1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallBitVector.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSlotTracker.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/MC/MCInstrDesc.h" 58 #include "llvm/MC/MCRegisterInfo.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/FormattedStream.h" 66 #include "llvm/Support/LowLevelTypeImpl.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <cstring> 76 #include <iterator> 77 #include <utility> 78 79 using namespace llvm; 80 81 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 82 if (const MachineBasicBlock *MBB = MI.getParent()) 83 if (const MachineFunction *MF = MBB->getParent()) 84 return MF; 85 return nullptr; 86 } 87 88 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 89 // it. 90 static void tryToGetTargetInfo(const MachineInstr &MI, 91 const TargetRegisterInfo *&TRI, 92 const MachineRegisterInfo *&MRI, 93 const TargetIntrinsicInfo *&IntrinsicInfo, 94 const TargetInstrInfo *&TII) { 95 96 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 97 TRI = MF->getSubtarget().getRegisterInfo(); 98 MRI = &MF->getRegInfo(); 99 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 100 TII = MF->getSubtarget().getInstrInfo(); 101 } 102 } 103 104 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 105 if (MCID->ImplicitDefs) 106 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 107 ++ImpDefs) 108 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 109 if (MCID->ImplicitUses) 110 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 111 ++ImpUses) 112 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 113 } 114 115 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 116 /// implicit operands. It reserves space for the number of operands specified by 117 /// the MCInstrDesc. 118 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 119 DebugLoc dl, bool NoImp) 120 : MCID(&tid), debugLoc(std::move(dl)), DebugInstrNum(0) { 121 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 122 123 // Reserve space for the expected number of operands. 124 if (unsigned NumOps = MCID->getNumOperands() + 125 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 126 CapOperands = OperandCapacity::get(NumOps); 127 Operands = MF.allocateOperandArray(CapOperands); 128 } 129 130 if (!NoImp) 131 addImplicitDefUseOperands(MF); 132 } 133 134 /// MachineInstr ctor - Copies MachineInstr arg exactly. 135 /// Does not copy the number from debug instruction numbering, to preserve 136 /// uniqueness. 137 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 138 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()), 139 DebugInstrNum(0) { 140 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 141 142 CapOperands = OperandCapacity::get(MI.getNumOperands()); 143 Operands = MF.allocateOperandArray(CapOperands); 144 145 // Copy operands. 146 for (const MachineOperand &MO : MI.operands()) 147 addOperand(MF, MO); 148 149 // Copy all the sensible flags. 150 setFlags(MI.Flags); 151 } 152 153 void MachineInstr::moveBefore(MachineInstr *MovePos) { 154 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 155 } 156 157 /// getRegInfo - If this instruction is embedded into a MachineFunction, 158 /// return the MachineRegisterInfo object for the current function, otherwise 159 /// return null. 160 MachineRegisterInfo *MachineInstr::getRegInfo() { 161 if (MachineBasicBlock *MBB = getParent()) 162 return &MBB->getParent()->getRegInfo(); 163 return nullptr; 164 } 165 166 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 167 /// this instruction from their respective use lists. This requires that the 168 /// operands already be on their use lists. 169 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 170 for (MachineOperand &MO : operands()) 171 if (MO.isReg()) 172 MRI.removeRegOperandFromUseList(&MO); 173 } 174 175 /// AddRegOperandsToUseLists - Add all of the register operands in 176 /// this instruction from their respective use lists. This requires that the 177 /// operands not be on their use lists yet. 178 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 179 for (MachineOperand &MO : operands()) 180 if (MO.isReg()) 181 MRI.addRegOperandToUseList(&MO); 182 } 183 184 void MachineInstr::addOperand(const MachineOperand &Op) { 185 MachineBasicBlock *MBB = getParent(); 186 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 187 MachineFunction *MF = MBB->getParent(); 188 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 189 addOperand(*MF, Op); 190 } 191 192 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 193 /// ranges. If MRI is non-null also update use-def chains. 194 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 195 unsigned NumOps, MachineRegisterInfo *MRI) { 196 if (MRI) 197 return MRI->moveOperands(Dst, Src, NumOps); 198 // MachineOperand is a trivially copyable type so we can just use memmove. 199 assert(Dst && Src && "Unknown operands"); 200 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 201 } 202 203 /// addOperand - Add the specified operand to the instruction. If it is an 204 /// implicit operand, it is added to the end of the operand list. If it is 205 /// an explicit operand it is added at the end of the explicit operand list 206 /// (before the first implicit operand). 207 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 208 assert(MCID && "Cannot add operands before providing an instr descriptor"); 209 210 // Check if we're adding one of our existing operands. 211 if (&Op >= Operands && &Op < Operands + NumOperands) { 212 // This is unusual: MI->addOperand(MI->getOperand(i)). 213 // If adding Op requires reallocating or moving existing operands around, 214 // the Op reference could go stale. Support it by copying Op. 215 MachineOperand CopyOp(Op); 216 return addOperand(MF, CopyOp); 217 } 218 219 // Find the insert location for the new operand. Implicit registers go at 220 // the end, everything else goes before the implicit regs. 221 // 222 // FIXME: Allow mixed explicit and implicit operands on inline asm. 223 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 224 // implicit-defs, but they must not be moved around. See the FIXME in 225 // InstrEmitter.cpp. 226 unsigned OpNo = getNumOperands(); 227 bool isImpReg = Op.isReg() && Op.isImplicit(); 228 if (!isImpReg && !isInlineAsm()) { 229 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 230 --OpNo; 231 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 232 } 233 } 234 235 #ifndef NDEBUG 236 bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || 237 Op.getType() == MachineOperand::MO_MCSymbol; 238 // OpNo now points as the desired insertion point. Unless this is a variadic 239 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 240 // RegMask operands go between the explicit and implicit operands. 241 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 242 OpNo < MCID->getNumOperands() || isDebugOp) && 243 "Trying to add an operand to a machine instr that is already done!"); 244 #endif 245 246 MachineRegisterInfo *MRI = getRegInfo(); 247 248 // Determine if the Operands array needs to be reallocated. 249 // Save the old capacity and operand array. 250 OperandCapacity OldCap = CapOperands; 251 MachineOperand *OldOperands = Operands; 252 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 253 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 254 Operands = MF.allocateOperandArray(CapOperands); 255 // Move the operands before the insertion point. 256 if (OpNo) 257 moveOperands(Operands, OldOperands, OpNo, MRI); 258 } 259 260 // Move the operands following the insertion point. 261 if (OpNo != NumOperands) 262 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 263 MRI); 264 ++NumOperands; 265 266 // Deallocate the old operand array. 267 if (OldOperands != Operands && OldOperands) 268 MF.deallocateOperandArray(OldCap, OldOperands); 269 270 // Copy Op into place. It still needs to be inserted into the MRI use lists. 271 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 272 NewMO->ParentMI = this; 273 274 // When adding a register operand, tell MRI about it. 275 if (NewMO->isReg()) { 276 // Ensure isOnRegUseList() returns false, regardless of Op's status. 277 NewMO->Contents.Reg.Prev = nullptr; 278 // Ignore existing ties. This is not a property that can be copied. 279 NewMO->TiedTo = 0; 280 // Add the new operand to MRI, but only for instructions in an MBB. 281 if (MRI) 282 MRI->addRegOperandToUseList(NewMO); 283 // The MCID operand information isn't accurate until we start adding 284 // explicit operands. The implicit operands are added first, then the 285 // explicits are inserted before them. 286 if (!isImpReg) { 287 // Tie uses to defs as indicated in MCInstrDesc. 288 if (NewMO->isUse()) { 289 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 290 if (DefIdx != -1) 291 tieOperands(DefIdx, OpNo); 292 } 293 // If the register operand is flagged as early, mark the operand as such. 294 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 295 NewMO->setIsEarlyClobber(true); 296 } 297 } 298 } 299 300 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 301 /// fewer operand than it started with. 302 /// 303 void MachineInstr::RemoveOperand(unsigned OpNo) { 304 assert(OpNo < getNumOperands() && "Invalid operand number"); 305 untieRegOperand(OpNo); 306 307 #ifndef NDEBUG 308 // Moving tied operands would break the ties. 309 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 310 if (Operands[i].isReg()) 311 assert(!Operands[i].isTied() && "Cannot move tied operands"); 312 #endif 313 314 MachineRegisterInfo *MRI = getRegInfo(); 315 if (MRI && Operands[OpNo].isReg()) 316 MRI->removeRegOperandFromUseList(Operands + OpNo); 317 318 // Don't call the MachineOperand destructor. A lot of this code depends on 319 // MachineOperand having a trivial destructor anyway, and adding a call here 320 // wouldn't make it 'destructor-correct'. 321 322 if (unsigned N = NumOperands - 1 - OpNo) 323 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 324 --NumOperands; 325 } 326 327 void MachineInstr::setExtraInfo(MachineFunction &MF, 328 ArrayRef<MachineMemOperand *> MMOs, 329 MCSymbol *PreInstrSymbol, 330 MCSymbol *PostInstrSymbol, 331 MDNode *HeapAllocMarker) { 332 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 333 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 334 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 335 int NumPointers = 336 MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker; 337 338 // Drop all extra info if there is none. 339 if (NumPointers <= 0) { 340 Info.clear(); 341 return; 342 } 343 344 // If more than one pointer, then store out of line. Store heap alloc markers 345 // out of line because PointerSumType cannot hold more than 4 tag types with 346 // 32-bit pointers. 347 // FIXME: Maybe we should make the symbols in the extra info mutable? 348 else if (NumPointers > 1 || HasHeapAllocMarker) { 349 Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo( 350 MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker)); 351 return; 352 } 353 354 // Otherwise store the single pointer inline. 355 if (HasPreInstrSymbol) 356 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 357 else if (HasPostInstrSymbol) 358 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 359 else 360 Info.set<EIIK_MMO>(MMOs[0]); 361 } 362 363 void MachineInstr::dropMemRefs(MachineFunction &MF) { 364 if (memoperands_empty()) 365 return; 366 367 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 368 getHeapAllocMarker()); 369 } 370 371 void MachineInstr::setMemRefs(MachineFunction &MF, 372 ArrayRef<MachineMemOperand *> MMOs) { 373 if (MMOs.empty()) { 374 dropMemRefs(MF); 375 return; 376 } 377 378 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 379 getHeapAllocMarker()); 380 } 381 382 void MachineInstr::addMemOperand(MachineFunction &MF, 383 MachineMemOperand *MO) { 384 SmallVector<MachineMemOperand *, 2> MMOs; 385 MMOs.append(memoperands_begin(), memoperands_end()); 386 MMOs.push_back(MO); 387 setMemRefs(MF, MMOs); 388 } 389 390 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 391 if (this == &MI) 392 // Nothing to do for a self-clone! 393 return; 394 395 assert(&MF == MI.getMF() && 396 "Invalid machine functions when cloning memory refrences!"); 397 // See if we can just steal the extra info already allocated for the 398 // instruction. We can do this whenever the pre- and post-instruction symbols 399 // are the same (including null). 400 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 401 getPostInstrSymbol() == MI.getPostInstrSymbol() && 402 getHeapAllocMarker() == MI.getHeapAllocMarker()) { 403 Info = MI.Info; 404 return; 405 } 406 407 // Otherwise, fall back on a copy-based clone. 408 setMemRefs(MF, MI.memoperands()); 409 } 410 411 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 412 /// identical. 413 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 414 ArrayRef<MachineMemOperand *> RHS) { 415 if (LHS.size() != RHS.size()) 416 return false; 417 418 auto LHSPointees = make_pointee_range(LHS); 419 auto RHSPointees = make_pointee_range(RHS); 420 return std::equal(LHSPointees.begin(), LHSPointees.end(), 421 RHSPointees.begin()); 422 } 423 424 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 425 ArrayRef<const MachineInstr *> MIs) { 426 // Try handling easy numbers of MIs with simpler mechanisms. 427 if (MIs.empty()) { 428 dropMemRefs(MF); 429 return; 430 } 431 if (MIs.size() == 1) { 432 cloneMemRefs(MF, *MIs[0]); 433 return; 434 } 435 // Because an empty memoperands list provides *no* information and must be 436 // handled conservatively (assuming the instruction can do anything), the only 437 // way to merge with it is to drop all other memoperands. 438 if (MIs[0]->memoperands_empty()) { 439 dropMemRefs(MF); 440 return; 441 } 442 443 // Handle the general case. 444 SmallVector<MachineMemOperand *, 2> MergedMMOs; 445 // Start with the first instruction. 446 assert(&MF == MIs[0]->getMF() && 447 "Invalid machine functions when cloning memory references!"); 448 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 449 // Now walk all the other instructions and accumulate any different MMOs. 450 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 451 assert(&MF == MI.getMF() && 452 "Invalid machine functions when cloning memory references!"); 453 454 // Skip MIs with identical operands to the first. This is a somewhat 455 // arbitrary hack but will catch common cases without being quadratic. 456 // TODO: We could fully implement merge semantics here if needed. 457 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 458 continue; 459 460 // Because an empty memoperands list provides *no* information and must be 461 // handled conservatively (assuming the instruction can do anything), the 462 // only way to merge with it is to drop all other memoperands. 463 if (MI.memoperands_empty()) { 464 dropMemRefs(MF); 465 return; 466 } 467 468 // Otherwise accumulate these into our temporary buffer of the merged state. 469 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 470 } 471 472 setMemRefs(MF, MergedMMOs); 473 } 474 475 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 476 // Do nothing if old and new symbols are the same. 477 if (Symbol == getPreInstrSymbol()) 478 return; 479 480 // If there was only one symbol and we're removing it, just clear info. 481 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 482 Info.clear(); 483 return; 484 } 485 486 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 487 getHeapAllocMarker()); 488 } 489 490 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 491 // Do nothing if old and new symbols are the same. 492 if (Symbol == getPostInstrSymbol()) 493 return; 494 495 // If there was only one symbol and we're removing it, just clear info. 496 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 497 Info.clear(); 498 return; 499 } 500 501 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 502 getHeapAllocMarker()); 503 } 504 505 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 506 // Do nothing if old and new symbols are the same. 507 if (Marker == getHeapAllocMarker()) 508 return; 509 510 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 511 Marker); 512 } 513 514 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 515 const MachineInstr &MI) { 516 if (this == &MI) 517 // Nothing to do for a self-clone! 518 return; 519 520 assert(&MF == MI.getMF() && 521 "Invalid machine functions when cloning instruction symbols!"); 522 523 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 524 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 525 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 526 } 527 528 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 529 // For now, the just return the union of the flags. If the flags get more 530 // complicated over time, we might need more logic here. 531 return getFlags() | Other.getFlags(); 532 } 533 534 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 535 uint16_t MIFlags = 0; 536 // Copy the wrapping flags. 537 if (const OverflowingBinaryOperator *OB = 538 dyn_cast<OverflowingBinaryOperator>(&I)) { 539 if (OB->hasNoSignedWrap()) 540 MIFlags |= MachineInstr::MIFlag::NoSWrap; 541 if (OB->hasNoUnsignedWrap()) 542 MIFlags |= MachineInstr::MIFlag::NoUWrap; 543 } 544 545 // Copy the exact flag. 546 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 547 if (PE->isExact()) 548 MIFlags |= MachineInstr::MIFlag::IsExact; 549 550 // Copy the fast-math flags. 551 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 552 const FastMathFlags Flags = FP->getFastMathFlags(); 553 if (Flags.noNaNs()) 554 MIFlags |= MachineInstr::MIFlag::FmNoNans; 555 if (Flags.noInfs()) 556 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 557 if (Flags.noSignedZeros()) 558 MIFlags |= MachineInstr::MIFlag::FmNsz; 559 if (Flags.allowReciprocal()) 560 MIFlags |= MachineInstr::MIFlag::FmArcp; 561 if (Flags.allowContract()) 562 MIFlags |= MachineInstr::MIFlag::FmContract; 563 if (Flags.approxFunc()) 564 MIFlags |= MachineInstr::MIFlag::FmAfn; 565 if (Flags.allowReassoc()) 566 MIFlags |= MachineInstr::MIFlag::FmReassoc; 567 } 568 569 return MIFlags; 570 } 571 572 void MachineInstr::copyIRFlags(const Instruction &I) { 573 Flags = copyFlagsFromInstruction(I); 574 } 575 576 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 577 assert(!isBundledWithPred() && "Must be called on bundle header"); 578 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 579 if (MII->getDesc().getFlags() & Mask) { 580 if (Type == AnyInBundle) 581 return true; 582 } else { 583 if (Type == AllInBundle && !MII->isBundle()) 584 return false; 585 } 586 // This was the last instruction in the bundle. 587 if (!MII->isBundledWithSucc()) 588 return Type == AllInBundle; 589 } 590 } 591 592 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 593 MICheckType Check) const { 594 // If opcodes or number of operands are not the same then the two 595 // instructions are obviously not identical. 596 if (Other.getOpcode() != getOpcode() || 597 Other.getNumOperands() != getNumOperands()) 598 return false; 599 600 if (isBundle()) { 601 // We have passed the test above that both instructions have the same 602 // opcode, so we know that both instructions are bundles here. Let's compare 603 // MIs inside the bundle. 604 assert(Other.isBundle() && "Expected that both instructions are bundles."); 605 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 606 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 607 // Loop until we analysed the last intruction inside at least one of the 608 // bundles. 609 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 610 ++I1; 611 ++I2; 612 if (!I1->isIdenticalTo(*I2, Check)) 613 return false; 614 } 615 // If we've reached the end of just one of the two bundles, but not both, 616 // the instructions are not identical. 617 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 618 return false; 619 } 620 621 // Check operands to make sure they match. 622 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 623 const MachineOperand &MO = getOperand(i); 624 const MachineOperand &OMO = Other.getOperand(i); 625 if (!MO.isReg()) { 626 if (!MO.isIdenticalTo(OMO)) 627 return false; 628 continue; 629 } 630 631 // Clients may or may not want to ignore defs when testing for equality. 632 // For example, machine CSE pass only cares about finding common 633 // subexpressions, so it's safe to ignore virtual register defs. 634 if (MO.isDef()) { 635 if (Check == IgnoreDefs) 636 continue; 637 else if (Check == IgnoreVRegDefs) { 638 if (!Register::isVirtualRegister(MO.getReg()) || 639 !Register::isVirtualRegister(OMO.getReg())) 640 if (!MO.isIdenticalTo(OMO)) 641 return false; 642 } else { 643 if (!MO.isIdenticalTo(OMO)) 644 return false; 645 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 646 return false; 647 } 648 } else { 649 if (!MO.isIdenticalTo(OMO)) 650 return false; 651 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 652 return false; 653 } 654 } 655 // If DebugLoc does not match then two debug instructions are not identical. 656 if (isDebugInstr()) 657 if (getDebugLoc() && Other.getDebugLoc() && 658 getDebugLoc() != Other.getDebugLoc()) 659 return false; 660 return true; 661 } 662 663 const MachineFunction *MachineInstr::getMF() const { 664 return getParent()->getParent(); 665 } 666 667 MachineInstr *MachineInstr::removeFromParent() { 668 assert(getParent() && "Not embedded in a basic block!"); 669 return getParent()->remove(this); 670 } 671 672 MachineInstr *MachineInstr::removeFromBundle() { 673 assert(getParent() && "Not embedded in a basic block!"); 674 return getParent()->remove_instr(this); 675 } 676 677 void MachineInstr::eraseFromParent() { 678 assert(getParent() && "Not embedded in a basic block!"); 679 getParent()->erase(this); 680 } 681 682 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 683 assert(getParent() && "Not embedded in a basic block!"); 684 MachineBasicBlock *MBB = getParent(); 685 MachineFunction *MF = MBB->getParent(); 686 assert(MF && "Not embedded in a function!"); 687 688 MachineInstr *MI = (MachineInstr *)this; 689 MachineRegisterInfo &MRI = MF->getRegInfo(); 690 691 for (const MachineOperand &MO : MI->operands()) { 692 if (!MO.isReg() || !MO.isDef()) 693 continue; 694 Register Reg = MO.getReg(); 695 if (!Reg.isVirtual()) 696 continue; 697 MRI.markUsesInDebugValueAsUndef(Reg); 698 } 699 MI->eraseFromParent(); 700 } 701 702 void MachineInstr::eraseFromBundle() { 703 assert(getParent() && "Not embedded in a basic block!"); 704 getParent()->erase_instr(this); 705 } 706 707 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 708 if (!isCall(Type)) 709 return false; 710 switch (getOpcode()) { 711 case TargetOpcode::PATCHPOINT: 712 case TargetOpcode::STACKMAP: 713 case TargetOpcode::STATEPOINT: 714 case TargetOpcode::FENTRY_CALL: 715 return false; 716 } 717 return true; 718 } 719 720 bool MachineInstr::shouldUpdateCallSiteInfo() const { 721 if (isBundle()) 722 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 723 return isCandidateForCallSiteEntry(); 724 } 725 726 unsigned MachineInstr::getNumExplicitOperands() const { 727 unsigned NumOperands = MCID->getNumOperands(); 728 if (!MCID->isVariadic()) 729 return NumOperands; 730 731 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 732 const MachineOperand &MO = getOperand(I); 733 // The operands must always be in the following order: 734 // - explicit reg defs, 735 // - other explicit operands (reg uses, immediates, etc.), 736 // - implicit reg defs 737 // - implicit reg uses 738 if (MO.isReg() && MO.isImplicit()) 739 break; 740 ++NumOperands; 741 } 742 return NumOperands; 743 } 744 745 unsigned MachineInstr::getNumExplicitDefs() const { 746 unsigned NumDefs = MCID->getNumDefs(); 747 if (!MCID->isVariadic()) 748 return NumDefs; 749 750 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 751 const MachineOperand &MO = getOperand(I); 752 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 753 break; 754 ++NumDefs; 755 } 756 return NumDefs; 757 } 758 759 void MachineInstr::bundleWithPred() { 760 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 761 setFlag(BundledPred); 762 MachineBasicBlock::instr_iterator Pred = getIterator(); 763 --Pred; 764 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 765 Pred->setFlag(BundledSucc); 766 } 767 768 void MachineInstr::bundleWithSucc() { 769 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 770 setFlag(BundledSucc); 771 MachineBasicBlock::instr_iterator Succ = getIterator(); 772 ++Succ; 773 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 774 Succ->setFlag(BundledPred); 775 } 776 777 void MachineInstr::unbundleFromPred() { 778 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 779 clearFlag(BundledPred); 780 MachineBasicBlock::instr_iterator Pred = getIterator(); 781 --Pred; 782 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 783 Pred->clearFlag(BundledSucc); 784 } 785 786 void MachineInstr::unbundleFromSucc() { 787 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 788 clearFlag(BundledSucc); 789 MachineBasicBlock::instr_iterator Succ = getIterator(); 790 ++Succ; 791 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 792 Succ->clearFlag(BundledPred); 793 } 794 795 bool MachineInstr::isStackAligningInlineAsm() const { 796 if (isInlineAsm()) { 797 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 798 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 799 return true; 800 } 801 return false; 802 } 803 804 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 805 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 806 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 807 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 808 } 809 810 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 811 unsigned *GroupNo) const { 812 assert(isInlineAsm() && "Expected an inline asm instruction"); 813 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 814 815 // Ignore queries about the initial operands. 816 if (OpIdx < InlineAsm::MIOp_FirstOperand) 817 return -1; 818 819 unsigned Group = 0; 820 unsigned NumOps; 821 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 822 i += NumOps) { 823 const MachineOperand &FlagMO = getOperand(i); 824 // If we reach the implicit register operands, stop looking. 825 if (!FlagMO.isImm()) 826 return -1; 827 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 828 if (i + NumOps > OpIdx) { 829 if (GroupNo) 830 *GroupNo = Group; 831 return i; 832 } 833 ++Group; 834 } 835 return -1; 836 } 837 838 const DILabel *MachineInstr::getDebugLabel() const { 839 assert(isDebugLabel() && "not a DBG_LABEL"); 840 return cast<DILabel>(getOperand(0).getMetadata()); 841 } 842 843 const MachineOperand &MachineInstr::getDebugVariableOp() const { 844 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 845 unsigned VariableOp = isDebugValueList() ? 0 : 2; 846 return getOperand(VariableOp); 847 } 848 849 MachineOperand &MachineInstr::getDebugVariableOp() { 850 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 851 unsigned VariableOp = isDebugValueList() ? 0 : 2; 852 return getOperand(VariableOp); 853 } 854 855 const DILocalVariable *MachineInstr::getDebugVariable() const { 856 return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); 857 } 858 859 const MachineOperand &MachineInstr::getDebugExpressionOp() const { 860 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 861 unsigned ExpressionOp = isDebugValueList() ? 1 : 3; 862 return getOperand(ExpressionOp); 863 } 864 865 MachineOperand &MachineInstr::getDebugExpressionOp() { 866 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 867 unsigned ExpressionOp = isDebugValueList() ? 1 : 3; 868 return getOperand(ExpressionOp); 869 } 870 871 const DIExpression *MachineInstr::getDebugExpression() const { 872 return cast<DIExpression>(getDebugExpressionOp().getMetadata()); 873 } 874 875 bool MachineInstr::isDebugEntryValue() const { 876 return isDebugValue() && getDebugExpression()->isEntryValue(); 877 } 878 879 const TargetRegisterClass* 880 MachineInstr::getRegClassConstraint(unsigned OpIdx, 881 const TargetInstrInfo *TII, 882 const TargetRegisterInfo *TRI) const { 883 assert(getParent() && "Can't have an MBB reference here!"); 884 assert(getMF() && "Can't have an MF reference here!"); 885 const MachineFunction &MF = *getMF(); 886 887 // Most opcodes have fixed constraints in their MCInstrDesc. 888 if (!isInlineAsm()) 889 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 890 891 if (!getOperand(OpIdx).isReg()) 892 return nullptr; 893 894 // For tied uses on inline asm, get the constraint from the def. 895 unsigned DefIdx; 896 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 897 OpIdx = DefIdx; 898 899 // Inline asm stores register class constraints in the flag word. 900 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 901 if (FlagIdx < 0) 902 return nullptr; 903 904 unsigned Flag = getOperand(FlagIdx).getImm(); 905 unsigned RCID; 906 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 907 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 908 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 909 InlineAsm::hasRegClassConstraint(Flag, RCID)) 910 return TRI->getRegClass(RCID); 911 912 // Assume that all registers in a memory operand are pointers. 913 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 914 return TRI->getPointerRegClass(MF); 915 916 return nullptr; 917 } 918 919 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 920 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 921 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 922 // Check every operands inside the bundle if we have 923 // been asked to. 924 if (ExploreBundle) 925 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 926 ++OpndIt) 927 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 928 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 929 else 930 // Otherwise, just check the current operands. 931 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 932 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 933 return CurRC; 934 } 935 936 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 937 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 938 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 939 assert(CurRC && "Invalid initial register class"); 940 // Check if Reg is constrained by some of its use/def from MI. 941 const MachineOperand &MO = getOperand(OpIdx); 942 if (!MO.isReg() || MO.getReg() != Reg) 943 return CurRC; 944 // If yes, accumulate the constraints through the operand. 945 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 946 } 947 948 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 949 unsigned OpIdx, const TargetRegisterClass *CurRC, 950 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 951 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 952 const MachineOperand &MO = getOperand(OpIdx); 953 assert(MO.isReg() && 954 "Cannot get register constraints for non-register operand"); 955 assert(CurRC && "Invalid initial register class"); 956 if (unsigned SubIdx = MO.getSubReg()) { 957 if (OpRC) 958 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 959 else 960 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 961 } else if (OpRC) 962 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 963 return CurRC; 964 } 965 966 /// Return the number of instructions inside the MI bundle, not counting the 967 /// header instruction. 968 unsigned MachineInstr::getBundleSize() const { 969 MachineBasicBlock::const_instr_iterator I = getIterator(); 970 unsigned Size = 0; 971 while (I->isBundledWithSucc()) { 972 ++Size; 973 ++I; 974 } 975 return Size; 976 } 977 978 /// Returns true if the MachineInstr has an implicit-use operand of exactly 979 /// the given register (not considering sub/super-registers). 980 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 981 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 982 const MachineOperand &MO = getOperand(i); 983 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 984 return true; 985 } 986 return false; 987 } 988 989 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 990 /// the specific register or -1 if it is not found. It further tightens 991 /// the search criteria to a use that kills the register if isKill is true. 992 int MachineInstr::findRegisterUseOperandIdx( 993 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 994 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 995 const MachineOperand &MO = getOperand(i); 996 if (!MO.isReg() || !MO.isUse()) 997 continue; 998 Register MOReg = MO.getReg(); 999 if (!MOReg) 1000 continue; 1001 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 1002 if (!isKill || MO.isKill()) 1003 return i; 1004 } 1005 return -1; 1006 } 1007 1008 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1009 /// indicating if this instruction reads or writes Reg. This also considers 1010 /// partial defines. 1011 std::pair<bool,bool> 1012 MachineInstr::readsWritesVirtualRegister(Register Reg, 1013 SmallVectorImpl<unsigned> *Ops) const { 1014 bool PartDef = false; // Partial redefine. 1015 bool FullDef = false; // Full define. 1016 bool Use = false; 1017 1018 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1019 const MachineOperand &MO = getOperand(i); 1020 if (!MO.isReg() || MO.getReg() != Reg) 1021 continue; 1022 if (Ops) 1023 Ops->push_back(i); 1024 if (MO.isUse()) 1025 Use |= !MO.isUndef(); 1026 else if (MO.getSubReg() && !MO.isUndef()) 1027 // A partial def undef doesn't count as reading the register. 1028 PartDef = true; 1029 else 1030 FullDef = true; 1031 } 1032 // A partial redefine uses Reg unless there is also a full define. 1033 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1034 } 1035 1036 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1037 /// the specified register or -1 if it is not found. If isDead is true, defs 1038 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1039 /// also checks if there is a def of a super-register. 1040 int 1041 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1042 const TargetRegisterInfo *TRI) const { 1043 bool isPhys = Register::isPhysicalRegister(Reg); 1044 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1045 const MachineOperand &MO = getOperand(i); 1046 // Accept regmask operands when Overlap is set. 1047 // Ignore them when looking for a specific def operand (Overlap == false). 1048 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1049 return i; 1050 if (!MO.isReg() || !MO.isDef()) 1051 continue; 1052 Register MOReg = MO.getReg(); 1053 bool Found = (MOReg == Reg); 1054 if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { 1055 if (Overlap) 1056 Found = TRI->regsOverlap(MOReg, Reg); 1057 else 1058 Found = TRI->isSubRegister(MOReg, Reg); 1059 } 1060 if (Found && (!isDead || MO.isDead())) 1061 return i; 1062 } 1063 return -1; 1064 } 1065 1066 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1067 /// operand list that is used to represent the predicate. It returns -1 if 1068 /// none is found. 1069 int MachineInstr::findFirstPredOperandIdx() const { 1070 // Don't call MCID.findFirstPredOperandIdx() because this variant 1071 // is sometimes called on an instruction that's not yet complete, and 1072 // so the number of operands is less than the MCID indicates. In 1073 // particular, the PTX target does this. 1074 const MCInstrDesc &MCID = getDesc(); 1075 if (MCID.isPredicable()) { 1076 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1077 if (MCID.OpInfo[i].isPredicate()) 1078 return i; 1079 } 1080 1081 return -1; 1082 } 1083 1084 // MachineOperand::TiedTo is 4 bits wide. 1085 const unsigned TiedMax = 15; 1086 1087 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1088 /// 1089 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1090 /// field. TiedTo can have these values: 1091 /// 1092 /// 0: Operand is not tied to anything. 1093 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1094 /// TiedMax: Tied to an operand >= TiedMax-1. 1095 /// 1096 /// The tied def must be one of the first TiedMax operands on a normal 1097 /// instruction. INLINEASM instructions allow more tied defs. 1098 /// 1099 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1100 MachineOperand &DefMO = getOperand(DefIdx); 1101 MachineOperand &UseMO = getOperand(UseIdx); 1102 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1103 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1104 assert(!DefMO.isTied() && "Def is already tied to another use"); 1105 assert(!UseMO.isTied() && "Use is already tied to another def"); 1106 1107 if (DefIdx < TiedMax) 1108 UseMO.TiedTo = DefIdx + 1; 1109 else { 1110 // Inline asm can use the group descriptors to find tied operands, 1111 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1112 // but on normal instruction, the tied def must be within the first TiedMax 1113 // operands. 1114 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1115 "DefIdx out of range"); 1116 UseMO.TiedTo = TiedMax; 1117 } 1118 1119 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1120 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1121 } 1122 1123 /// Given the index of a tied register operand, find the operand it is tied to. 1124 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1125 /// which must exist. 1126 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1127 const MachineOperand &MO = getOperand(OpIdx); 1128 assert(MO.isTied() && "Operand isn't tied"); 1129 1130 // Normally TiedTo is in range. 1131 if (MO.TiedTo < TiedMax) 1132 return MO.TiedTo - 1; 1133 1134 // Uses on normal instructions can be out of range. 1135 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1136 // Normal tied defs must be in the 0..TiedMax-1 range. 1137 if (MO.isUse()) 1138 return TiedMax - 1; 1139 // MO is a def. Search for the tied use. 1140 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1141 const MachineOperand &UseMO = getOperand(i); 1142 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1143 return i; 1144 } 1145 llvm_unreachable("Can't find tied use"); 1146 } 1147 1148 if (getOpcode() == TargetOpcode::STATEPOINT) { 1149 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1150 // on registers. 1151 StatepointOpers SO(this); 1152 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1153 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1154 unsigned NumDefs = getNumDefs(); 1155 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1156 while (!getOperand(CurUseIdx).isReg()) 1157 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1158 if (OpIdx == CurDefIdx) 1159 return CurUseIdx; 1160 if (OpIdx == CurUseIdx) 1161 return CurDefIdx; 1162 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1163 } 1164 llvm_unreachable("Can't find tied use"); 1165 } 1166 1167 // Now deal with inline asm by parsing the operand group descriptor flags. 1168 // Find the beginning of each operand group. 1169 SmallVector<unsigned, 8> GroupIdx; 1170 unsigned OpIdxGroup = ~0u; 1171 unsigned NumOps; 1172 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1173 i += NumOps) { 1174 const MachineOperand &FlagMO = getOperand(i); 1175 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1176 unsigned CurGroup = GroupIdx.size(); 1177 GroupIdx.push_back(i); 1178 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1179 // OpIdx belongs to this operand group. 1180 if (OpIdx > i && OpIdx < i + NumOps) 1181 OpIdxGroup = CurGroup; 1182 unsigned TiedGroup; 1183 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1184 continue; 1185 // Operands in this group are tied to operands in TiedGroup which must be 1186 // earlier. Find the number of operands between the two groups. 1187 unsigned Delta = i - GroupIdx[TiedGroup]; 1188 1189 // OpIdx is a use tied to TiedGroup. 1190 if (OpIdxGroup == CurGroup) 1191 return OpIdx - Delta; 1192 1193 // OpIdx is a def tied to this use group. 1194 if (OpIdxGroup == TiedGroup) 1195 return OpIdx + Delta; 1196 } 1197 llvm_unreachable("Invalid tied operand on inline asm"); 1198 } 1199 1200 /// clearKillInfo - Clears kill flags on all operands. 1201 /// 1202 void MachineInstr::clearKillInfo() { 1203 for (MachineOperand &MO : operands()) { 1204 if (MO.isReg() && MO.isUse()) 1205 MO.setIsKill(false); 1206 } 1207 } 1208 1209 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1210 unsigned SubIdx, 1211 const TargetRegisterInfo &RegInfo) { 1212 if (Register::isPhysicalRegister(ToReg)) { 1213 if (SubIdx) 1214 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1215 for (MachineOperand &MO : operands()) { 1216 if (!MO.isReg() || MO.getReg() != FromReg) 1217 continue; 1218 MO.substPhysReg(ToReg, RegInfo); 1219 } 1220 } else { 1221 for (MachineOperand &MO : operands()) { 1222 if (!MO.isReg() || MO.getReg() != FromReg) 1223 continue; 1224 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1225 } 1226 } 1227 } 1228 1229 /// isSafeToMove - Return true if it is safe to move this instruction. If 1230 /// SawStore is set to true, it means that there is a store (or call) between 1231 /// the instruction's location and its intended destination. 1232 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1233 // Ignore stuff that we obviously can't move. 1234 // 1235 // Treat volatile loads as stores. This is not strictly necessary for 1236 // volatiles, but it is required for atomic loads. It is not allowed to move 1237 // a load across an atomic load with Ordering > Monotonic. 1238 if (mayStore() || isCall() || isPHI() || 1239 (mayLoad() && hasOrderedMemoryRef())) { 1240 SawStore = true; 1241 return false; 1242 } 1243 1244 if (isPosition() || isDebugInstr() || isTerminator() || 1245 mayRaiseFPException() || hasUnmodeledSideEffects()) 1246 return false; 1247 1248 // See if this instruction does a load. If so, we have to guarantee that the 1249 // loaded value doesn't change between the load and the its intended 1250 // destination. The check for isInvariantLoad gives the target the chance to 1251 // classify the load as always returning a constant, e.g. a constant pool 1252 // load. 1253 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1254 // Otherwise, this is a real load. If there is a store between the load and 1255 // end of block, we can't move it. 1256 return !SawStore; 1257 1258 return true; 1259 } 1260 1261 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1262 bool UseTBAA, const MachineMemOperand *MMOa, 1263 const MachineMemOperand *MMOb) { 1264 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1265 // operates with MachineMemOperand offset with some important assumptions: 1266 // - LLVM fundamentally assumes flat address spaces. 1267 // - MachineOperand offset can *only* result from legalization and cannot 1268 // affect queries other than the trivial case of overlap checking. 1269 // - These offsets never wrap and never step outside of allocated objects. 1270 // - There should never be any negative offsets here. 1271 // 1272 // FIXME: Modify API to hide this math from "user" 1273 // Even before we go to AA we can reason locally about some memory objects. It 1274 // can save compile time, and possibly catch some corner cases not currently 1275 // covered. 1276 1277 int64_t OffsetA = MMOa->getOffset(); 1278 int64_t OffsetB = MMOb->getOffset(); 1279 int64_t MinOffset = std::min(OffsetA, OffsetB); 1280 1281 uint64_t WidthA = MMOa->getSize(); 1282 uint64_t WidthB = MMOb->getSize(); 1283 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1284 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1285 1286 const Value *ValA = MMOa->getValue(); 1287 const Value *ValB = MMOb->getValue(); 1288 bool SameVal = (ValA && ValB && (ValA == ValB)); 1289 if (!SameVal) { 1290 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1291 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1292 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1293 return false; 1294 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1295 return false; 1296 if (PSVa && PSVb && (PSVa == PSVb)) 1297 SameVal = true; 1298 } 1299 1300 if (SameVal) { 1301 if (!KnownWidthA || !KnownWidthB) 1302 return true; 1303 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1304 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1305 return (MinOffset + LowWidth > MaxOffset); 1306 } 1307 1308 if (!AA) 1309 return true; 1310 1311 if (!ValA || !ValB) 1312 return true; 1313 1314 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1315 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1316 1317 int64_t OverlapA = 1318 KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize; 1319 int64_t OverlapB = 1320 KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize; 1321 1322 AliasResult AAResult = AA->alias( 1323 MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1324 MemoryLocation(ValB, OverlapB, 1325 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1326 1327 return (AAResult != NoAlias); 1328 } 1329 1330 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1331 bool UseTBAA) const { 1332 const MachineFunction *MF = getMF(); 1333 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1334 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1335 1336 // Exclude call instruction which may alter the memory but can not be handled 1337 // by this function. 1338 if (isCall() || Other.isCall()) 1339 return true; 1340 1341 // If neither instruction stores to memory, they can't alias in any 1342 // meaningful way, even if they read from the same address. 1343 if (!mayStore() && !Other.mayStore()) 1344 return false; 1345 1346 // Both instructions must be memory operations to be able to alias. 1347 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1348 return false; 1349 1350 // Let the target decide if memory accesses cannot possibly overlap. 1351 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1352 return false; 1353 1354 // Memory operations without memory operands may access anything. Be 1355 // conservative and assume `MayAlias`. 1356 if (memoperands_empty() || Other.memoperands_empty()) 1357 return true; 1358 1359 // Skip if there are too many memory operands. 1360 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1361 if (NumChecks > TII->getMemOperandAACheckLimit()) 1362 return true; 1363 1364 // Check each pair of memory operands from both instructions, which can't 1365 // alias only if all pairs won't alias. 1366 for (auto *MMOa : memoperands()) 1367 for (auto *MMOb : Other.memoperands()) 1368 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1369 return true; 1370 1371 return false; 1372 } 1373 1374 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1375 /// or volatile memory reference, or if the information describing the memory 1376 /// reference is not available. Return false if it is known to have no ordered 1377 /// memory references. 1378 bool MachineInstr::hasOrderedMemoryRef() const { 1379 // An instruction known never to access memory won't have a volatile access. 1380 if (!mayStore() && 1381 !mayLoad() && 1382 !isCall() && 1383 !hasUnmodeledSideEffects()) 1384 return false; 1385 1386 // Otherwise, if the instruction has no memory reference information, 1387 // conservatively assume it wasn't preserved. 1388 if (memoperands_empty()) 1389 return true; 1390 1391 // Check if any of our memory operands are ordered. 1392 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1393 return !MMO->isUnordered(); 1394 }); 1395 } 1396 1397 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1398 /// trap and is loading from a location whose value is invariant across a run of 1399 /// this function. 1400 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const { 1401 // If the instruction doesn't load at all, it isn't an invariant load. 1402 if (!mayLoad()) 1403 return false; 1404 1405 // If the instruction has lost its memoperands, conservatively assume that 1406 // it may not be an invariant load. 1407 if (memoperands_empty()) 1408 return false; 1409 1410 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1411 1412 for (MachineMemOperand *MMO : memoperands()) { 1413 if (!MMO->isUnordered()) 1414 // If the memory operand has ordering side effects, we can't move the 1415 // instruction. Such an instruction is technically an invariant load, 1416 // but the caller code would need updated to expect that. 1417 return false; 1418 if (MMO->isStore()) return false; 1419 if (MMO->isInvariant() && MMO->isDereferenceable()) 1420 continue; 1421 1422 // A load from a constant PseudoSourceValue is invariant. 1423 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1424 if (PSV->isConstant(&MFI)) 1425 continue; 1426 1427 if (const Value *V = MMO->getValue()) { 1428 // If we have an AliasAnalysis, ask it whether the memory is constant. 1429 if (AA && 1430 AA->pointsToConstantMemory( 1431 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1432 continue; 1433 } 1434 1435 // Otherwise assume conservatively. 1436 return false; 1437 } 1438 1439 // Everything checks out. 1440 return true; 1441 } 1442 1443 /// isConstantValuePHI - If the specified instruction is a PHI that always 1444 /// merges together the same virtual register, return the register, otherwise 1445 /// return 0. 1446 unsigned MachineInstr::isConstantValuePHI() const { 1447 if (!isPHI()) 1448 return 0; 1449 assert(getNumOperands() >= 3 && 1450 "It's illegal to have a PHI without source operands"); 1451 1452 Register Reg = getOperand(1).getReg(); 1453 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1454 if (getOperand(i).getReg() != Reg) 1455 return 0; 1456 return Reg; 1457 } 1458 1459 bool MachineInstr::hasUnmodeledSideEffects() const { 1460 if (hasProperty(MCID::UnmodeledSideEffects)) 1461 return true; 1462 if (isInlineAsm()) { 1463 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1464 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1465 return true; 1466 } 1467 1468 return false; 1469 } 1470 1471 bool MachineInstr::isLoadFoldBarrier() const { 1472 return mayStore() || isCall() || 1473 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1474 } 1475 1476 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1477 /// 1478 bool MachineInstr::allDefsAreDead() const { 1479 for (const MachineOperand &MO : operands()) { 1480 if (!MO.isReg() || MO.isUse()) 1481 continue; 1482 if (!MO.isDead()) 1483 return false; 1484 } 1485 return true; 1486 } 1487 1488 /// copyImplicitOps - Copy implicit register operands from specified 1489 /// instruction to this instruction. 1490 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1491 const MachineInstr &MI) { 1492 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1493 i != e; ++i) { 1494 const MachineOperand &MO = MI.getOperand(i); 1495 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1496 addOperand(MF, MO); 1497 } 1498 } 1499 1500 bool MachineInstr::hasComplexRegisterTies() const { 1501 const MCInstrDesc &MCID = getDesc(); 1502 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1503 return true; 1504 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1505 const auto &Operand = getOperand(I); 1506 if (!Operand.isReg() || Operand.isDef()) 1507 // Ignore the defined registers as MCID marks only the uses as tied. 1508 continue; 1509 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1510 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1511 if (ExpectedTiedIdx != TiedIdx) 1512 return true; 1513 } 1514 return false; 1515 } 1516 1517 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1518 const MachineRegisterInfo &MRI) const { 1519 const MachineOperand &Op = getOperand(OpIdx); 1520 if (!Op.isReg()) 1521 return LLT{}; 1522 1523 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1524 return MRI.getType(Op.getReg()); 1525 1526 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1527 if (!OpInfo.isGenericType()) 1528 return MRI.getType(Op.getReg()); 1529 1530 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1531 return LLT{}; 1532 1533 LLT TypeToPrint = MRI.getType(Op.getReg()); 1534 // Don't mark the type index printed if it wasn't actually printed: maybe 1535 // another operand with the same type index has an actual type attached: 1536 if (TypeToPrint.isValid()) 1537 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1538 return TypeToPrint; 1539 } 1540 1541 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1542 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1543 dbgs() << " "; 1544 print(dbgs()); 1545 } 1546 1547 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1548 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1549 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1550 if (Depth >= MaxDepth) 1551 return; 1552 if (!AlreadySeenInstrs.insert(this).second) 1553 return; 1554 // PadToColumn always inserts at least one space. 1555 // Don't mess up the alignment if we don't want any space. 1556 if (Depth) 1557 fdbgs().PadToColumn(Depth * 2); 1558 print(fdbgs()); 1559 for (const MachineOperand &MO : operands()) { 1560 if (!MO.isReg() || MO.isDef()) 1561 continue; 1562 Register Reg = MO.getReg(); 1563 if (Reg.isPhysical()) 1564 continue; 1565 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1566 if (NewMI == nullptr) 1567 continue; 1568 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1569 } 1570 } 1571 1572 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1573 unsigned MaxDepth) const { 1574 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1575 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1576 } 1577 #endif 1578 1579 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1580 bool SkipDebugLoc, bool AddNewLine, 1581 const TargetInstrInfo *TII) const { 1582 const Module *M = nullptr; 1583 const Function *F = nullptr; 1584 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1585 F = &MF->getFunction(); 1586 M = F->getParent(); 1587 if (!TII) 1588 TII = MF->getSubtarget().getInstrInfo(); 1589 } 1590 1591 ModuleSlotTracker MST(M); 1592 if (F) 1593 MST.incorporateFunction(*F); 1594 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1595 } 1596 1597 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1598 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1599 bool AddNewLine, const TargetInstrInfo *TII) const { 1600 // We can be a bit tidier if we know the MachineFunction. 1601 const TargetRegisterInfo *TRI = nullptr; 1602 const MachineRegisterInfo *MRI = nullptr; 1603 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1604 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1605 1606 if (isCFIInstruction()) 1607 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1608 1609 SmallBitVector PrintedTypes(8); 1610 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1611 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1612 if (!ShouldPrintRegisterTies) 1613 return 0U; 1614 const MachineOperand &MO = getOperand(OpIdx); 1615 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1616 return findTiedOperandIdx(OpIdx); 1617 return 0U; 1618 }; 1619 unsigned StartOp = 0; 1620 unsigned e = getNumOperands(); 1621 1622 // Print explicitly defined operands on the left of an assignment syntax. 1623 while (StartOp < e) { 1624 const MachineOperand &MO = getOperand(StartOp); 1625 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1626 break; 1627 1628 if (StartOp != 0) 1629 OS << ", "; 1630 1631 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1632 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1633 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1634 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1635 ++StartOp; 1636 } 1637 1638 if (StartOp != 0) 1639 OS << " = "; 1640 1641 if (getFlag(MachineInstr::FrameSetup)) 1642 OS << "frame-setup "; 1643 if (getFlag(MachineInstr::FrameDestroy)) 1644 OS << "frame-destroy "; 1645 if (getFlag(MachineInstr::FmNoNans)) 1646 OS << "nnan "; 1647 if (getFlag(MachineInstr::FmNoInfs)) 1648 OS << "ninf "; 1649 if (getFlag(MachineInstr::FmNsz)) 1650 OS << "nsz "; 1651 if (getFlag(MachineInstr::FmArcp)) 1652 OS << "arcp "; 1653 if (getFlag(MachineInstr::FmContract)) 1654 OS << "contract "; 1655 if (getFlag(MachineInstr::FmAfn)) 1656 OS << "afn "; 1657 if (getFlag(MachineInstr::FmReassoc)) 1658 OS << "reassoc "; 1659 if (getFlag(MachineInstr::NoUWrap)) 1660 OS << "nuw "; 1661 if (getFlag(MachineInstr::NoSWrap)) 1662 OS << "nsw "; 1663 if (getFlag(MachineInstr::IsExact)) 1664 OS << "exact "; 1665 if (getFlag(MachineInstr::NoFPExcept)) 1666 OS << "nofpexcept "; 1667 if (getFlag(MachineInstr::NoMerge)) 1668 OS << "nomerge "; 1669 1670 // Print the opcode name. 1671 if (TII) 1672 OS << TII->getName(getOpcode()); 1673 else 1674 OS << "UNKNOWN"; 1675 1676 if (SkipOpers) 1677 return; 1678 1679 // Print the rest of the operands. 1680 bool FirstOp = true; 1681 unsigned AsmDescOp = ~0u; 1682 unsigned AsmOpCount = 0; 1683 1684 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1685 // Print asm string. 1686 OS << " "; 1687 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1688 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1689 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1690 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1691 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1692 IntrinsicInfo); 1693 1694 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1695 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1696 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1697 OS << " [sideeffect]"; 1698 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1699 OS << " [mayload]"; 1700 if (ExtraInfo & InlineAsm::Extra_MayStore) 1701 OS << " [maystore]"; 1702 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1703 OS << " [isconvergent]"; 1704 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1705 OS << " [alignstack]"; 1706 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1707 OS << " [attdialect]"; 1708 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1709 OS << " [inteldialect]"; 1710 1711 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1712 FirstOp = false; 1713 } 1714 1715 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1716 const MachineOperand &MO = getOperand(i); 1717 1718 if (FirstOp) FirstOp = false; else OS << ","; 1719 OS << " "; 1720 1721 if (isDebugValue() && MO.isMetadata()) { 1722 // Pretty print DBG_VALUE* instructions. 1723 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1724 if (DIV && !DIV->getName().empty()) 1725 OS << "!\"" << DIV->getName() << '\"'; 1726 else { 1727 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1728 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1729 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1730 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1731 } 1732 } else if (isDebugLabel() && MO.isMetadata()) { 1733 // Pretty print DBG_LABEL instructions. 1734 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1735 if (DIL && !DIL->getName().empty()) 1736 OS << "\"" << DIL->getName() << '\"'; 1737 else { 1738 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1739 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1740 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1741 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1742 } 1743 } else if (i == AsmDescOp && MO.isImm()) { 1744 // Pretty print the inline asm operand descriptor. 1745 OS << '$' << AsmOpCount++; 1746 unsigned Flag = MO.getImm(); 1747 OS << ":["; 1748 OS << InlineAsm::getKindName(InlineAsm::getKind(Flag)); 1749 1750 unsigned RCID = 0; 1751 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1752 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1753 if (TRI) { 1754 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1755 } else 1756 OS << ":RC" << RCID; 1757 } 1758 1759 if (InlineAsm::isMemKind(Flag)) { 1760 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1761 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1762 } 1763 1764 unsigned TiedTo = 0; 1765 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1766 OS << " tiedto:$" << TiedTo; 1767 1768 OS << ']'; 1769 1770 // Compute the index of the next operand descriptor. 1771 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1772 } else { 1773 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1774 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1775 if (MO.isImm() && isOperandSubregIdx(i)) 1776 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1777 else 1778 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1779 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1780 } 1781 } 1782 1783 // Print any optional symbols attached to this instruction as-if they were 1784 // operands. 1785 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1786 if (!FirstOp) { 1787 FirstOp = false; 1788 OS << ','; 1789 } 1790 OS << " pre-instr-symbol "; 1791 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1792 } 1793 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1794 if (!FirstOp) { 1795 FirstOp = false; 1796 OS << ','; 1797 } 1798 OS << " post-instr-symbol "; 1799 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1800 } 1801 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1802 if (!FirstOp) { 1803 FirstOp = false; 1804 OS << ','; 1805 } 1806 OS << " heap-alloc-marker "; 1807 HeapAllocMarker->printAsOperand(OS, MST); 1808 } 1809 1810 if (DebugInstrNum) { 1811 if (!FirstOp) 1812 OS << ","; 1813 OS << " debug-instr-number " << DebugInstrNum; 1814 } 1815 1816 if (!SkipDebugLoc) { 1817 if (const DebugLoc &DL = getDebugLoc()) { 1818 if (!FirstOp) 1819 OS << ','; 1820 OS << " debug-location "; 1821 DL->printAsOperand(OS, MST); 1822 } 1823 } 1824 1825 if (!memoperands_empty()) { 1826 SmallVector<StringRef, 0> SSNs; 1827 const LLVMContext *Context = nullptr; 1828 std::unique_ptr<LLVMContext> CtxPtr; 1829 const MachineFrameInfo *MFI = nullptr; 1830 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1831 MFI = &MF->getFrameInfo(); 1832 Context = &MF->getFunction().getContext(); 1833 } else { 1834 CtxPtr = std::make_unique<LLVMContext>(); 1835 Context = CtxPtr.get(); 1836 } 1837 1838 OS << " :: "; 1839 bool NeedComma = false; 1840 for (const MachineMemOperand *Op : memoperands()) { 1841 if (NeedComma) 1842 OS << ", "; 1843 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1844 NeedComma = true; 1845 } 1846 } 1847 1848 if (SkipDebugLoc) 1849 return; 1850 1851 bool HaveSemi = false; 1852 1853 // Print debug location information. 1854 if (const DebugLoc &DL = getDebugLoc()) { 1855 if (!HaveSemi) { 1856 OS << ';'; 1857 HaveSemi = true; 1858 } 1859 OS << ' '; 1860 DL.print(OS); 1861 } 1862 1863 // Print extra comments for DEBUG_VALUE. 1864 if (isDebugValue() && getDebugVariableOp().isMetadata()) { 1865 if (!HaveSemi) { 1866 OS << ";"; 1867 HaveSemi = true; 1868 } 1869 auto *DV = getDebugVariable(); 1870 OS << " line no:" << DV->getLine(); 1871 if (isIndirectDebugValue()) 1872 OS << " indirect"; 1873 } 1874 // TODO: DBG_LABEL 1875 1876 if (AddNewLine) 1877 OS << '\n'; 1878 } 1879 1880 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1881 const TargetRegisterInfo *RegInfo, 1882 bool AddIfNotFound) { 1883 bool isPhysReg = Register::isPhysicalRegister(IncomingReg); 1884 bool hasAliases = isPhysReg && 1885 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1886 bool Found = false; 1887 SmallVector<unsigned,4> DeadOps; 1888 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1889 MachineOperand &MO = getOperand(i); 1890 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1891 continue; 1892 1893 // DEBUG_VALUE nodes do not contribute to code generation and should 1894 // always be ignored. Failure to do so may result in trying to modify 1895 // KILL flags on DEBUG_VALUE nodes. 1896 if (MO.isDebug()) 1897 continue; 1898 1899 Register Reg = MO.getReg(); 1900 if (!Reg) 1901 continue; 1902 1903 if (Reg == IncomingReg) { 1904 if (!Found) { 1905 if (MO.isKill()) 1906 // The register is already marked kill. 1907 return true; 1908 if (isPhysReg && isRegTiedToDefOperand(i)) 1909 // Two-address uses of physregs must not be marked kill. 1910 return true; 1911 MO.setIsKill(); 1912 Found = true; 1913 } 1914 } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { 1915 // A super-register kill already exists. 1916 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1917 return true; 1918 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1919 DeadOps.push_back(i); 1920 } 1921 } 1922 1923 // Trim unneeded kill operands. 1924 while (!DeadOps.empty()) { 1925 unsigned OpIdx = DeadOps.back(); 1926 if (getOperand(OpIdx).isImplicit() && 1927 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1928 RemoveOperand(OpIdx); 1929 else 1930 getOperand(OpIdx).setIsKill(false); 1931 DeadOps.pop_back(); 1932 } 1933 1934 // If not found, this means an alias of one of the operands is killed. Add a 1935 // new implicit operand if required. 1936 if (!Found && AddIfNotFound) { 1937 addOperand(MachineOperand::CreateReg(IncomingReg, 1938 false /*IsDef*/, 1939 true /*IsImp*/, 1940 true /*IsKill*/)); 1941 return true; 1942 } 1943 return Found; 1944 } 1945 1946 void MachineInstr::clearRegisterKills(Register Reg, 1947 const TargetRegisterInfo *RegInfo) { 1948 if (!Register::isPhysicalRegister(Reg)) 1949 RegInfo = nullptr; 1950 for (MachineOperand &MO : operands()) { 1951 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1952 continue; 1953 Register OpReg = MO.getReg(); 1954 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1955 MO.setIsKill(false); 1956 } 1957 } 1958 1959 bool MachineInstr::addRegisterDead(Register Reg, 1960 const TargetRegisterInfo *RegInfo, 1961 bool AddIfNotFound) { 1962 bool isPhysReg = Register::isPhysicalRegister(Reg); 1963 bool hasAliases = isPhysReg && 1964 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1965 bool Found = false; 1966 SmallVector<unsigned,4> DeadOps; 1967 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1968 MachineOperand &MO = getOperand(i); 1969 if (!MO.isReg() || !MO.isDef()) 1970 continue; 1971 Register MOReg = MO.getReg(); 1972 if (!MOReg) 1973 continue; 1974 1975 if (MOReg == Reg) { 1976 MO.setIsDead(); 1977 Found = true; 1978 } else if (hasAliases && MO.isDead() && 1979 Register::isPhysicalRegister(MOReg)) { 1980 // There exists a super-register that's marked dead. 1981 if (RegInfo->isSuperRegister(Reg, MOReg)) 1982 return true; 1983 if (RegInfo->isSubRegister(Reg, MOReg)) 1984 DeadOps.push_back(i); 1985 } 1986 } 1987 1988 // Trim unneeded dead operands. 1989 while (!DeadOps.empty()) { 1990 unsigned OpIdx = DeadOps.back(); 1991 if (getOperand(OpIdx).isImplicit() && 1992 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1993 RemoveOperand(OpIdx); 1994 else 1995 getOperand(OpIdx).setIsDead(false); 1996 DeadOps.pop_back(); 1997 } 1998 1999 // If not found, this means an alias of one of the operands is dead. Add a 2000 // new implicit operand if required. 2001 if (Found || !AddIfNotFound) 2002 return Found; 2003 2004 addOperand(MachineOperand::CreateReg(Reg, 2005 true /*IsDef*/, 2006 true /*IsImp*/, 2007 false /*IsKill*/, 2008 true /*IsDead*/)); 2009 return true; 2010 } 2011 2012 void MachineInstr::clearRegisterDeads(Register Reg) { 2013 for (MachineOperand &MO : operands()) { 2014 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2015 continue; 2016 MO.setIsDead(false); 2017 } 2018 } 2019 2020 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2021 for (MachineOperand &MO : operands()) { 2022 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2023 continue; 2024 MO.setIsUndef(IsUndef); 2025 } 2026 } 2027 2028 void MachineInstr::addRegisterDefined(Register Reg, 2029 const TargetRegisterInfo *RegInfo) { 2030 if (Register::isPhysicalRegister(Reg)) { 2031 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 2032 if (MO) 2033 return; 2034 } else { 2035 for (const MachineOperand &MO : operands()) { 2036 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2037 MO.getSubReg() == 0) 2038 return; 2039 } 2040 } 2041 addOperand(MachineOperand::CreateReg(Reg, 2042 true /*IsDef*/, 2043 true /*IsImp*/)); 2044 } 2045 2046 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2047 const TargetRegisterInfo &TRI) { 2048 bool HasRegMask = false; 2049 for (MachineOperand &MO : operands()) { 2050 if (MO.isRegMask()) { 2051 HasRegMask = true; 2052 continue; 2053 } 2054 if (!MO.isReg() || !MO.isDef()) continue; 2055 Register Reg = MO.getReg(); 2056 if (!Reg.isPhysical()) 2057 continue; 2058 // If there are no uses, including partial uses, the def is dead. 2059 if (llvm::none_of(UsedRegs, 2060 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2061 MO.setIsDead(); 2062 } 2063 2064 // This is a call with a register mask operand. 2065 // Mask clobbers are always dead, so add defs for the non-dead defines. 2066 if (HasRegMask) 2067 for (const Register &UsedReg : UsedRegs) 2068 addRegisterDefined(UsedReg, &TRI); 2069 } 2070 2071 unsigned 2072 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2073 // Build up a buffer of hash code components. 2074 SmallVector<size_t, 16> HashComponents; 2075 HashComponents.reserve(MI->getNumOperands() + 1); 2076 HashComponents.push_back(MI->getOpcode()); 2077 for (const MachineOperand &MO : MI->operands()) { 2078 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 2079 continue; // Skip virtual register defs. 2080 2081 HashComponents.push_back(hash_value(MO)); 2082 } 2083 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2084 } 2085 2086 void MachineInstr::emitError(StringRef Msg) const { 2087 // Find the source location cookie. 2088 unsigned LocCookie = 0; 2089 const MDNode *LocMD = nullptr; 2090 for (unsigned i = getNumOperands(); i != 0; --i) { 2091 if (getOperand(i-1).isMetadata() && 2092 (LocMD = getOperand(i-1).getMetadata()) && 2093 LocMD->getNumOperands() != 0) { 2094 if (const ConstantInt *CI = 2095 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2096 LocCookie = CI->getZExtValue(); 2097 break; 2098 } 2099 } 2100 } 2101 2102 if (const MachineBasicBlock *MBB = getParent()) 2103 if (const MachineFunction *MF = MBB->getParent()) 2104 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2105 report_fatal_error(Msg); 2106 } 2107 2108 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2109 const MCInstrDesc &MCID, bool IsIndirect, 2110 Register Reg, const MDNode *Variable, 2111 const MDNode *Expr) { 2112 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2113 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2114 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2115 "Expected inlined-at fields to agree"); 2116 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); 2117 if (IsIndirect) 2118 MIB.addImm(0U); 2119 else 2120 MIB.addReg(0U, RegState::Debug); 2121 return MIB.addMetadata(Variable).addMetadata(Expr); 2122 } 2123 2124 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2125 const MCInstrDesc &MCID, bool IsIndirect, 2126 const MachineOperand &MO, 2127 const MDNode *Variable, const MDNode *Expr) { 2128 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2129 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2130 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2131 "Expected inlined-at fields to agree"); 2132 if (MO.isReg()) 2133 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); 2134 2135 auto MIB = BuildMI(MF, DL, MCID).add(MO); 2136 if (IsIndirect) 2137 MIB.addImm(0U); 2138 else 2139 MIB.addReg(0U, RegState::Debug); 2140 return MIB.addMetadata(Variable).addMetadata(Expr); 2141 } 2142 2143 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2144 const MCInstrDesc &MCID, bool IsIndirect, 2145 ArrayRef<MachineOperand> MOs, 2146 const MDNode *Variable, const MDNode *Expr) { 2147 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2148 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2149 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2150 "Expected inlined-at fields to agree"); 2151 if (MCID.Opcode == TargetOpcode::DBG_VALUE) 2152 return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr); 2153 2154 auto MIB = BuildMI(MF, DL, MCID); 2155 MIB.addMetadata(Variable).addMetadata(Expr); 2156 for (const MachineOperand &MO : MOs) 2157 if (MO.isReg()) 2158 MIB.addReg(MO.getReg(), RegState::Debug); 2159 else 2160 MIB.add(MO); 2161 return MIB; 2162 } 2163 2164 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2165 MachineBasicBlock::iterator I, 2166 const DebugLoc &DL, const MCInstrDesc &MCID, 2167 bool IsIndirect, Register Reg, 2168 const MDNode *Variable, const MDNode *Expr) { 2169 MachineFunction &MF = *BB.getParent(); 2170 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2171 BB.insert(I, MI); 2172 return MachineInstrBuilder(MF, MI); 2173 } 2174 2175 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2176 MachineBasicBlock::iterator I, 2177 const DebugLoc &DL, const MCInstrDesc &MCID, 2178 bool IsIndirect, MachineOperand &MO, 2179 const MDNode *Variable, const MDNode *Expr) { 2180 MachineFunction &MF = *BB.getParent(); 2181 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); 2182 BB.insert(I, MI); 2183 return MachineInstrBuilder(MF, *MI); 2184 } 2185 2186 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2187 MachineBasicBlock::iterator I, 2188 const DebugLoc &DL, const MCInstrDesc &MCID, 2189 bool IsIndirect, ArrayRef<MachineOperand> MOs, 2190 const MDNode *Variable, const MDNode *Expr) { 2191 MachineFunction &MF = *BB.getParent(); 2192 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr); 2193 BB.insert(I, MI); 2194 return MachineInstrBuilder(MF, *MI); 2195 } 2196 2197 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2198 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2199 static const DIExpression * 2200 computeExprForSpill(const MachineInstr &MI, 2201 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2202 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2203 "Expected inlined-at fields to agree"); 2204 2205 const DIExpression *Expr = MI.getDebugExpression(); 2206 if (MI.isIndirectDebugValue()) { 2207 assert(MI.getDebugOffset().getImm() == 0 && 2208 "DBG_VALUE with nonzero offset"); 2209 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2210 } else if (MI.isDebugValueList()) { 2211 // We will replace the spilled register with a frame index, so 2212 // immediately deref all references to the spilled register. 2213 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; 2214 for (const MachineOperand *Op : SpilledOperands) { 2215 unsigned OpIdx = MI.getDebugOperandIndex(Op); 2216 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); 2217 } 2218 } 2219 return Expr; 2220 } 2221 static const DIExpression *computeExprForSpill(const MachineInstr &MI, 2222 Register SpillReg) { 2223 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); 2224 SmallVector<const MachineOperand *> SpillOperands; 2225 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) 2226 SpillOperands.push_back(&Op); 2227 return computeExprForSpill(MI, SpillOperands); 2228 } 2229 2230 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2231 MachineBasicBlock::iterator I, 2232 const MachineInstr &Orig, 2233 int FrameIndex, Register SpillReg) { 2234 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); 2235 MachineInstrBuilder NewMI = 2236 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2237 // Non-Variadic Operands: Location, Offset, Variable, Expression 2238 // Variadic Operands: Variable, Expression, Locations... 2239 if (Orig.isNonListDebugValue()) 2240 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2241 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2242 if (Orig.isDebugValueList()) { 2243 for (const MachineOperand &Op : Orig.debug_operands()) 2244 if (Op.isReg() && Op.getReg() == SpillReg) 2245 NewMI.addFrameIndex(FrameIndex); 2246 else 2247 NewMI.add(MachineOperand(Op)); 2248 } 2249 return NewMI; 2250 } 2251 MachineInstr *llvm::buildDbgValueForSpill( 2252 MachineBasicBlock &BB, MachineBasicBlock::iterator I, 2253 const MachineInstr &Orig, int FrameIndex, 2254 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2255 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); 2256 MachineInstrBuilder NewMI = 2257 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2258 // Non-Variadic Operands: Location, Offset, Variable, Expression 2259 // Variadic Operands: Variable, Expression, Locations... 2260 if (Orig.isNonListDebugValue()) 2261 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2262 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2263 if (Orig.isDebugValueList()) { 2264 for (const MachineOperand &Op : Orig.debug_operands()) 2265 if (is_contained(SpilledOperands, &Op)) 2266 NewMI.addFrameIndex(FrameIndex); 2267 else 2268 NewMI.add(MachineOperand(Op)); 2269 } 2270 return NewMI; 2271 } 2272 2273 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, 2274 Register Reg) { 2275 const DIExpression *Expr = computeExprForSpill(Orig, Reg); 2276 if (Orig.isNonListDebugValue()) 2277 Orig.getDebugOffset().ChangeToImmediate(0U); 2278 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) 2279 Op.ChangeToFrameIndex(FrameIndex); 2280 Orig.getDebugExpressionOp().setMetadata(Expr); 2281 } 2282 2283 void MachineInstr::collectDebugValues( 2284 SmallVectorImpl<MachineInstr *> &DbgValues) { 2285 MachineInstr &MI = *this; 2286 if (!MI.getOperand(0).isReg()) 2287 return; 2288 2289 MachineBasicBlock::iterator DI = MI; ++DI; 2290 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2291 DI != DE; ++DI) { 2292 if (!DI->isDebugValue()) 2293 return; 2294 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) 2295 DbgValues.push_back(&*DI); 2296 } 2297 } 2298 2299 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2300 // Collect matching debug values. 2301 SmallVector<MachineInstr *, 2> DbgValues; 2302 2303 if (!getOperand(0).isReg()) 2304 return; 2305 2306 Register DefReg = getOperand(0).getReg(); 2307 auto *MRI = getRegInfo(); 2308 for (auto &MO : MRI->use_operands(DefReg)) { 2309 auto *DI = MO.getParent(); 2310 if (!DI->isDebugValue()) 2311 continue; 2312 if (DI->hasDebugOperandForReg(DefReg)) { 2313 DbgValues.push_back(DI); 2314 } 2315 } 2316 2317 // Propagate Reg to debug value instructions. 2318 for (auto *DBI : DbgValues) 2319 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) 2320 Op.setReg(Reg); 2321 } 2322 2323 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2324 2325 static unsigned getSpillSlotSize(const MMOList &Accesses, 2326 const MachineFrameInfo &MFI) { 2327 unsigned Size = 0; 2328 for (auto A : Accesses) 2329 if (MFI.isSpillSlotObjectIndex( 2330 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2331 ->getFrameIndex())) 2332 Size += A->getSize(); 2333 return Size; 2334 } 2335 2336 Optional<unsigned> 2337 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2338 int FI; 2339 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2340 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2341 if (MFI.isSpillSlotObjectIndex(FI)) 2342 return (*memoperands_begin())->getSize(); 2343 } 2344 return None; 2345 } 2346 2347 Optional<unsigned> 2348 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2349 MMOList Accesses; 2350 if (TII->hasStoreToStackSlot(*this, Accesses)) 2351 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2352 return None; 2353 } 2354 2355 Optional<unsigned> 2356 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2357 int FI; 2358 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2359 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2360 if (MFI.isSpillSlotObjectIndex(FI)) 2361 return (*memoperands_begin())->getSize(); 2362 } 2363 return None; 2364 } 2365 2366 Optional<unsigned> 2367 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2368 MMOList Accesses; 2369 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2370 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2371 return None; 2372 } 2373 2374 unsigned MachineInstr::getDebugInstrNum() { 2375 if (DebugInstrNum == 0) 2376 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2377 return DebugInstrNum; 2378 } 2379