1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Assembly/Writer.h" 19 #include "llvm/CodeGen/MachineConstantPool.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/DebugInfo.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/MC/MCInstrDesc.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/LeakDetector.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetInstrInfo.h" 42 #include "llvm/Target/TargetMachine.h" 43 #include "llvm/Target/TargetRegisterInfo.h" 44 using namespace llvm; 45 46 //===----------------------------------------------------------------------===// 47 // MachineOperand Implementation 48 //===----------------------------------------------------------------------===// 49 50 void MachineOperand::setReg(unsigned Reg) { 51 if (getReg() == Reg) return; // No change. 52 53 // Otherwise, we have to change the register. If this operand is embedded 54 // into a machine function, we need to update the old and new register's 55 // use/def lists. 56 if (MachineInstr *MI = getParent()) 57 if (MachineBasicBlock *MBB = MI->getParent()) 58 if (MachineFunction *MF = MBB->getParent()) { 59 MachineRegisterInfo &MRI = MF->getRegInfo(); 60 MRI.removeRegOperandFromUseList(this); 61 SmallContents.RegNo = Reg; 62 MRI.addRegOperandToUseList(this); 63 return; 64 } 65 66 // Otherwise, just change the register, no problem. :) 67 SmallContents.RegNo = Reg; 68 } 69 70 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 71 const TargetRegisterInfo &TRI) { 72 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 73 if (SubIdx && getSubReg()) 74 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 75 setReg(Reg); 76 if (SubIdx) 77 setSubReg(SubIdx); 78 } 79 80 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 82 if (getSubReg()) { 83 Reg = TRI.getSubReg(Reg, getSubReg()); 84 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 85 // That won't happen in legal code. 86 setSubReg(0); 87 } 88 setReg(Reg); 89 } 90 91 /// Change a def to a use, or a use to a def. 92 void MachineOperand::setIsDef(bool Val) { 93 assert(isReg() && "Wrong MachineOperand accessor"); 94 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 95 if (IsDef == Val) 96 return; 97 // MRI may keep uses and defs in different list positions. 98 if (MachineInstr *MI = getParent()) 99 if (MachineBasicBlock *MBB = MI->getParent()) 100 if (MachineFunction *MF = MBB->getParent()) { 101 MachineRegisterInfo &MRI = MF->getRegInfo(); 102 MRI.removeRegOperandFromUseList(this); 103 IsDef = Val; 104 MRI.addRegOperandToUseList(this); 105 return; 106 } 107 IsDef = Val; 108 } 109 110 /// ChangeToImmediate - Replace this operand with a new immediate operand of 111 /// the specified value. If an operand is known to be an immediate already, 112 /// the setImm method should be used. 113 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 114 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 115 // If this operand is currently a register operand, and if this is in a 116 // function, deregister the operand from the register's use/def list. 117 if (isReg() && isOnRegUseList()) 118 if (MachineInstr *MI = getParent()) 119 if (MachineBasicBlock *MBB = MI->getParent()) 120 if (MachineFunction *MF = MBB->getParent()) 121 MF->getRegInfo().removeRegOperandFromUseList(this); 122 123 OpKind = MO_Immediate; 124 Contents.ImmVal = ImmVal; 125 } 126 127 /// ChangeToRegister - Replace this operand with a new register operand of 128 /// the specified value. If an operand is known to be an register already, 129 /// the setReg method should be used. 130 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 131 bool isKill, bool isDead, bool isUndef, 132 bool isDebug) { 133 MachineRegisterInfo *RegInfo = 0; 134 if (MachineInstr *MI = getParent()) 135 if (MachineBasicBlock *MBB = MI->getParent()) 136 if (MachineFunction *MF = MBB->getParent()) 137 RegInfo = &MF->getRegInfo(); 138 // If this operand is already a register operand, remove it from the 139 // register's use/def lists. 140 bool WasReg = isReg(); 141 if (RegInfo && WasReg) 142 RegInfo->removeRegOperandFromUseList(this); 143 144 // Change this to a register and set the reg#. 145 OpKind = MO_Register; 146 SmallContents.RegNo = Reg; 147 SubReg = 0; 148 IsDef = isDef; 149 IsImp = isImp; 150 IsKill = isKill; 151 IsDead = isDead; 152 IsUndef = isUndef; 153 IsInternalRead = false; 154 IsEarlyClobber = false; 155 IsDebug = isDebug; 156 // Ensure isOnRegUseList() returns false. 157 Contents.Reg.Prev = 0; 158 // Preserve the tie when the operand was already a register. 159 if (!WasReg) 160 TiedTo = 0; 161 162 // If this operand is embedded in a function, add the operand to the 163 // register's use/def list. 164 if (RegInfo) 165 RegInfo->addRegOperandToUseList(this); 166 } 167 168 /// isIdenticalTo - Return true if this operand is identical to the specified 169 /// operand. Note that this should stay in sync with the hash_value overload 170 /// below. 171 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 172 if (getType() != Other.getType() || 173 getTargetFlags() != Other.getTargetFlags()) 174 return false; 175 176 switch (getType()) { 177 case MachineOperand::MO_Register: 178 return getReg() == Other.getReg() && isDef() == Other.isDef() && 179 getSubReg() == Other.getSubReg(); 180 case MachineOperand::MO_Immediate: 181 return getImm() == Other.getImm(); 182 case MachineOperand::MO_CImmediate: 183 return getCImm() == Other.getCImm(); 184 case MachineOperand::MO_FPImmediate: 185 return getFPImm() == Other.getFPImm(); 186 case MachineOperand::MO_MachineBasicBlock: 187 return getMBB() == Other.getMBB(); 188 case MachineOperand::MO_FrameIndex: 189 return getIndex() == Other.getIndex(); 190 case MachineOperand::MO_ConstantPoolIndex: 191 case MachineOperand::MO_TargetIndex: 192 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 193 case MachineOperand::MO_JumpTableIndex: 194 return getIndex() == Other.getIndex(); 195 case MachineOperand::MO_GlobalAddress: 196 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 197 case MachineOperand::MO_ExternalSymbol: 198 return !strcmp(getSymbolName(), Other.getSymbolName()) && 199 getOffset() == Other.getOffset(); 200 case MachineOperand::MO_BlockAddress: 201 return getBlockAddress() == Other.getBlockAddress() && 202 getOffset() == Other.getOffset(); 203 case MO_RegisterMask: 204 return getRegMask() == Other.getRegMask(); 205 case MachineOperand::MO_MCSymbol: 206 return getMCSymbol() == Other.getMCSymbol(); 207 case MachineOperand::MO_Metadata: 208 return getMetadata() == Other.getMetadata(); 209 } 210 llvm_unreachable("Invalid machine operand type"); 211 } 212 213 // Note: this must stay exactly in sync with isIdenticalTo above. 214 hash_code llvm::hash_value(const MachineOperand &MO) { 215 switch (MO.getType()) { 216 case MachineOperand::MO_Register: 217 // Register operands don't have target flags. 218 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 219 case MachineOperand::MO_Immediate: 220 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 221 case MachineOperand::MO_CImmediate: 222 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 223 case MachineOperand::MO_FPImmediate: 224 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 225 case MachineOperand::MO_MachineBasicBlock: 226 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 227 case MachineOperand::MO_FrameIndex: 228 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 229 case MachineOperand::MO_ConstantPoolIndex: 230 case MachineOperand::MO_TargetIndex: 231 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 232 MO.getOffset()); 233 case MachineOperand::MO_JumpTableIndex: 234 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 235 case MachineOperand::MO_ExternalSymbol: 236 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 237 MO.getSymbolName()); 238 case MachineOperand::MO_GlobalAddress: 239 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 240 MO.getOffset()); 241 case MachineOperand::MO_BlockAddress: 242 return hash_combine(MO.getType(), MO.getTargetFlags(), 243 MO.getBlockAddress(), MO.getOffset()); 244 case MachineOperand::MO_RegisterMask: 245 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 246 case MachineOperand::MO_Metadata: 247 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 248 case MachineOperand::MO_MCSymbol: 249 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 250 } 251 llvm_unreachable("Invalid machine operand type"); 252 } 253 254 /// print - Print the specified machine operand. 255 /// 256 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 257 // If the instruction is embedded into a basic block, we can find the 258 // target info for the instruction. 259 if (!TM) 260 if (const MachineInstr *MI = getParent()) 261 if (const MachineBasicBlock *MBB = MI->getParent()) 262 if (const MachineFunction *MF = MBB->getParent()) 263 TM = &MF->getTarget(); 264 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 265 266 switch (getType()) { 267 case MachineOperand::MO_Register: 268 OS << PrintReg(getReg(), TRI, getSubReg()); 269 270 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 271 isInternalRead() || isEarlyClobber() || isTied()) { 272 OS << '<'; 273 bool NeedComma = false; 274 if (isDef()) { 275 if (NeedComma) OS << ','; 276 if (isEarlyClobber()) 277 OS << "earlyclobber,"; 278 if (isImplicit()) 279 OS << "imp-"; 280 OS << "def"; 281 NeedComma = true; 282 // <def,read-undef> only makes sense when getSubReg() is set. 283 // Don't clutter the output otherwise. 284 if (isUndef() && getSubReg()) 285 OS << ",read-undef"; 286 } else if (isImplicit()) { 287 OS << "imp-use"; 288 NeedComma = true; 289 } 290 291 if (isKill()) { 292 if (NeedComma) OS << ','; 293 OS << "kill"; 294 NeedComma = true; 295 } 296 if (isDead()) { 297 if (NeedComma) OS << ','; 298 OS << "dead"; 299 NeedComma = true; 300 } 301 if (isUndef() && isUse()) { 302 if (NeedComma) OS << ','; 303 OS << "undef"; 304 NeedComma = true; 305 } 306 if (isInternalRead()) { 307 if (NeedComma) OS << ','; 308 OS << "internal"; 309 NeedComma = true; 310 } 311 if (isTied()) { 312 if (NeedComma) OS << ','; 313 OS << "tied"; 314 if (TiedTo != 15) 315 OS << unsigned(TiedTo - 1); 316 NeedComma = true; 317 } 318 OS << '>'; 319 } 320 break; 321 case MachineOperand::MO_Immediate: 322 OS << getImm(); 323 break; 324 case MachineOperand::MO_CImmediate: 325 getCImm()->getValue().print(OS, false); 326 break; 327 case MachineOperand::MO_FPImmediate: 328 if (getFPImm()->getType()->isFloatTy()) 329 OS << getFPImm()->getValueAPF().convertToFloat(); 330 else 331 OS << getFPImm()->getValueAPF().convertToDouble(); 332 break; 333 case MachineOperand::MO_MachineBasicBlock: 334 OS << "<BB#" << getMBB()->getNumber() << ">"; 335 break; 336 case MachineOperand::MO_FrameIndex: 337 OS << "<fi#" << getIndex() << '>'; 338 break; 339 case MachineOperand::MO_ConstantPoolIndex: 340 OS << "<cp#" << getIndex(); 341 if (getOffset()) OS << "+" << getOffset(); 342 OS << '>'; 343 break; 344 case MachineOperand::MO_TargetIndex: 345 OS << "<ti#" << getIndex(); 346 if (getOffset()) OS << "+" << getOffset(); 347 OS << '>'; 348 break; 349 case MachineOperand::MO_JumpTableIndex: 350 OS << "<jt#" << getIndex() << '>'; 351 break; 352 case MachineOperand::MO_GlobalAddress: 353 OS << "<ga:"; 354 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 355 if (getOffset()) OS << "+" << getOffset(); 356 OS << '>'; 357 break; 358 case MachineOperand::MO_ExternalSymbol: 359 OS << "<es:" << getSymbolName(); 360 if (getOffset()) OS << "+" << getOffset(); 361 OS << '>'; 362 break; 363 case MachineOperand::MO_BlockAddress: 364 OS << '<'; 365 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 366 if (getOffset()) OS << "+" << getOffset(); 367 OS << '>'; 368 break; 369 case MachineOperand::MO_RegisterMask: 370 OS << "<regmask>"; 371 break; 372 case MachineOperand::MO_Metadata: 373 OS << '<'; 374 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 375 OS << '>'; 376 break; 377 case MachineOperand::MO_MCSymbol: 378 OS << "<MCSym=" << *getMCSymbol() << '>'; 379 break; 380 } 381 382 if (unsigned TF = getTargetFlags()) 383 OS << "[TF=" << TF << ']'; 384 } 385 386 //===----------------------------------------------------------------------===// 387 // MachineMemOperand Implementation 388 //===----------------------------------------------------------------------===// 389 390 /// getAddrSpace - Return the LLVM IR address space number that this pointer 391 /// points into. 392 unsigned MachinePointerInfo::getAddrSpace() const { 393 if (V == 0) return 0; 394 return cast<PointerType>(V->getType())->getAddressSpace(); 395 } 396 397 /// getConstantPool - Return a MachinePointerInfo record that refers to the 398 /// constant pool. 399 MachinePointerInfo MachinePointerInfo::getConstantPool() { 400 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 401 } 402 403 /// getFixedStack - Return a MachinePointerInfo record that refers to the 404 /// the specified FrameIndex. 405 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 406 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 407 } 408 409 MachinePointerInfo MachinePointerInfo::getJumpTable() { 410 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 411 } 412 413 MachinePointerInfo MachinePointerInfo::getGOT() { 414 return MachinePointerInfo(PseudoSourceValue::getGOT()); 415 } 416 417 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 418 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 419 } 420 421 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 422 uint64_t s, unsigned int a, 423 const MDNode *TBAAInfo, 424 const MDNode *Ranges) 425 : PtrInfo(ptrinfo), Size(s), 426 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 427 TBAAInfo(TBAAInfo), Ranges(Ranges) { 428 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 429 "invalid pointer value"); 430 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 431 assert((isLoad() || isStore()) && "Not a load/store!"); 432 } 433 434 /// Profile - Gather unique data for the object. 435 /// 436 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 437 ID.AddInteger(getOffset()); 438 ID.AddInteger(Size); 439 ID.AddPointer(getValue()); 440 ID.AddInteger(Flags); 441 } 442 443 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 444 // The Value and Offset may differ due to CSE. But the flags and size 445 // should be the same. 446 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 447 assert(MMO->getSize() == getSize() && "Size mismatch!"); 448 449 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 450 // Update the alignment value. 451 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 452 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 453 // Also update the base and offset, because the new alignment may 454 // not be applicable with the old ones. 455 PtrInfo = MMO->PtrInfo; 456 } 457 } 458 459 /// getAlignment - Return the minimum known alignment in bytes of the 460 /// actual memory reference. 461 uint64_t MachineMemOperand::getAlignment() const { 462 return MinAlign(getBaseAlignment(), getOffset()); 463 } 464 465 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 466 assert((MMO.isLoad() || MMO.isStore()) && 467 "SV has to be a load, store or both."); 468 469 if (MMO.isVolatile()) 470 OS << "Volatile "; 471 472 if (MMO.isLoad()) 473 OS << "LD"; 474 if (MMO.isStore()) 475 OS << "ST"; 476 OS << MMO.getSize(); 477 478 // Print the address information. 479 OS << "["; 480 if (!MMO.getValue()) 481 OS << "<unknown>"; 482 else 483 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 484 485 // If the alignment of the memory reference itself differs from the alignment 486 // of the base pointer, print the base alignment explicitly, next to the base 487 // pointer. 488 if (MMO.getBaseAlignment() != MMO.getAlignment()) 489 OS << "(align=" << MMO.getBaseAlignment() << ")"; 490 491 if (MMO.getOffset() != 0) 492 OS << "+" << MMO.getOffset(); 493 OS << "]"; 494 495 // Print the alignment of the reference. 496 if (MMO.getBaseAlignment() != MMO.getAlignment() || 497 MMO.getBaseAlignment() != MMO.getSize()) 498 OS << "(align=" << MMO.getAlignment() << ")"; 499 500 // Print TBAA info. 501 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 502 OS << "(tbaa="; 503 if (TBAAInfo->getNumOperands() > 0) 504 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 505 else 506 OS << "<unknown>"; 507 OS << ")"; 508 } 509 510 // Print nontemporal info. 511 if (MMO.isNonTemporal()) 512 OS << "(nontemporal)"; 513 514 return OS; 515 } 516 517 //===----------------------------------------------------------------------===// 518 // MachineInstr Implementation 519 //===----------------------------------------------------------------------===// 520 521 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 522 if (MCID->ImplicitDefs) 523 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 524 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 525 if (MCID->ImplicitUses) 526 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 527 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 528 } 529 530 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 531 /// implicit operands. It reserves space for the number of operands specified by 532 /// the MCInstrDesc. 533 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 534 const DebugLoc dl, bool NoImp) 535 : MCID(&tid), Parent(0), Operands(0), NumOperands(0), 536 Flags(0), AsmPrinterFlags(0), 537 NumMemRefs(0), MemRefs(0), debugLoc(dl) { 538 // Reserve space for the expected number of operands. 539 if (unsigned NumOps = MCID->getNumOperands() + 540 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 541 CapOperands = OperandCapacity::get(NumOps); 542 Operands = MF.allocateOperandArray(CapOperands); 543 } 544 545 if (!NoImp) 546 addImplicitDefUseOperands(MF); 547 // Make sure that we get added to a machine basicblock 548 LeakDetector::addGarbageObject(this); 549 } 550 551 /// MachineInstr ctor - Copies MachineInstr arg exactly 552 /// 553 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 554 : MCID(&MI.getDesc()), Parent(0), Operands(0), NumOperands(0), 555 Flags(0), AsmPrinterFlags(0), 556 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 557 debugLoc(MI.getDebugLoc()) { 558 CapOperands = OperandCapacity::get(MI.getNumOperands()); 559 Operands = MF.allocateOperandArray(CapOperands); 560 561 // Add operands 562 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 563 addOperand(MF, MI.getOperand(i)); 564 565 // Copy all the sensible flags. 566 setFlags(MI.Flags); 567 568 // Set parent to null. 569 Parent = 0; 570 571 LeakDetector::addGarbageObject(this); 572 } 573 574 MachineInstr::~MachineInstr() { 575 LeakDetector::removeGarbageObject(this); 576 #ifndef NDEBUG 577 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 578 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 579 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 580 "Reg operand def/use list corrupted"); 581 } 582 #endif 583 } 584 585 /// getRegInfo - If this instruction is embedded into a MachineFunction, 586 /// return the MachineRegisterInfo object for the current function, otherwise 587 /// return null. 588 MachineRegisterInfo *MachineInstr::getRegInfo() { 589 if (MachineBasicBlock *MBB = getParent()) 590 return &MBB->getParent()->getRegInfo(); 591 return 0; 592 } 593 594 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 595 /// this instruction from their respective use lists. This requires that the 596 /// operands already be on their use lists. 597 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 598 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 599 if (Operands[i].isReg()) 600 MRI.removeRegOperandFromUseList(&Operands[i]); 601 } 602 603 /// AddRegOperandsToUseLists - Add all of the register operands in 604 /// this instruction from their respective use lists. This requires that the 605 /// operands not be on their use lists yet. 606 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 607 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 608 if (Operands[i].isReg()) 609 MRI.addRegOperandToUseList(&Operands[i]); 610 } 611 612 void MachineInstr::addOperand(const MachineOperand &Op) { 613 MachineBasicBlock *MBB = getParent(); 614 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 615 MachineFunction *MF = MBB->getParent(); 616 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 617 addOperand(*MF, Op); 618 } 619 620 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 621 /// ranges. If MRI is non-null also update use-def chains. 622 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 623 unsigned NumOps, MachineRegisterInfo *MRI) { 624 if (MRI) 625 return MRI->moveOperands(Dst, Src, NumOps); 626 627 // Here it would be convenient to call memmove, so that isn't allowed because 628 // MachineOperand has a constructor and so isn't a POD type. 629 if (Dst < Src) 630 for (unsigned i = 0; i != NumOps; ++i) 631 new (Dst + i) MachineOperand(Src[i]); 632 else 633 for (unsigned i = NumOps; i ; --i) 634 new (Dst + i - 1) MachineOperand(Src[i - 1]); 635 } 636 637 /// addOperand - Add the specified operand to the instruction. If it is an 638 /// implicit operand, it is added to the end of the operand list. If it is 639 /// an explicit operand it is added at the end of the explicit operand list 640 /// (before the first implicit operand). 641 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 642 assert(MCID && "Cannot add operands before providing an instr descriptor"); 643 644 // Check if we're adding one of our existing operands. 645 if (&Op >= Operands && &Op < Operands + NumOperands) { 646 // This is unusual: MI->addOperand(MI->getOperand(i)). 647 // If adding Op requires reallocating or moving existing operands around, 648 // the Op reference could go stale. Support it by copying Op. 649 MachineOperand CopyOp(Op); 650 return addOperand(MF, CopyOp); 651 } 652 653 // Find the insert location for the new operand. Implicit registers go at 654 // the end, everything else goes before the implicit regs. 655 // 656 // FIXME: Allow mixed explicit and implicit operands on inline asm. 657 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 658 // implicit-defs, but they must not be moved around. See the FIXME in 659 // InstrEmitter.cpp. 660 unsigned OpNo = getNumOperands(); 661 bool isImpReg = Op.isReg() && Op.isImplicit(); 662 if (!isImpReg && !isInlineAsm()) { 663 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 664 --OpNo; 665 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 666 } 667 } 668 669 // OpNo now points as the desired insertion point. Unless this is a variadic 670 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 671 // RegMask operands go between the explicit and implicit operands. 672 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 673 OpNo < MCID->getNumOperands()) && 674 "Trying to add an operand to a machine instr that is already done!"); 675 676 MachineRegisterInfo *MRI = getRegInfo(); 677 678 // Determine if the Operands array needs to be reallocated. 679 // Save the old capacity and operand array. 680 OperandCapacity OldCap = CapOperands; 681 MachineOperand *OldOperands = Operands; 682 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 683 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 684 Operands = MF.allocateOperandArray(CapOperands); 685 // Move the operands before the insertion point. 686 if (OpNo) 687 moveOperands(Operands, OldOperands, OpNo, MRI); 688 } 689 690 // Move the operands following the insertion point. 691 if (OpNo != NumOperands) 692 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 693 MRI); 694 ++NumOperands; 695 696 // Deallocate the old operand array. 697 if (OldOperands != Operands && OldOperands) 698 MF.deallocateOperandArray(OldCap, OldOperands); 699 700 // Copy Op into place. It still needs to be inserted into the MRI use lists. 701 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 702 NewMO->ParentMI = this; 703 704 // When adding a register operand, tell MRI about it. 705 if (NewMO->isReg()) { 706 // Ensure isOnRegUseList() returns false, regardless of Op's status. 707 NewMO->Contents.Reg.Prev = 0; 708 // Ignore existing ties. This is not a property that can be copied. 709 NewMO->TiedTo = 0; 710 // Add the new operand to MRI, but only for instructions in an MBB. 711 if (MRI) 712 MRI->addRegOperandToUseList(NewMO); 713 // The MCID operand information isn't accurate until we start adding 714 // explicit operands. The implicit operands are added first, then the 715 // explicits are inserted before them. 716 if (!isImpReg) { 717 // Tie uses to defs as indicated in MCInstrDesc. 718 if (NewMO->isUse()) { 719 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 720 if (DefIdx != -1) 721 tieOperands(DefIdx, OpNo); 722 } 723 // If the register operand is flagged as early, mark the operand as such. 724 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 725 NewMO->setIsEarlyClobber(true); 726 } 727 } 728 } 729 730 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 731 /// fewer operand than it started with. 732 /// 733 void MachineInstr::RemoveOperand(unsigned OpNo) { 734 assert(OpNo < getNumOperands() && "Invalid operand number"); 735 untieRegOperand(OpNo); 736 737 #ifndef NDEBUG 738 // Moving tied operands would break the ties. 739 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 740 if (Operands[i].isReg()) 741 assert(!Operands[i].isTied() && "Cannot move tied operands"); 742 #endif 743 744 MachineRegisterInfo *MRI = getRegInfo(); 745 if (MRI && Operands[OpNo].isReg()) 746 MRI->removeRegOperandFromUseList(Operands + OpNo); 747 748 // Don't call the MachineOperand destructor. A lot of this code depends on 749 // MachineOperand having a trivial destructor anyway, and adding a call here 750 // wouldn't make it 'destructor-correct'. 751 752 if (unsigned N = NumOperands - 1 - OpNo) 753 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 754 --NumOperands; 755 } 756 757 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 758 /// This function should be used only occasionally. The setMemRefs function 759 /// is the primary method for setting up a MachineInstr's MemRefs list. 760 void MachineInstr::addMemOperand(MachineFunction &MF, 761 MachineMemOperand *MO) { 762 mmo_iterator OldMemRefs = MemRefs; 763 uint16_t OldNumMemRefs = NumMemRefs; 764 765 uint16_t NewNum = NumMemRefs + 1; 766 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 767 768 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 769 NewMemRefs[NewNum - 1] = MO; 770 771 MemRefs = NewMemRefs; 772 NumMemRefs = NewNum; 773 } 774 775 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 776 const MachineBasicBlock *MBB = getParent(); 777 MachineBasicBlock::const_instr_iterator MII = *this; ++MII; 778 while (MII != MBB->end() && MII->isInsideBundle()) { 779 if (MII->getDesc().getFlags() & Mask) { 780 if (Type == AnyInBundle) 781 return true; 782 } else { 783 if (Type == AllInBundle) 784 return false; 785 } 786 ++MII; 787 } 788 789 return Type == AllInBundle; 790 } 791 792 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 793 MICheckType Check) const { 794 // If opcodes or number of operands are not the same then the two 795 // instructions are obviously not identical. 796 if (Other->getOpcode() != getOpcode() || 797 Other->getNumOperands() != getNumOperands()) 798 return false; 799 800 if (isBundle()) { 801 // Both instructions are bundles, compare MIs inside the bundle. 802 MachineBasicBlock::const_instr_iterator I1 = *this; 803 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 804 MachineBasicBlock::const_instr_iterator I2 = *Other; 805 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 806 while (++I1 != E1 && I1->isInsideBundle()) { 807 ++I2; 808 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 809 return false; 810 } 811 } 812 813 // Check operands to make sure they match. 814 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 815 const MachineOperand &MO = getOperand(i); 816 const MachineOperand &OMO = Other->getOperand(i); 817 if (!MO.isReg()) { 818 if (!MO.isIdenticalTo(OMO)) 819 return false; 820 continue; 821 } 822 823 // Clients may or may not want to ignore defs when testing for equality. 824 // For example, machine CSE pass only cares about finding common 825 // subexpressions, so it's safe to ignore virtual register defs. 826 if (MO.isDef()) { 827 if (Check == IgnoreDefs) 828 continue; 829 else if (Check == IgnoreVRegDefs) { 830 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 831 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 832 if (MO.getReg() != OMO.getReg()) 833 return false; 834 } else { 835 if (!MO.isIdenticalTo(OMO)) 836 return false; 837 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 838 return false; 839 } 840 } else { 841 if (!MO.isIdenticalTo(OMO)) 842 return false; 843 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 844 return false; 845 } 846 } 847 // If DebugLoc does not match then two dbg.values are not identical. 848 if (isDebugValue()) 849 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 850 && getDebugLoc() != Other->getDebugLoc()) 851 return false; 852 return true; 853 } 854 855 MachineInstr *MachineInstr::removeFromParent() { 856 assert(getParent() && "Not embedded in a basic block!"); 857 return getParent()->remove(this); 858 } 859 860 MachineInstr *MachineInstr::removeFromBundle() { 861 assert(getParent() && "Not embedded in a basic block!"); 862 return getParent()->remove_instr(this); 863 } 864 865 void MachineInstr::eraseFromParent() { 866 assert(getParent() && "Not embedded in a basic block!"); 867 getParent()->erase(this); 868 } 869 870 void MachineInstr::eraseFromBundle() { 871 assert(getParent() && "Not embedded in a basic block!"); 872 getParent()->erase_instr(this); 873 } 874 875 /// getNumExplicitOperands - Returns the number of non-implicit operands. 876 /// 877 unsigned MachineInstr::getNumExplicitOperands() const { 878 unsigned NumOperands = MCID->getNumOperands(); 879 if (!MCID->isVariadic()) 880 return NumOperands; 881 882 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 883 const MachineOperand &MO = getOperand(i); 884 if (!MO.isReg() || !MO.isImplicit()) 885 NumOperands++; 886 } 887 return NumOperands; 888 } 889 890 void MachineInstr::bundleWithPred() { 891 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 892 setFlag(BundledPred); 893 MachineBasicBlock::instr_iterator Pred = this; 894 --Pred; 895 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 896 Pred->setFlag(BundledSucc); 897 } 898 899 void MachineInstr::bundleWithSucc() { 900 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 901 setFlag(BundledSucc); 902 MachineBasicBlock::instr_iterator Succ = this; 903 ++Succ; 904 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 905 Succ->setFlag(BundledPred); 906 } 907 908 void MachineInstr::unbundleFromPred() { 909 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 910 clearFlag(BundledPred); 911 MachineBasicBlock::instr_iterator Pred = this; 912 --Pred; 913 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 914 Pred->clearFlag(BundledSucc); 915 } 916 917 void MachineInstr::unbundleFromSucc() { 918 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 919 clearFlag(BundledSucc); 920 MachineBasicBlock::instr_iterator Succ = this; 921 --Succ; 922 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 923 Succ->clearFlag(BundledPred); 924 } 925 926 bool MachineInstr::isStackAligningInlineAsm() const { 927 if (isInlineAsm()) { 928 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 929 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 930 return true; 931 } 932 return false; 933 } 934 935 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 936 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 937 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 938 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 939 } 940 941 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 942 unsigned *GroupNo) const { 943 assert(isInlineAsm() && "Expected an inline asm instruction"); 944 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 945 946 // Ignore queries about the initial operands. 947 if (OpIdx < InlineAsm::MIOp_FirstOperand) 948 return -1; 949 950 unsigned Group = 0; 951 unsigned NumOps; 952 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 953 i += NumOps) { 954 const MachineOperand &FlagMO = getOperand(i); 955 // If we reach the implicit register operands, stop looking. 956 if (!FlagMO.isImm()) 957 return -1; 958 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 959 if (i + NumOps > OpIdx) { 960 if (GroupNo) 961 *GroupNo = Group; 962 return i; 963 } 964 ++Group; 965 } 966 return -1; 967 } 968 969 const TargetRegisterClass* 970 MachineInstr::getRegClassConstraint(unsigned OpIdx, 971 const TargetInstrInfo *TII, 972 const TargetRegisterInfo *TRI) const { 973 assert(getParent() && "Can't have an MBB reference here!"); 974 assert(getParent()->getParent() && "Can't have an MF reference here!"); 975 const MachineFunction &MF = *getParent()->getParent(); 976 977 // Most opcodes have fixed constraints in their MCInstrDesc. 978 if (!isInlineAsm()) 979 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 980 981 if (!getOperand(OpIdx).isReg()) 982 return NULL; 983 984 // For tied uses on inline asm, get the constraint from the def. 985 unsigned DefIdx; 986 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 987 OpIdx = DefIdx; 988 989 // Inline asm stores register class constraints in the flag word. 990 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 991 if (FlagIdx < 0) 992 return NULL; 993 994 unsigned Flag = getOperand(FlagIdx).getImm(); 995 unsigned RCID; 996 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 997 return TRI->getRegClass(RCID); 998 999 // Assume that all registers in a memory operand are pointers. 1000 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1001 return TRI->getPointerRegClass(MF); 1002 1003 return NULL; 1004 } 1005 1006 /// getBundleSize - Return the number of instructions inside the MI bundle. 1007 unsigned MachineInstr::getBundleSize() const { 1008 assert(isBundle() && "Expecting a bundle"); 1009 1010 const MachineBasicBlock *MBB = getParent(); 1011 MachineBasicBlock::const_instr_iterator I = *this, E = MBB->instr_end(); 1012 unsigned Size = 0; 1013 while ((++I != E) && I->isInsideBundle()) { 1014 ++Size; 1015 } 1016 assert(Size > 1 && "Malformed bundle"); 1017 1018 return Size; 1019 } 1020 1021 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1022 /// the specific register or -1 if it is not found. It further tightens 1023 /// the search criteria to a use that kills the register if isKill is true. 1024 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1025 const TargetRegisterInfo *TRI) const { 1026 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1027 const MachineOperand &MO = getOperand(i); 1028 if (!MO.isReg() || !MO.isUse()) 1029 continue; 1030 unsigned MOReg = MO.getReg(); 1031 if (!MOReg) 1032 continue; 1033 if (MOReg == Reg || 1034 (TRI && 1035 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1036 TargetRegisterInfo::isPhysicalRegister(Reg) && 1037 TRI->isSubRegister(MOReg, Reg))) 1038 if (!isKill || MO.isKill()) 1039 return i; 1040 } 1041 return -1; 1042 } 1043 1044 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1045 /// indicating if this instruction reads or writes Reg. This also considers 1046 /// partial defines. 1047 std::pair<bool,bool> 1048 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1049 SmallVectorImpl<unsigned> *Ops) const { 1050 bool PartDef = false; // Partial redefine. 1051 bool FullDef = false; // Full define. 1052 bool Use = false; 1053 1054 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1055 const MachineOperand &MO = getOperand(i); 1056 if (!MO.isReg() || MO.getReg() != Reg) 1057 continue; 1058 if (Ops) 1059 Ops->push_back(i); 1060 if (MO.isUse()) 1061 Use |= !MO.isUndef(); 1062 else if (MO.getSubReg() && !MO.isUndef()) 1063 // A partial <def,undef> doesn't count as reading the register. 1064 PartDef = true; 1065 else 1066 FullDef = true; 1067 } 1068 // A partial redefine uses Reg unless there is also a full define. 1069 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1070 } 1071 1072 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1073 /// the specified register or -1 if it is not found. If isDead is true, defs 1074 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1075 /// also checks if there is a def of a super-register. 1076 int 1077 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1078 const TargetRegisterInfo *TRI) const { 1079 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1080 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1081 const MachineOperand &MO = getOperand(i); 1082 // Accept regmask operands when Overlap is set. 1083 // Ignore them when looking for a specific def operand (Overlap == false). 1084 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1085 return i; 1086 if (!MO.isReg() || !MO.isDef()) 1087 continue; 1088 unsigned MOReg = MO.getReg(); 1089 bool Found = (MOReg == Reg); 1090 if (!Found && TRI && isPhys && 1091 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1092 if (Overlap) 1093 Found = TRI->regsOverlap(MOReg, Reg); 1094 else 1095 Found = TRI->isSubRegister(MOReg, Reg); 1096 } 1097 if (Found && (!isDead || MO.isDead())) 1098 return i; 1099 } 1100 return -1; 1101 } 1102 1103 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1104 /// operand list that is used to represent the predicate. It returns -1 if 1105 /// none is found. 1106 int MachineInstr::findFirstPredOperandIdx() const { 1107 // Don't call MCID.findFirstPredOperandIdx() because this variant 1108 // is sometimes called on an instruction that's not yet complete, and 1109 // so the number of operands is less than the MCID indicates. In 1110 // particular, the PTX target does this. 1111 const MCInstrDesc &MCID = getDesc(); 1112 if (MCID.isPredicable()) { 1113 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1114 if (MCID.OpInfo[i].isPredicate()) 1115 return i; 1116 } 1117 1118 return -1; 1119 } 1120 1121 // MachineOperand::TiedTo is 4 bits wide. 1122 const unsigned TiedMax = 15; 1123 1124 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1125 /// 1126 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1127 /// field. TiedTo can have these values: 1128 /// 1129 /// 0: Operand is not tied to anything. 1130 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1131 /// TiedMax: Tied to an operand >= TiedMax-1. 1132 /// 1133 /// The tied def must be one of the first TiedMax operands on a normal 1134 /// instruction. INLINEASM instructions allow more tied defs. 1135 /// 1136 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1137 MachineOperand &DefMO = getOperand(DefIdx); 1138 MachineOperand &UseMO = getOperand(UseIdx); 1139 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1140 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1141 assert(!DefMO.isTied() && "Def is already tied to another use"); 1142 assert(!UseMO.isTied() && "Use is already tied to another def"); 1143 1144 if (DefIdx < TiedMax) 1145 UseMO.TiedTo = DefIdx + 1; 1146 else { 1147 // Inline asm can use the group descriptors to find tied operands, but on 1148 // normal instruction, the tied def must be within the first TiedMax 1149 // operands. 1150 assert(isInlineAsm() && "DefIdx out of range"); 1151 UseMO.TiedTo = TiedMax; 1152 } 1153 1154 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1155 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1156 } 1157 1158 /// Given the index of a tied register operand, find the operand it is tied to. 1159 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1160 /// which must exist. 1161 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1162 const MachineOperand &MO = getOperand(OpIdx); 1163 assert(MO.isTied() && "Operand isn't tied"); 1164 1165 // Normally TiedTo is in range. 1166 if (MO.TiedTo < TiedMax) 1167 return MO.TiedTo - 1; 1168 1169 // Uses on normal instructions can be out of range. 1170 if (!isInlineAsm()) { 1171 // Normal tied defs must be in the 0..TiedMax-1 range. 1172 if (MO.isUse()) 1173 return TiedMax - 1; 1174 // MO is a def. Search for the tied use. 1175 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1176 const MachineOperand &UseMO = getOperand(i); 1177 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1178 return i; 1179 } 1180 llvm_unreachable("Can't find tied use"); 1181 } 1182 1183 // Now deal with inline asm by parsing the operand group descriptor flags. 1184 // Find the beginning of each operand group. 1185 SmallVector<unsigned, 8> GroupIdx; 1186 unsigned OpIdxGroup = ~0u; 1187 unsigned NumOps; 1188 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1189 i += NumOps) { 1190 const MachineOperand &FlagMO = getOperand(i); 1191 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1192 unsigned CurGroup = GroupIdx.size(); 1193 GroupIdx.push_back(i); 1194 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1195 // OpIdx belongs to this operand group. 1196 if (OpIdx > i && OpIdx < i + NumOps) 1197 OpIdxGroup = CurGroup; 1198 unsigned TiedGroup; 1199 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1200 continue; 1201 // Operands in this group are tied to operands in TiedGroup which must be 1202 // earlier. Find the number of operands between the two groups. 1203 unsigned Delta = i - GroupIdx[TiedGroup]; 1204 1205 // OpIdx is a use tied to TiedGroup. 1206 if (OpIdxGroup == CurGroup) 1207 return OpIdx - Delta; 1208 1209 // OpIdx is a def tied to this use group. 1210 if (OpIdxGroup == TiedGroup) 1211 return OpIdx + Delta; 1212 } 1213 llvm_unreachable("Invalid tied operand on inline asm"); 1214 } 1215 1216 /// clearKillInfo - Clears kill flags on all operands. 1217 /// 1218 void MachineInstr::clearKillInfo() { 1219 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1220 MachineOperand &MO = getOperand(i); 1221 if (MO.isReg() && MO.isUse()) 1222 MO.setIsKill(false); 1223 } 1224 } 1225 1226 void MachineInstr::substituteRegister(unsigned FromReg, 1227 unsigned ToReg, 1228 unsigned SubIdx, 1229 const TargetRegisterInfo &RegInfo) { 1230 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1231 if (SubIdx) 1232 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1233 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1234 MachineOperand &MO = getOperand(i); 1235 if (!MO.isReg() || MO.getReg() != FromReg) 1236 continue; 1237 MO.substPhysReg(ToReg, RegInfo); 1238 } 1239 } else { 1240 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1241 MachineOperand &MO = getOperand(i); 1242 if (!MO.isReg() || MO.getReg() != FromReg) 1243 continue; 1244 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1245 } 1246 } 1247 } 1248 1249 /// isSafeToMove - Return true if it is safe to move this instruction. If 1250 /// SawStore is set to true, it means that there is a store (or call) between 1251 /// the instruction's location and its intended destination. 1252 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1253 AliasAnalysis *AA, 1254 bool &SawStore) const { 1255 // Ignore stuff that we obviously can't move. 1256 // 1257 // Treat volatile loads as stores. This is not strictly necessary for 1258 // volatiles, but it is required for atomic loads. It is not allowed to move 1259 // a load across an atomic load with Ordering > Monotonic. 1260 if (mayStore() || isCall() || 1261 (mayLoad() && hasOrderedMemoryRef())) { 1262 SawStore = true; 1263 return false; 1264 } 1265 1266 if (isLabel() || isDebugValue() || 1267 isTerminator() || hasUnmodeledSideEffects()) 1268 return false; 1269 1270 // See if this instruction does a load. If so, we have to guarantee that the 1271 // loaded value doesn't change between the load and the its intended 1272 // destination. The check for isInvariantLoad gives the targe the chance to 1273 // classify the load as always returning a constant, e.g. a constant pool 1274 // load. 1275 if (mayLoad() && !isInvariantLoad(AA)) 1276 // Otherwise, this is a real load. If there is a store between the load and 1277 // end of block, we can't move it. 1278 return !SawStore; 1279 1280 return true; 1281 } 1282 1283 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1284 /// instruction which defined the specified register instead of copying it. 1285 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1286 AliasAnalysis *AA, 1287 unsigned DstReg) const { 1288 bool SawStore = false; 1289 if (!TII->isTriviallyReMaterializable(this, AA) || 1290 !isSafeToMove(TII, AA, SawStore)) 1291 return false; 1292 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1293 const MachineOperand &MO = getOperand(i); 1294 if (!MO.isReg()) 1295 continue; 1296 // FIXME: For now, do not remat any instruction with register operands. 1297 // Later on, we can loosen the restriction is the register operands have 1298 // not been modified between the def and use. Note, this is different from 1299 // MachineSink because the code is no longer in two-address form (at least 1300 // partially). 1301 if (MO.isUse()) 1302 return false; 1303 else if (!MO.isDead() && MO.getReg() != DstReg) 1304 return false; 1305 } 1306 return true; 1307 } 1308 1309 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1310 /// or volatile memory reference, or if the information describing the memory 1311 /// reference is not available. Return false if it is known to have no ordered 1312 /// memory references. 1313 bool MachineInstr::hasOrderedMemoryRef() const { 1314 // An instruction known never to access memory won't have a volatile access. 1315 if (!mayStore() && 1316 !mayLoad() && 1317 !isCall() && 1318 !hasUnmodeledSideEffects()) 1319 return false; 1320 1321 // Otherwise, if the instruction has no memory reference information, 1322 // conservatively assume it wasn't preserved. 1323 if (memoperands_empty()) 1324 return true; 1325 1326 // Check the memory reference information for ordered references. 1327 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1328 if (!(*I)->isUnordered()) 1329 return true; 1330 1331 return false; 1332 } 1333 1334 /// isInvariantLoad - Return true if this instruction is loading from a 1335 /// location whose value is invariant across the function. For example, 1336 /// loading a value from the constant pool or from the argument area 1337 /// of a function if it does not change. This should only return true of 1338 /// *all* loads the instruction does are invariant (if it does multiple loads). 1339 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1340 // If the instruction doesn't load at all, it isn't an invariant load. 1341 if (!mayLoad()) 1342 return false; 1343 1344 // If the instruction has lost its memoperands, conservatively assume that 1345 // it may not be an invariant load. 1346 if (memoperands_empty()) 1347 return false; 1348 1349 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1350 1351 for (mmo_iterator I = memoperands_begin(), 1352 E = memoperands_end(); I != E; ++I) { 1353 if ((*I)->isVolatile()) return false; 1354 if ((*I)->isStore()) return false; 1355 if ((*I)->isInvariant()) return true; 1356 1357 if (const Value *V = (*I)->getValue()) { 1358 // A load from a constant PseudoSourceValue is invariant. 1359 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1360 if (PSV->isConstant(MFI)) 1361 continue; 1362 // If we have an AliasAnalysis, ask it whether the memory is constant. 1363 if (AA && AA->pointsToConstantMemory( 1364 AliasAnalysis::Location(V, (*I)->getSize(), 1365 (*I)->getTBAAInfo()))) 1366 continue; 1367 } 1368 1369 // Otherwise assume conservatively. 1370 return false; 1371 } 1372 1373 // Everything checks out. 1374 return true; 1375 } 1376 1377 /// isConstantValuePHI - If the specified instruction is a PHI that always 1378 /// merges together the same virtual register, return the register, otherwise 1379 /// return 0. 1380 unsigned MachineInstr::isConstantValuePHI() const { 1381 if (!isPHI()) 1382 return 0; 1383 assert(getNumOperands() >= 3 && 1384 "It's illegal to have a PHI without source operands"); 1385 1386 unsigned Reg = getOperand(1).getReg(); 1387 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1388 if (getOperand(i).getReg() != Reg) 1389 return 0; 1390 return Reg; 1391 } 1392 1393 bool MachineInstr::hasUnmodeledSideEffects() const { 1394 if (hasProperty(MCID::UnmodeledSideEffects)) 1395 return true; 1396 if (isInlineAsm()) { 1397 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1398 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1399 return true; 1400 } 1401 1402 return false; 1403 } 1404 1405 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1406 /// 1407 bool MachineInstr::allDefsAreDead() const { 1408 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1409 const MachineOperand &MO = getOperand(i); 1410 if (!MO.isReg() || MO.isUse()) 1411 continue; 1412 if (!MO.isDead()) 1413 return false; 1414 } 1415 return true; 1416 } 1417 1418 /// copyImplicitOps - Copy implicit register operands from specified 1419 /// instruction to this instruction. 1420 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1421 const MachineInstr *MI) { 1422 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1423 i != e; ++i) { 1424 const MachineOperand &MO = MI->getOperand(i); 1425 if (MO.isReg() && MO.isImplicit()) 1426 addOperand(MF, MO); 1427 } 1428 } 1429 1430 void MachineInstr::dump() const { 1431 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1432 dbgs() << " " << *this; 1433 #endif 1434 } 1435 1436 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1437 raw_ostream &CommentOS) { 1438 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1439 if (!DL.isUnknown()) { // Print source line info. 1440 DIScope Scope(DL.getScope(Ctx)); 1441 // Omit the directory, because it's likely to be long and uninteresting. 1442 if (Scope.Verify()) 1443 CommentOS << Scope.getFilename(); 1444 else 1445 CommentOS << "<unknown>"; 1446 CommentOS << ':' << DL.getLine(); 1447 if (DL.getCol() != 0) 1448 CommentOS << ':' << DL.getCol(); 1449 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1450 if (!InlinedAtDL.isUnknown()) { 1451 CommentOS << " @[ "; 1452 printDebugLoc(InlinedAtDL, MF, CommentOS); 1453 CommentOS << " ]"; 1454 } 1455 } 1456 } 1457 1458 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1459 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1460 const MachineFunction *MF = 0; 1461 const MachineRegisterInfo *MRI = 0; 1462 if (const MachineBasicBlock *MBB = getParent()) { 1463 MF = MBB->getParent(); 1464 if (!TM && MF) 1465 TM = &MF->getTarget(); 1466 if (MF) 1467 MRI = &MF->getRegInfo(); 1468 } 1469 1470 // Save a list of virtual registers. 1471 SmallVector<unsigned, 8> VirtRegs; 1472 1473 // Print explicitly defined operands on the left of an assignment syntax. 1474 unsigned StartOp = 0, e = getNumOperands(); 1475 for (; StartOp < e && getOperand(StartOp).isReg() && 1476 getOperand(StartOp).isDef() && 1477 !getOperand(StartOp).isImplicit(); 1478 ++StartOp) { 1479 if (StartOp != 0) OS << ", "; 1480 getOperand(StartOp).print(OS, TM); 1481 unsigned Reg = getOperand(StartOp).getReg(); 1482 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1483 VirtRegs.push_back(Reg); 1484 } 1485 1486 if (StartOp != 0) 1487 OS << " = "; 1488 1489 // Print the opcode name. 1490 if (TM && TM->getInstrInfo()) 1491 OS << TM->getInstrInfo()->getName(getOpcode()); 1492 else 1493 OS << "UNKNOWN"; 1494 1495 // Print the rest of the operands. 1496 bool OmittedAnyCallClobbers = false; 1497 bool FirstOp = true; 1498 unsigned AsmDescOp = ~0u; 1499 unsigned AsmOpCount = 0; 1500 1501 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1502 // Print asm string. 1503 OS << " "; 1504 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1505 1506 // Print HasSideEffects, IsAlignStack 1507 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1508 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1509 OS << " [sideeffect]"; 1510 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1511 OS << " [alignstack]"; 1512 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1513 OS << " [attdialect]"; 1514 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1515 OS << " [inteldialect]"; 1516 1517 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1518 FirstOp = false; 1519 } 1520 1521 1522 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1523 const MachineOperand &MO = getOperand(i); 1524 1525 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1526 VirtRegs.push_back(MO.getReg()); 1527 1528 // Omit call-clobbered registers which aren't used anywhere. This makes 1529 // call instructions much less noisy on targets where calls clobber lots 1530 // of registers. Don't rely on MO.isDead() because we may be called before 1531 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1532 if (MF && isCall() && 1533 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1534 unsigned Reg = MO.getReg(); 1535 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1536 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1537 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1538 bool HasAliasLive = false; 1539 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); 1540 AI.isValid(); ++AI) { 1541 unsigned AliasReg = *AI; 1542 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1543 HasAliasLive = true; 1544 break; 1545 } 1546 } 1547 if (!HasAliasLive) { 1548 OmittedAnyCallClobbers = true; 1549 continue; 1550 } 1551 } 1552 } 1553 } 1554 1555 if (FirstOp) FirstOp = false; else OS << ","; 1556 OS << " "; 1557 if (i < getDesc().NumOperands) { 1558 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1559 if (MCOI.isPredicate()) 1560 OS << "pred:"; 1561 if (MCOI.isOptionalDef()) 1562 OS << "opt:"; 1563 } 1564 if (isDebugValue() && MO.isMetadata()) { 1565 // Pretty print DBG_VALUE instructions. 1566 const MDNode *MD = MO.getMetadata(); 1567 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1568 OS << "!\"" << MDS->getString() << '\"'; 1569 else 1570 MO.print(OS, TM); 1571 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1572 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1573 } else if (i == AsmDescOp && MO.isImm()) { 1574 // Pretty print the inline asm operand descriptor. 1575 OS << '$' << AsmOpCount++; 1576 unsigned Flag = MO.getImm(); 1577 switch (InlineAsm::getKind(Flag)) { 1578 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1579 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1580 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1581 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1582 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1583 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1584 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1585 } 1586 1587 unsigned RCID = 0; 1588 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1589 if (TM) 1590 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1591 else 1592 OS << ":RC" << RCID; 1593 } 1594 1595 unsigned TiedTo = 0; 1596 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1597 OS << " tiedto:$" << TiedTo; 1598 1599 OS << ']'; 1600 1601 // Compute the index of the next operand descriptor. 1602 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1603 } else 1604 MO.print(OS, TM); 1605 } 1606 1607 // Briefly indicate whether any call clobbers were omitted. 1608 if (OmittedAnyCallClobbers) { 1609 if (!FirstOp) OS << ","; 1610 OS << " ..."; 1611 } 1612 1613 bool HaveSemi = false; 1614 if (Flags) { 1615 if (!HaveSemi) OS << ";"; HaveSemi = true; 1616 OS << " flags: "; 1617 1618 if (Flags & FrameSetup) 1619 OS << "FrameSetup"; 1620 } 1621 1622 if (!memoperands_empty()) { 1623 if (!HaveSemi) OS << ";"; HaveSemi = true; 1624 1625 OS << " mem:"; 1626 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1627 i != e; ++i) { 1628 OS << **i; 1629 if (llvm::next(i) != e) 1630 OS << " "; 1631 } 1632 } 1633 1634 // Print the regclass of any virtual registers encountered. 1635 if (MRI && !VirtRegs.empty()) { 1636 if (!HaveSemi) OS << ";"; HaveSemi = true; 1637 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1638 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1639 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1640 for (unsigned j = i+1; j != VirtRegs.size();) { 1641 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1642 ++j; 1643 continue; 1644 } 1645 if (VirtRegs[i] != VirtRegs[j]) 1646 OS << "," << PrintReg(VirtRegs[j]); 1647 VirtRegs.erase(VirtRegs.begin()+j); 1648 } 1649 } 1650 } 1651 1652 // Print debug location information. 1653 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1654 if (!HaveSemi) OS << ";"; HaveSemi = true; 1655 DIVariable DV(getOperand(e - 1).getMetadata()); 1656 OS << " line no:" << DV.getLineNumber(); 1657 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1658 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1659 if (!InlinedAtDL.isUnknown()) { 1660 OS << " inlined @[ "; 1661 printDebugLoc(InlinedAtDL, MF, OS); 1662 OS << " ]"; 1663 } 1664 } 1665 } else if (!debugLoc.isUnknown() && MF) { 1666 if (!HaveSemi) OS << ";"; HaveSemi = true; 1667 OS << " dbg:"; 1668 printDebugLoc(debugLoc, MF, OS); 1669 } 1670 1671 OS << '\n'; 1672 } 1673 1674 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1675 const TargetRegisterInfo *RegInfo, 1676 bool AddIfNotFound) { 1677 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1678 bool hasAliases = isPhysReg && 1679 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1680 bool Found = false; 1681 SmallVector<unsigned,4> DeadOps; 1682 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1683 MachineOperand &MO = getOperand(i); 1684 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1685 continue; 1686 unsigned Reg = MO.getReg(); 1687 if (!Reg) 1688 continue; 1689 1690 if (Reg == IncomingReg) { 1691 if (!Found) { 1692 if (MO.isKill()) 1693 // The register is already marked kill. 1694 return true; 1695 if (isPhysReg && isRegTiedToDefOperand(i)) 1696 // Two-address uses of physregs must not be marked kill. 1697 return true; 1698 MO.setIsKill(); 1699 Found = true; 1700 } 1701 } else if (hasAliases && MO.isKill() && 1702 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1703 // A super-register kill already exists. 1704 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1705 return true; 1706 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1707 DeadOps.push_back(i); 1708 } 1709 } 1710 1711 // Trim unneeded kill operands. 1712 while (!DeadOps.empty()) { 1713 unsigned OpIdx = DeadOps.back(); 1714 if (getOperand(OpIdx).isImplicit()) 1715 RemoveOperand(OpIdx); 1716 else 1717 getOperand(OpIdx).setIsKill(false); 1718 DeadOps.pop_back(); 1719 } 1720 1721 // If not found, this means an alias of one of the operands is killed. Add a 1722 // new implicit operand if required. 1723 if (!Found && AddIfNotFound) { 1724 addOperand(MachineOperand::CreateReg(IncomingReg, 1725 false /*IsDef*/, 1726 true /*IsImp*/, 1727 true /*IsKill*/)); 1728 return true; 1729 } 1730 return Found; 1731 } 1732 1733 void MachineInstr::clearRegisterKills(unsigned Reg, 1734 const TargetRegisterInfo *RegInfo) { 1735 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1736 RegInfo = 0; 1737 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1738 MachineOperand &MO = getOperand(i); 1739 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1740 continue; 1741 unsigned OpReg = MO.getReg(); 1742 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1743 MO.setIsKill(false); 1744 } 1745 } 1746 1747 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1748 const TargetRegisterInfo *RegInfo, 1749 bool AddIfNotFound) { 1750 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1751 bool hasAliases = isPhysReg && 1752 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1753 bool Found = false; 1754 SmallVector<unsigned,4> DeadOps; 1755 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1756 MachineOperand &MO = getOperand(i); 1757 if (!MO.isReg() || !MO.isDef()) 1758 continue; 1759 unsigned Reg = MO.getReg(); 1760 if (!Reg) 1761 continue; 1762 1763 if (Reg == IncomingReg) { 1764 MO.setIsDead(); 1765 Found = true; 1766 } else if (hasAliases && MO.isDead() && 1767 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1768 // There exists a super-register that's marked dead. 1769 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1770 return true; 1771 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1772 DeadOps.push_back(i); 1773 } 1774 } 1775 1776 // Trim unneeded dead operands. 1777 while (!DeadOps.empty()) { 1778 unsigned OpIdx = DeadOps.back(); 1779 if (getOperand(OpIdx).isImplicit()) 1780 RemoveOperand(OpIdx); 1781 else 1782 getOperand(OpIdx).setIsDead(false); 1783 DeadOps.pop_back(); 1784 } 1785 1786 // If not found, this means an alias of one of the operands is dead. Add a 1787 // new implicit operand if required. 1788 if (Found || !AddIfNotFound) 1789 return Found; 1790 1791 addOperand(MachineOperand::CreateReg(IncomingReg, 1792 true /*IsDef*/, 1793 true /*IsImp*/, 1794 false /*IsKill*/, 1795 true /*IsDead*/)); 1796 return true; 1797 } 1798 1799 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1800 const TargetRegisterInfo *RegInfo) { 1801 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1802 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1803 if (MO) 1804 return; 1805 } else { 1806 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1807 const MachineOperand &MO = getOperand(i); 1808 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1809 MO.getSubReg() == 0) 1810 return; 1811 } 1812 } 1813 addOperand(MachineOperand::CreateReg(IncomingReg, 1814 true /*IsDef*/, 1815 true /*IsImp*/)); 1816 } 1817 1818 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1819 const TargetRegisterInfo &TRI) { 1820 bool HasRegMask = false; 1821 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1822 MachineOperand &MO = getOperand(i); 1823 if (MO.isRegMask()) { 1824 HasRegMask = true; 1825 continue; 1826 } 1827 if (!MO.isReg() || !MO.isDef()) continue; 1828 unsigned Reg = MO.getReg(); 1829 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1830 bool Dead = true; 1831 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1832 I != E; ++I) 1833 if (TRI.regsOverlap(*I, Reg)) { 1834 Dead = false; 1835 break; 1836 } 1837 // If there are no uses, including partial uses, the def is dead. 1838 if (Dead) MO.setIsDead(); 1839 } 1840 1841 // This is a call with a register mask operand. 1842 // Mask clobbers are always dead, so add defs for the non-dead defines. 1843 if (HasRegMask) 1844 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1845 I != E; ++I) 1846 addRegisterDefined(*I, &TRI); 1847 } 1848 1849 unsigned 1850 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1851 // Build up a buffer of hash code components. 1852 SmallVector<size_t, 8> HashComponents; 1853 HashComponents.reserve(MI->getNumOperands() + 1); 1854 HashComponents.push_back(MI->getOpcode()); 1855 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1856 const MachineOperand &MO = MI->getOperand(i); 1857 if (MO.isReg() && MO.isDef() && 1858 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1859 continue; // Skip virtual register defs. 1860 1861 HashComponents.push_back(hash_value(MO)); 1862 } 1863 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1864 } 1865 1866 void MachineInstr::emitError(StringRef Msg) const { 1867 // Find the source location cookie. 1868 unsigned LocCookie = 0; 1869 const MDNode *LocMD = 0; 1870 for (unsigned i = getNumOperands(); i != 0; --i) { 1871 if (getOperand(i-1).isMetadata() && 1872 (LocMD = getOperand(i-1).getMetadata()) && 1873 LocMD->getNumOperands() != 0) { 1874 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1875 LocCookie = CI->getZExtValue(); 1876 break; 1877 } 1878 } 1879 } 1880 1881 if (const MachineBasicBlock *MBB = getParent()) 1882 if (const MachineFunction *MF = MBB->getParent()) 1883 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1884 report_fatal_error(Msg); 1885 } 1886