xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 1a3e89aa2bd26ad05b25635457bad28f46427eeb)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/MC/MCRegisterInfo.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/FormattedStream.h"
65 #include "llvm/Support/LowLevelTypeImpl.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetIntrinsicInfo.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <cstring>
75 #include <iterator>
76 #include <utility>
77 
78 using namespace llvm;
79 
80 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
81   if (const MachineBasicBlock *MBB = MI.getParent())
82     if (const MachineFunction *MF = MBB->getParent())
83       return MF;
84   return nullptr;
85 }
86 
87 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
88 // it.
89 static void tryToGetTargetInfo(const MachineInstr &MI,
90                                const TargetRegisterInfo *&TRI,
91                                const MachineRegisterInfo *&MRI,
92                                const TargetIntrinsicInfo *&IntrinsicInfo,
93                                const TargetInstrInfo *&TII) {
94 
95   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
96     TRI = MF->getSubtarget().getRegisterInfo();
97     MRI = &MF->getRegInfo();
98     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
99     TII = MF->getSubtarget().getInstrInfo();
100   }
101 }
102 
103 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
104   if (MCID->ImplicitDefs)
105     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
106            ++ImpDefs)
107       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
108   if (MCID->ImplicitUses)
109     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
110            ++ImpUses)
111       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
112 }
113 
114 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
115 /// implicit operands. It reserves space for the number of operands specified by
116 /// the MCInstrDesc.
117 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
118                            DebugLoc dl, bool NoImp)
119     : MCID(&tid), debugLoc(std::move(dl)) {
120   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
121 
122   // Reserve space for the expected number of operands.
123   if (unsigned NumOps = MCID->getNumOperands() +
124     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
125     CapOperands = OperandCapacity::get(NumOps);
126     Operands = MF.allocateOperandArray(CapOperands);
127   }
128 
129   if (!NoImp)
130     addImplicitDefUseOperands(MF);
131 }
132 
133 /// MachineInstr ctor - Copies MachineInstr arg exactly
134 ///
135 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
136     : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) {
137   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
138 
139   CapOperands = OperandCapacity::get(MI.getNumOperands());
140   Operands = MF.allocateOperandArray(CapOperands);
141 
142   // Copy operands.
143   for (const MachineOperand &MO : MI.operands())
144     addOperand(MF, MO);
145 
146   // Copy all the sensible flags.
147   setFlags(MI.Flags);
148 }
149 
150 /// getRegInfo - If this instruction is embedded into a MachineFunction,
151 /// return the MachineRegisterInfo object for the current function, otherwise
152 /// return null.
153 MachineRegisterInfo *MachineInstr::getRegInfo() {
154   if (MachineBasicBlock *MBB = getParent())
155     return &MBB->getParent()->getRegInfo();
156   return nullptr;
157 }
158 
159 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
160 /// this instruction from their respective use lists.  This requires that the
161 /// operands already be on their use lists.
162 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
163   for (MachineOperand &MO : operands())
164     if (MO.isReg())
165       MRI.removeRegOperandFromUseList(&MO);
166 }
167 
168 /// AddRegOperandsToUseLists - Add all of the register operands in
169 /// this instruction from their respective use lists.  This requires that the
170 /// operands not be on their use lists yet.
171 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
172   for (MachineOperand &MO : operands())
173     if (MO.isReg())
174       MRI.addRegOperandToUseList(&MO);
175 }
176 
177 void MachineInstr::addOperand(const MachineOperand &Op) {
178   MachineBasicBlock *MBB = getParent();
179   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
180   MachineFunction *MF = MBB->getParent();
181   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
182   addOperand(*MF, Op);
183 }
184 
185 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
186 /// ranges. If MRI is non-null also update use-def chains.
187 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
188                          unsigned NumOps, MachineRegisterInfo *MRI) {
189   if (MRI)
190     return MRI->moveOperands(Dst, Src, NumOps);
191   // MachineOperand is a trivially copyable type so we can just use memmove.
192   assert(Dst && Src && "Unknown operands");
193   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
194 }
195 
196 /// addOperand - Add the specified operand to the instruction.  If it is an
197 /// implicit operand, it is added to the end of the operand list.  If it is
198 /// an explicit operand it is added at the end of the explicit operand list
199 /// (before the first implicit operand).
200 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
201   assert(MCID && "Cannot add operands before providing an instr descriptor");
202 
203   // Check if we're adding one of our existing operands.
204   if (&Op >= Operands && &Op < Operands + NumOperands) {
205     // This is unusual: MI->addOperand(MI->getOperand(i)).
206     // If adding Op requires reallocating or moving existing operands around,
207     // the Op reference could go stale. Support it by copying Op.
208     MachineOperand CopyOp(Op);
209     return addOperand(MF, CopyOp);
210   }
211 
212   // Find the insert location for the new operand.  Implicit registers go at
213   // the end, everything else goes before the implicit regs.
214   //
215   // FIXME: Allow mixed explicit and implicit operands on inline asm.
216   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
217   // implicit-defs, but they must not be moved around.  See the FIXME in
218   // InstrEmitter.cpp.
219   unsigned OpNo = getNumOperands();
220   bool isImpReg = Op.isReg() && Op.isImplicit();
221   if (!isImpReg && !isInlineAsm()) {
222     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
223       --OpNo;
224       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
225     }
226   }
227 
228 #ifndef NDEBUG
229   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
230                    Op.getType() == MachineOperand::MO_MCSymbol;
231   // OpNo now points as the desired insertion point.  Unless this is a variadic
232   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
233   // RegMask operands go between the explicit and implicit operands.
234   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
235           OpNo < MCID->getNumOperands() || isDebugOp) &&
236          "Trying to add an operand to a machine instr that is already done!");
237 #endif
238 
239   MachineRegisterInfo *MRI = getRegInfo();
240 
241   // Determine if the Operands array needs to be reallocated.
242   // Save the old capacity and operand array.
243   OperandCapacity OldCap = CapOperands;
244   MachineOperand *OldOperands = Operands;
245   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
246     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
247     Operands = MF.allocateOperandArray(CapOperands);
248     // Move the operands before the insertion point.
249     if (OpNo)
250       moveOperands(Operands, OldOperands, OpNo, MRI);
251   }
252 
253   // Move the operands following the insertion point.
254   if (OpNo != NumOperands)
255     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
256                  MRI);
257   ++NumOperands;
258 
259   // Deallocate the old operand array.
260   if (OldOperands != Operands && OldOperands)
261     MF.deallocateOperandArray(OldCap, OldOperands);
262 
263   // Copy Op into place. It still needs to be inserted into the MRI use lists.
264   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
265   NewMO->ParentMI = this;
266 
267   // When adding a register operand, tell MRI about it.
268   if (NewMO->isReg()) {
269     // Ensure isOnRegUseList() returns false, regardless of Op's status.
270     NewMO->Contents.Reg.Prev = nullptr;
271     // Ignore existing ties. This is not a property that can be copied.
272     NewMO->TiedTo = 0;
273     // Add the new operand to MRI, but only for instructions in an MBB.
274     if (MRI)
275       MRI->addRegOperandToUseList(NewMO);
276     // The MCID operand information isn't accurate until we start adding
277     // explicit operands. The implicit operands are added first, then the
278     // explicits are inserted before them.
279     if (!isImpReg) {
280       // Tie uses to defs as indicated in MCInstrDesc.
281       if (NewMO->isUse()) {
282         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
283         if (DefIdx != -1)
284           tieOperands(DefIdx, OpNo);
285       }
286       // If the register operand is flagged as early, mark the operand as such.
287       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
288         NewMO->setIsEarlyClobber(true);
289     }
290   }
291 }
292 
293 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
294 /// fewer operand than it started with.
295 ///
296 void MachineInstr::RemoveOperand(unsigned OpNo) {
297   assert(OpNo < getNumOperands() && "Invalid operand number");
298   untieRegOperand(OpNo);
299 
300 #ifndef NDEBUG
301   // Moving tied operands would break the ties.
302   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
303     if (Operands[i].isReg())
304       assert(!Operands[i].isTied() && "Cannot move tied operands");
305 #endif
306 
307   MachineRegisterInfo *MRI = getRegInfo();
308   if (MRI && Operands[OpNo].isReg())
309     MRI->removeRegOperandFromUseList(Operands + OpNo);
310 
311   // Don't call the MachineOperand destructor. A lot of this code depends on
312   // MachineOperand having a trivial destructor anyway, and adding a call here
313   // wouldn't make it 'destructor-correct'.
314 
315   if (unsigned N = NumOperands - 1 - OpNo)
316     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
317   --NumOperands;
318 }
319 
320 void MachineInstr::setExtraInfo(MachineFunction &MF,
321                                 ArrayRef<MachineMemOperand *> MMOs,
322                                 MCSymbol *PreInstrSymbol,
323                                 MCSymbol *PostInstrSymbol,
324                                 MDNode *HeapAllocMarker) {
325   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
326   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
327   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
328   int NumPointers =
329       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
330 
331   // Drop all extra info if there is none.
332   if (NumPointers <= 0) {
333     Info.clear();
334     return;
335   }
336 
337   // If more than one pointer, then store out of line. Store heap alloc markers
338   // out of line because PointerSumType cannot hold more than 4 tag types with
339   // 32-bit pointers.
340   // FIXME: Maybe we should make the symbols in the extra info mutable?
341   else if (NumPointers > 1 || HasHeapAllocMarker) {
342     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
343         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
344     return;
345   }
346 
347   // Otherwise store the single pointer inline.
348   if (HasPreInstrSymbol)
349     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
350   else if (HasPostInstrSymbol)
351     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
352   else
353     Info.set<EIIK_MMO>(MMOs[0]);
354 }
355 
356 void MachineInstr::dropMemRefs(MachineFunction &MF) {
357   if (memoperands_empty())
358     return;
359 
360   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
361                getHeapAllocMarker());
362 }
363 
364 void MachineInstr::setMemRefs(MachineFunction &MF,
365                               ArrayRef<MachineMemOperand *> MMOs) {
366   if (MMOs.empty()) {
367     dropMemRefs(MF);
368     return;
369   }
370 
371   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
372                getHeapAllocMarker());
373 }
374 
375 void MachineInstr::addMemOperand(MachineFunction &MF,
376                                  MachineMemOperand *MO) {
377   SmallVector<MachineMemOperand *, 2> MMOs;
378   MMOs.append(memoperands_begin(), memoperands_end());
379   MMOs.push_back(MO);
380   setMemRefs(MF, MMOs);
381 }
382 
383 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
384   if (this == &MI)
385     // Nothing to do for a self-clone!
386     return;
387 
388   assert(&MF == MI.getMF() &&
389          "Invalid machine functions when cloning memory refrences!");
390   // See if we can just steal the extra info already allocated for the
391   // instruction. We can do this whenever the pre- and post-instruction symbols
392   // are the same (including null).
393   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
394       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
395       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
396     Info = MI.Info;
397     return;
398   }
399 
400   // Otherwise, fall back on a copy-based clone.
401   setMemRefs(MF, MI.memoperands());
402 }
403 
404 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
405 /// identical.
406 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
407                              ArrayRef<MachineMemOperand *> RHS) {
408   if (LHS.size() != RHS.size())
409     return false;
410 
411   auto LHSPointees = make_pointee_range(LHS);
412   auto RHSPointees = make_pointee_range(RHS);
413   return std::equal(LHSPointees.begin(), LHSPointees.end(),
414                     RHSPointees.begin());
415 }
416 
417 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
418                                       ArrayRef<const MachineInstr *> MIs) {
419   // Try handling easy numbers of MIs with simpler mechanisms.
420   if (MIs.empty()) {
421     dropMemRefs(MF);
422     return;
423   }
424   if (MIs.size() == 1) {
425     cloneMemRefs(MF, *MIs[0]);
426     return;
427   }
428   // Because an empty memoperands list provides *no* information and must be
429   // handled conservatively (assuming the instruction can do anything), the only
430   // way to merge with it is to drop all other memoperands.
431   if (MIs[0]->memoperands_empty()) {
432     dropMemRefs(MF);
433     return;
434   }
435 
436   // Handle the general case.
437   SmallVector<MachineMemOperand *, 2> MergedMMOs;
438   // Start with the first instruction.
439   assert(&MF == MIs[0]->getMF() &&
440          "Invalid machine functions when cloning memory references!");
441   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
442   // Now walk all the other instructions and accumulate any different MMOs.
443   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
444     assert(&MF == MI.getMF() &&
445            "Invalid machine functions when cloning memory references!");
446 
447     // Skip MIs with identical operands to the first. This is a somewhat
448     // arbitrary hack but will catch common cases without being quadratic.
449     // TODO: We could fully implement merge semantics here if needed.
450     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
451       continue;
452 
453     // Because an empty memoperands list provides *no* information and must be
454     // handled conservatively (assuming the instruction can do anything), the
455     // only way to merge with it is to drop all other memoperands.
456     if (MI.memoperands_empty()) {
457       dropMemRefs(MF);
458       return;
459     }
460 
461     // Otherwise accumulate these into our temporary buffer of the merged state.
462     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
463   }
464 
465   setMemRefs(MF, MergedMMOs);
466 }
467 
468 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
469   // Do nothing if old and new symbols are the same.
470   if (Symbol == getPreInstrSymbol())
471     return;
472 
473   // If there was only one symbol and we're removing it, just clear info.
474   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
475     Info.clear();
476     return;
477   }
478 
479   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
480                getHeapAllocMarker());
481 }
482 
483 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
484   // Do nothing if old and new symbols are the same.
485   if (Symbol == getPostInstrSymbol())
486     return;
487 
488   // If there was only one symbol and we're removing it, just clear info.
489   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
490     Info.clear();
491     return;
492   }
493 
494   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
495                getHeapAllocMarker());
496 }
497 
498 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
499   // Do nothing if old and new symbols are the same.
500   if (Marker == getHeapAllocMarker())
501     return;
502 
503   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
504                Marker);
505 }
506 
507 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
508                                      const MachineInstr &MI) {
509   if (this == &MI)
510     // Nothing to do for a self-clone!
511     return;
512 
513   assert(&MF == MI.getMF() &&
514          "Invalid machine functions when cloning instruction symbols!");
515 
516   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
517   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
518   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
519 }
520 
521 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
522   // For now, the just return the union of the flags. If the flags get more
523   // complicated over time, we might need more logic here.
524   return getFlags() | Other.getFlags();
525 }
526 
527 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
528   uint16_t MIFlags = 0;
529   // Copy the wrapping flags.
530   if (const OverflowingBinaryOperator *OB =
531           dyn_cast<OverflowingBinaryOperator>(&I)) {
532     if (OB->hasNoSignedWrap())
533       MIFlags |= MachineInstr::MIFlag::NoSWrap;
534     if (OB->hasNoUnsignedWrap())
535       MIFlags |= MachineInstr::MIFlag::NoUWrap;
536   }
537 
538   // Copy the exact flag.
539   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
540     if (PE->isExact())
541       MIFlags |= MachineInstr::MIFlag::IsExact;
542 
543   // Copy the fast-math flags.
544   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
545     const FastMathFlags Flags = FP->getFastMathFlags();
546     if (Flags.noNaNs())
547       MIFlags |= MachineInstr::MIFlag::FmNoNans;
548     if (Flags.noInfs())
549       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
550     if (Flags.noSignedZeros())
551       MIFlags |= MachineInstr::MIFlag::FmNsz;
552     if (Flags.allowReciprocal())
553       MIFlags |= MachineInstr::MIFlag::FmArcp;
554     if (Flags.allowContract())
555       MIFlags |= MachineInstr::MIFlag::FmContract;
556     if (Flags.approxFunc())
557       MIFlags |= MachineInstr::MIFlag::FmAfn;
558     if (Flags.allowReassoc())
559       MIFlags |= MachineInstr::MIFlag::FmReassoc;
560   }
561 
562   return MIFlags;
563 }
564 
565 void MachineInstr::copyIRFlags(const Instruction &I) {
566   Flags = copyFlagsFromInstruction(I);
567 }
568 
569 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
570   assert(!isBundledWithPred() && "Must be called on bundle header");
571   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
572     if (MII->getDesc().getFlags() & Mask) {
573       if (Type == AnyInBundle)
574         return true;
575     } else {
576       if (Type == AllInBundle && !MII->isBundle())
577         return false;
578     }
579     // This was the last instruction in the bundle.
580     if (!MII->isBundledWithSucc())
581       return Type == AllInBundle;
582   }
583 }
584 
585 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
586                                  MICheckType Check) const {
587   // If opcodes or number of operands are not the same then the two
588   // instructions are obviously not identical.
589   if (Other.getOpcode() != getOpcode() ||
590       Other.getNumOperands() != getNumOperands())
591     return false;
592 
593   if (isBundle()) {
594     // We have passed the test above that both instructions have the same
595     // opcode, so we know that both instructions are bundles here. Let's compare
596     // MIs inside the bundle.
597     assert(Other.isBundle() && "Expected that both instructions are bundles.");
598     MachineBasicBlock::const_instr_iterator I1 = getIterator();
599     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
600     // Loop until we analysed the last intruction inside at least one of the
601     // bundles.
602     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
603       ++I1;
604       ++I2;
605       if (!I1->isIdenticalTo(*I2, Check))
606         return false;
607     }
608     // If we've reached the end of just one of the two bundles, but not both,
609     // the instructions are not identical.
610     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
611       return false;
612   }
613 
614   // Check operands to make sure they match.
615   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
616     const MachineOperand &MO = getOperand(i);
617     const MachineOperand &OMO = Other.getOperand(i);
618     if (!MO.isReg()) {
619       if (!MO.isIdenticalTo(OMO))
620         return false;
621       continue;
622     }
623 
624     // Clients may or may not want to ignore defs when testing for equality.
625     // For example, machine CSE pass only cares about finding common
626     // subexpressions, so it's safe to ignore virtual register defs.
627     if (MO.isDef()) {
628       if (Check == IgnoreDefs)
629         continue;
630       else if (Check == IgnoreVRegDefs) {
631         if (!Register::isVirtualRegister(MO.getReg()) ||
632             !Register::isVirtualRegister(OMO.getReg()))
633           if (!MO.isIdenticalTo(OMO))
634             return false;
635       } else {
636         if (!MO.isIdenticalTo(OMO))
637           return false;
638         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
639           return false;
640       }
641     } else {
642       if (!MO.isIdenticalTo(OMO))
643         return false;
644       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
645         return false;
646     }
647   }
648   // If DebugLoc does not match then two debug instructions are not identical.
649   if (isDebugInstr())
650     if (getDebugLoc() && Other.getDebugLoc() &&
651         getDebugLoc() != Other.getDebugLoc())
652       return false;
653   return true;
654 }
655 
656 const MachineFunction *MachineInstr::getMF() const {
657   return getParent()->getParent();
658 }
659 
660 MachineInstr *MachineInstr::removeFromParent() {
661   assert(getParent() && "Not embedded in a basic block!");
662   return getParent()->remove(this);
663 }
664 
665 MachineInstr *MachineInstr::removeFromBundle() {
666   assert(getParent() && "Not embedded in a basic block!");
667   return getParent()->remove_instr(this);
668 }
669 
670 void MachineInstr::eraseFromParent() {
671   assert(getParent() && "Not embedded in a basic block!");
672   getParent()->erase(this);
673 }
674 
675 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
676   assert(getParent() && "Not embedded in a basic block!");
677   MachineBasicBlock *MBB = getParent();
678   MachineFunction *MF = MBB->getParent();
679   assert(MF && "Not embedded in a function!");
680 
681   MachineInstr *MI = (MachineInstr *)this;
682   MachineRegisterInfo &MRI = MF->getRegInfo();
683 
684   for (const MachineOperand &MO : MI->operands()) {
685     if (!MO.isReg() || !MO.isDef())
686       continue;
687     Register Reg = MO.getReg();
688     if (!Reg.isVirtual())
689       continue;
690     MRI.markUsesInDebugValueAsUndef(Reg);
691   }
692   MI->eraseFromParent();
693 }
694 
695 void MachineInstr::eraseFromBundle() {
696   assert(getParent() && "Not embedded in a basic block!");
697   getParent()->erase_instr(this);
698 }
699 
700 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
701   if (!isCall(Type))
702     return false;
703   switch (getOpcode()) {
704   case TargetOpcode::PATCHABLE_EVENT_CALL:
705   case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
706   case TargetOpcode::PATCHPOINT:
707   case TargetOpcode::STACKMAP:
708   case TargetOpcode::STATEPOINT:
709     return false;
710   }
711   return true;
712 }
713 
714 bool MachineInstr::shouldUpdateCallSiteInfo() const {
715   if (isBundle())
716     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
717   return isCandidateForCallSiteEntry();
718 }
719 
720 unsigned MachineInstr::getNumExplicitOperands() const {
721   unsigned NumOperands = MCID->getNumOperands();
722   if (!MCID->isVariadic())
723     return NumOperands;
724 
725   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
726     const MachineOperand &MO = getOperand(I);
727     // The operands must always be in the following order:
728     // - explicit reg defs,
729     // - other explicit operands (reg uses, immediates, etc.),
730     // - implicit reg defs
731     // - implicit reg uses
732     if (MO.isReg() && MO.isImplicit())
733       break;
734     ++NumOperands;
735   }
736   return NumOperands;
737 }
738 
739 unsigned MachineInstr::getNumExplicitDefs() const {
740   unsigned NumDefs = MCID->getNumDefs();
741   if (!MCID->isVariadic())
742     return NumDefs;
743 
744   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
745     const MachineOperand &MO = getOperand(I);
746     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
747       break;
748     ++NumDefs;
749   }
750   return NumDefs;
751 }
752 
753 void MachineInstr::bundleWithPred() {
754   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
755   setFlag(BundledPred);
756   MachineBasicBlock::instr_iterator Pred = getIterator();
757   --Pred;
758   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
759   Pred->setFlag(BundledSucc);
760 }
761 
762 void MachineInstr::bundleWithSucc() {
763   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
764   setFlag(BundledSucc);
765   MachineBasicBlock::instr_iterator Succ = getIterator();
766   ++Succ;
767   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
768   Succ->setFlag(BundledPred);
769 }
770 
771 void MachineInstr::unbundleFromPred() {
772   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
773   clearFlag(BundledPred);
774   MachineBasicBlock::instr_iterator Pred = getIterator();
775   --Pred;
776   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
777   Pred->clearFlag(BundledSucc);
778 }
779 
780 void MachineInstr::unbundleFromSucc() {
781   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
782   clearFlag(BundledSucc);
783   MachineBasicBlock::instr_iterator Succ = getIterator();
784   ++Succ;
785   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
786   Succ->clearFlag(BundledPred);
787 }
788 
789 bool MachineInstr::isStackAligningInlineAsm() const {
790   if (isInlineAsm()) {
791     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
792     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
793       return true;
794   }
795   return false;
796 }
797 
798 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
799   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
800   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
801   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
802 }
803 
804 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
805                                        unsigned *GroupNo) const {
806   assert(isInlineAsm() && "Expected an inline asm instruction");
807   assert(OpIdx < getNumOperands() && "OpIdx out of range");
808 
809   // Ignore queries about the initial operands.
810   if (OpIdx < InlineAsm::MIOp_FirstOperand)
811     return -1;
812 
813   unsigned Group = 0;
814   unsigned NumOps;
815   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
816        i += NumOps) {
817     const MachineOperand &FlagMO = getOperand(i);
818     // If we reach the implicit register operands, stop looking.
819     if (!FlagMO.isImm())
820       return -1;
821     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
822     if (i + NumOps > OpIdx) {
823       if (GroupNo)
824         *GroupNo = Group;
825       return i;
826     }
827     ++Group;
828   }
829   return -1;
830 }
831 
832 const DILabel *MachineInstr::getDebugLabel() const {
833   assert(isDebugLabel() && "not a DBG_LABEL");
834   return cast<DILabel>(getOperand(0).getMetadata());
835 }
836 
837 const DILocalVariable *MachineInstr::getDebugVariable() const {
838   assert(isDebugValue() && "not a DBG_VALUE");
839   return cast<DILocalVariable>(getOperand(2).getMetadata());
840 }
841 
842 const DIExpression *MachineInstr::getDebugExpression() const {
843   assert(isDebugValue() && "not a DBG_VALUE");
844   return cast<DIExpression>(getOperand(3).getMetadata());
845 }
846 
847 bool MachineInstr::isDebugEntryValue() const {
848   return isDebugValue() && getDebugExpression()->isEntryValue();
849 }
850 
851 const TargetRegisterClass*
852 MachineInstr::getRegClassConstraint(unsigned OpIdx,
853                                     const TargetInstrInfo *TII,
854                                     const TargetRegisterInfo *TRI) const {
855   assert(getParent() && "Can't have an MBB reference here!");
856   assert(getMF() && "Can't have an MF reference here!");
857   const MachineFunction &MF = *getMF();
858 
859   // Most opcodes have fixed constraints in their MCInstrDesc.
860   if (!isInlineAsm())
861     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
862 
863   if (!getOperand(OpIdx).isReg())
864     return nullptr;
865 
866   // For tied uses on inline asm, get the constraint from the def.
867   unsigned DefIdx;
868   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
869     OpIdx = DefIdx;
870 
871   // Inline asm stores register class constraints in the flag word.
872   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
873   if (FlagIdx < 0)
874     return nullptr;
875 
876   unsigned Flag = getOperand(FlagIdx).getImm();
877   unsigned RCID;
878   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
879        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
880        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
881       InlineAsm::hasRegClassConstraint(Flag, RCID))
882     return TRI->getRegClass(RCID);
883 
884   // Assume that all registers in a memory operand are pointers.
885   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
886     return TRI->getPointerRegClass(MF);
887 
888   return nullptr;
889 }
890 
891 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
892     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
893     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
894   // Check every operands inside the bundle if we have
895   // been asked to.
896   if (ExploreBundle)
897     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
898          ++OpndIt)
899       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
900           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
901   else
902     // Otherwise, just check the current operands.
903     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
904       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
905   return CurRC;
906 }
907 
908 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
909     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
910     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
911   assert(CurRC && "Invalid initial register class");
912   // Check if Reg is constrained by some of its use/def from MI.
913   const MachineOperand &MO = getOperand(OpIdx);
914   if (!MO.isReg() || MO.getReg() != Reg)
915     return CurRC;
916   // If yes, accumulate the constraints through the operand.
917   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
918 }
919 
920 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
921     unsigned OpIdx, const TargetRegisterClass *CurRC,
922     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
923   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
924   const MachineOperand &MO = getOperand(OpIdx);
925   assert(MO.isReg() &&
926          "Cannot get register constraints for non-register operand");
927   assert(CurRC && "Invalid initial register class");
928   if (unsigned SubIdx = MO.getSubReg()) {
929     if (OpRC)
930       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
931     else
932       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
933   } else if (OpRC)
934     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
935   return CurRC;
936 }
937 
938 /// Return the number of instructions inside the MI bundle, not counting the
939 /// header instruction.
940 unsigned MachineInstr::getBundleSize() const {
941   MachineBasicBlock::const_instr_iterator I = getIterator();
942   unsigned Size = 0;
943   while (I->isBundledWithSucc()) {
944     ++Size;
945     ++I;
946   }
947   return Size;
948 }
949 
950 /// Returns true if the MachineInstr has an implicit-use operand of exactly
951 /// the given register (not considering sub/super-registers).
952 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
953   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
954     const MachineOperand &MO = getOperand(i);
955     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
956       return true;
957   }
958   return false;
959 }
960 
961 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
962 /// the specific register or -1 if it is not found. It further tightens
963 /// the search criteria to a use that kills the register if isKill is true.
964 int MachineInstr::findRegisterUseOperandIdx(
965     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
966   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
967     const MachineOperand &MO = getOperand(i);
968     if (!MO.isReg() || !MO.isUse())
969       continue;
970     Register MOReg = MO.getReg();
971     if (!MOReg)
972       continue;
973     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
974       if (!isKill || MO.isKill())
975         return i;
976   }
977   return -1;
978 }
979 
980 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
981 /// indicating if this instruction reads or writes Reg. This also considers
982 /// partial defines.
983 std::pair<bool,bool>
984 MachineInstr::readsWritesVirtualRegister(Register Reg,
985                                          SmallVectorImpl<unsigned> *Ops) const {
986   bool PartDef = false; // Partial redefine.
987   bool FullDef = false; // Full define.
988   bool Use = false;
989 
990   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
991     const MachineOperand &MO = getOperand(i);
992     if (!MO.isReg() || MO.getReg() != Reg)
993       continue;
994     if (Ops)
995       Ops->push_back(i);
996     if (MO.isUse())
997       Use |= !MO.isUndef();
998     else if (MO.getSubReg() && !MO.isUndef())
999       // A partial def undef doesn't count as reading the register.
1000       PartDef = true;
1001     else
1002       FullDef = true;
1003   }
1004   // A partial redefine uses Reg unless there is also a full define.
1005   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1006 }
1007 
1008 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1009 /// the specified register or -1 if it is not found. If isDead is true, defs
1010 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1011 /// also checks if there is a def of a super-register.
1012 int
1013 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1014                                         const TargetRegisterInfo *TRI) const {
1015   bool isPhys = Register::isPhysicalRegister(Reg);
1016   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1017     const MachineOperand &MO = getOperand(i);
1018     // Accept regmask operands when Overlap is set.
1019     // Ignore them when looking for a specific def operand (Overlap == false).
1020     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1021       return i;
1022     if (!MO.isReg() || !MO.isDef())
1023       continue;
1024     Register MOReg = MO.getReg();
1025     bool Found = (MOReg == Reg);
1026     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1027       if (Overlap)
1028         Found = TRI->regsOverlap(MOReg, Reg);
1029       else
1030         Found = TRI->isSubRegister(MOReg, Reg);
1031     }
1032     if (Found && (!isDead || MO.isDead()))
1033       return i;
1034   }
1035   return -1;
1036 }
1037 
1038 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1039 /// operand list that is used to represent the predicate. It returns -1 if
1040 /// none is found.
1041 int MachineInstr::findFirstPredOperandIdx() const {
1042   // Don't call MCID.findFirstPredOperandIdx() because this variant
1043   // is sometimes called on an instruction that's not yet complete, and
1044   // so the number of operands is less than the MCID indicates. In
1045   // particular, the PTX target does this.
1046   const MCInstrDesc &MCID = getDesc();
1047   if (MCID.isPredicable()) {
1048     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1049       if (MCID.OpInfo[i].isPredicate())
1050         return i;
1051   }
1052 
1053   return -1;
1054 }
1055 
1056 // MachineOperand::TiedTo is 4 bits wide.
1057 const unsigned TiedMax = 15;
1058 
1059 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1060 ///
1061 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1062 /// field. TiedTo can have these values:
1063 ///
1064 /// 0:              Operand is not tied to anything.
1065 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1066 /// TiedMax:        Tied to an operand >= TiedMax-1.
1067 ///
1068 /// The tied def must be one of the first TiedMax operands on a normal
1069 /// instruction. INLINEASM instructions allow more tied defs.
1070 ///
1071 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1072   MachineOperand &DefMO = getOperand(DefIdx);
1073   MachineOperand &UseMO = getOperand(UseIdx);
1074   assert(DefMO.isDef() && "DefIdx must be a def operand");
1075   assert(UseMO.isUse() && "UseIdx must be a use operand");
1076   assert(!DefMO.isTied() && "Def is already tied to another use");
1077   assert(!UseMO.isTied() && "Use is already tied to another def");
1078 
1079   if (DefIdx < TiedMax)
1080     UseMO.TiedTo = DefIdx + 1;
1081   else {
1082     // Inline asm can use the group descriptors to find tied operands, but on
1083     // normal instruction, the tied def must be within the first TiedMax
1084     // operands.
1085     assert(isInlineAsm() && "DefIdx out of range");
1086     UseMO.TiedTo = TiedMax;
1087   }
1088 
1089   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1090   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1091 }
1092 
1093 /// Given the index of a tied register operand, find the operand it is tied to.
1094 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1095 /// which must exist.
1096 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1097   const MachineOperand &MO = getOperand(OpIdx);
1098   assert(MO.isTied() && "Operand isn't tied");
1099 
1100   // Normally TiedTo is in range.
1101   if (MO.TiedTo < TiedMax)
1102     return MO.TiedTo - 1;
1103 
1104   // Uses on normal instructions can be out of range.
1105   if (!isInlineAsm()) {
1106     // Normal tied defs must be in the 0..TiedMax-1 range.
1107     if (MO.isUse())
1108       return TiedMax - 1;
1109     // MO is a def. Search for the tied use.
1110     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1111       const MachineOperand &UseMO = getOperand(i);
1112       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1113         return i;
1114     }
1115     llvm_unreachable("Can't find tied use");
1116   }
1117 
1118   // Now deal with inline asm by parsing the operand group descriptor flags.
1119   // Find the beginning of each operand group.
1120   SmallVector<unsigned, 8> GroupIdx;
1121   unsigned OpIdxGroup = ~0u;
1122   unsigned NumOps;
1123   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1124        i += NumOps) {
1125     const MachineOperand &FlagMO = getOperand(i);
1126     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1127     unsigned CurGroup = GroupIdx.size();
1128     GroupIdx.push_back(i);
1129     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1130     // OpIdx belongs to this operand group.
1131     if (OpIdx > i && OpIdx < i + NumOps)
1132       OpIdxGroup = CurGroup;
1133     unsigned TiedGroup;
1134     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1135       continue;
1136     // Operands in this group are tied to operands in TiedGroup which must be
1137     // earlier. Find the number of operands between the two groups.
1138     unsigned Delta = i - GroupIdx[TiedGroup];
1139 
1140     // OpIdx is a use tied to TiedGroup.
1141     if (OpIdxGroup == CurGroup)
1142       return OpIdx - Delta;
1143 
1144     // OpIdx is a def tied to this use group.
1145     if (OpIdxGroup == TiedGroup)
1146       return OpIdx + Delta;
1147   }
1148   llvm_unreachable("Invalid tied operand on inline asm");
1149 }
1150 
1151 /// clearKillInfo - Clears kill flags on all operands.
1152 ///
1153 void MachineInstr::clearKillInfo() {
1154   for (MachineOperand &MO : operands()) {
1155     if (MO.isReg() && MO.isUse())
1156       MO.setIsKill(false);
1157   }
1158 }
1159 
1160 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1161                                       unsigned SubIdx,
1162                                       const TargetRegisterInfo &RegInfo) {
1163   if (Register::isPhysicalRegister(ToReg)) {
1164     if (SubIdx)
1165       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1166     for (MachineOperand &MO : operands()) {
1167       if (!MO.isReg() || MO.getReg() != FromReg)
1168         continue;
1169       MO.substPhysReg(ToReg, RegInfo);
1170     }
1171   } else {
1172     for (MachineOperand &MO : operands()) {
1173       if (!MO.isReg() || MO.getReg() != FromReg)
1174         continue;
1175       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1176     }
1177   }
1178 }
1179 
1180 /// isSafeToMove - Return true if it is safe to move this instruction. If
1181 /// SawStore is set to true, it means that there is a store (or call) between
1182 /// the instruction's location and its intended destination.
1183 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1184   // Ignore stuff that we obviously can't move.
1185   //
1186   // Treat volatile loads as stores. This is not strictly necessary for
1187   // volatiles, but it is required for atomic loads. It is not allowed to move
1188   // a load across an atomic load with Ordering > Monotonic.
1189   if (mayStore() || isCall() || isPHI() ||
1190       (mayLoad() && hasOrderedMemoryRef())) {
1191     SawStore = true;
1192     return false;
1193   }
1194 
1195   if (isPosition() || isDebugInstr() || isTerminator() ||
1196       mayRaiseFPException() || hasUnmodeledSideEffects())
1197     return false;
1198 
1199   // See if this instruction does a load.  If so, we have to guarantee that the
1200   // loaded value doesn't change between the load and the its intended
1201   // destination. The check for isInvariantLoad gives the targe the chance to
1202   // classify the load as always returning a constant, e.g. a constant pool
1203   // load.
1204   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1205     // Otherwise, this is a real load.  If there is a store between the load and
1206     // end of block, we can't move it.
1207     return !SawStore;
1208 
1209   return true;
1210 }
1211 
1212 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1213                             bool UseTBAA) const {
1214   const MachineFunction *MF = getMF();
1215   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1216   const MachineFrameInfo &MFI = MF->getFrameInfo();
1217 
1218   // If neither instruction stores to memory, they can't alias in any
1219   // meaningful way, even if they read from the same address.
1220   if (!mayStore() && !Other.mayStore())
1221     return false;
1222 
1223   // Let the target decide if memory accesses cannot possibly overlap.
1224   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1225     return false;
1226 
1227   // FIXME: Need to handle multiple memory operands to support all targets.
1228   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1229     return true;
1230 
1231   MachineMemOperand *MMOa = *memoperands_begin();
1232   MachineMemOperand *MMOb = *Other.memoperands_begin();
1233 
1234   // The following interface to AA is fashioned after DAGCombiner::isAlias
1235   // and operates with MachineMemOperand offset with some important
1236   // assumptions:
1237   //   - LLVM fundamentally assumes flat address spaces.
1238   //   - MachineOperand offset can *only* result from legalization and
1239   //     cannot affect queries other than the trivial case of overlap
1240   //     checking.
1241   //   - These offsets never wrap and never step outside
1242   //     of allocated objects.
1243   //   - There should never be any negative offsets here.
1244   //
1245   // FIXME: Modify API to hide this math from "user"
1246   // Even before we go to AA we can reason locally about some
1247   // memory objects. It can save compile time, and possibly catch some
1248   // corner cases not currently covered.
1249 
1250   int64_t OffsetA = MMOa->getOffset();
1251   int64_t OffsetB = MMOb->getOffset();
1252   int64_t MinOffset = std::min(OffsetA, OffsetB);
1253 
1254   uint64_t WidthA = MMOa->getSize();
1255   uint64_t WidthB = MMOb->getSize();
1256   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1257   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1258 
1259   const Value *ValA = MMOa->getValue();
1260   const Value *ValB = MMOb->getValue();
1261   bool SameVal = (ValA && ValB && (ValA == ValB));
1262   if (!SameVal) {
1263     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1264     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1265     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1266       return false;
1267     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1268       return false;
1269     if (PSVa && PSVb && (PSVa == PSVb))
1270       SameVal = true;
1271   }
1272 
1273   if (SameVal) {
1274     if (!KnownWidthA || !KnownWidthB)
1275       return true;
1276     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1277     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1278     return (MinOffset + LowWidth > MaxOffset);
1279   }
1280 
1281   if (!AA)
1282     return true;
1283 
1284   if (!ValA || !ValB)
1285     return true;
1286 
1287   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1288   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1289 
1290   int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1291                                  : MemoryLocation::UnknownSize;
1292   int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1293                                  : MemoryLocation::UnknownSize;
1294 
1295   AliasResult AAResult = AA->alias(
1296       MemoryLocation(ValA, OverlapA,
1297                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1298       MemoryLocation(ValB, OverlapB,
1299                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1300 
1301   return (AAResult != NoAlias);
1302 }
1303 
1304 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1305 /// or volatile memory reference, or if the information describing the memory
1306 /// reference is not available. Return false if it is known to have no ordered
1307 /// memory references.
1308 bool MachineInstr::hasOrderedMemoryRef() const {
1309   // An instruction known never to access memory won't have a volatile access.
1310   if (!mayStore() &&
1311       !mayLoad() &&
1312       !isCall() &&
1313       !hasUnmodeledSideEffects())
1314     return false;
1315 
1316   // Otherwise, if the instruction has no memory reference information,
1317   // conservatively assume it wasn't preserved.
1318   if (memoperands_empty())
1319     return true;
1320 
1321   // Check if any of our memory operands are ordered.
1322   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1323     return !MMO->isUnordered();
1324   });
1325 }
1326 
1327 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1328 /// trap and is loading from a location whose value is invariant across a run of
1329 /// this function.
1330 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1331   // If the instruction doesn't load at all, it isn't an invariant load.
1332   if (!mayLoad())
1333     return false;
1334 
1335   // If the instruction has lost its memoperands, conservatively assume that
1336   // it may not be an invariant load.
1337   if (memoperands_empty())
1338     return false;
1339 
1340   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1341 
1342   for (MachineMemOperand *MMO : memoperands()) {
1343     if (!MMO->isUnordered())
1344       // If the memory operand has ordering side effects, we can't move the
1345       // instruction.  Such an instruction is technically an invariant load,
1346       // but the caller code would need updated to expect that.
1347       return false;
1348     if (MMO->isStore()) return false;
1349     if (MMO->isInvariant() && MMO->isDereferenceable())
1350       continue;
1351 
1352     // A load from a constant PseudoSourceValue is invariant.
1353     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1354       if (PSV->isConstant(&MFI))
1355         continue;
1356 
1357     if (const Value *V = MMO->getValue()) {
1358       // If we have an AliasAnalysis, ask it whether the memory is constant.
1359       if (AA &&
1360           AA->pointsToConstantMemory(
1361               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1362         continue;
1363     }
1364 
1365     // Otherwise assume conservatively.
1366     return false;
1367   }
1368 
1369   // Everything checks out.
1370   return true;
1371 }
1372 
1373 /// isConstantValuePHI - If the specified instruction is a PHI that always
1374 /// merges together the same virtual register, return the register, otherwise
1375 /// return 0.
1376 unsigned MachineInstr::isConstantValuePHI() const {
1377   if (!isPHI())
1378     return 0;
1379   assert(getNumOperands() >= 3 &&
1380          "It's illegal to have a PHI without source operands");
1381 
1382   Register Reg = getOperand(1).getReg();
1383   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1384     if (getOperand(i).getReg() != Reg)
1385       return 0;
1386   return Reg;
1387 }
1388 
1389 bool MachineInstr::hasUnmodeledSideEffects() const {
1390   if (hasProperty(MCID::UnmodeledSideEffects))
1391     return true;
1392   if (isInlineAsm()) {
1393     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1394     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1395       return true;
1396   }
1397 
1398   return false;
1399 }
1400 
1401 bool MachineInstr::isLoadFoldBarrier() const {
1402   return mayStore() || isCall() || hasUnmodeledSideEffects();
1403 }
1404 
1405 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1406 ///
1407 bool MachineInstr::allDefsAreDead() const {
1408   for (const MachineOperand &MO : operands()) {
1409     if (!MO.isReg() || MO.isUse())
1410       continue;
1411     if (!MO.isDead())
1412       return false;
1413   }
1414   return true;
1415 }
1416 
1417 /// copyImplicitOps - Copy implicit register operands from specified
1418 /// instruction to this instruction.
1419 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1420                                    const MachineInstr &MI) {
1421   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1422        i != e; ++i) {
1423     const MachineOperand &MO = MI.getOperand(i);
1424     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1425       addOperand(MF, MO);
1426   }
1427 }
1428 
1429 bool MachineInstr::hasComplexRegisterTies() const {
1430   const MCInstrDesc &MCID = getDesc();
1431   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1432     const auto &Operand = getOperand(I);
1433     if (!Operand.isReg() || Operand.isDef())
1434       // Ignore the defined registers as MCID marks only the uses as tied.
1435       continue;
1436     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1437     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1438     if (ExpectedTiedIdx != TiedIdx)
1439       return true;
1440   }
1441   return false;
1442 }
1443 
1444 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1445                                  const MachineRegisterInfo &MRI) const {
1446   const MachineOperand &Op = getOperand(OpIdx);
1447   if (!Op.isReg())
1448     return LLT{};
1449 
1450   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1451     return MRI.getType(Op.getReg());
1452 
1453   auto &OpInfo = getDesc().OpInfo[OpIdx];
1454   if (!OpInfo.isGenericType())
1455     return MRI.getType(Op.getReg());
1456 
1457   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1458     return LLT{};
1459 
1460   LLT TypeToPrint = MRI.getType(Op.getReg());
1461   // Don't mark the type index printed if it wasn't actually printed: maybe
1462   // another operand with the same type index has an actual type attached:
1463   if (TypeToPrint.isValid())
1464     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1465   return TypeToPrint;
1466 }
1467 
1468 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1469 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1470   dbgs() << "  ";
1471   print(dbgs());
1472 }
1473 
1474 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1475     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1476     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1477   if (Depth >= MaxDepth)
1478     return;
1479   if (!AlreadySeenInstrs.insert(this).second)
1480     return;
1481   // PadToColumn always inserts at least one space.
1482   // Don't mess up the alignment if we don't want any space.
1483   if (Depth)
1484     fdbgs().PadToColumn(Depth * 2);
1485   print(fdbgs());
1486   for (const MachineOperand &MO : operands()) {
1487     if (!MO.isReg() || MO.isDef())
1488       continue;
1489     Register Reg = MO.getReg();
1490     if (Reg.isPhysical())
1491       continue;
1492     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1493     if (NewMI == nullptr)
1494       continue;
1495     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1496   }
1497 }
1498 
1499 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1500                                           unsigned MaxDepth) const {
1501   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1502   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1503 }
1504 #endif
1505 
1506 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1507                          bool SkipDebugLoc, bool AddNewLine,
1508                          const TargetInstrInfo *TII) const {
1509   const Module *M = nullptr;
1510   const Function *F = nullptr;
1511   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1512     F = &MF->getFunction();
1513     M = F->getParent();
1514     if (!TII)
1515       TII = MF->getSubtarget().getInstrInfo();
1516   }
1517 
1518   ModuleSlotTracker MST(M);
1519   if (F)
1520     MST.incorporateFunction(*F);
1521   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1522 }
1523 
1524 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1525                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1526                          bool AddNewLine, const TargetInstrInfo *TII) const {
1527   // We can be a bit tidier if we know the MachineFunction.
1528   const TargetRegisterInfo *TRI = nullptr;
1529   const MachineRegisterInfo *MRI = nullptr;
1530   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1531   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1532 
1533   if (isCFIInstruction())
1534     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1535 
1536   SmallBitVector PrintedTypes(8);
1537   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1538   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1539     if (!ShouldPrintRegisterTies)
1540       return 0U;
1541     const MachineOperand &MO = getOperand(OpIdx);
1542     if (MO.isReg() && MO.isTied() && !MO.isDef())
1543       return findTiedOperandIdx(OpIdx);
1544     return 0U;
1545   };
1546   unsigned StartOp = 0;
1547   unsigned e = getNumOperands();
1548 
1549   // Print explicitly defined operands on the left of an assignment syntax.
1550   while (StartOp < e) {
1551     const MachineOperand &MO = getOperand(StartOp);
1552     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1553       break;
1554 
1555     if (StartOp != 0)
1556       OS << ", ";
1557 
1558     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1559     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1560     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1561              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1562     ++StartOp;
1563   }
1564 
1565   if (StartOp != 0)
1566     OS << " = ";
1567 
1568   if (getFlag(MachineInstr::FrameSetup))
1569     OS << "frame-setup ";
1570   if (getFlag(MachineInstr::FrameDestroy))
1571     OS << "frame-destroy ";
1572   if (getFlag(MachineInstr::FmNoNans))
1573     OS << "nnan ";
1574   if (getFlag(MachineInstr::FmNoInfs))
1575     OS << "ninf ";
1576   if (getFlag(MachineInstr::FmNsz))
1577     OS << "nsz ";
1578   if (getFlag(MachineInstr::FmArcp))
1579     OS << "arcp ";
1580   if (getFlag(MachineInstr::FmContract))
1581     OS << "contract ";
1582   if (getFlag(MachineInstr::FmAfn))
1583     OS << "afn ";
1584   if (getFlag(MachineInstr::FmReassoc))
1585     OS << "reassoc ";
1586   if (getFlag(MachineInstr::NoUWrap))
1587     OS << "nuw ";
1588   if (getFlag(MachineInstr::NoSWrap))
1589     OS << "nsw ";
1590   if (getFlag(MachineInstr::IsExact))
1591     OS << "exact ";
1592   if (getFlag(MachineInstr::NoFPExcept))
1593     OS << "nofpexcept ";
1594 
1595   // Print the opcode name.
1596   if (TII)
1597     OS << TII->getName(getOpcode());
1598   else
1599     OS << "UNKNOWN";
1600 
1601   if (SkipOpers)
1602     return;
1603 
1604   // Print the rest of the operands.
1605   bool FirstOp = true;
1606   unsigned AsmDescOp = ~0u;
1607   unsigned AsmOpCount = 0;
1608 
1609   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1610     // Print asm string.
1611     OS << " ";
1612     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1613     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1614     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1615     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1616                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1617                             IntrinsicInfo);
1618 
1619     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1620     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1621     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1622       OS << " [sideeffect]";
1623     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1624       OS << " [mayload]";
1625     if (ExtraInfo & InlineAsm::Extra_MayStore)
1626       OS << " [maystore]";
1627     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1628       OS << " [isconvergent]";
1629     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1630       OS << " [alignstack]";
1631     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1632       OS << " [attdialect]";
1633     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1634       OS << " [inteldialect]";
1635 
1636     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1637     FirstOp = false;
1638   }
1639 
1640   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1641     const MachineOperand &MO = getOperand(i);
1642 
1643     if (FirstOp) FirstOp = false; else OS << ",";
1644     OS << " ";
1645 
1646     if (isDebugValue() && MO.isMetadata()) {
1647       // Pretty print DBG_VALUE instructions.
1648       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1649       if (DIV && !DIV->getName().empty())
1650         OS << "!\"" << DIV->getName() << '\"';
1651       else {
1652         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1653         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1654         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1655                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1656       }
1657     } else if (isDebugLabel() && MO.isMetadata()) {
1658       // Pretty print DBG_LABEL instructions.
1659       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1660       if (DIL && !DIL->getName().empty())
1661         OS << "\"" << DIL->getName() << '\"';
1662       else {
1663         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1664         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1665         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1666                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1667       }
1668     } else if (i == AsmDescOp && MO.isImm()) {
1669       // Pretty print the inline asm operand descriptor.
1670       OS << '$' << AsmOpCount++;
1671       unsigned Flag = MO.getImm();
1672       OS << ":[";
1673       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1674 
1675       unsigned RCID = 0;
1676       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1677           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1678         if (TRI) {
1679           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1680         } else
1681           OS << ":RC" << RCID;
1682       }
1683 
1684       if (InlineAsm::isMemKind(Flag)) {
1685         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1686         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1687       }
1688 
1689       unsigned TiedTo = 0;
1690       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1691         OS << " tiedto:$" << TiedTo;
1692 
1693       OS << ']';
1694 
1695       // Compute the index of the next operand descriptor.
1696       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1697     } else {
1698       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1699       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1700       if (MO.isImm() && isOperandSubregIdx(i))
1701         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1702       else
1703         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1704                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1705     }
1706   }
1707 
1708   // Print any optional symbols attached to this instruction as-if they were
1709   // operands.
1710   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1711     if (!FirstOp) {
1712       FirstOp = false;
1713       OS << ',';
1714     }
1715     OS << " pre-instr-symbol ";
1716     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1717   }
1718   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1719     if (!FirstOp) {
1720       FirstOp = false;
1721       OS << ',';
1722     }
1723     OS << " post-instr-symbol ";
1724     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1725   }
1726   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1727     if (!FirstOp) {
1728       FirstOp = false;
1729       OS << ',';
1730     }
1731     OS << " heap-alloc-marker ";
1732     HeapAllocMarker->printAsOperand(OS, MST);
1733   }
1734 
1735   if (!SkipDebugLoc) {
1736     if (const DebugLoc &DL = getDebugLoc()) {
1737       if (!FirstOp)
1738         OS << ',';
1739       OS << " debug-location ";
1740       DL->printAsOperand(OS, MST);
1741     }
1742   }
1743 
1744   if (!memoperands_empty()) {
1745     SmallVector<StringRef, 0> SSNs;
1746     const LLVMContext *Context = nullptr;
1747     std::unique_ptr<LLVMContext> CtxPtr;
1748     const MachineFrameInfo *MFI = nullptr;
1749     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1750       MFI = &MF->getFrameInfo();
1751       Context = &MF->getFunction().getContext();
1752     } else {
1753       CtxPtr = std::make_unique<LLVMContext>();
1754       Context = CtxPtr.get();
1755     }
1756 
1757     OS << " :: ";
1758     bool NeedComma = false;
1759     for (const MachineMemOperand *Op : memoperands()) {
1760       if (NeedComma)
1761         OS << ", ";
1762       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1763       NeedComma = true;
1764     }
1765   }
1766 
1767   if (SkipDebugLoc)
1768     return;
1769 
1770   bool HaveSemi = false;
1771 
1772   // Print debug location information.
1773   if (const DebugLoc &DL = getDebugLoc()) {
1774     if (!HaveSemi) {
1775       OS << ';';
1776       HaveSemi = true;
1777     }
1778     OS << ' ';
1779     DL.print(OS);
1780   }
1781 
1782   // Print extra comments for DEBUG_VALUE.
1783   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1784     if (!HaveSemi) {
1785       OS << ";";
1786       HaveSemi = true;
1787     }
1788     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1789     OS << " line no:" <<  DV->getLine();
1790     if (isIndirectDebugValue())
1791       OS << " indirect";
1792   }
1793   // TODO: DBG_LABEL
1794 
1795   if (AddNewLine)
1796     OS << '\n';
1797 }
1798 
1799 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1800                                      const TargetRegisterInfo *RegInfo,
1801                                      bool AddIfNotFound) {
1802   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1803   bool hasAliases = isPhysReg &&
1804     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1805   bool Found = false;
1806   SmallVector<unsigned,4> DeadOps;
1807   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1808     MachineOperand &MO = getOperand(i);
1809     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1810       continue;
1811 
1812     // DEBUG_VALUE nodes do not contribute to code generation and should
1813     // always be ignored. Failure to do so may result in trying to modify
1814     // KILL flags on DEBUG_VALUE nodes.
1815     if (MO.isDebug())
1816       continue;
1817 
1818     Register Reg = MO.getReg();
1819     if (!Reg)
1820       continue;
1821 
1822     if (Reg == IncomingReg) {
1823       if (!Found) {
1824         if (MO.isKill())
1825           // The register is already marked kill.
1826           return true;
1827         if (isPhysReg && isRegTiedToDefOperand(i))
1828           // Two-address uses of physregs must not be marked kill.
1829           return true;
1830         MO.setIsKill();
1831         Found = true;
1832       }
1833     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1834       // A super-register kill already exists.
1835       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1836         return true;
1837       if (RegInfo->isSubRegister(IncomingReg, Reg))
1838         DeadOps.push_back(i);
1839     }
1840   }
1841 
1842   // Trim unneeded kill operands.
1843   while (!DeadOps.empty()) {
1844     unsigned OpIdx = DeadOps.back();
1845     if (getOperand(OpIdx).isImplicit() &&
1846         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1847       RemoveOperand(OpIdx);
1848     else
1849       getOperand(OpIdx).setIsKill(false);
1850     DeadOps.pop_back();
1851   }
1852 
1853   // If not found, this means an alias of one of the operands is killed. Add a
1854   // new implicit operand if required.
1855   if (!Found && AddIfNotFound) {
1856     addOperand(MachineOperand::CreateReg(IncomingReg,
1857                                          false /*IsDef*/,
1858                                          true  /*IsImp*/,
1859                                          true  /*IsKill*/));
1860     return true;
1861   }
1862   return Found;
1863 }
1864 
1865 void MachineInstr::clearRegisterKills(Register Reg,
1866                                       const TargetRegisterInfo *RegInfo) {
1867   if (!Register::isPhysicalRegister(Reg))
1868     RegInfo = nullptr;
1869   for (MachineOperand &MO : operands()) {
1870     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1871       continue;
1872     Register OpReg = MO.getReg();
1873     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1874       MO.setIsKill(false);
1875   }
1876 }
1877 
1878 bool MachineInstr::addRegisterDead(Register Reg,
1879                                    const TargetRegisterInfo *RegInfo,
1880                                    bool AddIfNotFound) {
1881   bool isPhysReg = Register::isPhysicalRegister(Reg);
1882   bool hasAliases = isPhysReg &&
1883     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1884   bool Found = false;
1885   SmallVector<unsigned,4> DeadOps;
1886   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1887     MachineOperand &MO = getOperand(i);
1888     if (!MO.isReg() || !MO.isDef())
1889       continue;
1890     Register MOReg = MO.getReg();
1891     if (!MOReg)
1892       continue;
1893 
1894     if (MOReg == Reg) {
1895       MO.setIsDead();
1896       Found = true;
1897     } else if (hasAliases && MO.isDead() &&
1898                Register::isPhysicalRegister(MOReg)) {
1899       // There exists a super-register that's marked dead.
1900       if (RegInfo->isSuperRegister(Reg, MOReg))
1901         return true;
1902       if (RegInfo->isSubRegister(Reg, MOReg))
1903         DeadOps.push_back(i);
1904     }
1905   }
1906 
1907   // Trim unneeded dead operands.
1908   while (!DeadOps.empty()) {
1909     unsigned OpIdx = DeadOps.back();
1910     if (getOperand(OpIdx).isImplicit() &&
1911         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1912       RemoveOperand(OpIdx);
1913     else
1914       getOperand(OpIdx).setIsDead(false);
1915     DeadOps.pop_back();
1916   }
1917 
1918   // If not found, this means an alias of one of the operands is dead. Add a
1919   // new implicit operand if required.
1920   if (Found || !AddIfNotFound)
1921     return Found;
1922 
1923   addOperand(MachineOperand::CreateReg(Reg,
1924                                        true  /*IsDef*/,
1925                                        true  /*IsImp*/,
1926                                        false /*IsKill*/,
1927                                        true  /*IsDead*/));
1928   return true;
1929 }
1930 
1931 void MachineInstr::clearRegisterDeads(Register Reg) {
1932   for (MachineOperand &MO : operands()) {
1933     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1934       continue;
1935     MO.setIsDead(false);
1936   }
1937 }
1938 
1939 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
1940   for (MachineOperand &MO : operands()) {
1941     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1942       continue;
1943     MO.setIsUndef(IsUndef);
1944   }
1945 }
1946 
1947 void MachineInstr::addRegisterDefined(Register Reg,
1948                                       const TargetRegisterInfo *RegInfo) {
1949   if (Register::isPhysicalRegister(Reg)) {
1950     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
1951     if (MO)
1952       return;
1953   } else {
1954     for (const MachineOperand &MO : operands()) {
1955       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1956           MO.getSubReg() == 0)
1957         return;
1958     }
1959   }
1960   addOperand(MachineOperand::CreateReg(Reg,
1961                                        true  /*IsDef*/,
1962                                        true  /*IsImp*/));
1963 }
1964 
1965 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1966                                          const TargetRegisterInfo &TRI) {
1967   bool HasRegMask = false;
1968   for (MachineOperand &MO : operands()) {
1969     if (MO.isRegMask()) {
1970       HasRegMask = true;
1971       continue;
1972     }
1973     if (!MO.isReg() || !MO.isDef()) continue;
1974     Register Reg = MO.getReg();
1975     if (!Reg.isPhysical())
1976       continue;
1977     // If there are no uses, including partial uses, the def is dead.
1978     if (llvm::none_of(UsedRegs,
1979                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
1980       MO.setIsDead();
1981   }
1982 
1983   // This is a call with a register mask operand.
1984   // Mask clobbers are always dead, so add defs for the non-dead defines.
1985   if (HasRegMask)
1986     for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1987          I != E; ++I)
1988       addRegisterDefined(*I, &TRI);
1989 }
1990 
1991 unsigned
1992 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1993   // Build up a buffer of hash code components.
1994   SmallVector<size_t, 16> HashComponents;
1995   HashComponents.reserve(MI->getNumOperands() + 1);
1996   HashComponents.push_back(MI->getOpcode());
1997   for (const MachineOperand &MO : MI->operands()) {
1998     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
1999       continue;  // Skip virtual register defs.
2000 
2001     HashComponents.push_back(hash_value(MO));
2002   }
2003   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2004 }
2005 
2006 void MachineInstr::emitError(StringRef Msg) const {
2007   // Find the source location cookie.
2008   unsigned LocCookie = 0;
2009   const MDNode *LocMD = nullptr;
2010   for (unsigned i = getNumOperands(); i != 0; --i) {
2011     if (getOperand(i-1).isMetadata() &&
2012         (LocMD = getOperand(i-1).getMetadata()) &&
2013         LocMD->getNumOperands() != 0) {
2014       if (const ConstantInt *CI =
2015               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2016         LocCookie = CI->getZExtValue();
2017         break;
2018       }
2019     }
2020   }
2021 
2022   if (const MachineBasicBlock *MBB = getParent())
2023     if (const MachineFunction *MF = MBB->getParent())
2024       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2025   report_fatal_error(Msg);
2026 }
2027 
2028 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2029                                   const MCInstrDesc &MCID, bool IsIndirect,
2030                                   Register Reg, const MDNode *Variable,
2031                                   const MDNode *Expr) {
2032   assert(isa<DILocalVariable>(Variable) && "not a variable");
2033   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2034   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2035          "Expected inlined-at fields to agree");
2036   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2037   if (IsIndirect)
2038     MIB.addImm(0U);
2039   else
2040     MIB.addReg(0U, RegState::Debug);
2041   return MIB.addMetadata(Variable).addMetadata(Expr);
2042 }
2043 
2044 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2045                                   const MCInstrDesc &MCID, bool IsIndirect,
2046                                   MachineOperand &MO, const MDNode *Variable,
2047                                   const MDNode *Expr) {
2048   assert(isa<DILocalVariable>(Variable) && "not a variable");
2049   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2050   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2051          "Expected inlined-at fields to agree");
2052   if (MO.isReg())
2053     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2054 
2055   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2056   if (IsIndirect)
2057     MIB.addImm(0U);
2058   else
2059     MIB.addReg(0U, RegState::Debug);
2060   return MIB.addMetadata(Variable).addMetadata(Expr);
2061  }
2062 
2063 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2064                                   MachineBasicBlock::iterator I,
2065                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2066                                   bool IsIndirect, Register Reg,
2067                                   const MDNode *Variable, const MDNode *Expr) {
2068   MachineFunction &MF = *BB.getParent();
2069   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2070   BB.insert(I, MI);
2071   return MachineInstrBuilder(MF, MI);
2072 }
2073 
2074 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2075                                   MachineBasicBlock::iterator I,
2076                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2077                                   bool IsIndirect, MachineOperand &MO,
2078                                   const MDNode *Variable, const MDNode *Expr) {
2079   MachineFunction &MF = *BB.getParent();
2080   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2081   BB.insert(I, MI);
2082   return MachineInstrBuilder(MF, *MI);
2083 }
2084 
2085 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2086 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2087 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2088   assert(MI.getOperand(0).isReg() && "can't spill non-register");
2089   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2090          "Expected inlined-at fields to agree");
2091 
2092   const DIExpression *Expr = MI.getDebugExpression();
2093   if (MI.isIndirectDebugValue()) {
2094     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
2095     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2096   }
2097   return Expr;
2098 }
2099 
2100 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2101                                           MachineBasicBlock::iterator I,
2102                                           const MachineInstr &Orig,
2103                                           int FrameIndex) {
2104   const DIExpression *Expr = computeExprForSpill(Orig);
2105   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2106       .addFrameIndex(FrameIndex)
2107       .addImm(0U)
2108       .addMetadata(Orig.getDebugVariable())
2109       .addMetadata(Expr);
2110 }
2111 
2112 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2113   const DIExpression *Expr = computeExprForSpill(Orig);
2114   Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
2115   Orig.getOperand(1).ChangeToImmediate(0U);
2116   Orig.getOperand(3).setMetadata(Expr);
2117 }
2118 
2119 void MachineInstr::collectDebugValues(
2120                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2121   MachineInstr &MI = *this;
2122   if (!MI.getOperand(0).isReg())
2123     return;
2124 
2125   MachineBasicBlock::iterator DI = MI; ++DI;
2126   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2127        DI != DE; ++DI) {
2128     if (!DI->isDebugValue())
2129       return;
2130     if (DI->getOperand(0).isReg() &&
2131         DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
2132       DbgValues.push_back(&*DI);
2133   }
2134 }
2135 
2136 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2137   // Collect matching debug values.
2138   SmallVector<MachineInstr *, 2> DbgValues;
2139 
2140   if (!getOperand(0).isReg())
2141     return;
2142 
2143   unsigned DefReg = getOperand(0).getReg();
2144   auto *MRI = getRegInfo();
2145   for (auto &MO : MRI->use_operands(DefReg)) {
2146     auto *DI = MO.getParent();
2147     if (!DI->isDebugValue())
2148       continue;
2149     if (DI->getOperand(0).isReg() &&
2150         DI->getOperand(0).getReg() == DefReg){
2151       DbgValues.push_back(DI);
2152     }
2153   }
2154 
2155   // Propagate Reg to debug value instructions.
2156   for (auto *DBI : DbgValues)
2157     DBI->getOperand(0).setReg(Reg);
2158 }
2159 
2160 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2161 
2162 static unsigned getSpillSlotSize(const MMOList &Accesses,
2163                                  const MachineFrameInfo &MFI) {
2164   unsigned Size = 0;
2165   for (auto A : Accesses)
2166     if (MFI.isSpillSlotObjectIndex(
2167             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2168                 ->getFrameIndex()))
2169       Size += A->getSize();
2170   return Size;
2171 }
2172 
2173 Optional<unsigned>
2174 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2175   int FI;
2176   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2177     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2178     if (MFI.isSpillSlotObjectIndex(FI))
2179       return (*memoperands_begin())->getSize();
2180   }
2181   return None;
2182 }
2183 
2184 Optional<unsigned>
2185 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2186   MMOList Accesses;
2187   if (TII->hasStoreToStackSlot(*this, Accesses))
2188     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2189   return None;
2190 }
2191 
2192 Optional<unsigned>
2193 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2194   int FI;
2195   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2196     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2197     if (MFI.isSpillSlotObjectIndex(FI))
2198       return (*memoperands_begin())->getSize();
2199   }
2200   return None;
2201 }
2202 
2203 Optional<unsigned>
2204 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2205   MMOList Accesses;
2206   if (TII->hasLoadFromStackSlot(*this, Accesses))
2207     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2208   return None;
2209 }
2210