPostInstrSymbol()) 483 return; 484 485 // If there was only one symbol and we're removing it, just clear info. 486 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 487 Info.clear(); 488 return; 489 } 490 491 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 492 getHeapAllocMarker(), getPCSections(), getCFIType()); 493 } 494 495 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 496 // Do nothing if old and new symbols are the same. 497 if (Marker == getHeapAllocMarker()) 498 return; 499 500 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 501 Marker, getPCSections(), getCFIType()); 502 } 503 504 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) { 505 // Do nothing if old and new symbols are the same. 506 if (PCSections == getPCSections()) 507 return; 508 509 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 510 getHeapAllocMarker(), PCSections, getCFIType()); 511 } 512 513 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) { 514 // Do nothing if old and new types are the same. 515 if (Type == getCFIType()) 516 return; 517 518 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 519 getHeapAllocMarker(), getPCSections(), Type); 520 } 521 522 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 523 const MachineInstr &MI) { 524 if (this == &MI) 525 // Nothing to do for a self-clone! 526 return; 527 528 assert(&MF == MI.getMF() && 529 "Invalid machine functions when cloning instruction symbols!"); 530 531 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 532 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 533 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 534 setPCSections(MF, MI.getPCSections()); 535 } 536 537 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 538 // For now, the just return the union of the flags. If the flags get more 539 // complicated over time, we might need more logic here. 540 return getFlags() | Other.getFlags(); 541 } 542 543 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 544 uint16_t MIFlags = 0; 545 // Copy the wrapping flags. 546 if (const OverflowingBinaryOperator *OB = 547 dyn_cast<OverflowingBinaryOperator>(&I)) { 548 if (OB->hasNoSignedWrap()) 549 MIFlags |= MachineInstr::MIFlag::NoSWrap; 550 if (OB->hasNoUnsignedWrap()) 551 MIFlags |= MachineInstr::MIFlag::NoUWrap; 552 } 553 554 // Copy the exact flag. 555 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 556 if (PE->isExact()) 557 MIFlags |= MachineInstr::MIFlag::IsExact; 558 559 // Copy the fast-math flags. 560 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 561 const FastMathFlags Flags = FP->getFastMathFlags(); 562 if (Flags.noNaNs()) 563 MIFlags |= MachineInstr::MIFlag::FmNoNans; 564 if (Flags.noInfs()) 565 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 566 if (Flags.noSignedZeros()) 567 MIFlags |= MachineInstr::MIFlag::FmNsz; 568 if (Flags.allowReciprocal()) 569 MIFlags |= MachineInstr::MIFlag::FmArcp; 570 if (Flags.allowContract()) 571 MIFlags |= MachineInstr::MIFlag::FmContract; 572 if (Flags.approxFunc()) 573 MIFlags |= MachineInstr::MIFlag::FmAfn; 574 if (Flags.allowReassoc()) 575 MIFlags |= MachineInstr::MIFlag::FmReassoc; 576 } 577 578 return MIFlags; 579 } 580 581 void MachineInstr::copyIRFlags(const Instruction &I) { 582 Flags = copyFlagsFromInstruction(I); 583 } 584 585 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 586 assert(!isBundledWithPred() && "Must be called on bundle header"); 587 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 588 if (MII->getDesc().getFlags() & Mask) { 589 if (Type == AnyInBundle) 590 return true; 591 } else { 592 if (Type == AllInBundle && !MII->isBundle()) 593 return false; 594 } 595 // This was the last instruction in the bundle. 596 if (!MII->isBundledWithSucc()) 597 return Type == AllInBundle; 598 } 599 } 600 601 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 602 MICheckType Check) const { 603 // If opcodes or number of operands are not the same then the two 604 // instructions are obviously not identical. 605 if (Other.getOpcode() != getOpcode() || 606 Other.getNumOperands() != getNumOperands()) 607 return false; 608 609 if (isBundle()) { 610 // We have passed the test above that both instructions have the same 611 // opcode, so we know that both instructions are bundles here. Let's compare 612 // MIs inside the bundle. 613 assert(Other.isBundle() && "Expected that both instructions are bundles."); 614 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 615 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 616 // Loop until we analysed the last intruction inside at least one of the 617 // bundles. 618 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 619 ++I1; 620 ++I2; 621 if (!I1->isIdenticalTo(*I2, Check)) 622 return false; 623 } 624 // If we've reached the end of just one of the two bundles, but not both, 625 // the instructions are not identical. 626 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 627 return false; 628 } 629 630 // Check operands to make sure they match. 631 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 632 const MachineOperand &MO = getOperand(i); 633 const MachineOperand &OMO = Other.getOperand(i); 634 if (!MO.isReg()) { 635 if (!MO.isIdenticalTo(OMO)) 636 return false; 637 continue; 638 } 639 640 // Clients may or may not want to ignore defs when testing for equality. 641 // For example, machine CSE pass only cares about finding common 642 // subexpressions, so it's safe to ignore virtual register defs. 643 if (MO.isDef()) { 644 if (Check == IgnoreDefs) 645 continue; 646 else if (Check == IgnoreVRegDefs) { 647 if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual()) 648 if (!MO.isIdenticalTo(OMO)) 649 return false; 650 } else { 651 if (!MO.isIdenticalTo(OMO)) 652 return false; 653 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 654 return false; 655 } 656 } else { 657 if (!MO.isIdenticalTo(OMO)) 658 return false; 659 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 660 return false; 661 } 662 } 663 // If DebugLoc does not match then two debug instructions are not identical. 664 if (isDebugInstr()) 665 if (getDebugLoc() && Other.getDebugLoc() && 666 getDebugLoc() != Other.getDebugLoc()) 667 return false; 668 // If pre- or post-instruction symbols do not match then the two instructions 669 // are not identical. 670 if (getPreInstrSymbol() != Other.getPreInstrSymbol() || 671 getPostInstrSymbol() != Other.getPostInstrSymbol()) 672 return false; 673 // Call instructions with different CFI types are not identical. 674 if (isCall() && getCFIType() != Other.getCFIType()) 675 return false; 676 677 return true; 678 } 679 680 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const { 681 if (!isDebugValueLike() || !Other.isDebugValueLike()) 682 return false; 683 if (getDebugLoc() != Other.getDebugLoc()) 684 return false; 685 if (getDebugVariable() != Other.getDebugVariable()) 686 return false; 687 if (getNumDebugOperands() != Other.getNumDebugOperands()) 688 return false; 689 for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx) 690 if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx))) 691 return false; 692 if (!DIExpression::isEqualExpression( 693 getDebugExpression(), isIndirectDebugValue(), 694 Other.getDebugExpression(), Other.isIndirectDebugValue())) 695 return false; 696 return true; 697 } 698 699 const MachineFunction *MachineInstr::getMF() const { 700 return getParent()->getParent(); 701 } 702 703 MachineInstr *MachineInstr::removeFromParent() { 704 assert(getParent() && "Not embedded in a basic block!"); 705 return getParent()->remove(this); 706 } 707 708 MachineInstr *MachineInstr::removeFromBundle() { 709 assert(getParent() && "Not embedded in a basic block!"); 710 return getParent()->remove_instr(this); 711 } 712 713 void MachineInstr::eraseFromParent() { 714 assert(getParent() && "Not embedded in a basic block!"); 715 getParent()->erase(this); 716 } 717 718 void MachineInstr::eraseFromBundle() { 719 assert(getParent() && "Not embedded in a basic block!"); 720 getParent()->erase_instr(this); 721 } 722 723 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 724 if (!isCall(Type)) 725 return false; 726 switch (getOpcode()) { 727 case TargetOpcode::PATCHPOINT: 728 case TargetOpcode::STACKMAP: 729 case TargetOpcode::STATEPOINT: 730 case TargetOpcode::FENTRY_CALL: 731 return false; 732 } 733 return true; 734 } 735 736 bool MachineInstr::shouldUpdateCallSiteInfo() const { 737 if (isBundle()) 738 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 739 return isCandidateForCallSiteEntry(); 740 } 741 742 unsigned MachineInstr::getNumExplicitOperands() const { 743 unsigned NumOperands = MCID->getNumOperands(); 744 if (!MCID->isVariadic()) 745 return NumOperands; 746 747 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 748 const MachineOperand &MO = getOperand(I); 749 // The operands must always be in the following order: 750 // - explicit reg defs, 751 // - other explicit operands (reg uses, immediates, etc.), 752 // - implicit reg defs 753 // - implicit reg uses 754 if (MO.isReg() && MO.isImplicit()) 755 break; 756 ++NumOperands; 757 } 758 return NumOperands; 759 } 760 761 unsigned MachineInstr::getNumExplicitDefs() const { 762 unsigned NumDefs = MCID->getNumDefs(); 763 if (!MCID->isVariadic()) 764 return NumDefs; 765 766 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 767 const MachineOperand &MO = getOperand(I); 768 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 769 break; 770 ++NumDefs; 771 } 772 return NumDefs; 773 } 774 775 void MachineInstr::bundleWithPred() { 776 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 777 setFlag(BundledPred); 778 MachineBasicBlock::instr_iterator Pred = getIterator(); 779 --Pred; 780 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 781 Pred->setFlag(BundledSucc); 782 } 783 784 void MachineInstr::bundleWithSucc() { 785 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 786 setFlag(BundledSucc); 787 MachineBasicBlock::instr_iterator Succ = getIterator(); 788 ++Succ; 789 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 790 Succ->setFlag(BundledPred); 791 } 792 793 void MachineInstr::unbundleFromPred() { 794 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 795 clearFlag(BundledPred); 796 MachineBasicBlock::instr_iterator Pred = getIterator(); 797 --Pred; 798 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 799 Pred->clearFlag(BundledSucc); 800 } 801 802 void MachineInstr::unbundleFromSucc() { 803 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 804 clearFlag(BundledSucc); 805 MachineBasicBlock::instr_iterator Succ = getIterator(); 806 ++Succ; 807 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 808 Succ->clearFlag(BundledPred); 809 } 810 811 bool MachineInstr::isStackAligningInlineAsm() const { 812 if (isInlineAsm()) { 813 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 814 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 815 return true; 816 } 817 return false; 818 } 819 820 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 821 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 822 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 823 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 824 } 825 826 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 827 unsigned *GroupNo) const { 828 assert(isInlineAsm() && "Expected an inline asm instruction"); 829 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 830 831 // Ignore queries about the initial operands. 832 if (OpIdx < InlineAsm::MIOp_FirstOperand) 833 return -1; 834 835 unsigned Group = 0; 836 unsigned NumOps; 837 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 838 i += NumOps) { 839 const MachineOperand &FlagMO = getOperand(i); 840 // If we reach the implicit register operands, stop looking. 841 if (!FlagMO.isImm()) 842 return -1; 843 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 844 if (i + NumOps > OpIdx) { 845 if (GroupNo) 846 *GroupNo = Group; 847 return i; 848 } 849 ++Group; 850 } 851 return -1; 852 } 853 854 const DILabel *MachineInstr::getDebugLabel() const { 855 assert(isDebugLabel() && "not a DBG_LABEL"); 856 return cast<DILabel>(getOperand(0).getMetadata()); 857 } 858 859 const MachineOperand &MachineInstr::getDebugVariableOp() const { 860 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 861 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 862 return getOperand(VariableOp); 863 } 864 865 MachineOperand &MachineInstr::getDebugVariableOp() { 866 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 867 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 868 return getOperand(VariableOp); 869 } 870 871 const DILocalVariable *MachineInstr::getDebugVariable() const { 872 return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); 873 } 874 875 const MachineOperand &MachineInstr::getDebugExpressionOp() const { 876 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 877 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 878 return getOperand(ExpressionOp); 879 } 880 881 MachineOperand &MachineInstr::getDebugExpressionOp() { 882 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 883 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 884 return getOperand(ExpressionOp); 885 } 886 887 const DIExpression *MachineInstr::getDebugExpression() const { 888 return cast<DIExpression>(getDebugExpressionOp().getMetadata()); 889 } 890 891 bool MachineInstr::isDebugEntryValue() const { 892 return isDebugValue() && getDebugExpression()->isEntryValue(); 893 } 894 895 const TargetRegisterClass* 896 MachineInstr::getRegClassConstraint(unsigned OpIdx, 897 const TargetInstrInfo *TII, 898 const TargetRegisterInfo *TRI) const { 899 assert(getParent() && "Can't have an MBB reference here!"); 900 assert(getMF() && "Can't have an MF reference here!"); 901 const MachineFunction &MF = *getMF(); 902 903 // Most opcodes have fixed constraints in their MCInstrDesc. 904 if (!isInlineAsm()) 905 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 906 907 if (!getOperand(OpIdx).isReg()) 908 return nullptr; 909 910 // For tied uses on inline asm, get the constraint from the def. 911 unsigned DefIdx; 912 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 913 OpIdx = DefIdx; 914 915 // Inline asm stores register class constraints in the flag word. 916 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 917 if (FlagIdx < 0) 918 return nullptr; 919 920 unsigned Flag = getOperand(FlagIdx).getImm(); 921 unsigned RCID; 922 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 923 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 924 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 925 InlineAsm::hasRegClassConstraint(Flag, RCID)) 926 return TRI->getRegClass(RCID); 927 928 // Assume that all registers in a memory operand are pointers. 929 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 930 return TRI->getPointerRegClass(MF); 931 932 return nullptr; 933 } 934 935 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 936 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 937 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 938 // Check every operands inside the bundle if we have 939 // been asked to. 940 if (ExploreBundle) 941 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 942 ++OpndIt) 943 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 944 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 945 else 946 // Otherwise, just check the current operands. 947 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 948 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 949 return CurRC; 950 } 951 952 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 953 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 954 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 955 assert(CurRC && "Invalid initial register class"); 956 // Check if Reg is constrained by some of its use/def from MI. 957 const MachineOperand &MO = getOperand(OpIdx); 958 if (!MO.isReg() || MO.getReg() != Reg) 959 return CurRC; 960 // If yes, accumulate the constraints through the operand. 961 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 962 } 963 964 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 965 unsigned OpIdx, const TargetRegisterClass *CurRC, 966 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 967 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 968 const MachineOperand &MO = getOperand(OpIdx); 969 assert(MO.isReg() && 970 "Cannot get register constraints for non-register operand"); 971 assert(CurRC && "Invalid initial register class"); 972 if (unsigned SubIdx = MO.getSubReg()) { 973 if (OpRC) 974 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 975 else 976 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 977 } else if (OpRC) 978 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 979 return CurRC; 980 } 981 982 /// Return the number of instructions inside the MI bundle, not counting the 983 /// header instruction. 984 unsigned MachineInstr::getBundleSize() const { 985 MachineBasicBlock::const_instr_iterator I = getIterator(); 986 unsigned Size = 0; 987 while (I->isBundledWithSucc()) { 988 ++Size; 989 ++I; 990 } 991 return Size; 992 } 993 994 /// Returns true if the MachineInstr has an implicit-use operand of exactly 995 /// the given register (not considering sub/super-registers). 996 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 997 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 998 const MachineOperand &MO = getOperand(i); 999 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1000 return true; 1001 } 1002 return false; 1003 } 1004 1005 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1006 /// the specific register or -1 if it is not found. It further tightens 1007 /// the search criteria to a use that kills the register if isKill is true. 1008 int MachineInstr::findRegisterUseOperandIdx( 1009 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1010 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1011 const MachineOperand &MO = getOperand(i); 1012 if (!MO.isReg() || !MO.isUse()) 1013 continue; 1014 Register MOReg = MO.getReg(); 1015 if (!MOReg) 1016 continue; 1017 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 1018 if (!isKill || MO.isKill()) 1019 return i; 1020 } 1021 return -1; 1022 } 1023 1024 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1025 /// indicating if this instruction reads or writes Reg. This also considers 1026 /// partial defines. 1027 std::pair<bool,bool> 1028 MachineInstr::readsWritesVirtualRegister(Register Reg, 1029 SmallVectorImpl<unsigned> *Ops) const { 1030 bool PartDef = false; // Partial redefine. 1031 bool FullDef = false; // Full define. 1032 bool Use = false; 1033 1034 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1035 const MachineOperand &MO = getOperand(i); 1036 if (!MO.isReg() || MO.getReg() != Reg) 1037 continue; 1038 if (Ops) 1039 Ops->push_back(i); 1040 if (MO.isUse()) 1041 Use |= !MO.isUndef(); 1042 else if (MO.getSubReg() && !MO.isUndef()) 1043 // A partial def undef doesn't count as reading the register. 1044 PartDef = true; 1045 else 1046 FullDef = true; 1047 } 1048 // A partial redefine uses Reg unless there is also a full define. 1049 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1050 } 1051 1052 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1053 /// the specified register or -1 if it is not found. If isDead is true, defs 1054 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1055 /// also checks if there is a def of a super-register. 1056 int 1057 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1058 const TargetRegisterInfo *TRI) const { 1059 bool isPhys = Reg.isPhysical(); 1060 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1061 const MachineOperand &MO = getOperand(i); 1062 // Accept regmask operands when Overlap is set. 1063 // Ignore them when looking for a specific def operand (Overlap == false). 1064 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1065 return i; 1066 if (!MO.isReg() || !MO.isDef()) 1067 continue; 1068 Register MOReg = MO.getReg(); 1069 bool Found = (MOReg == Reg); 1070 if (!Found && TRI && isPhys && MOReg.isPhysical()) { 1071 if (Overlap) 1072 Found = TRI->regsOverlap(MOReg, Reg); 1073 else 1074 Found = TRI->isSubRegister(MOReg, Reg); 1075 } 1076 if (Found && (!isDead || MO.isDead())) 1077 return i; 1078 } 1079 return -1; 1080 } 1081 1082 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1083 /// operand list that is used to represent the predicate. It returns -1 if 1084 /// none is found. 1085 int MachineInstr::findFirstPredOperandIdx() const { 1086 // Don't call MCID.findFirstPredOperandIdx() because this variant 1087 // is sometimes called on an instruction that's not yet complete, and 1088 // so the number of operands is less than the MCID indicates. In 1089 // particular, the PTX target does this. 1090 const MCInstrDesc &MCID = getDesc(); 1091 if (MCID.isPredicable()) { 1092 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1093 if (MCID.operands()[i].isPredicate()) 1094 return i; 1095 } 1096 1097 return -1; 1098 } 1099 1100 // MachineOperand::TiedTo is 4 bits wide. 1101 const unsigned TiedMax = 15; 1102 1103 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1104 /// 1105 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1106 /// field. TiedTo can have these values: 1107 /// 1108 /// 0: Operand is not tied to anything. 1109 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1110 /// TiedMax: Tied to an operand >= TiedMax-1. 1111 /// 1112 /// The tied def must be one of the first TiedMax operands on a normal 1113 /// instruction. INLINEASM instructions allow more tied defs. 1114 /// 1115 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1116 MachineOperand &DefMO = getOperand(DefIdx); 1117 MachineOperand &UseMO = getOperand(UseIdx); 1118 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1119 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1120 assert(!DefMO.isTied() && "Def is already tied to another use"); 1121 assert(!UseMO.isTied() && "Use is already tied to another def"); 1122 1123 if (DefIdx < TiedMax) 1124 UseMO.TiedTo = DefIdx + 1; 1125 else { 1126 // Inline asm can use the group descriptors to find tied operands, 1127 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1128 // but on normal instruction, the tied def must be within the first TiedMax 1129 // operands. 1130 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1131 "DefIdx out of range"); 1132 UseMO.TiedTo = TiedMax; 1133 } 1134 1135 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1136 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1137 } 1138 1139 /// Given the index of a tied register operand, find the operand it is tied to. 1140 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1141 /// which must exist. 1142 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1143 const MachineOperand &MO = getOperand(OpIdx); 1144 assert(MO.isTied() && "Operand isn't tied"); 1145 1146 // Normally TiedTo is in range. 1147 if (MO.TiedTo < TiedMax) 1148 return MO.TiedTo - 1; 1149 1150 // Uses on normal instructions can be out of range. 1151 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1152 // Normal tied defs must be in the 0..TiedMax-1 range. 1153 if (MO.isUse()) 1154 return TiedMax - 1; 1155 // MO is a def. Search for the tied use. 1156 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1157 const MachineOperand &UseMO = getOperand(i); 1158 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1159 return i; 1160 } 1161 llvm_unreachable("Can't find tied use"); 1162 } 1163 1164 if (getOpcode() == TargetOpcode::STATEPOINT) { 1165 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1166 // on registers. 1167 StatepointOpers SO(this); 1168 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1169 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1170 unsigned NumDefs = getNumDefs(); 1171 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1172 while (!getOperand(CurUseIdx).isReg()) 1173 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1174 if (OpIdx == CurDefIdx) 1175 return CurUseIdx; 1176 if (OpIdx == CurUseIdx) 1177 return CurDefIdx; 1178 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1179 } 1180 llvm_unreachable("Can't find tied use"); 1181 } 1182 1183 // Now deal with inline asm by parsing the operand group descriptor flags. 1184 // Find the beginning of each operand group. 1185 SmallVector<unsigned, 8> GroupIdx; 1186 unsigned OpIdxGroup = ~0u; 1187 unsigned NumOps; 1188 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1189 i += NumOps) { 1190 const MachineOperand &FlagMO = getOperand(i); 1191 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1192 unsigned CurGroup = GroupIdx.size(); 1193 GroupIdx.push_back(i); 1194 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1195 // OpIdx belongs to this operand group. 1196 if (OpIdx > i && OpIdx < i + NumOps) 1197 OpIdxGroup = CurGroup; 1198 unsigned TiedGroup; 1199 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1200 continue; 1201 // Operands in this group are tied to operands in TiedGroup which must be 1202 // earlier. Find the number of operands between the two groups. 1203 unsigned Delta = i - GroupIdx[TiedGroup]; 1204 1205 // OpIdx is a use tied to TiedGroup. 1206 if (OpIdxGroup == CurGroup) 1207 return OpIdx - Delta; 1208 1209 // OpIdx is a def tied to this use group. 1210 if (OpIdxGroup == TiedGroup) 1211 return OpIdx + Delta; 1212 } 1213 llvm_unreachable("Invalid tied operand on inline asm"); 1214 } 1215 1216 /// clearKillInfo - Clears kill flags on all operands. 1217 /// 1218 void MachineInstr::clearKillInfo() { 1219 for (MachineOperand &MO : operands()) { 1220 if (MO.isReg() && MO.isUse()) 1221 MO.setIsKill(false); 1222 } 1223 } 1224 1225 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1226 unsigned SubIdx, 1227 const TargetRegisterInfo &RegInfo) { 1228 if (ToReg.isPhysical()) { 1229 if (SubIdx) 1230 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1231 for (MachineOperand &MO : operands()) { 1232 if (!MO.isReg() || MO.getReg() != FromReg) 1233 continue; 1234 MO.substPhysReg(ToReg, RegInfo); 1235 } 1236 } else { 1237 for (MachineOperand &MO : operands()) { 1238 if (!MO.isReg() || MO.getReg() != FromReg) 1239 continue; 1240 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1241 } 1242 } 1243 } 1244 1245 /// isSafeToMove - Return true if it is safe to move this instruction. If 1246 /// SawStore is set to true, it means that there is a store (or call) between 1247 /// the instruction's location and its intended destination. 1248 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1249 // Ignore stuff that we obviously can't move. 1250 // 1251 // Treat volatile loads as stores. This is not strictly necessary for 1252 // volatiles, but it is required for atomic loads. It is not allowed to move 1253 // a load across an atomic load with Ordering > Monotonic. 1254 if (mayStore() || isCall() || isPHI() || 1255 (mayLoad() && hasOrderedMemoryRef())) { 1256 SawStore = true; 1257 return false; 1258 } 1259 1260 if (isPosition() || isDebugInstr() || isTerminator() || 1261 mayRaiseFPException() || hasUnmodeledSideEffects()) 1262 return false; 1263 1264 // See if this instruction does a load. If so, we have to guarantee that the 1265 // loaded value doesn't change between the load and the its intended 1266 // destination. The check for isInvariantLoad gives the target the chance to 1267 // classify the load as always returning a constant, e.g. a constant pool 1268 // load. 1269 if (mayLoad() && !isDereferenceableInvariantLoad()) 1270 // Otherwise, this is a real load. If there is a store between the load and 1271 // end of block, we can't move it. 1272 return !SawStore; 1273 1274 return true; 1275 } 1276 1277 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1278 bool UseTBAA, const MachineMemOperand *MMOa, 1279 const MachineMemOperand *MMOb) { 1280 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1281 // operates with MachineMemOperand offset with some important assumptions: 1282 // - LLVM fundamentally assumes flat address spaces. 1283 // - MachineOperand offset can *only* result from legalization and cannot 1284 // affect queries other than the trivial case of overlap checking. 1285 // - These offsets never wrap and never step outside of allocated objects. 1286 // - There should never be any negative offsets here. 1287 // 1288 // FIXME: Modify API to hide this math from "user" 1289 // Even before we go to AA we can reason locally about some memory objects. It 1290 // can save compile time, and possibly catch some corner cases not currently 1291 // covered. 1292 1293 int64_t OffsetA = MMOa->getOffset(); 1294 int64_t OffsetB = MMOb->getOffset(); 1295 int64_t MinOffset = std::min(OffsetA, OffsetB); 1296 1297 uint64_t WidthA = MMOa->getSize(); 1298 uint64_t WidthB = MMOb->getSize(); 1299 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1300 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1301 1302 const Value *ValA = MMOa->getValue(); 1303 const Value *ValB = MMOb->getValue(); 1304 bool SameVal = (ValA && ValB && (ValA == ValB)); 1305 if (!SameVal) { 1306 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1307 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1308 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1309 return false; 1310 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1311 return false; 1312 if (PSVa && PSVb && (PSVa == PSVb)) 1313 SameVal = true; 1314 } 1315 1316 if (SameVal) { 1317 if (!KnownWidthA || !KnownWidthB) 1318 return true; 1319 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1320 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1321 return (MinOffset + LowWidth > MaxOffset); 1322 } 1323 1324 if (!AA) 1325 return true; 1326 1327 if (!ValA || !ValB) 1328 return true; 1329 1330 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1331 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1332 1333 int64_t OverlapA = 1334 KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize; 1335 int64_t OverlapB = 1336 KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize; 1337 1338 return !AA->isNoAlias( 1339 MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1340 MemoryLocation(ValB, OverlapB, 1341 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1342 } 1343 1344 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1345 bool UseTBAA) const { 1346 const MachineFunction *MF = getMF(); 1347 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1348 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1349 1350 // Exclude call instruction which may alter the memory but can not be handled 1351 // by this function. 1352 if (isCall() || Other.isCall()) 1353 return true; 1354 1355 // If neither instruction stores to memory, they can't alias in any 1356 // meaningful way, even if they read from the same address. 1357 if (!mayStore() && !Other.mayStore()) 1358 return false; 1359 1360 // Both instructions must be memory operations to be able to alias. 1361 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1362 return false; 1363 1364 // Let the target decide if memory accesses cannot possibly overlap. 1365 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1366 return false; 1367 1368 // Memory operations without memory operands may access anything. Be 1369 // conservative and assume `MayAlias`. 1370 if (memoperands_empty() || Other.memoperands_empty()) 1371 return true; 1372 1373 // Skip if there are too many memory operands. 1374 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1375 if (NumChecks > TII->getMemOperandAACheckLimit()) 1376 return true; 1377 1378 // Check each pair of memory operands from both instructions, which can't 1379 // alias only if all pairs won't alias. 1380 for (auto *MMOa : memoperands()) 1381 for (auto *MMOb : Other.memoperands()) 1382 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1383 return true; 1384 1385 return false; 1386 } 1387 1388 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1389 /// or volatile memory reference, or if the information describing the memory 1390 /// reference is not available. Return false if it is known to have no ordered 1391 /// memory references. 1392 bool MachineInstr::hasOrderedMemoryRef() const { 1393 // An instruction known never to access memory won't have a volatile access. 1394 if (!mayStore() && 1395 !mayLoad() && 1396 !isCall() && 1397 !hasUnmodeledSideEffects()) 1398 return false; 1399 1400 // Otherwise, if the instruction has no memory reference information, 1401 // conservatively assume it wasn't preserved. 1402 if (memoperands_empty()) 1403 return true; 1404 1405 // Check if any of our memory operands are ordered. 1406 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1407 return !MMO->isUnordered(); 1408 }); 1409 } 1410 1411 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1412 /// trap and is loading from a location whose value is invariant across a run of 1413 /// this function. 1414 bool MachineInstr::isDereferenceableInvariantLoad() const { 1415 // If the instruction doesn't load at all, it isn't an invariant load. 1416 if (!mayLoad()) 1417 return false; 1418 1419 // If the instruction has lost its memoperands, conservatively assume that 1420 // it may not be an invariant load. 1421 if (memoperands_empty()) 1422 return false; 1423 1424 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1425 1426 for (MachineMemOperand *MMO : memoperands()) { 1427 if (!MMO->isUnordered()) 1428 // If the memory operand has ordering side effects, we can't move the 1429 // instruction. Such an instruction is technically an invariant load, 1430 // but the caller code would need updated to expect that. 1431 return false; 1432 if (MMO->isStore()) return false; 1433 if (MMO->isInvariant() && MMO->isDereferenceable()) 1434 continue; 1435 1436 // A load from a constant PseudoSourceValue is invariant. 1437 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 1438 if (PSV->isConstant(&MFI)) 1439 continue; 1440 } 1441 1442 // Otherwise assume conservatively. 1443 return false; 1444 } 1445 1446 // Everything checks out. 1447 return true; 1448 } 1449 1450 /// isConstantValuePHI - If the specified instruction is a PHI that always 1451 /// merges together the same virtual register, return the register, otherwise 1452 /// return 0. 1453 unsigned MachineInstr::isConstantValuePHI() const { 1454 if (!isPHI()) 1455 return 0; 1456 assert(getNumOperands() >= 3 && 1457 "It's illegal to have a PHI without source operands"); 1458 1459 Register Reg = getOperand(1).getReg(); 1460 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1461 if (getOperand(i).getReg() != Reg) 1462 return 0; 1463 return Reg; 1464 } 1465 1466 bool MachineInstr::hasUnmodeledSideEffects() const { 1467 if (hasProperty(MCID::UnmodeledSideEffects)) 1468 return true; 1469 if (isInlineAsm()) { 1470 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1471 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1472 return true; 1473 } 1474 1475 return false; 1476 } 1477 1478 bool MachineInstr::isLoadFoldBarrier() const { 1479 return mayStore() || isCall() || 1480 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1481 } 1482 1483 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1484 /// 1485 bool MachineInstr::allDefsAreDead() const { 1486 for (const MachineOperand &MO : operands()) { 1487 if (!MO.isReg() || MO.isUse()) 1488 continue; 1489 if (!MO.isDead()) 1490 return false; 1491 } 1492 return true; 1493 } 1494 1495 /// copyImplicitOps - Copy implicit register operands from specified 1496 /// instruction to this instruction. 1497 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1498 const MachineInstr &MI) { 1499 for (const MachineOperand &MO : 1500 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) 1501 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1502 addOperand(MF, MO); 1503 } 1504 1505 bool MachineInstr::hasComplexRegisterTies() const { 1506 const MCInstrDesc &MCID = getDesc(); 1507 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1508 return true; 1509 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1510 const auto &Operand = getOperand(I); 1511 if (!Operand.isReg() || Operand.isDef()) 1512 // Ignore the defined registers as MCID marks only the uses as tied. 1513 continue; 1514 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1515 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1516 if (ExpectedTiedIdx != TiedIdx) 1517 return true; 1518 } 1519 return false; 1520 } 1521 1522 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1523 const MachineRegisterInfo &MRI) const { 1524 const MachineOperand &Op = getOperand(OpIdx); 1525 if (!Op.isReg()) 1526 return LLT{}; 1527 1528 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1529 return MRI.getType(Op.getReg()); 1530 1531 auto &OpInfo = getDesc().operands()[OpIdx]; 1532 if (!OpInfo.isGenericType()) 1533 return MRI.getType(Op.getReg()); 1534 1535 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1536 return LLT{}; 1537 1538 LLT TypeToPrint = MRI.getType(Op.getReg()); 1539 // Don't mark the type index printed if it wasn't actually printed: maybe 1540 // another operand with the same type index has an actual type attached: 1541 if (TypeToPrint.isValid()) 1542 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1543 return TypeToPrint; 1544 } 1545 1546 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1547 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1548 dbgs() << " "; 1549 print(dbgs()); 1550 } 1551 1552 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1553 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1554 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1555 if (Depth >= MaxDepth) 1556 return; 1557 if (!AlreadySeenInstrs.insert(this).second) 1558 return; 1559 // PadToColumn always inserts at least one space. 1560 // Don't mess up the alignment if we don't want any space. 1561 if (Depth) 1562 fdbgs().PadToColumn(Depth * 2); 1563 print(fdbgs()); 1564 for (const MachineOperand &MO : operands()) { 1565 if (!MO.isReg() || MO.isDef()) 1566 continue; 1567 Register Reg = MO.getReg(); 1568 if (Reg.isPhysical()) 1569 continue; 1570 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1571 if (NewMI == nullptr) 1572 continue; 1573 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1574 } 1575 } 1576 1577 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1578 unsigned MaxDepth) const { 1579 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1580 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1581 } 1582 #endif 1583 1584 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1585 bool SkipDebugLoc, bool AddNewLine, 1586 const TargetInstrInfo *TII) const { 1587 const Module *M = nullptr; 1588 const Function *F = nullptr; 1589 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1590 F = &MF->getFunction(); 1591 M = F->getParent(); 1592 if (!TII) 1593 TII = MF->getSubtarget().getInstrInfo(); 1594 } 1595 1596 ModuleSlotTracker MST(M); 1597 if (F) 1598 MST.incorporateFunction(*F); 1599 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1600 } 1601 1602 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1603 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1604 bool AddNewLine, const TargetInstrInfo *TII) const { 1605 // We can be a bit tidier if we know the MachineFunction. 1606 const TargetRegisterInfo *TRI = nullptr; 1607 const MachineRegisterInfo *MRI = nullptr; 1608 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1609 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1610 1611 if (isCFIInstruction()) 1612 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1613 1614 SmallBitVector PrintedTypes(8); 1615 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1616 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1617 if (!ShouldPrintRegisterTies) 1618 return 0U; 1619 const MachineOperand &MO = getOperand(OpIdx); 1620 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1621 return findTiedOperandIdx(OpIdx); 1622 return 0U; 1623 }; 1624 unsigned StartOp = 0; 1625 unsigned e = getNumOperands(); 1626 1627 // Print explicitly defined operands on the left of an assignment syntax. 1628 while (StartOp < e) { 1629 const MachineOperand &MO = getOperand(StartOp); 1630 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1631 break; 1632 1633 if (StartOp != 0) 1634 OS << ", "; 1635 1636 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1637 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1638 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1639 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1640 ++StartOp; 1641 } 1642 1643 if (StartOp != 0) 1644 OS << " = "; 1645 1646 if (getFlag(MachineInstr::FrameSetup)) 1647 OS << "frame-setup "; 1648 if (getFlag(MachineInstr::FrameDestroy)) 1649 OS << "frame-destroy "; 1650 if (getFlag(MachineInstr::FmNoNans)) 1651 OS << "nnan "; 1652 if (getFlag(MachineInstr::FmNoInfs)) 1653 OS << "ninf "; 1654 if (getFlag(MachineInstr::FmNsz)) 1655 OS << "nsz "; 1656 if (getFlag(MachineInstr::FmArcp)) 1657 OS << "arcp "; 1658 if (getFlag(MachineInstr::FmContract)) 1659 OS << "contract "; 1660 if (getFlag(MachineInstr::FmAfn)) 1661 OS << "afn "; 1662 if (getFlag(MachineInstr::FmReassoc)) 1663 OS << "reassoc "; 1664 if (getFlag(MachineInstr::NoUWrap)) 1665 OS << "nuw "; 1666 if (getFlag(MachineInstr::NoSWrap)) 1667 OS << "nsw "; 1668 if (getFlag(MachineInstr::IsExact)) 1669 OS << "exact "; 1670 if (getFlag(MachineInstr::NoFPExcept)) 1671 OS << "nofpexcept "; 1672 if (getFlag(MachineInstr::NoMerge)) 1673 OS << "nomerge "; 1674 1675 // Print the opcode name. 1676 if (TII) 1677 OS << TII->getName(getOpcode()); 1678 else 1679 OS << "UNKNOWN"; 1680 1681 if (SkipOpers) 1682 return; 1683 1684 // Print the rest of the operands. 1685 bool FirstOp = true; 1686 unsigned AsmDescOp = ~0u; 1687 unsigned AsmOpCount = 0; 1688 1689 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1690 // Print asm string. 1691 OS << " "; 1692 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1693 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1694 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1695 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1696 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1697 IntrinsicInfo); 1698 1699 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1700 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1701 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1702 OS << " [sideeffect]"; 1703 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1704 OS << " [mayload]"; 1705 if (ExtraInfo & InlineAsm::Extra_MayStore) 1706 OS << " [maystore]"; 1707 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1708 OS << " [isconvergent]"; 1709 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1710 OS << " [alignstack]"; 1711 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1712 OS << " [attdialect]"; 1713 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1714 OS << " [inteldialect]"; 1715 1716 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1717 FirstOp = false; 1718 } 1719 1720 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1721 const MachineOperand &MO = getOperand(i); 1722 1723 if (FirstOp) FirstOp = false; else OS << ","; 1724 OS << " "; 1725 1726 if (isDebugValue() && MO.isMetadata()) { 1727 // Pretty print DBG_VALUE* instructions. 1728 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1729 if (DIV && !DIV->getName().empty()) 1730 OS << "!\"" << DIV->getName() << '\"'; 1731 else { 1732 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1733 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1734 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1735 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1736 } 1737 } else if (isDebugLabel() && MO.isMetadata()) { 1738 // Pretty print DBG_LABEL instructions. 1739 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1740 if (DIL && !DIL->getName().empty()) 1741 OS << "\"" << DIL->getName() << '\"'; 1742 else { 1743 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1744 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1745 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1746 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1747 } 1748 } else if (i == AsmDescOp && MO.isImm()) { 1749 // Pretty print the inline asm operand descriptor. 1750 OS << '$' << AsmOpCount++; 1751 unsigned Flag = MO.getImm(); 1752 OS << ":["; 1753 OS << InlineAsm::getKindName(InlineAsm::getKind(Flag)); 1754 1755 unsigned RCID = 0; 1756 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1757 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1758 if (TRI) { 1759 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1760 } else 1761 OS << ":RC" << RCID; 1762 } 1763 1764 if (InlineAsm::isMemKind(Flag)) { 1765 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1766 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1767 } 1768 1769 unsigned TiedTo = 0; 1770 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1771 OS << " tiedto:$" << TiedTo; 1772 1773 OS << ']'; 1774 1775 // Compute the index of the next operand descriptor. 1776 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1777 } else { 1778 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1779 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1780 if (MO.isImm() && isOperandSubregIdx(i)) 1781 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1782 else 1783 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1784 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1785 } 1786 } 1787 1788 // Print any optional symbols attached to this instruction as-if they were 1789 // operands. 1790 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1791 if (!FirstOp) { 1792 FirstOp = false; 1793 OS << ','; 1794 } 1795 OS << " pre-instr-symbol "; 1796 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1797 } 1798 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1799 if (!FirstOp) { 1800 FirstOp = false; 1801 OS << ','; 1802 } 1803 OS << " post-instr-symbol "; 1804 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1805 } 1806 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1807 if (!FirstOp) { 1808 FirstOp = false; 1809 OS << ','; 1810 } 1811 OS << " heap-alloc-marker "; 1812 HeapAllocMarker->printAsOperand(OS, MST); 1813 } 1814 if (MDNode *PCSections = getPCSections()) { 1815 if (!FirstOp) { 1816 FirstOp = false; 1817 OS << ','; 1818 } 1819 OS << " pcsections "; 1820 PCSections->printAsOperand(OS, MST); 1821 } 1822 if (uint32_t CFIType = getCFIType()) { 1823 if (!FirstOp) 1824 OS << ','; 1825 OS << " cfi-type " << CFIType; 1826 } 1827 1828 if (DebugInstrNum) { 1829 if (!FirstOp) 1830 OS << ","; 1831 OS << " debug-instr-number " << DebugInstrNum; 1832 } 1833 1834 if (!SkipDebugLoc) { 1835 if (const DebugLoc &DL = getDebugLoc()) { 1836 if (!FirstOp) 1837 OS << ','; 1838 OS << " debug-location "; 1839 DL->printAsOperand(OS, MST); 1840 } 1841 } 1842 1843 if (!memoperands_empty()) { 1844 SmallVector<StringRef, 0> SSNs; 1845 const LLVMContext *Context = nullptr; 1846 std::unique_ptr<LLVMContext> CtxPtr; 1847 const MachineFrameInfo *MFI = nullptr; 1848 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1849 MFI = &MF->getFrameInfo(); 1850 Context = &MF->getFunction().getContext(); 1851 } else { 1852 CtxPtr = std::make_unique<LLVMContext>(); 1853 Context = CtxPtr.get(); 1854 } 1855 1856 OS << " :: "; 1857 bool NeedComma = false; 1858 for (const MachineMemOperand *Op : memoperands()) { 1859 if (NeedComma) 1860 OS << ", "; 1861 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1862 NeedComma = true; 1863 } 1864 } 1865 1866 if (SkipDebugLoc) 1867 return; 1868 1869 bool HaveSemi = false; 1870 1871 // Print debug location information. 1872 if (const DebugLoc &DL = getDebugLoc()) { 1873 if (!HaveSemi) { 1874 OS << ';'; 1875 HaveSemi = true; 1876 } 1877 OS << ' '; 1878 DL.print(OS); 1879 } 1880 1881 // Print extra comments for DEBUG_VALUE. 1882 if (isDebugValue() && getDebugVariableOp().isMetadata()) { 1883 if (!HaveSemi) { 1884 OS << ";"; 1885 HaveSemi = true; 1886 } 1887 auto *DV = getDebugVariable(); 1888 OS << " line no:" << DV->getLine(); 1889 if (isIndirectDebugValue()) 1890 OS << " indirect"; 1891 } 1892 // TODO: DBG_LABEL 1893 1894 if (AddNewLine) 1895 OS << '\n'; 1896 } 1897 1898 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1899 const TargetRegisterInfo *RegInfo, 1900 bool AddIfNotFound) { 1901 bool isPhysReg = IncomingReg.isPhysical(); 1902 bool hasAliases = isPhysReg && 1903 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1904 bool Found = false; 1905 SmallVector<unsigned,4> DeadOps; 1906 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1907 MachineOperand &MO = getOperand(i); 1908 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1909 continue; 1910 1911 // DEBUG_VALUE nodes do not contribute to code generation and should 1912 // always be ignored. Failure to do so may result in trying to modify 1913 // KILL flags on DEBUG_VALUE nodes. 1914 if (MO.isDebug()) 1915 continue; 1916 1917 Register Reg = MO.getReg(); 1918 if (!Reg) 1919 continue; 1920 1921 if (Reg == IncomingReg) { 1922 if (!Found) { 1923 if (MO.isKill()) 1924 // The register is already marked kill. 1925 return true; 1926 if (isPhysReg && isRegTiedToDefOperand(i)) 1927 // Two-address uses of physregs must not be marked kill. 1928 return true; 1929 MO.setIsKill(); 1930 Found = true; 1931 } 1932 } else if (hasAliases && MO.isKill() && Reg.isPhysical()) { 1933 // A super-register kill already exists. 1934 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1935 return true; 1936 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1937 DeadOps.push_back(i); 1938 } 1939 } 1940 1941 // Trim unneeded kill operands. 1942 while (!DeadOps.empty()) { 1943 unsigned OpIdx = DeadOps.back(); 1944 if (getOperand(OpIdx).isImplicit() && 1945 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1946 removeOperand(OpIdx); 1947 else 1948 getOperand(OpIdx).setIsKill(false); 1949 DeadOps.pop_back(); 1950 } 1951 1952 // If not found, this means an alias of one of the operands is killed. Add a 1953 // new implicit operand if required. 1954 if (!Found && AddIfNotFound) { 1955 addOperand(MachineOperand::CreateReg(IncomingReg, 1956 false /*IsDef*/, 1957 true /*IsImp*/, 1958 true /*IsKill*/)); 1959 return true; 1960 } 1961 return Found; 1962 } 1963 1964 void MachineInstr::clearRegisterKills(Register Reg, 1965 const TargetRegisterInfo *RegInfo) { 1966 if (!Reg.isPhysical()) 1967 RegInfo = nullptr; 1968 for (MachineOperand &MO : operands()) { 1969 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1970 continue; 1971 Register OpReg = MO.getReg(); 1972 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1973 MO.setIsKill(false); 1974 } 1975 } 1976 1977 bool MachineInstr::addRegisterDead(Register Reg, 1978 const TargetRegisterInfo *RegInfo, 1979 bool AddIfNotFound) { 1980 bool isPhysReg = Reg.isPhysical(); 1981 bool hasAliases = isPhysReg && 1982 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1983 bool Found = false; 1984 SmallVector<unsigned,4> DeadOps; 1985 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1986 MachineOperand &MO = getOperand(i); 1987 if (!MO.isReg() || !MO.isDef()) 1988 continue; 1989 Register MOReg = MO.getReg(); 1990 if (!MOReg) 1991 continue; 1992 1993 if (MOReg == Reg) { 1994 MO.setIsDead(); 1995 Found = true; 1996 } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) { 1997 // There exists a super-register that's marked dead. 1998 if (RegInfo->isSuperRegister(Reg, MOReg)) 1999 return true; 2000 if (RegInfo->isSubRegister(Reg, MOReg)) 2001 DeadOps.push_back(i); 2002 } 2003 } 2004 2005 // Trim unneeded dead operands. 2006 while (!DeadOps.empty()) { 2007 unsigned OpIdx = DeadOps.back(); 2008 if (getOperand(OpIdx).isImplicit() && 2009 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2010 removeOperand(OpIdx); 2011 else 2012 getOperand(OpIdx).setIsDead(false); 2013 DeadOps.pop_back(); 2014 } 2015 2016 // If not found, this means an alias of one of the operands is dead. Add a 2017 // new implicit operand if required. 2018 if (Found || !AddIfNotFound) 2019 return Found; 2020 2021 addOperand(MachineOperand::CreateReg(Reg, 2022 true /*IsDef*/, 2023 true /*IsImp*/, 2024 false /*IsKill*/, 2025 true /*IsDead*/)); 2026 return true; 2027 } 2028 2029 void MachineInstr::clearRegisterDeads(Register Reg) { 2030 for (MachineOperand &MO : operands()) { 2031 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2032 continue; 2033 MO.setIsDead(false); 2034 } 2035 } 2036 2037 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2038 for (MachineOperand &MO : operands()) { 2039 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2040 continue; 2041 MO.setIsUndef(IsUndef); 2042 } 2043 } 2044 2045 void MachineInstr::addRegisterDefined(Register Reg, 2046 const TargetRegisterInfo *RegInfo) { 2047 if (Reg.isPhysical()) { 2048 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 2049 if (MO) 2050 return; 2051 } else { 2052 for (const MachineOperand &MO : operands()) { 2053 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2054 MO.getSubReg() == 0) 2055 return; 2056 } 2057 } 2058 addOperand(MachineOperand::CreateReg(Reg, 2059 true /*IsDef*/, 2060 true /*IsImp*/)); 2061 } 2062 2063 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2064 const TargetRegisterInfo &TRI) { 2065 bool HasRegMask = false; 2066 for (MachineOperand &MO : operands()) { 2067 if (MO.isRegMask()) { 2068 HasRegMask = true; 2069 continue; 2070 } 2071 if (!MO.isReg() || !MO.isDef()) continue; 2072 Register Reg = MO.getReg(); 2073 if (!Reg.isPhysical()) 2074 continue; 2075 // If there are no uses, including partial uses, the def is dead. 2076 if (llvm::none_of(UsedRegs, 2077 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2078 MO.setIsDead(); 2079 } 2080 2081 // This is a call with a register mask operand. 2082 // Mask clobbers are always dead, so add defs for the non-dead defines. 2083 if (HasRegMask) 2084 for (const Register &UsedReg : UsedRegs) 2085 addRegisterDefined(UsedReg, &TRI); 2086 } 2087 2088 unsigned 2089 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2090 // Build up a buffer of hash code components. 2091 SmallVector<size_t, 16> HashComponents; 2092 HashComponents.reserve(MI->getNumOperands() + 1); 2093 HashComponents.push_back(MI->getOpcode()); 2094 for (const MachineOperand &MO : MI->operands()) { 2095 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual()) 2096 continue; // Skip virtual register defs. 2097 2098 HashComponents.push_back(hash_value(MO)); 2099 } 2100 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2101 } 2102 2103 void MachineInstr::emitError(StringRef Msg) const { 2104 // Find the source location cookie. 2105 uint64_t LocCookie = 0; 2106 const MDNode *LocMD = nullptr; 2107 for (unsigned i = getNumOperands(); i != 0; --i) { 2108 if (getOperand(i-1).isMetadata() && 2109 (LocMD = getOperand(i-1).getMetadata()) && 2110 LocMD->getNumOperands() != 0) { 2111 if (const ConstantInt *CI = 2112 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2113 LocCookie = CI->getZExtValue(); 2114 break; 2115 } 2116 } 2117 } 2118 2119 if (const MachineBasicBlock *MBB = getParent()) 2120 if (const MachineFunction *MF = MBB->getParent()) 2121 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2122 report_fatal_error(Msg); 2123 } 2124 2125 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2126 const MCInstrDesc &MCID, bool IsIndirect, 2127 Register Reg, const MDNode *Variable, 2128 const MDNode *Expr) { 2129 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2130 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2131 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2132 "Expected inlined-at fields to agree"); 2133 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); 2134 if (IsIndirect) 2135 MIB.addImm(0U); 2136 else 2137 MIB.addReg(0U); 2138 return MIB.addMetadata(Variable).addMetadata(Expr); 2139 } 2140 2141 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2142 const MCInstrDesc &MCID, bool IsIndirect, 2143 ArrayRef<MachineOperand> DebugOps, 2144 const MDNode *Variable, const MDNode *Expr) { 2145 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2146 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2147 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2148 "Expected inlined-at fields to agree"); 2149 if (MCID.Opcode == TargetOpcode::DBG_VALUE) { 2150 assert(DebugOps.size() == 1 && 2151 "DBG_VALUE must contain exactly one debug operand"); 2152 MachineOperand DebugOp = DebugOps[0]; 2153 if (DebugOp.isReg()) 2154 return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable, 2155 Expr); 2156 2157 auto MIB = BuildMI(MF, DL, MCID).add(DebugOp); 2158 if (IsIndirect) 2159 MIB.addImm(0U); 2160 else 2161 MIB.addReg(0U); 2162 return MIB.addMetadata(Variable).addMetadata(Expr); 2163 } 2164 2165 auto MIB = BuildMI(MF, DL, MCID); 2166 MIB.addMetadata(Variable).addMetadata(Expr); 2167 for (const MachineOperand &DebugOp : DebugOps) 2168 if (DebugOp.isReg()) 2169 MIB.addReg(DebugOp.getReg()); 2170 else 2171 MIB.add(DebugOp); 2172 return MIB; 2173 } 2174 2175 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2176 MachineBasicBlock::iterator I, 2177 const DebugLoc &DL, const MCInstrDesc &MCID, 2178 bool IsIndirect, Register Reg, 2179 const MDNode *Variable, const MDNode *Expr) { 2180 MachineFunction &MF = *BB.getParent(); 2181 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2182 BB.insert(I, MI); 2183 return MachineInstrBuilder(MF, MI); 2184 } 2185 2186 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2187 MachineBasicBlock::iterator I, 2188 const DebugLoc &DL, const MCInstrDesc &MCID, 2189 bool IsIndirect, 2190 ArrayRef<MachineOperand> DebugOps, 2191 const MDNode *Variable, const MDNode *Expr) { 2192 MachineFunction &MF = *BB.getParent(); 2193 MachineInstr *MI = 2194 BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr); 2195 BB.insert(I, MI); 2196 return MachineInstrBuilder(MF, *MI); 2197 } 2198 2199 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2200 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2201 static const DIExpression * 2202 computeExprForSpill(const MachineInstr &MI, 2203 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2204 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2205 "Expected inlined-at fields to agree"); 2206 2207 const DIExpression *Expr = MI.getDebugExpression(); 2208 if (MI.isIndirectDebugValue()) { 2209 assert(MI.getDebugOffset().getImm() == 0 && 2210 "DBG_VALUE with nonzero offset"); 2211 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2212 } else if (MI.isDebugValueList()) { 2213 // We will replace the spilled register with a frame index, so 2214 // immediately deref all references to the spilled register. 2215 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; 2216 for (const MachineOperand *Op : SpilledOperands) { 2217 unsigned OpIdx = MI.getDebugOperandIndex(Op); 2218 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); 2219 } 2220 } 2221 return Expr; 2222 } 2223 static const DIExpression *computeExprForSpill(const MachineInstr &MI, 2224 Register SpillReg) { 2225 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); 2226 SmallVector<const MachineOperand *> SpillOperands; 2227 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) 2228 SpillOperands.push_back(&Op); 2229 return computeExprForSpill(MI, SpillOperands); 2230 } 2231 2232 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2233 MachineBasicBlock::iterator I, 2234 const MachineInstr &Orig, 2235 int FrameIndex, Register SpillReg) { 2236 assert(!Orig.isDebugRef() && 2237 "DBG_INSTR_REF should not reference a virtual register."); 2238 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); 2239 MachineInstrBuilder NewMI = 2240 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2241 // Non-Variadic Operands: Location, Offset, Variable, Expression 2242 // Variadic Operands: Variable, Expression, Locations... 2243 if (Orig.isNonListDebugValue()) 2244 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2245 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2246 if (Orig.isDebugValueList()) { 2247 for (const MachineOperand &Op : Orig.debug_operands()) 2248 if (Op.isReg() && Op.getReg() == SpillReg) 2249 NewMI.addFrameIndex(FrameIndex); 2250 else 2251 NewMI.add(MachineOperand(Op)); 2252 } 2253 return NewMI; 2254 } 2255 MachineInstr *llvm::buildDbgValueForSpill( 2256 MachineBasicBlock &BB, MachineBasicBlock::iterator I, 2257 const MachineInstr &Orig, int FrameIndex, 2258 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2259 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); 2260 MachineInstrBuilder NewMI = 2261 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2262 // Non-Variadic Operands: Location, Offset, Variable, Expression 2263 // Variadic Operands: Variable, Expression, Locations... 2264 if (Orig.isNonListDebugValue()) 2265 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2266 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2267 if (Orig.isDebugValueList()) { 2268 for (const MachineOperand &Op : Orig.debug_operands()) 2269 if (is_contained(SpilledOperands, &Op)) 2270 NewMI.addFrameIndex(FrameIndex); 2271 else 2272 NewMI.add(MachineOperand(Op)); 2273 } 2274 return NewMI; 2275 } 2276 2277 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, 2278 Register Reg) { 2279 const DIExpression *Expr = computeExprForSpill(Orig, Reg); 2280 if (Orig.isNonListDebugValue()) 2281 Orig.getDebugOffset().ChangeToImmediate(0U); 2282 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) 2283 Op.ChangeToFrameIndex(FrameIndex); 2284 Orig.getDebugExpressionOp().setMetadata(Expr); 2285 } 2286 2287 void MachineInstr::collectDebugValues( 2288 SmallVectorImpl<MachineInstr *> &DbgValues) { 2289 MachineInstr &MI = *this; 2290 if (!MI.getOperand(0).isReg()) 2291 return; 2292 2293 MachineBasicBlock::iterator DI = MI; ++DI; 2294 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2295 DI != DE; ++DI) { 2296 if (!DI->isDebugValue()) 2297 return; 2298 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) 2299 DbgValues.push_back(&*DI); 2300 } 2301 } 2302 2303 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2304 // Collect matching debug values. 2305 SmallVector<MachineInstr *, 2> DbgValues; 2306 2307 if (!getOperand(0).isReg()) 2308 return; 2309 2310 Register DefReg = getOperand(0).getReg(); 2311 auto *MRI = getRegInfo(); 2312 for (auto &MO : MRI->use_operands(DefReg)) { 2313 auto *DI = MO.getParent(); 2314 if (!DI->isDebugValue()) 2315 continue; 2316 if (DI->hasDebugOperandForReg(DefReg)) { 2317 DbgValues.push_back(DI); 2318 } 2319 } 2320 2321 // Propagate Reg to debug value instructions. 2322 for (auto *DBI : DbgValues) 2323 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) 2324 Op.setReg(Reg); 2325 } 2326 2327 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2328 2329 static unsigned getSpillSlotSize(const MMOList &Accesses, 2330 const MachineFrameInfo &MFI) { 2331 unsigned Size = 0; 2332 for (const auto *A : Accesses) 2333 if (MFI.isSpillSlotObjectIndex( 2334 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2335 ->getFrameIndex())) 2336 Size += A->getSize(); 2337 return Size; 2338 } 2339 2340 std::optional<unsigned> 2341 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2342 int FI; 2343 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2344 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2345 if (MFI.isSpillSlotObjectIndex(FI)) 2346 return (*memoperands_begin())->getSize(); 2347 } 2348 return std::nullopt; 2349 } 2350 2351 std::optional<unsigned> 2352 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2353 MMOList Accesses; 2354 if (TII->hasStoreToStackSlot(*this, Accesses)) 2355 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2356 return std::nullopt; 2357 } 2358 2359 std::optional<unsigned> 2360 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2361 int FI; 2362 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2363 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2364 if (MFI.isSpillSlotObjectIndex(FI)) 2365 return (*memoperands_begin())->getSize(); 2366 } 2367 return std::nullopt; 2368 } 2369 2370 std::optional<unsigned> 2371 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2372 MMOList Accesses; 2373 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2374 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2375 return std::nullopt; 2376 } 2377 2378 unsigned MachineInstr::getDebugInstrNum() { 2379 if (DebugInstrNum == 0) 2380 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2381 return DebugInstrNum; 2382 } 2383 2384 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { 2385 if (DebugInstrNum == 0) 2386 DebugInstrNum = MF.getNewDebugInstrNum(); 2387 return DebugInstrNum; 2388 } 2389 2390 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const { 2391 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2392 getRegInfo()->getType(getOperand(1).getReg())); 2393 } 2394 2395 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const { 2396 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2397 getRegInfo()->getType(getOperand(1).getReg()), 2398 getRegInfo()->getType(getOperand(2).getReg())); 2399 } 2400 2401 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const { 2402 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2403 getRegInfo()->getType(getOperand(1).getReg()), 2404 getRegInfo()->getType(getOperand(2).getReg()), 2405 getRegInfo()->getType(getOperand(3).getReg())); 2406 } 2407 2408 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const { 2409 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2410 getRegInfo()->getType(getOperand(1).getReg()), 2411 getRegInfo()->getType(getOperand(2).getReg()), 2412 getRegInfo()->getType(getOperand(3).getReg()), 2413 getRegInfo()->getType(getOperand(4).getReg())); 2414 } 2415 2416 std::tuple<Register, LLT, Register, LLT> 2417 MachineInstr::getFirst2RegLLTs() const { 2418 Register Reg0 = getOperand(0).getReg(); 2419 Register Reg1 = getOperand(1).getReg(); 2420 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2421 getRegInfo()->getType(Reg1)); 2422 } 2423 2424 std::tuple<Register, LLT, Register, LLT, Register, LLT> 2425 MachineInstr::getFirst3RegLLTs() const { 2426 Register Reg0 = getOperand(0).getReg(); 2427 Register Reg1 = getOperand(1).getReg(); 2428 Register Reg2 = getOperand(2).getReg(); 2429 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2430 getRegInfo()->getType(Reg1), Reg2, 2431 getRegInfo()->getType(Reg2)); 2432 } 2433 2434 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT> 2435 MachineInstr::getFirst4RegLLTs() const { 2436 Register Reg0 = getOperand(0).getReg(); 2437 Register Reg1 = getOperand(1).getReg(); 2438 Register Reg2 = getOperand(2).getReg(); 2439 Register Reg3 = getOperand(3).getReg(); 2440 return std::tuple( 2441 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2442 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3)); 2443 } 2444 2445 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register, 2446 LLT> 2447 MachineInstr::getFirst5RegLLTs() const { 2448 Register Reg0 = getOperand(0).getReg(); 2449 Register Reg1 = getOperand(1).getReg(); 2450 Register Reg2 = getOperand(2).getReg(); 2451 Register Reg3 = getOperand(3).getReg(); 2452 Register Reg4 = getOperand(4).getReg(); 2453 return std::tuple( 2454 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2455 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3), 2456 Reg4, getRegInfo()->getType(Reg4)); 2457 } 2458