1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/Constants.h" 16 #include "llvm/Function.h" 17 #include "llvm/InlineAsm.h" 18 #include "llvm/LLVMContext.h" 19 #include "llvm/Metadata.h" 20 #include "llvm/Module.h" 21 #include "llvm/Type.h" 22 #include "llvm/Value.h" 23 #include "llvm/Assembly/Writer.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/DebugInfo.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/LeakDetector.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/ADT/FoldingSet.h" 43 using namespace llvm; 44 45 //===----------------------------------------------------------------------===// 46 // MachineOperand Implementation 47 //===----------------------------------------------------------------------===// 48 49 /// AddRegOperandToRegInfo - Add this register operand to the specified 50 /// MachineRegisterInfo. If it is null, then the next/prev fields should be 51 /// explicitly nulled out. 52 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { 53 assert(isReg() && "Can only add reg operand to use lists"); 54 55 // If the reginfo pointer is null, just explicitly null out or next/prev 56 // pointers, to ensure they are not garbage. 57 if (RegInfo == 0) { 58 Contents.Reg.Prev = 0; 59 Contents.Reg.Next = 0; 60 return; 61 } 62 63 // Otherwise, add this operand to the head of the registers use/def list. 64 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); 65 66 // For SSA values, we prefer to keep the definition at the start of the list. 67 // we do this by skipping over the definition if it is at the head of the 68 // list. 69 if (*Head && (*Head)->isDef()) 70 Head = &(*Head)->Contents.Reg.Next; 71 72 Contents.Reg.Next = *Head; 73 if (Contents.Reg.Next) { 74 assert(getReg() == Contents.Reg.Next->getReg() && 75 "Different regs on the same list!"); 76 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; 77 } 78 79 Contents.Reg.Prev = Head; 80 *Head = this; 81 } 82 83 /// RemoveRegOperandFromRegInfo - Remove this register operand from the 84 /// MachineRegisterInfo it is linked with. 85 void MachineOperand::RemoveRegOperandFromRegInfo() { 86 assert(isOnRegUseList() && "Reg operand is not on a use list"); 87 // Unlink this from the doubly linked list of operands. 88 MachineOperand *NextOp = Contents.Reg.Next; 89 *Contents.Reg.Prev = NextOp; 90 if (NextOp) { 91 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); 92 NextOp->Contents.Reg.Prev = Contents.Reg.Prev; 93 } 94 Contents.Reg.Prev = 0; 95 Contents.Reg.Next = 0; 96 } 97 98 void MachineOperand::setReg(unsigned Reg) { 99 if (getReg() == Reg) return; // No change. 100 101 // Otherwise, we have to change the register. If this operand is embedded 102 // into a machine function, we need to update the old and new register's 103 // use/def lists. 104 if (MachineInstr *MI = getParent()) 105 if (MachineBasicBlock *MBB = MI->getParent()) 106 if (MachineFunction *MF = MBB->getParent()) { 107 RemoveRegOperandFromRegInfo(); 108 SmallContents.RegNo = Reg; 109 AddRegOperandToRegInfo(&MF->getRegInfo()); 110 return; 111 } 112 113 // Otherwise, just change the register, no problem. :) 114 SmallContents.RegNo = Reg; 115 } 116 117 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 118 const TargetRegisterInfo &TRI) { 119 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 120 if (SubIdx && getSubReg()) 121 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 122 setReg(Reg); 123 if (SubIdx) 124 setSubReg(SubIdx); 125 } 126 127 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 128 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 129 if (getSubReg()) { 130 Reg = TRI.getSubReg(Reg, getSubReg()); 131 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 132 // That won't happen in legal code. 133 setSubReg(0); 134 } 135 setReg(Reg); 136 } 137 138 /// ChangeToImmediate - Replace this operand with a new immediate operand of 139 /// the specified value. If an operand is known to be an immediate already, 140 /// the setImm method should be used. 141 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 142 // If this operand is currently a register operand, and if this is in a 143 // function, deregister the operand from the register's use/def list. 144 if (isReg() && getParent() && getParent()->getParent() && 145 getParent()->getParent()->getParent()) 146 RemoveRegOperandFromRegInfo(); 147 148 OpKind = MO_Immediate; 149 Contents.ImmVal = ImmVal; 150 } 151 152 /// ChangeToRegister - Replace this operand with a new register operand of 153 /// the specified value. If an operand is known to be an register already, 154 /// the setReg method should be used. 155 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 156 bool isKill, bool isDead, bool isUndef, 157 bool isDebug) { 158 // If this operand is already a register operand, use setReg to update the 159 // register's use/def lists. 160 if (isReg()) { 161 assert(!isEarlyClobber()); 162 setReg(Reg); 163 } else { 164 // Otherwise, change this to a register and set the reg#. 165 OpKind = MO_Register; 166 SmallContents.RegNo = Reg; 167 168 // If this operand is embedded in a function, add the operand to the 169 // register's use/def list. 170 if (MachineInstr *MI = getParent()) 171 if (MachineBasicBlock *MBB = MI->getParent()) 172 if (MachineFunction *MF = MBB->getParent()) 173 AddRegOperandToRegInfo(&MF->getRegInfo()); 174 } 175 176 IsDef = isDef; 177 IsImp = isImp; 178 IsKill = isKill; 179 IsDead = isDead; 180 IsUndef = isUndef; 181 IsEarlyClobber = false; 182 IsDebug = isDebug; 183 SubReg = 0; 184 } 185 186 /// isIdenticalTo - Return true if this operand is identical to the specified 187 /// operand. 188 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 189 if (getType() != Other.getType() || 190 getTargetFlags() != Other.getTargetFlags()) 191 return false; 192 193 switch (getType()) { 194 default: llvm_unreachable("Unrecognized operand type"); 195 case MachineOperand::MO_Register: 196 return getReg() == Other.getReg() && isDef() == Other.isDef() && 197 getSubReg() == Other.getSubReg(); 198 case MachineOperand::MO_Immediate: 199 return getImm() == Other.getImm(); 200 case MachineOperand::MO_CImmediate: 201 return getCImm() == Other.getCImm(); 202 case MachineOperand::MO_FPImmediate: 203 return getFPImm() == Other.getFPImm(); 204 case MachineOperand::MO_MachineBasicBlock: 205 return getMBB() == Other.getMBB(); 206 case MachineOperand::MO_FrameIndex: 207 return getIndex() == Other.getIndex(); 208 case MachineOperand::MO_ConstantPoolIndex: 209 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 210 case MachineOperand::MO_JumpTableIndex: 211 return getIndex() == Other.getIndex(); 212 case MachineOperand::MO_GlobalAddress: 213 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 214 case MachineOperand::MO_ExternalSymbol: 215 return !strcmp(getSymbolName(), Other.getSymbolName()) && 216 getOffset() == Other.getOffset(); 217 case MachineOperand::MO_BlockAddress: 218 return getBlockAddress() == Other.getBlockAddress(); 219 case MachineOperand::MO_MCSymbol: 220 return getMCSymbol() == Other.getMCSymbol(); 221 case MachineOperand::MO_Metadata: 222 return getMetadata() == Other.getMetadata(); 223 } 224 } 225 226 /// print - Print the specified machine operand. 227 /// 228 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 229 // If the instruction is embedded into a basic block, we can find the 230 // target info for the instruction. 231 if (!TM) 232 if (const MachineInstr *MI = getParent()) 233 if (const MachineBasicBlock *MBB = MI->getParent()) 234 if (const MachineFunction *MF = MBB->getParent()) 235 TM = &MF->getTarget(); 236 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 237 238 switch (getType()) { 239 case MachineOperand::MO_Register: 240 OS << PrintReg(getReg(), TRI, getSubReg()); 241 242 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 243 isEarlyClobber()) { 244 OS << '<'; 245 bool NeedComma = false; 246 if (isDef()) { 247 if (NeedComma) OS << ','; 248 if (isEarlyClobber()) 249 OS << "earlyclobber,"; 250 if (isImplicit()) 251 OS << "imp-"; 252 OS << "def"; 253 NeedComma = true; 254 } else if (isImplicit()) { 255 OS << "imp-use"; 256 NeedComma = true; 257 } 258 259 if (isKill() || isDead() || isUndef()) { 260 if (NeedComma) OS << ','; 261 if (isKill()) OS << "kill"; 262 if (isDead()) OS << "dead"; 263 if (isUndef()) { 264 if (isKill() || isDead()) 265 OS << ','; 266 OS << "undef"; 267 } 268 } 269 OS << '>'; 270 } 271 break; 272 case MachineOperand::MO_Immediate: 273 OS << getImm(); 274 break; 275 case MachineOperand::MO_CImmediate: 276 getCImm()->getValue().print(OS, false); 277 break; 278 case MachineOperand::MO_FPImmediate: 279 if (getFPImm()->getType()->isFloatTy()) 280 OS << getFPImm()->getValueAPF().convertToFloat(); 281 else 282 OS << getFPImm()->getValueAPF().convertToDouble(); 283 break; 284 case MachineOperand::MO_MachineBasicBlock: 285 OS << "<BB#" << getMBB()->getNumber() << ">"; 286 break; 287 case MachineOperand::MO_FrameIndex: 288 OS << "<fi#" << getIndex() << '>'; 289 break; 290 case MachineOperand::MO_ConstantPoolIndex: 291 OS << "<cp#" << getIndex(); 292 if (getOffset()) OS << "+" << getOffset(); 293 OS << '>'; 294 break; 295 case MachineOperand::MO_JumpTableIndex: 296 OS << "<jt#" << getIndex() << '>'; 297 break; 298 case MachineOperand::MO_GlobalAddress: 299 OS << "<ga:"; 300 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 301 if (getOffset()) OS << "+" << getOffset(); 302 OS << '>'; 303 break; 304 case MachineOperand::MO_ExternalSymbol: 305 OS << "<es:" << getSymbolName(); 306 if (getOffset()) OS << "+" << getOffset(); 307 OS << '>'; 308 break; 309 case MachineOperand::MO_BlockAddress: 310 OS << '<'; 311 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 312 OS << '>'; 313 break; 314 case MachineOperand::MO_Metadata: 315 OS << '<'; 316 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 317 OS << '>'; 318 break; 319 case MachineOperand::MO_MCSymbol: 320 OS << "<MCSym=" << *getMCSymbol() << '>'; 321 break; 322 default: 323 llvm_unreachable("Unrecognized operand type"); 324 } 325 326 if (unsigned TF = getTargetFlags()) 327 OS << "[TF=" << TF << ']'; 328 } 329 330 //===----------------------------------------------------------------------===// 331 // MachineMemOperand Implementation 332 //===----------------------------------------------------------------------===// 333 334 /// getAddrSpace - Return the LLVM IR address space number that this pointer 335 /// points into. 336 unsigned MachinePointerInfo::getAddrSpace() const { 337 if (V == 0) return 0; 338 return cast<PointerType>(V->getType())->getAddressSpace(); 339 } 340 341 /// getConstantPool - Return a MachinePointerInfo record that refers to the 342 /// constant pool. 343 MachinePointerInfo MachinePointerInfo::getConstantPool() { 344 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 345 } 346 347 /// getFixedStack - Return a MachinePointerInfo record that refers to the 348 /// the specified FrameIndex. 349 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 350 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 351 } 352 353 MachinePointerInfo MachinePointerInfo::getJumpTable() { 354 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 355 } 356 357 MachinePointerInfo MachinePointerInfo::getGOT() { 358 return MachinePointerInfo(PseudoSourceValue::getGOT()); 359 } 360 361 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 362 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 363 } 364 365 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 366 uint64_t s, unsigned int a, 367 const MDNode *TBAAInfo) 368 : PtrInfo(ptrinfo), Size(s), 369 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 370 TBAAInfo(TBAAInfo) { 371 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 372 "invalid pointer value"); 373 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 374 assert((isLoad() || isStore()) && "Not a load/store!"); 375 } 376 377 /// Profile - Gather unique data for the object. 378 /// 379 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 380 ID.AddInteger(getOffset()); 381 ID.AddInteger(Size); 382 ID.AddPointer(getValue()); 383 ID.AddInteger(Flags); 384 } 385 386 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 387 // The Value and Offset may differ due to CSE. But the flags and size 388 // should be the same. 389 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 390 assert(MMO->getSize() == getSize() && "Size mismatch!"); 391 392 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 393 // Update the alignment value. 394 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 395 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 396 // Also update the base and offset, because the new alignment may 397 // not be applicable with the old ones. 398 PtrInfo = MMO->PtrInfo; 399 } 400 } 401 402 /// getAlignment - Return the minimum known alignment in bytes of the 403 /// actual memory reference. 404 uint64_t MachineMemOperand::getAlignment() const { 405 return MinAlign(getBaseAlignment(), getOffset()); 406 } 407 408 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 409 assert((MMO.isLoad() || MMO.isStore()) && 410 "SV has to be a load, store or both."); 411 412 if (MMO.isVolatile()) 413 OS << "Volatile "; 414 415 if (MMO.isLoad()) 416 OS << "LD"; 417 if (MMO.isStore()) 418 OS << "ST"; 419 OS << MMO.getSize(); 420 421 // Print the address information. 422 OS << "["; 423 if (!MMO.getValue()) 424 OS << "<unknown>"; 425 else 426 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 427 428 // If the alignment of the memory reference itself differs from the alignment 429 // of the base pointer, print the base alignment explicitly, next to the base 430 // pointer. 431 if (MMO.getBaseAlignment() != MMO.getAlignment()) 432 OS << "(align=" << MMO.getBaseAlignment() << ")"; 433 434 if (MMO.getOffset() != 0) 435 OS << "+" << MMO.getOffset(); 436 OS << "]"; 437 438 // Print the alignment of the reference. 439 if (MMO.getBaseAlignment() != MMO.getAlignment() || 440 MMO.getBaseAlignment() != MMO.getSize()) 441 OS << "(align=" << MMO.getAlignment() << ")"; 442 443 // Print TBAA info. 444 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 445 OS << "(tbaa="; 446 if (TBAAInfo->getNumOperands() > 0) 447 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 448 else 449 OS << "<unknown>"; 450 OS << ")"; 451 } 452 453 // Print nontemporal info. 454 if (MMO.isNonTemporal()) 455 OS << "(nontemporal)"; 456 457 return OS; 458 } 459 460 //===----------------------------------------------------------------------===// 461 // MachineInstr Implementation 462 //===----------------------------------------------------------------------===// 463 464 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with 465 /// MCID NULL and no operands. 466 MachineInstr::MachineInstr() 467 : MCID(0), Flags(0), AsmPrinterFlags(0), 468 MemRefs(0), MemRefsEnd(0), 469 Parent(0) { 470 // Make sure that we get added to a machine basicblock 471 LeakDetector::addGarbageObject(this); 472 } 473 474 void MachineInstr::addImplicitDefUseOperands() { 475 if (MCID->ImplicitDefs) 476 for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs) 477 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 478 if (MCID->ImplicitUses) 479 for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses) 480 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 481 } 482 483 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 484 /// implicit operands. It reserves space for the number of operands specified by 485 /// the MCInstrDesc. 486 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp) 487 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 488 MemRefs(0), MemRefsEnd(0), Parent(0) { 489 unsigned NumImplicitOps = 0; 490 if (!NoImp) 491 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 492 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 493 if (!NoImp) 494 addImplicitDefUseOperands(); 495 // Make sure that we get added to a machine basicblock 496 LeakDetector::addGarbageObject(this); 497 } 498 499 /// MachineInstr ctor - As above, but with a DebugLoc. 500 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl, 501 bool NoImp) 502 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 503 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) { 504 unsigned NumImplicitOps = 0; 505 if (!NoImp) 506 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 507 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 508 if (!NoImp) 509 addImplicitDefUseOperands(); 510 // Make sure that we get added to a machine basicblock 511 LeakDetector::addGarbageObject(this); 512 } 513 514 /// MachineInstr ctor - Work exactly the same as the ctor two above, except 515 /// that the MachineInstr is created and added to the end of the specified 516 /// basic block. 517 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid) 518 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 519 MemRefs(0), MemRefsEnd(0), Parent(0) { 520 assert(MBB && "Cannot use inserting ctor with null basic block!"); 521 unsigned NumImplicitOps = 522 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 523 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 524 addImplicitDefUseOperands(); 525 // Make sure that we get added to a machine basicblock 526 LeakDetector::addGarbageObject(this); 527 MBB->push_back(this); // Add instruction to end of basic block! 528 } 529 530 /// MachineInstr ctor - As above, but with a DebugLoc. 531 /// 532 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 533 const MCInstrDesc &tid) 534 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 535 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) { 536 assert(MBB && "Cannot use inserting ctor with null basic block!"); 537 unsigned NumImplicitOps = 538 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 539 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 540 addImplicitDefUseOperands(); 541 // Make sure that we get added to a machine basicblock 542 LeakDetector::addGarbageObject(this); 543 MBB->push_back(this); // Add instruction to end of basic block! 544 } 545 546 /// MachineInstr ctor - Copies MachineInstr arg exactly 547 /// 548 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 549 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0), 550 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd), 551 Parent(0), debugLoc(MI.getDebugLoc()) { 552 Operands.reserve(MI.getNumOperands()); 553 554 // Add operands 555 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 556 addOperand(MI.getOperand(i)); 557 558 // Copy all the flags. 559 Flags = MI.Flags; 560 561 // Set parent to null. 562 Parent = 0; 563 564 LeakDetector::addGarbageObject(this); 565 } 566 567 MachineInstr::~MachineInstr() { 568 LeakDetector::removeGarbageObject(this); 569 #ifndef NDEBUG 570 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 571 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 572 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 573 "Reg operand def/use list corrupted"); 574 } 575 #endif 576 } 577 578 /// getRegInfo - If this instruction is embedded into a MachineFunction, 579 /// return the MachineRegisterInfo object for the current function, otherwise 580 /// return null. 581 MachineRegisterInfo *MachineInstr::getRegInfo() { 582 if (MachineBasicBlock *MBB = getParent()) 583 return &MBB->getParent()->getRegInfo(); 584 return 0; 585 } 586 587 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 588 /// this instruction from their respective use lists. This requires that the 589 /// operands already be on their use lists. 590 void MachineInstr::RemoveRegOperandsFromUseLists() { 591 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 592 if (Operands[i].isReg()) 593 Operands[i].RemoveRegOperandFromRegInfo(); 594 } 595 } 596 597 /// AddRegOperandsToUseLists - Add all of the register operands in 598 /// this instruction from their respective use lists. This requires that the 599 /// operands not be on their use lists yet. 600 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { 601 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 602 if (Operands[i].isReg()) 603 Operands[i].AddRegOperandToRegInfo(&RegInfo); 604 } 605 } 606 607 608 /// addOperand - Add the specified operand to the instruction. If it is an 609 /// implicit operand, it is added to the end of the operand list. If it is 610 /// an explicit operand it is added at the end of the explicit operand list 611 /// (before the first implicit operand). 612 void MachineInstr::addOperand(const MachineOperand &Op) { 613 assert(MCID && "Cannot add operands before providing an instr descriptor"); 614 bool isImpReg = Op.isReg() && Op.isImplicit(); 615 MachineRegisterInfo *RegInfo = getRegInfo(); 616 617 // If the Operands backing store is reallocated, all register operands must 618 // be removed and re-added to RegInfo. It is storing pointers to operands. 619 bool Reallocate = RegInfo && 620 !Operands.empty() && Operands.size() == Operands.capacity(); 621 622 // Find the insert location for the new operand. Implicit registers go at 623 // the end, everything goes before the implicit regs. 624 unsigned OpNo = Operands.size(); 625 626 // Remove all the implicit operands from RegInfo if they need to be shifted. 627 // FIXME: Allow mixed explicit and implicit operands on inline asm. 628 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 629 // implicit-defs, but they must not be moved around. See the FIXME in 630 // InstrEmitter.cpp. 631 if (!isImpReg && !isInlineAsm()) { 632 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 633 --OpNo; 634 if (RegInfo) 635 Operands[OpNo].RemoveRegOperandFromRegInfo(); 636 } 637 } 638 639 // OpNo now points as the desired insertion point. Unless this is a variadic 640 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 641 assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) && 642 "Trying to add an operand to a machine instr that is already done!"); 643 644 // All operands from OpNo have been removed from RegInfo. If the Operands 645 // backing store needs to be reallocated, we also need to remove any other 646 // register operands. 647 if (Reallocate) 648 for (unsigned i = 0; i != OpNo; ++i) 649 if (Operands[i].isReg()) 650 Operands[i].RemoveRegOperandFromRegInfo(); 651 652 // Insert the new operand at OpNo. 653 Operands.insert(Operands.begin() + OpNo, Op); 654 Operands[OpNo].ParentMI = this; 655 656 // The Operands backing store has now been reallocated, so we can re-add the 657 // operands before OpNo. 658 if (Reallocate) 659 for (unsigned i = 0; i != OpNo; ++i) 660 if (Operands[i].isReg()) 661 Operands[i].AddRegOperandToRegInfo(RegInfo); 662 663 // When adding a register operand, tell RegInfo about it. 664 if (Operands[OpNo].isReg()) { 665 // Add the new operand to RegInfo, even when RegInfo is NULL. 666 // This will initialize the linked list pointers. 667 Operands[OpNo].AddRegOperandToRegInfo(RegInfo); 668 // If the register operand is flagged as early, mark the operand as such. 669 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 670 Operands[OpNo].setIsEarlyClobber(true); 671 } 672 673 // Re-add all the implicit ops. 674 if (RegInfo) { 675 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) { 676 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 677 Operands[i].AddRegOperandToRegInfo(RegInfo); 678 } 679 } 680 } 681 682 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 683 /// fewer operand than it started with. 684 /// 685 void MachineInstr::RemoveOperand(unsigned OpNo) { 686 assert(OpNo < Operands.size() && "Invalid operand number"); 687 688 // Special case removing the last one. 689 if (OpNo == Operands.size()-1) { 690 // If needed, remove from the reg def/use list. 691 if (Operands.back().isReg() && Operands.back().isOnRegUseList()) 692 Operands.back().RemoveRegOperandFromRegInfo(); 693 694 Operands.pop_back(); 695 return; 696 } 697 698 // Otherwise, we are removing an interior operand. If we have reginfo to 699 // update, remove all operands that will be shifted down from their reg lists, 700 // move everything down, then re-add them. 701 MachineRegisterInfo *RegInfo = getRegInfo(); 702 if (RegInfo) { 703 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 704 if (Operands[i].isReg()) 705 Operands[i].RemoveRegOperandFromRegInfo(); 706 } 707 } 708 709 Operands.erase(Operands.begin()+OpNo); 710 711 if (RegInfo) { 712 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 713 if (Operands[i].isReg()) 714 Operands[i].AddRegOperandToRegInfo(RegInfo); 715 } 716 } 717 } 718 719 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 720 /// This function should be used only occasionally. The setMemRefs function 721 /// is the primary method for setting up a MachineInstr's MemRefs list. 722 void MachineInstr::addMemOperand(MachineFunction &MF, 723 MachineMemOperand *MO) { 724 mmo_iterator OldMemRefs = MemRefs; 725 mmo_iterator OldMemRefsEnd = MemRefsEnd; 726 727 size_t NewNum = (MemRefsEnd - MemRefs) + 1; 728 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 729 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum; 730 731 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs); 732 NewMemRefs[NewNum - 1] = MO; 733 734 MemRefs = NewMemRefs; 735 MemRefsEnd = NewMemRefsEnd; 736 } 737 738 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 739 MICheckType Check) const { 740 // If opcodes or number of operands are not the same then the two 741 // instructions are obviously not identical. 742 if (Other->getOpcode() != getOpcode() || 743 Other->getNumOperands() != getNumOperands()) 744 return false; 745 746 // Check operands to make sure they match. 747 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 748 const MachineOperand &MO = getOperand(i); 749 const MachineOperand &OMO = Other->getOperand(i); 750 if (!MO.isReg()) { 751 if (!MO.isIdenticalTo(OMO)) 752 return false; 753 continue; 754 } 755 756 // Clients may or may not want to ignore defs when testing for equality. 757 // For example, machine CSE pass only cares about finding common 758 // subexpressions, so it's safe to ignore virtual register defs. 759 if (MO.isDef()) { 760 if (Check == IgnoreDefs) 761 continue; 762 else if (Check == IgnoreVRegDefs) { 763 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 764 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 765 if (MO.getReg() != OMO.getReg()) 766 return false; 767 } else { 768 if (!MO.isIdenticalTo(OMO)) 769 return false; 770 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 771 return false; 772 } 773 } else { 774 if (!MO.isIdenticalTo(OMO)) 775 return false; 776 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 777 return false; 778 } 779 } 780 // If DebugLoc does not match then two dbg.values are not identical. 781 if (isDebugValue()) 782 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 783 && getDebugLoc() != Other->getDebugLoc()) 784 return false; 785 return true; 786 } 787 788 /// removeFromParent - This method unlinks 'this' from the containing basic 789 /// block, and returns it, but does not delete it. 790 MachineInstr *MachineInstr::removeFromParent() { 791 assert(getParent() && "Not embedded in a basic block!"); 792 getParent()->remove(this); 793 return this; 794 } 795 796 797 /// eraseFromParent - This method unlinks 'this' from the containing basic 798 /// block, and deletes it. 799 void MachineInstr::eraseFromParent() { 800 assert(getParent() && "Not embedded in a basic block!"); 801 getParent()->erase(this); 802 } 803 804 805 /// getNumExplicitOperands - Returns the number of non-implicit operands. 806 /// 807 unsigned MachineInstr::getNumExplicitOperands() const { 808 unsigned NumOperands = MCID->getNumOperands(); 809 if (!MCID->isVariadic()) 810 return NumOperands; 811 812 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 813 const MachineOperand &MO = getOperand(i); 814 if (!MO.isReg() || !MO.isImplicit()) 815 NumOperands++; 816 } 817 return NumOperands; 818 } 819 820 bool MachineInstr::isStackAligningInlineAsm() const { 821 if (isInlineAsm()) { 822 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 823 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 824 return true; 825 } 826 return false; 827 } 828 829 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 830 unsigned *GroupNo) const { 831 assert(isInlineAsm() && "Expected an inline asm instruction"); 832 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 833 834 // Ignore queries about the initial operands. 835 if (OpIdx < InlineAsm::MIOp_FirstOperand) 836 return -1; 837 838 unsigned Group = 0; 839 unsigned NumOps; 840 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 841 i += NumOps) { 842 const MachineOperand &FlagMO = getOperand(i); 843 // If we reach the implicit register operands, stop looking. 844 if (!FlagMO.isImm()) 845 return -1; 846 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 847 if (i + NumOps > OpIdx) { 848 if (GroupNo) 849 *GroupNo = Group; 850 return i; 851 } 852 ++Group; 853 } 854 return -1; 855 } 856 857 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 858 /// the specific register or -1 if it is not found. It further tightens 859 /// the search criteria to a use that kills the register if isKill is true. 860 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 861 const TargetRegisterInfo *TRI) const { 862 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 863 const MachineOperand &MO = getOperand(i); 864 if (!MO.isReg() || !MO.isUse()) 865 continue; 866 unsigned MOReg = MO.getReg(); 867 if (!MOReg) 868 continue; 869 if (MOReg == Reg || 870 (TRI && 871 TargetRegisterInfo::isPhysicalRegister(MOReg) && 872 TargetRegisterInfo::isPhysicalRegister(Reg) && 873 TRI->isSubRegister(MOReg, Reg))) 874 if (!isKill || MO.isKill()) 875 return i; 876 } 877 return -1; 878 } 879 880 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 881 /// indicating if this instruction reads or writes Reg. This also considers 882 /// partial defines. 883 std::pair<bool,bool> 884 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 885 SmallVectorImpl<unsigned> *Ops) const { 886 bool PartDef = false; // Partial redefine. 887 bool FullDef = false; // Full define. 888 bool Use = false; 889 890 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 891 const MachineOperand &MO = getOperand(i); 892 if (!MO.isReg() || MO.getReg() != Reg) 893 continue; 894 if (Ops) 895 Ops->push_back(i); 896 if (MO.isUse()) 897 Use |= !MO.isUndef(); 898 else if (MO.getSubReg() && !MO.isUndef()) 899 // A partial <def,undef> doesn't count as reading the register. 900 PartDef = true; 901 else 902 FullDef = true; 903 } 904 // A partial redefine uses Reg unless there is also a full define. 905 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 906 } 907 908 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 909 /// the specified register or -1 if it is not found. If isDead is true, defs 910 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 911 /// also checks if there is a def of a super-register. 912 int 913 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 914 const TargetRegisterInfo *TRI) const { 915 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 916 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 917 const MachineOperand &MO = getOperand(i); 918 if (!MO.isReg() || !MO.isDef()) 919 continue; 920 unsigned MOReg = MO.getReg(); 921 bool Found = (MOReg == Reg); 922 if (!Found && TRI && isPhys && 923 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 924 if (Overlap) 925 Found = TRI->regsOverlap(MOReg, Reg); 926 else 927 Found = TRI->isSubRegister(MOReg, Reg); 928 } 929 if (Found && (!isDead || MO.isDead())) 930 return i; 931 } 932 return -1; 933 } 934 935 /// findFirstPredOperandIdx() - Find the index of the first operand in the 936 /// operand list that is used to represent the predicate. It returns -1 if 937 /// none is found. 938 int MachineInstr::findFirstPredOperandIdx() const { 939 // Don't call MCID.findFirstPredOperandIdx() because this variant 940 // is sometimes called on an instruction that's not yet complete, and 941 // so the number of operands is less than the MCID indicates. In 942 // particular, the PTX target does this. 943 const MCInstrDesc &MCID = getDesc(); 944 if (MCID.isPredicable()) { 945 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 946 if (MCID.OpInfo[i].isPredicate()) 947 return i; 948 } 949 950 return -1; 951 } 952 953 /// isRegTiedToUseOperand - Given the index of a register def operand, 954 /// check if the register def is tied to a source operand, due to either 955 /// two-address elimination or inline assembly constraints. Returns the 956 /// first tied use operand index by reference is UseOpIdx is not null. 957 bool MachineInstr:: 958 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 959 if (isInlineAsm()) { 960 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand); 961 const MachineOperand &MO = getOperand(DefOpIdx); 962 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 963 return false; 964 // Determine the actual operand index that corresponds to this index. 965 unsigned DefNo = 0; 966 int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo); 967 if (FlagIdx < 0) 968 return false; 969 970 // Which part of the group is DefOpIdx? 971 unsigned DefPart = DefOpIdx - (FlagIdx + 1); 972 973 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); 974 i != e; ++i) { 975 const MachineOperand &FMO = getOperand(i); 976 if (!FMO.isImm()) 977 continue; 978 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 979 continue; 980 unsigned Idx; 981 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 982 Idx == DefNo) { 983 if (UseOpIdx) 984 *UseOpIdx = (unsigned)i + 1 + DefPart; 985 return true; 986 } 987 } 988 return false; 989 } 990 991 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 992 const MCInstrDesc &MCID = getDesc(); 993 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 994 const MachineOperand &MO = getOperand(i); 995 if (MO.isReg() && MO.isUse() && 996 MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) { 997 if (UseOpIdx) 998 *UseOpIdx = (unsigned)i; 999 return true; 1000 } 1001 } 1002 return false; 1003 } 1004 1005 /// isRegTiedToDefOperand - Return true if the operand of the specified index 1006 /// is a register use and it is tied to an def operand. It also returns the def 1007 /// operand index by reference. 1008 bool MachineInstr:: 1009 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 1010 if (isInlineAsm()) { 1011 const MachineOperand &MO = getOperand(UseOpIdx); 1012 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 1013 return false; 1014 1015 // Find the flag operand corresponding to UseOpIdx 1016 int FlagIdx = findInlineAsmFlagIdx(UseOpIdx); 1017 if (FlagIdx < 0) 1018 return false; 1019 1020 const MachineOperand &UFMO = getOperand(FlagIdx); 1021 unsigned DefNo; 1022 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 1023 if (!DefOpIdx) 1024 return true; 1025 1026 unsigned DefIdx = InlineAsm::MIOp_FirstOperand; 1027 // Remember to adjust the index. First operand is asm string, second is 1028 // the HasSideEffects and AlignStack bits, then there is a flag for each. 1029 while (DefNo) { 1030 const MachineOperand &FMO = getOperand(DefIdx); 1031 assert(FMO.isImm()); 1032 // Skip over this def. 1033 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 1034 --DefNo; 1035 } 1036 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 1037 return true; 1038 } 1039 return false; 1040 } 1041 1042 const MCInstrDesc &MCID = getDesc(); 1043 if (UseOpIdx >= MCID.getNumOperands()) 1044 return false; 1045 const MachineOperand &MO = getOperand(UseOpIdx); 1046 if (!MO.isReg() || !MO.isUse()) 1047 return false; 1048 int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO); 1049 if (DefIdx == -1) 1050 return false; 1051 if (DefOpIdx) 1052 *DefOpIdx = (unsigned)DefIdx; 1053 return true; 1054 } 1055 1056 /// clearKillInfo - Clears kill flags on all operands. 1057 /// 1058 void MachineInstr::clearKillInfo() { 1059 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1060 MachineOperand &MO = getOperand(i); 1061 if (MO.isReg() && MO.isUse()) 1062 MO.setIsKill(false); 1063 } 1064 } 1065 1066 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1067 /// 1068 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1069 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1070 const MachineOperand &MO = MI->getOperand(i); 1071 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1072 continue; 1073 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1074 MachineOperand &MOp = getOperand(j); 1075 if (!MOp.isIdenticalTo(MO)) 1076 continue; 1077 if (MO.isKill()) 1078 MOp.setIsKill(); 1079 else 1080 MOp.setIsDead(); 1081 break; 1082 } 1083 } 1084 } 1085 1086 /// copyPredicates - Copies predicate operand(s) from MI. 1087 void MachineInstr::copyPredicates(const MachineInstr *MI) { 1088 const MCInstrDesc &MCID = MI->getDesc(); 1089 if (!MCID.isPredicable()) 1090 return; 1091 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1092 if (MCID.OpInfo[i].isPredicate()) { 1093 // Predicated operands must be last operands. 1094 addOperand(MI->getOperand(i)); 1095 } 1096 } 1097 } 1098 1099 void MachineInstr::substituteRegister(unsigned FromReg, 1100 unsigned ToReg, 1101 unsigned SubIdx, 1102 const TargetRegisterInfo &RegInfo) { 1103 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1104 if (SubIdx) 1105 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1106 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1107 MachineOperand &MO = getOperand(i); 1108 if (!MO.isReg() || MO.getReg() != FromReg) 1109 continue; 1110 MO.substPhysReg(ToReg, RegInfo); 1111 } 1112 } else { 1113 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1114 MachineOperand &MO = getOperand(i); 1115 if (!MO.isReg() || MO.getReg() != FromReg) 1116 continue; 1117 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1118 } 1119 } 1120 } 1121 1122 /// isSafeToMove - Return true if it is safe to move this instruction. If 1123 /// SawStore is set to true, it means that there is a store (or call) between 1124 /// the instruction's location and its intended destination. 1125 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1126 AliasAnalysis *AA, 1127 bool &SawStore) const { 1128 // Ignore stuff that we obviously can't move. 1129 if (MCID->mayStore() || MCID->isCall()) { 1130 SawStore = true; 1131 return false; 1132 } 1133 1134 if (isLabel() || isDebugValue() || 1135 MCID->isTerminator() || hasUnmodeledSideEffects()) 1136 return false; 1137 1138 // See if this instruction does a load. If so, we have to guarantee that the 1139 // loaded value doesn't change between the load and the its intended 1140 // destination. The check for isInvariantLoad gives the targe the chance to 1141 // classify the load as always returning a constant, e.g. a constant pool 1142 // load. 1143 if (MCID->mayLoad() && !isInvariantLoad(AA)) 1144 // Otherwise, this is a real load. If there is a store between the load and 1145 // end of block, or if the load is volatile, we can't move it. 1146 return !SawStore && !hasVolatileMemoryRef(); 1147 1148 return true; 1149 } 1150 1151 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1152 /// instruction which defined the specified register instead of copying it. 1153 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1154 AliasAnalysis *AA, 1155 unsigned DstReg) const { 1156 bool SawStore = false; 1157 if (!TII->isTriviallyReMaterializable(this, AA) || 1158 !isSafeToMove(TII, AA, SawStore)) 1159 return false; 1160 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1161 const MachineOperand &MO = getOperand(i); 1162 if (!MO.isReg()) 1163 continue; 1164 // FIXME: For now, do not remat any instruction with register operands. 1165 // Later on, we can loosen the restriction is the register operands have 1166 // not been modified between the def and use. Note, this is different from 1167 // MachineSink because the code is no longer in two-address form (at least 1168 // partially). 1169 if (MO.isUse()) 1170 return false; 1171 else if (!MO.isDead() && MO.getReg() != DstReg) 1172 return false; 1173 } 1174 return true; 1175 } 1176 1177 /// hasVolatileMemoryRef - Return true if this instruction may have a 1178 /// volatile memory reference, or if the information describing the 1179 /// memory reference is not available. Return false if it is known to 1180 /// have no volatile memory references. 1181 bool MachineInstr::hasVolatileMemoryRef() const { 1182 // An instruction known never to access memory won't have a volatile access. 1183 if (!MCID->mayStore() && 1184 !MCID->mayLoad() && 1185 !MCID->isCall() && 1186 !hasUnmodeledSideEffects()) 1187 return false; 1188 1189 // Otherwise, if the instruction has no memory reference information, 1190 // conservatively assume it wasn't preserved. 1191 if (memoperands_empty()) 1192 return true; 1193 1194 // Check the memory reference information for volatile references. 1195 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1196 if ((*I)->isVolatile()) 1197 return true; 1198 1199 return false; 1200 } 1201 1202 /// isInvariantLoad - Return true if this instruction is loading from a 1203 /// location whose value is invariant across the function. For example, 1204 /// loading a value from the constant pool or from the argument area 1205 /// of a function if it does not change. This should only return true of 1206 /// *all* loads the instruction does are invariant (if it does multiple loads). 1207 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1208 // If the instruction doesn't load at all, it isn't an invariant load. 1209 if (!MCID->mayLoad()) 1210 return false; 1211 1212 // If the instruction has lost its memoperands, conservatively assume that 1213 // it may not be an invariant load. 1214 if (memoperands_empty()) 1215 return false; 1216 1217 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1218 1219 for (mmo_iterator I = memoperands_begin(), 1220 E = memoperands_end(); I != E; ++I) { 1221 if ((*I)->isVolatile()) return false; 1222 if ((*I)->isStore()) return false; 1223 1224 if (const Value *V = (*I)->getValue()) { 1225 // A load from a constant PseudoSourceValue is invariant. 1226 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1227 if (PSV->isConstant(MFI)) 1228 continue; 1229 // If we have an AliasAnalysis, ask it whether the memory is constant. 1230 if (AA && AA->pointsToConstantMemory( 1231 AliasAnalysis::Location(V, (*I)->getSize(), 1232 (*I)->getTBAAInfo()))) 1233 continue; 1234 } 1235 1236 // Otherwise assume conservatively. 1237 return false; 1238 } 1239 1240 // Everything checks out. 1241 return true; 1242 } 1243 1244 /// isConstantValuePHI - If the specified instruction is a PHI that always 1245 /// merges together the same virtual register, return the register, otherwise 1246 /// return 0. 1247 unsigned MachineInstr::isConstantValuePHI() const { 1248 if (!isPHI()) 1249 return 0; 1250 assert(getNumOperands() >= 3 && 1251 "It's illegal to have a PHI without source operands"); 1252 1253 unsigned Reg = getOperand(1).getReg(); 1254 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1255 if (getOperand(i).getReg() != Reg) 1256 return 0; 1257 return Reg; 1258 } 1259 1260 bool MachineInstr::hasUnmodeledSideEffects() const { 1261 if (getDesc().hasUnmodeledSideEffects()) 1262 return true; 1263 if (isInlineAsm()) { 1264 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1265 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1266 return true; 1267 } 1268 1269 return false; 1270 } 1271 1272 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1273 /// 1274 bool MachineInstr::allDefsAreDead() const { 1275 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1276 const MachineOperand &MO = getOperand(i); 1277 if (!MO.isReg() || MO.isUse()) 1278 continue; 1279 if (!MO.isDead()) 1280 return false; 1281 } 1282 return true; 1283 } 1284 1285 /// copyImplicitOps - Copy implicit register operands from specified 1286 /// instruction to this instruction. 1287 void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1288 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1289 i != e; ++i) { 1290 const MachineOperand &MO = MI->getOperand(i); 1291 if (MO.isReg() && MO.isImplicit()) 1292 addOperand(MO); 1293 } 1294 } 1295 1296 void MachineInstr::dump() const { 1297 dbgs() << " " << *this; 1298 } 1299 1300 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1301 raw_ostream &CommentOS) { 1302 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1303 if (!DL.isUnknown()) { // Print source line info. 1304 DIScope Scope(DL.getScope(Ctx)); 1305 // Omit the directory, because it's likely to be long and uninteresting. 1306 if (Scope.Verify()) 1307 CommentOS << Scope.getFilename(); 1308 else 1309 CommentOS << "<unknown>"; 1310 CommentOS << ':' << DL.getLine(); 1311 if (DL.getCol() != 0) 1312 CommentOS << ':' << DL.getCol(); 1313 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1314 if (!InlinedAtDL.isUnknown()) { 1315 CommentOS << " @[ "; 1316 printDebugLoc(InlinedAtDL, MF, CommentOS); 1317 CommentOS << " ]"; 1318 } 1319 } 1320 } 1321 1322 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1323 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1324 const MachineFunction *MF = 0; 1325 const MachineRegisterInfo *MRI = 0; 1326 if (const MachineBasicBlock *MBB = getParent()) { 1327 MF = MBB->getParent(); 1328 if (!TM && MF) 1329 TM = &MF->getTarget(); 1330 if (MF) 1331 MRI = &MF->getRegInfo(); 1332 } 1333 1334 // Save a list of virtual registers. 1335 SmallVector<unsigned, 8> VirtRegs; 1336 1337 // Print explicitly defined operands on the left of an assignment syntax. 1338 unsigned StartOp = 0, e = getNumOperands(); 1339 for (; StartOp < e && getOperand(StartOp).isReg() && 1340 getOperand(StartOp).isDef() && 1341 !getOperand(StartOp).isImplicit(); 1342 ++StartOp) { 1343 if (StartOp != 0) OS << ", "; 1344 getOperand(StartOp).print(OS, TM); 1345 unsigned Reg = getOperand(StartOp).getReg(); 1346 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1347 VirtRegs.push_back(Reg); 1348 } 1349 1350 if (StartOp != 0) 1351 OS << " = "; 1352 1353 // Print the opcode name. 1354 OS << getDesc().getName(); 1355 1356 // Print the rest of the operands. 1357 bool OmittedAnyCallClobbers = false; 1358 bool FirstOp = true; 1359 unsigned AsmDescOp = ~0u; 1360 unsigned AsmOpCount = 0; 1361 1362 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1363 // Print asm string. 1364 OS << " "; 1365 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1366 1367 // Print HasSideEffects, IsAlignStack 1368 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1369 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1370 OS << " [sideeffect]"; 1371 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1372 OS << " [alignstack]"; 1373 1374 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1375 FirstOp = false; 1376 } 1377 1378 1379 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1380 const MachineOperand &MO = getOperand(i); 1381 1382 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1383 VirtRegs.push_back(MO.getReg()); 1384 1385 // Omit call-clobbered registers which aren't used anywhere. This makes 1386 // call instructions much less noisy on targets where calls clobber lots 1387 // of registers. Don't rely on MO.isDead() because we may be called before 1388 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1389 if (MF && getDesc().isCall() && 1390 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1391 unsigned Reg = MO.getReg(); 1392 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1393 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1394 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1395 bool HasAliasLive = false; 1396 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg); 1397 unsigned AliasReg = *Alias; ++Alias) 1398 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1399 HasAliasLive = true; 1400 break; 1401 } 1402 if (!HasAliasLive) { 1403 OmittedAnyCallClobbers = true; 1404 continue; 1405 } 1406 } 1407 } 1408 } 1409 1410 if (FirstOp) FirstOp = false; else OS << ","; 1411 OS << " "; 1412 if (i < getDesc().NumOperands) { 1413 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1414 if (MCOI.isPredicate()) 1415 OS << "pred:"; 1416 if (MCOI.isOptionalDef()) 1417 OS << "opt:"; 1418 } 1419 if (isDebugValue() && MO.isMetadata()) { 1420 // Pretty print DBG_VALUE instructions. 1421 const MDNode *MD = MO.getMetadata(); 1422 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1423 OS << "!\"" << MDS->getString() << '\"'; 1424 else 1425 MO.print(OS, TM); 1426 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1427 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1428 } else if (i == AsmDescOp && MO.isImm()) { 1429 // Pretty print the inline asm operand descriptor. 1430 OS << '$' << AsmOpCount++; 1431 unsigned Flag = MO.getImm(); 1432 switch (InlineAsm::getKind(Flag)) { 1433 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1434 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1435 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1436 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1437 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1438 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1439 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1440 } 1441 1442 unsigned RCID = 0; 1443 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 1444 if (TM) 1445 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1446 else 1447 OS << ":RC" << RCID; 1448 1449 unsigned TiedTo = 0; 1450 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1451 OS << " tiedto:$" << TiedTo; 1452 1453 OS << ']'; 1454 1455 // Compute the index of the next operand descriptor. 1456 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1457 } else 1458 MO.print(OS, TM); 1459 } 1460 1461 // Briefly indicate whether any call clobbers were omitted. 1462 if (OmittedAnyCallClobbers) { 1463 if (!FirstOp) OS << ","; 1464 OS << " ..."; 1465 } 1466 1467 bool HaveSemi = false; 1468 if (Flags) { 1469 if (!HaveSemi) OS << ";"; HaveSemi = true; 1470 OS << " flags: "; 1471 1472 if (Flags & FrameSetup) 1473 OS << "FrameSetup"; 1474 } 1475 1476 if (!memoperands_empty()) { 1477 if (!HaveSemi) OS << ";"; HaveSemi = true; 1478 1479 OS << " mem:"; 1480 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1481 i != e; ++i) { 1482 OS << **i; 1483 if (llvm::next(i) != e) 1484 OS << " "; 1485 } 1486 } 1487 1488 // Print the regclass of any virtual registers encountered. 1489 if (MRI && !VirtRegs.empty()) { 1490 if (!HaveSemi) OS << ";"; HaveSemi = true; 1491 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1492 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1493 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1494 for (unsigned j = i+1; j != VirtRegs.size();) { 1495 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1496 ++j; 1497 continue; 1498 } 1499 if (VirtRegs[i] != VirtRegs[j]) 1500 OS << "," << PrintReg(VirtRegs[j]); 1501 VirtRegs.erase(VirtRegs.begin()+j); 1502 } 1503 } 1504 } 1505 1506 // Print debug location information. 1507 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1508 if (!HaveSemi) OS << ";"; HaveSemi = true; 1509 DIVariable DV(getOperand(e - 1).getMetadata()); 1510 OS << " line no:" << DV.getLineNumber(); 1511 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1512 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1513 if (!InlinedAtDL.isUnknown()) { 1514 OS << " inlined @[ "; 1515 printDebugLoc(InlinedAtDL, MF, OS); 1516 OS << " ]"; 1517 } 1518 } 1519 } else if (!debugLoc.isUnknown() && MF) { 1520 if (!HaveSemi) OS << ";"; HaveSemi = true; 1521 OS << " dbg:"; 1522 printDebugLoc(debugLoc, MF, OS); 1523 } 1524 1525 OS << '\n'; 1526 } 1527 1528 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1529 const TargetRegisterInfo *RegInfo, 1530 bool AddIfNotFound) { 1531 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1532 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1533 bool Found = false; 1534 SmallVector<unsigned,4> DeadOps; 1535 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1536 MachineOperand &MO = getOperand(i); 1537 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1538 continue; 1539 unsigned Reg = MO.getReg(); 1540 if (!Reg) 1541 continue; 1542 1543 if (Reg == IncomingReg) { 1544 if (!Found) { 1545 if (MO.isKill()) 1546 // The register is already marked kill. 1547 return true; 1548 if (isPhysReg && isRegTiedToDefOperand(i)) 1549 // Two-address uses of physregs must not be marked kill. 1550 return true; 1551 MO.setIsKill(); 1552 Found = true; 1553 } 1554 } else if (hasAliases && MO.isKill() && 1555 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1556 // A super-register kill already exists. 1557 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1558 return true; 1559 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1560 DeadOps.push_back(i); 1561 } 1562 } 1563 1564 // Trim unneeded kill operands. 1565 while (!DeadOps.empty()) { 1566 unsigned OpIdx = DeadOps.back(); 1567 if (getOperand(OpIdx).isImplicit()) 1568 RemoveOperand(OpIdx); 1569 else 1570 getOperand(OpIdx).setIsKill(false); 1571 DeadOps.pop_back(); 1572 } 1573 1574 // If not found, this means an alias of one of the operands is killed. Add a 1575 // new implicit operand if required. 1576 if (!Found && AddIfNotFound) { 1577 addOperand(MachineOperand::CreateReg(IncomingReg, 1578 false /*IsDef*/, 1579 true /*IsImp*/, 1580 true /*IsKill*/)); 1581 return true; 1582 } 1583 return Found; 1584 } 1585 1586 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1587 const TargetRegisterInfo *RegInfo, 1588 bool AddIfNotFound) { 1589 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1590 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1591 bool Found = false; 1592 SmallVector<unsigned,4> DeadOps; 1593 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1594 MachineOperand &MO = getOperand(i); 1595 if (!MO.isReg() || !MO.isDef()) 1596 continue; 1597 unsigned Reg = MO.getReg(); 1598 if (!Reg) 1599 continue; 1600 1601 if (Reg == IncomingReg) { 1602 MO.setIsDead(); 1603 Found = true; 1604 } else if (hasAliases && MO.isDead() && 1605 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1606 // There exists a super-register that's marked dead. 1607 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1608 return true; 1609 if (RegInfo->getSubRegisters(IncomingReg) && 1610 RegInfo->getSuperRegisters(Reg) && 1611 RegInfo->isSubRegister(IncomingReg, Reg)) 1612 DeadOps.push_back(i); 1613 } 1614 } 1615 1616 // Trim unneeded dead operands. 1617 while (!DeadOps.empty()) { 1618 unsigned OpIdx = DeadOps.back(); 1619 if (getOperand(OpIdx).isImplicit()) 1620 RemoveOperand(OpIdx); 1621 else 1622 getOperand(OpIdx).setIsDead(false); 1623 DeadOps.pop_back(); 1624 } 1625 1626 // If not found, this means an alias of one of the operands is dead. Add a 1627 // new implicit operand if required. 1628 if (Found || !AddIfNotFound) 1629 return Found; 1630 1631 addOperand(MachineOperand::CreateReg(IncomingReg, 1632 true /*IsDef*/, 1633 true /*IsImp*/, 1634 false /*IsKill*/, 1635 true /*IsDead*/)); 1636 return true; 1637 } 1638 1639 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1640 const TargetRegisterInfo *RegInfo) { 1641 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1642 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1643 if (MO) 1644 return; 1645 } else { 1646 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1647 const MachineOperand &MO = getOperand(i); 1648 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1649 MO.getSubReg() == 0) 1650 return; 1651 } 1652 } 1653 addOperand(MachineOperand::CreateReg(IncomingReg, 1654 true /*IsDef*/, 1655 true /*IsImp*/)); 1656 } 1657 1658 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs, 1659 const TargetRegisterInfo &TRI) { 1660 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1661 MachineOperand &MO = getOperand(i); 1662 if (!MO.isReg() || !MO.isDef()) continue; 1663 unsigned Reg = MO.getReg(); 1664 if (Reg == 0) continue; 1665 bool Dead = true; 1666 for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(), 1667 E = UsedRegs.end(); I != E; ++I) 1668 if (TRI.regsOverlap(*I, Reg)) { 1669 Dead = false; 1670 break; 1671 } 1672 // If there are no uses, including partial uses, the def is dead. 1673 if (Dead) MO.setIsDead(); 1674 } 1675 } 1676 1677 unsigned 1678 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1679 unsigned Hash = MI->getOpcode() * 37; 1680 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1681 const MachineOperand &MO = MI->getOperand(i); 1682 uint64_t Key = (uint64_t)MO.getType() << 32; 1683 switch (MO.getType()) { 1684 default: break; 1685 case MachineOperand::MO_Register: 1686 if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1687 continue; // Skip virtual register defs. 1688 Key |= MO.getReg(); 1689 break; 1690 case MachineOperand::MO_Immediate: 1691 Key |= MO.getImm(); 1692 break; 1693 case MachineOperand::MO_FrameIndex: 1694 case MachineOperand::MO_ConstantPoolIndex: 1695 case MachineOperand::MO_JumpTableIndex: 1696 Key |= MO.getIndex(); 1697 break; 1698 case MachineOperand::MO_MachineBasicBlock: 1699 Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB()); 1700 break; 1701 case MachineOperand::MO_GlobalAddress: 1702 Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal()); 1703 break; 1704 case MachineOperand::MO_BlockAddress: 1705 Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress()); 1706 break; 1707 case MachineOperand::MO_MCSymbol: 1708 Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol()); 1709 break; 1710 } 1711 Key += ~(Key << 32); 1712 Key ^= (Key >> 22); 1713 Key += ~(Key << 13); 1714 Key ^= (Key >> 8); 1715 Key += (Key << 3); 1716 Key ^= (Key >> 15); 1717 Key += ~(Key << 27); 1718 Key ^= (Key >> 31); 1719 Hash = (unsigned)Key + Hash * 37; 1720 } 1721 return Hash; 1722 } 1723 1724 void MachineInstr::emitError(StringRef Msg) const { 1725 // Find the source location cookie. 1726 unsigned LocCookie = 0; 1727 const MDNode *LocMD = 0; 1728 for (unsigned i = getNumOperands(); i != 0; --i) { 1729 if (getOperand(i-1).isMetadata() && 1730 (LocMD = getOperand(i-1).getMetadata()) && 1731 LocMD->getNumOperands() != 0) { 1732 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1733 LocCookie = CI->getZExtValue(); 1734 break; 1735 } 1736 } 1737 } 1738 1739 if (const MachineBasicBlock *MBB = getParent()) 1740 if (const MachineFunction *MF = MBB->getParent()) 1741 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1742 report_fatal_error(Msg); 1743 } 1744