1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfo.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSlotTracker.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/MC/MCInstrDesc.h" 37 #include "llvm/MC/MCSymbol.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 using namespace llvm; 49 50 static cl::opt<bool> PrintWholeRegMask( 51 "print-whole-regmask", 52 cl::desc("Print the full contents of regmask operands in IR dumps"), 53 cl::init(true), cl::Hidden); 54 55 //===----------------------------------------------------------------------===// 56 // MachineOperand Implementation 57 //===----------------------------------------------------------------------===// 58 59 void MachineOperand::setReg(unsigned Reg) { 60 if (getReg() == Reg) return; // No change. 61 62 // Otherwise, we have to change the register. If this operand is embedded 63 // into a machine function, we need to update the old and new register's 64 // use/def lists. 65 if (MachineInstr *MI = getParent()) 66 if (MachineBasicBlock *MBB = MI->getParent()) 67 if (MachineFunction *MF = MBB->getParent()) { 68 MachineRegisterInfo &MRI = MF->getRegInfo(); 69 MRI.removeRegOperandFromUseList(this); 70 SmallContents.RegNo = Reg; 71 MRI.addRegOperandToUseList(this); 72 return; 73 } 74 75 // Otherwise, just change the register, no problem. :) 76 SmallContents.RegNo = Reg; 77 } 78 79 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 80 const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 82 if (SubIdx && getSubReg()) 83 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 84 setReg(Reg); 85 if (SubIdx) 86 setSubReg(SubIdx); 87 } 88 89 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 90 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 91 if (getSubReg()) { 92 Reg = TRI.getSubReg(Reg, getSubReg()); 93 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 94 // That won't happen in legal code. 95 setSubReg(0); 96 if (isDef()) 97 setIsUndef(false); 98 } 99 setReg(Reg); 100 } 101 102 /// Change a def to a use, or a use to a def. 103 void MachineOperand::setIsDef(bool Val) { 104 assert(isReg() && "Wrong MachineOperand accessor"); 105 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 106 if (IsDef == Val) 107 return; 108 // MRI may keep uses and defs in different list positions. 109 if (MachineInstr *MI = getParent()) 110 if (MachineBasicBlock *MBB = MI->getParent()) 111 if (MachineFunction *MF = MBB->getParent()) { 112 MachineRegisterInfo &MRI = MF->getRegInfo(); 113 MRI.removeRegOperandFromUseList(this); 114 IsDef = Val; 115 MRI.addRegOperandToUseList(this); 116 return; 117 } 118 IsDef = Val; 119 } 120 121 // If this operand is currently a register operand, and if this is in a 122 // function, deregister the operand from the register's use/def list. 123 void MachineOperand::removeRegFromUses() { 124 if (!isReg() || !isOnRegUseList()) 125 return; 126 127 if (MachineInstr *MI = getParent()) { 128 if (MachineBasicBlock *MBB = MI->getParent()) { 129 if (MachineFunction *MF = MBB->getParent()) 130 MF->getRegInfo().removeRegOperandFromUseList(this); 131 } 132 } 133 } 134 135 /// ChangeToImmediate - Replace this operand with a new immediate operand of 136 /// the specified value. If an operand is known to be an immediate already, 137 /// the setImm method should be used. 138 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 139 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 140 141 removeRegFromUses(); 142 143 OpKind = MO_Immediate; 144 Contents.ImmVal = ImmVal; 145 } 146 147 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 148 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 149 150 removeRegFromUses(); 151 152 OpKind = MO_FPImmediate; 153 Contents.CFP = FPImm; 154 } 155 156 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 157 assert((!isReg() || !isTied()) && 158 "Cannot change a tied operand into an external symbol"); 159 160 removeRegFromUses(); 161 162 OpKind = MO_ExternalSymbol; 163 Contents.OffsetedInfo.Val.SymbolName = SymName; 164 setOffset(0); // Offset is always 0. 165 setTargetFlags(TargetFlags); 166 } 167 168 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 169 assert((!isReg() || !isTied()) && 170 "Cannot change a tied operand into an MCSymbol"); 171 172 removeRegFromUses(); 173 174 OpKind = MO_MCSymbol; 175 Contents.Sym = Sym; 176 } 177 178 void MachineOperand::ChangeToFrameIndex(int Idx) { 179 assert((!isReg() || !isTied()) && 180 "Cannot change a tied operand into a FrameIndex"); 181 182 removeRegFromUses(); 183 184 OpKind = MO_FrameIndex; 185 setIndex(Idx); 186 } 187 188 /// ChangeToRegister - Replace this operand with a new register operand of 189 /// the specified value. If an operand is known to be an register already, 190 /// the setReg method should be used. 191 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 192 bool isKill, bool isDead, bool isUndef, 193 bool isDebug) { 194 MachineRegisterInfo *RegInfo = nullptr; 195 if (MachineInstr *MI = getParent()) 196 if (MachineBasicBlock *MBB = MI->getParent()) 197 if (MachineFunction *MF = MBB->getParent()) 198 RegInfo = &MF->getRegInfo(); 199 // If this operand is already a register operand, remove it from the 200 // register's use/def lists. 201 bool WasReg = isReg(); 202 if (RegInfo && WasReg) 203 RegInfo->removeRegOperandFromUseList(this); 204 205 // Change this to a register and set the reg#. 206 OpKind = MO_Register; 207 SmallContents.RegNo = Reg; 208 SubReg_TargetFlags = 0; 209 IsDef = isDef; 210 IsImp = isImp; 211 IsKill = isKill; 212 IsDead = isDead; 213 IsUndef = isUndef; 214 IsInternalRead = false; 215 IsEarlyClobber = false; 216 IsDebug = isDebug; 217 // Ensure isOnRegUseList() returns false. 218 Contents.Reg.Prev = nullptr; 219 // Preserve the tie when the operand was already a register. 220 if (!WasReg) 221 TiedTo = 0; 222 223 // If this operand is embedded in a function, add the operand to the 224 // register's use/def list. 225 if (RegInfo) 226 RegInfo->addRegOperandToUseList(this); 227 } 228 229 /// isIdenticalTo - Return true if this operand is identical to the specified 230 /// operand. Note that this should stay in sync with the hash_value overload 231 /// below. 232 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 233 if (getType() != Other.getType() || 234 getTargetFlags() != Other.getTargetFlags()) 235 return false; 236 237 switch (getType()) { 238 case MachineOperand::MO_Register: 239 return getReg() == Other.getReg() && isDef() == Other.isDef() && 240 getSubReg() == Other.getSubReg(); 241 case MachineOperand::MO_Immediate: 242 return getImm() == Other.getImm(); 243 case MachineOperand::MO_CImmediate: 244 return getCImm() == Other.getCImm(); 245 case MachineOperand::MO_FPImmediate: 246 return getFPImm() == Other.getFPImm(); 247 case MachineOperand::MO_MachineBasicBlock: 248 return getMBB() == Other.getMBB(); 249 case MachineOperand::MO_FrameIndex: 250 return getIndex() == Other.getIndex(); 251 case MachineOperand::MO_ConstantPoolIndex: 252 case MachineOperand::MO_TargetIndex: 253 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 254 case MachineOperand::MO_JumpTableIndex: 255 return getIndex() == Other.getIndex(); 256 case MachineOperand::MO_GlobalAddress: 257 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 258 case MachineOperand::MO_ExternalSymbol: 259 return !strcmp(getSymbolName(), Other.getSymbolName()) && 260 getOffset() == Other.getOffset(); 261 case MachineOperand::MO_BlockAddress: 262 return getBlockAddress() == Other.getBlockAddress() && 263 getOffset() == Other.getOffset(); 264 case MachineOperand::MO_RegisterMask: 265 case MachineOperand::MO_RegisterLiveOut: 266 return getRegMask() == Other.getRegMask(); 267 case MachineOperand::MO_MCSymbol: 268 return getMCSymbol() == Other.getMCSymbol(); 269 case MachineOperand::MO_CFIIndex: 270 return getCFIIndex() == Other.getCFIIndex(); 271 case MachineOperand::MO_Metadata: 272 return getMetadata() == Other.getMetadata(); 273 case MachineOperand::MO_IntrinsicID: 274 return getIntrinsicID() == Other.getIntrinsicID(); 275 case MachineOperand::MO_Predicate: 276 return getPredicate() == Other.getPredicate(); 277 } 278 llvm_unreachable("Invalid machine operand type"); 279 } 280 281 // Note: this must stay exactly in sync with isIdenticalTo above. 282 hash_code llvm::hash_value(const MachineOperand &MO) { 283 switch (MO.getType()) { 284 case MachineOperand::MO_Register: 285 // Register operands don't have target flags. 286 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 287 case MachineOperand::MO_Immediate: 288 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 289 case MachineOperand::MO_CImmediate: 290 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 291 case MachineOperand::MO_FPImmediate: 292 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 293 case MachineOperand::MO_MachineBasicBlock: 294 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 295 case MachineOperand::MO_FrameIndex: 296 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 297 case MachineOperand::MO_ConstantPoolIndex: 298 case MachineOperand::MO_TargetIndex: 299 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 300 MO.getOffset()); 301 case MachineOperand::MO_JumpTableIndex: 302 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 303 case MachineOperand::MO_ExternalSymbol: 304 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 305 MO.getSymbolName()); 306 case MachineOperand::MO_GlobalAddress: 307 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 308 MO.getOffset()); 309 case MachineOperand::MO_BlockAddress: 310 return hash_combine(MO.getType(), MO.getTargetFlags(), 311 MO.getBlockAddress(), MO.getOffset()); 312 case MachineOperand::MO_RegisterMask: 313 case MachineOperand::MO_RegisterLiveOut: 314 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 315 case MachineOperand::MO_Metadata: 316 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 317 case MachineOperand::MO_MCSymbol: 318 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 319 case MachineOperand::MO_CFIIndex: 320 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 321 case MachineOperand::MO_IntrinsicID: 322 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID()); 323 case MachineOperand::MO_Predicate: 324 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate()); 325 } 326 llvm_unreachable("Invalid machine operand type"); 327 } 328 329 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI, 330 const TargetIntrinsicInfo *IntrinsicInfo) const { 331 ModuleSlotTracker DummyMST(nullptr); 332 print(OS, DummyMST, TRI, IntrinsicInfo); 333 } 334 335 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 336 const TargetRegisterInfo *TRI, 337 const TargetIntrinsicInfo *IntrinsicInfo) const { 338 switch (getType()) { 339 case MachineOperand::MO_Register: 340 OS << PrintReg(getReg(), TRI, getSubReg()); 341 342 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 343 isInternalRead() || isEarlyClobber() || isTied()) { 344 OS << '<'; 345 bool NeedComma = false; 346 if (isDef()) { 347 if (NeedComma) OS << ','; 348 if (isEarlyClobber()) 349 OS << "earlyclobber,"; 350 if (isImplicit()) 351 OS << "imp-"; 352 OS << "def"; 353 NeedComma = true; 354 // <def,read-undef> only makes sense when getSubReg() is set. 355 // Don't clutter the output otherwise. 356 if (isUndef() && getSubReg()) 357 OS << ",read-undef"; 358 } else if (isImplicit()) { 359 OS << "imp-use"; 360 NeedComma = true; 361 } 362 363 if (isKill()) { 364 if (NeedComma) OS << ','; 365 OS << "kill"; 366 NeedComma = true; 367 } 368 if (isDead()) { 369 if (NeedComma) OS << ','; 370 OS << "dead"; 371 NeedComma = true; 372 } 373 if (isUndef() && isUse()) { 374 if (NeedComma) OS << ','; 375 OS << "undef"; 376 NeedComma = true; 377 } 378 if (isInternalRead()) { 379 if (NeedComma) OS << ','; 380 OS << "internal"; 381 NeedComma = true; 382 } 383 if (isTied()) { 384 if (NeedComma) OS << ','; 385 OS << "tied"; 386 if (TiedTo != 15) 387 OS << unsigned(TiedTo - 1); 388 } 389 OS << '>'; 390 } 391 break; 392 case MachineOperand::MO_Immediate: 393 OS << getImm(); 394 break; 395 case MachineOperand::MO_CImmediate: 396 getCImm()->getValue().print(OS, false); 397 break; 398 case MachineOperand::MO_FPImmediate: 399 if (getFPImm()->getType()->isFloatTy()) { 400 OS << getFPImm()->getValueAPF().convertToFloat(); 401 } else if (getFPImm()->getType()->isHalfTy()) { 402 APFloat APF = getFPImm()->getValueAPF(); 403 bool Unused; 404 APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused); 405 OS << "half " << APF.convertToFloat(); 406 } else { 407 OS << getFPImm()->getValueAPF().convertToDouble(); 408 } 409 break; 410 case MachineOperand::MO_MachineBasicBlock: 411 OS << "<BB#" << getMBB()->getNumber() << ">"; 412 break; 413 case MachineOperand::MO_FrameIndex: 414 OS << "<fi#" << getIndex() << '>'; 415 break; 416 case MachineOperand::MO_ConstantPoolIndex: 417 OS << "<cp#" << getIndex(); 418 if (getOffset()) OS << "+" << getOffset(); 419 OS << '>'; 420 break; 421 case MachineOperand::MO_TargetIndex: 422 OS << "<ti#" << getIndex(); 423 if (getOffset()) OS << "+" << getOffset(); 424 OS << '>'; 425 break; 426 case MachineOperand::MO_JumpTableIndex: 427 OS << "<jt#" << getIndex() << '>'; 428 break; 429 case MachineOperand::MO_GlobalAddress: 430 OS << "<ga:"; 431 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 432 if (getOffset()) OS << "+" << getOffset(); 433 OS << '>'; 434 break; 435 case MachineOperand::MO_ExternalSymbol: 436 OS << "<es:" << getSymbolName(); 437 if (getOffset()) OS << "+" << getOffset(); 438 OS << '>'; 439 break; 440 case MachineOperand::MO_BlockAddress: 441 OS << '<'; 442 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 443 if (getOffset()) OS << "+" << getOffset(); 444 OS << '>'; 445 break; 446 case MachineOperand::MO_RegisterMask: { 447 unsigned NumRegsInMask = 0; 448 unsigned NumRegsEmitted = 0; 449 OS << "<regmask"; 450 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 451 unsigned MaskWord = i / 32; 452 unsigned MaskBit = i % 32; 453 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 454 if (PrintWholeRegMask || NumRegsEmitted <= 10) { 455 OS << " " << PrintReg(i, TRI); 456 NumRegsEmitted++; 457 } 458 NumRegsInMask++; 459 } 460 } 461 if (NumRegsEmitted != NumRegsInMask) 462 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 463 OS << ">"; 464 break; 465 } 466 case MachineOperand::MO_RegisterLiveOut: 467 OS << "<regliveout>"; 468 break; 469 case MachineOperand::MO_Metadata: 470 OS << '<'; 471 getMetadata()->printAsOperand(OS, MST); 472 OS << '>'; 473 break; 474 case MachineOperand::MO_MCSymbol: 475 OS << "<MCSym=" << *getMCSymbol() << '>'; 476 break; 477 case MachineOperand::MO_CFIIndex: 478 OS << "<call frame instruction>"; 479 break; 480 case MachineOperand::MO_IntrinsicID: { 481 Intrinsic::ID ID = getIntrinsicID(); 482 if (ID < Intrinsic::num_intrinsics) 483 OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>'; 484 else if (IntrinsicInfo) 485 OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>'; 486 else 487 OS << "<intrinsic:" << ID << '>'; 488 break; 489 } 490 case MachineOperand::MO_Predicate: { 491 auto Pred = static_cast<CmpInst::Predicate>(getPredicate()); 492 OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred") 493 << CmpInst::getPredicateName(Pred) << '>'; 494 } 495 } 496 if (unsigned TF = getTargetFlags()) 497 OS << "[TF=" << TF << ']'; 498 } 499 500 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 501 LLVM_DUMP_METHOD void MachineOperand::dump() const { 502 dbgs() << *this << '\n'; 503 } 504 #endif 505 506 //===----------------------------------------------------------------------===// 507 // MachineMemOperand Implementation 508 //===----------------------------------------------------------------------===// 509 510 /// getAddrSpace - Return the LLVM IR address space number that this pointer 511 /// points into. 512 unsigned MachinePointerInfo::getAddrSpace() const { 513 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 514 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 515 } 516 517 /// getConstantPool - Return a MachinePointerInfo record that refers to the 518 /// constant pool. 519 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 520 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 521 } 522 523 /// getFixedStack - Return a MachinePointerInfo record that refers to the 524 /// the specified FrameIndex. 525 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 526 int FI, int64_t Offset) { 527 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 528 } 529 530 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 531 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 532 } 533 534 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 535 return MachinePointerInfo(MF.getPSVManager().getGOT()); 536 } 537 538 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 539 int64_t Offset) { 540 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); 541 } 542 543 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, 544 uint64_t s, unsigned int a, 545 const AAMDNodes &AAInfo, 546 const MDNode *Ranges, 547 SynchronizationScope SynchScope, 548 AtomicOrdering Ordering, 549 AtomicOrdering FailureOrdering) 550 : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), 551 AAInfo(AAInfo), Ranges(Ranges) { 552 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 553 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 554 "invalid pointer value"); 555 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 556 assert((isLoad() || isStore()) && "Not a load/store!"); 557 558 AtomicInfo.SynchScope = static_cast<unsigned>(SynchScope); 559 assert(getSynchScope() == SynchScope && "Value truncated"); 560 AtomicInfo.Ordering = static_cast<unsigned>(Ordering); 561 assert(getOrdering() == Ordering && "Value truncated"); 562 AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering); 563 assert(getFailureOrdering() == FailureOrdering && "Value truncated"); 564 } 565 566 /// Profile - Gather unique data for the object. 567 /// 568 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 569 ID.AddInteger(getOffset()); 570 ID.AddInteger(Size); 571 ID.AddPointer(getOpaqueValue()); 572 ID.AddInteger(getFlags()); 573 ID.AddInteger(getBaseAlignment()); 574 } 575 576 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 577 // The Value and Offset may differ due to CSE. But the flags and size 578 // should be the same. 579 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 580 assert(MMO->getSize() == getSize() && "Size mismatch!"); 581 582 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 583 // Update the alignment value. 584 BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; 585 // Also update the base and offset, because the new alignment may 586 // not be applicable with the old ones. 587 PtrInfo = MMO->PtrInfo; 588 } 589 } 590 591 /// getAlignment - Return the minimum known alignment in bytes of the 592 /// actual memory reference. 593 uint64_t MachineMemOperand::getAlignment() const { 594 return MinAlign(getBaseAlignment(), getOffset()); 595 } 596 597 void MachineMemOperand::print(raw_ostream &OS) const { 598 ModuleSlotTracker DummyMST(nullptr); 599 print(OS, DummyMST); 600 } 601 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 602 assert((isLoad() || isStore()) && 603 "SV has to be a load, store or both."); 604 605 if (isVolatile()) 606 OS << "Volatile "; 607 608 if (isLoad()) 609 OS << "LD"; 610 if (isStore()) 611 OS << "ST"; 612 OS << getSize(); 613 614 // Print the address information. 615 OS << "["; 616 if (const Value *V = getValue()) 617 V->printAsOperand(OS, /*PrintType=*/false, MST); 618 else if (const PseudoSourceValue *PSV = getPseudoValue()) 619 PSV->printCustom(OS); 620 else 621 OS << "<unknown>"; 622 623 unsigned AS = getAddrSpace(); 624 if (AS != 0) 625 OS << "(addrspace=" << AS << ')'; 626 627 // If the alignment of the memory reference itself differs from the alignment 628 // of the base pointer, print the base alignment explicitly, next to the base 629 // pointer. 630 if (getBaseAlignment() != getAlignment()) 631 OS << "(align=" << getBaseAlignment() << ")"; 632 633 if (getOffset() != 0) 634 OS << "+" << getOffset(); 635 OS << "]"; 636 637 // Print the alignment of the reference. 638 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 639 OS << "(align=" << getAlignment() << ")"; 640 641 // Print TBAA info. 642 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 643 OS << "(tbaa="; 644 if (TBAAInfo->getNumOperands() > 0) 645 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 646 else 647 OS << "<unknown>"; 648 OS << ")"; 649 } 650 651 // Print AA scope info. 652 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 653 OS << "(alias.scope="; 654 if (ScopeInfo->getNumOperands() > 0) 655 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 656 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 657 if (i != ie-1) 658 OS << ","; 659 } 660 else 661 OS << "<unknown>"; 662 OS << ")"; 663 } 664 665 // Print AA noalias scope info. 666 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 667 OS << "(noalias="; 668 if (NoAliasInfo->getNumOperands() > 0) 669 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 670 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 671 if (i != ie-1) 672 OS << ","; 673 } 674 else 675 OS << "<unknown>"; 676 OS << ")"; 677 } 678 679 if (isNonTemporal()) 680 OS << "(nontemporal)"; 681 if (isDereferenceable()) 682 OS << "(dereferenceable)"; 683 if (isInvariant()) 684 OS << "(invariant)"; 685 } 686 687 //===----------------------------------------------------------------------===// 688 // MachineInstr Implementation 689 //===----------------------------------------------------------------------===// 690 691 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 692 if (MCID->ImplicitDefs) 693 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 694 ++ImpDefs) 695 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 696 if (MCID->ImplicitUses) 697 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 698 ++ImpUses) 699 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 700 } 701 702 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 703 /// implicit operands. It reserves space for the number of operands specified by 704 /// the MCInstrDesc. 705 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 706 DebugLoc dl, bool NoImp) 707 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), 708 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), 709 debugLoc(std::move(dl)) { 710 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 711 712 // Reserve space for the expected number of operands. 713 if (unsigned NumOps = MCID->getNumOperands() + 714 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 715 CapOperands = OperandCapacity::get(NumOps); 716 Operands = MF.allocateOperandArray(CapOperands); 717 } 718 719 if (!NoImp) 720 addImplicitDefUseOperands(MF); 721 } 722 723 /// MachineInstr ctor - Copies MachineInstr arg exactly 724 /// 725 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 726 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 727 Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs), 728 MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) { 729 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 730 731 CapOperands = OperandCapacity::get(MI.getNumOperands()); 732 Operands = MF.allocateOperandArray(CapOperands); 733 734 // Copy operands. 735 for (const MachineOperand &MO : MI.operands()) 736 addOperand(MF, MO); 737 738 // Copy all the sensible flags. 739 setFlags(MI.Flags); 740 } 741 742 /// getRegInfo - If this instruction is embedded into a MachineFunction, 743 /// return the MachineRegisterInfo object for the current function, otherwise 744 /// return null. 745 MachineRegisterInfo *MachineInstr::getRegInfo() { 746 if (MachineBasicBlock *MBB = getParent()) 747 return &MBB->getParent()->getRegInfo(); 748 return nullptr; 749 } 750 751 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 752 /// this instruction from their respective use lists. This requires that the 753 /// operands already be on their use lists. 754 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 755 for (MachineOperand &MO : operands()) 756 if (MO.isReg()) 757 MRI.removeRegOperandFromUseList(&MO); 758 } 759 760 /// AddRegOperandsToUseLists - Add all of the register operands in 761 /// this instruction from their respective use lists. This requires that the 762 /// operands not be on their use lists yet. 763 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 764 for (MachineOperand &MO : operands()) 765 if (MO.isReg()) 766 MRI.addRegOperandToUseList(&MO); 767 } 768 769 void MachineInstr::addOperand(const MachineOperand &Op) { 770 MachineBasicBlock *MBB = getParent(); 771 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 772 MachineFunction *MF = MBB->getParent(); 773 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 774 addOperand(*MF, Op); 775 } 776 777 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 778 /// ranges. If MRI is non-null also update use-def chains. 779 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 780 unsigned NumOps, MachineRegisterInfo *MRI) { 781 if (MRI) 782 return MRI->moveOperands(Dst, Src, NumOps); 783 784 // MachineOperand is a trivially copyable type so we can just use memmove. 785 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 786 } 787 788 /// addOperand - Add the specified operand to the instruction. If it is an 789 /// implicit operand, it is added to the end of the operand list. If it is 790 /// an explicit operand it is added at the end of the explicit operand list 791 /// (before the first implicit operand). 792 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 793 assert(MCID && "Cannot add operands before providing an instr descriptor"); 794 795 // Check if we're adding one of our existing operands. 796 if (&Op >= Operands && &Op < Operands + NumOperands) { 797 // This is unusual: MI->addOperand(MI->getOperand(i)). 798 // If adding Op requires reallocating or moving existing operands around, 799 // the Op reference could go stale. Support it by copying Op. 800 MachineOperand CopyOp(Op); 801 return addOperand(MF, CopyOp); 802 } 803 804 // Find the insert location for the new operand. Implicit registers go at 805 // the end, everything else goes before the implicit regs. 806 // 807 // FIXME: Allow mixed explicit and implicit operands on inline asm. 808 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 809 // implicit-defs, but they must not be moved around. See the FIXME in 810 // InstrEmitter.cpp. 811 unsigned OpNo = getNumOperands(); 812 bool isImpReg = Op.isReg() && Op.isImplicit(); 813 if (!isImpReg && !isInlineAsm()) { 814 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 815 --OpNo; 816 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 817 } 818 } 819 820 #ifndef NDEBUG 821 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 822 // OpNo now points as the desired insertion point. Unless this is a variadic 823 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 824 // RegMask operands go between the explicit and implicit operands. 825 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 826 OpNo < MCID->getNumOperands() || isMetaDataOp) && 827 "Trying to add an operand to a machine instr that is already done!"); 828 #endif 829 830 MachineRegisterInfo *MRI = getRegInfo(); 831 832 // Determine if the Operands array needs to be reallocated. 833 // Save the old capacity and operand array. 834 OperandCapacity OldCap = CapOperands; 835 MachineOperand *OldOperands = Operands; 836 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 837 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 838 Operands = MF.allocateOperandArray(CapOperands); 839 // Move the operands before the insertion point. 840 if (OpNo) 841 moveOperands(Operands, OldOperands, OpNo, MRI); 842 } 843 844 // Move the operands following the insertion point. 845 if (OpNo != NumOperands) 846 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 847 MRI); 848 ++NumOperands; 849 850 // Deallocate the old operand array. 851 if (OldOperands != Operands && OldOperands) 852 MF.deallocateOperandArray(OldCap, OldOperands); 853 854 // Copy Op into place. It still needs to be inserted into the MRI use lists. 855 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 856 NewMO->ParentMI = this; 857 858 // When adding a register operand, tell MRI about it. 859 if (NewMO->isReg()) { 860 // Ensure isOnRegUseList() returns false, regardless of Op's status. 861 NewMO->Contents.Reg.Prev = nullptr; 862 // Ignore existing ties. This is not a property that can be copied. 863 NewMO->TiedTo = 0; 864 // Add the new operand to MRI, but only for instructions in an MBB. 865 if (MRI) 866 MRI->addRegOperandToUseList(NewMO); 867 // The MCID operand information isn't accurate until we start adding 868 // explicit operands. The implicit operands are added first, then the 869 // explicits are inserted before them. 870 if (!isImpReg) { 871 // Tie uses to defs as indicated in MCInstrDesc. 872 if (NewMO->isUse()) { 873 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 874 if (DefIdx != -1) 875 tieOperands(DefIdx, OpNo); 876 } 877 // If the register operand is flagged as early, mark the operand as such. 878 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 879 NewMO->setIsEarlyClobber(true); 880 } 881 } 882 } 883 884 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 885 /// fewer operand than it started with. 886 /// 887 void MachineInstr::RemoveOperand(unsigned OpNo) { 888 assert(OpNo < getNumOperands() && "Invalid operand number"); 889 untieRegOperand(OpNo); 890 891 #ifndef NDEBUG 892 // Moving tied operands would break the ties. 893 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 894 if (Operands[i].isReg()) 895 assert(!Operands[i].isTied() && "Cannot move tied operands"); 896 #endif 897 898 MachineRegisterInfo *MRI = getRegInfo(); 899 if (MRI && Operands[OpNo].isReg()) 900 MRI->removeRegOperandFromUseList(Operands + OpNo); 901 902 // Don't call the MachineOperand destructor. A lot of this code depends on 903 // MachineOperand having a trivial destructor anyway, and adding a call here 904 // wouldn't make it 'destructor-correct'. 905 906 if (unsigned N = NumOperands - 1 - OpNo) 907 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 908 --NumOperands; 909 } 910 911 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 912 /// This function should be used only occasionally. The setMemRefs function 913 /// is the primary method for setting up a MachineInstr's MemRefs list. 914 void MachineInstr::addMemOperand(MachineFunction &MF, 915 MachineMemOperand *MO) { 916 mmo_iterator OldMemRefs = MemRefs; 917 unsigned OldNumMemRefs = NumMemRefs; 918 919 unsigned NewNum = NumMemRefs + 1; 920 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 921 922 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 923 NewMemRefs[NewNum - 1] = MO; 924 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 925 } 926 927 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 928 /// identical. 929 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 930 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 931 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 932 if ((E1 - I1) != (E2 - I2)) 933 return false; 934 for (; I1 != E1; ++I1, ++I2) { 935 if (**I1 != **I2) 936 return false; 937 } 938 return true; 939 } 940 941 std::pair<MachineInstr::mmo_iterator, unsigned> 942 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 943 944 // If either of the incoming memrefs are empty, we must be conservative and 945 // treat this as if we've exhausted our space for memrefs and dropped them. 946 if (memoperands_empty() || Other.memoperands_empty()) 947 return std::make_pair(nullptr, 0); 948 949 // If both instructions have identical memrefs, we don't need to merge them. 950 // Since many instructions have a single memref, and we tend to merge things 951 // like pairs of loads from the same location, this catches a large number of 952 // cases in practice. 953 if (hasIdenticalMMOs(*this, Other)) 954 return std::make_pair(MemRefs, NumMemRefs); 955 956 // TODO: consider uniquing elements within the operand lists to reduce 957 // space usage and fall back to conservative information less often. 958 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 959 960 // If we don't have enough room to store this many memrefs, be conservative 961 // and drop them. Otherwise, we'd fail asserts when trying to add them to 962 // the new instruction. 963 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 964 return std::make_pair(nullptr, 0); 965 966 MachineFunction *MF = getParent()->getParent(); 967 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 968 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 969 MemBegin); 970 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 971 MemEnd); 972 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 973 "missing memrefs"); 974 975 return std::make_pair(MemBegin, CombinedNumMemRefs); 976 } 977 978 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 979 assert(!isBundledWithPred() && "Must be called on bundle header"); 980 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 981 if (MII->getDesc().getFlags() & Mask) { 982 if (Type == AnyInBundle) 983 return true; 984 } else { 985 if (Type == AllInBundle && !MII->isBundle()) 986 return false; 987 } 988 // This was the last instruction in the bundle. 989 if (!MII->isBundledWithSucc()) 990 return Type == AllInBundle; 991 } 992 } 993 994 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 995 MICheckType Check) const { 996 // If opcodes or number of operands are not the same then the two 997 // instructions are obviously not identical. 998 if (Other.getOpcode() != getOpcode() || 999 Other.getNumOperands() != getNumOperands()) 1000 return false; 1001 1002 if (isBundle()) { 1003 // Both instructions are bundles, compare MIs inside the bundle. 1004 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 1005 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 1006 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 1007 MachineBasicBlock::const_instr_iterator E2 = Other.getParent()->instr_end(); 1008 while (++I1 != E1 && I1->isInsideBundle()) { 1009 ++I2; 1010 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(*I2, Check)) 1011 return false; 1012 } 1013 } 1014 1015 // Check operands to make sure they match. 1016 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1017 const MachineOperand &MO = getOperand(i); 1018 const MachineOperand &OMO = Other.getOperand(i); 1019 if (!MO.isReg()) { 1020 if (!MO.isIdenticalTo(OMO)) 1021 return false; 1022 continue; 1023 } 1024 1025 // Clients may or may not want to ignore defs when testing for equality. 1026 // For example, machine CSE pass only cares about finding common 1027 // subexpressions, so it's safe to ignore virtual register defs. 1028 if (MO.isDef()) { 1029 if (Check == IgnoreDefs) 1030 continue; 1031 else if (Check == IgnoreVRegDefs) { 1032 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1033 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 1034 if (MO.getReg() != OMO.getReg()) 1035 return false; 1036 } else { 1037 if (!MO.isIdenticalTo(OMO)) 1038 return false; 1039 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 1040 return false; 1041 } 1042 } else { 1043 if (!MO.isIdenticalTo(OMO)) 1044 return false; 1045 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1046 return false; 1047 } 1048 } 1049 // If DebugLoc does not match then two dbg.values are not identical. 1050 if (isDebugValue()) 1051 if (getDebugLoc() && Other.getDebugLoc() && 1052 getDebugLoc() != Other.getDebugLoc()) 1053 return false; 1054 return true; 1055 } 1056 1057 MachineInstr *MachineInstr::removeFromParent() { 1058 assert(getParent() && "Not embedded in a basic block!"); 1059 return getParent()->remove(this); 1060 } 1061 1062 MachineInstr *MachineInstr::removeFromBundle() { 1063 assert(getParent() && "Not embedded in a basic block!"); 1064 return getParent()->remove_instr(this); 1065 } 1066 1067 void MachineInstr::eraseFromParent() { 1068 assert(getParent() && "Not embedded in a basic block!"); 1069 getParent()->erase(this); 1070 } 1071 1072 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1073 assert(getParent() && "Not embedded in a basic block!"); 1074 MachineBasicBlock *MBB = getParent(); 1075 MachineFunction *MF = MBB->getParent(); 1076 assert(MF && "Not embedded in a function!"); 1077 1078 MachineInstr *MI = (MachineInstr *)this; 1079 MachineRegisterInfo &MRI = MF->getRegInfo(); 1080 1081 for (const MachineOperand &MO : MI->operands()) { 1082 if (!MO.isReg() || !MO.isDef()) 1083 continue; 1084 unsigned Reg = MO.getReg(); 1085 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1086 continue; 1087 MRI.markUsesInDebugValueAsUndef(Reg); 1088 } 1089 MI->eraseFromParent(); 1090 } 1091 1092 void MachineInstr::eraseFromBundle() { 1093 assert(getParent() && "Not embedded in a basic block!"); 1094 getParent()->erase_instr(this); 1095 } 1096 1097 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1098 /// 1099 unsigned MachineInstr::getNumExplicitOperands() const { 1100 unsigned NumOperands = MCID->getNumOperands(); 1101 if (!MCID->isVariadic()) 1102 return NumOperands; 1103 1104 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1105 const MachineOperand &MO = getOperand(i); 1106 if (!MO.isReg() || !MO.isImplicit()) 1107 NumOperands++; 1108 } 1109 return NumOperands; 1110 } 1111 1112 void MachineInstr::bundleWithPred() { 1113 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1114 setFlag(BundledPred); 1115 MachineBasicBlock::instr_iterator Pred = getIterator(); 1116 --Pred; 1117 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1118 Pred->setFlag(BundledSucc); 1119 } 1120 1121 void MachineInstr::bundleWithSucc() { 1122 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1123 setFlag(BundledSucc); 1124 MachineBasicBlock::instr_iterator Succ = getIterator(); 1125 ++Succ; 1126 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1127 Succ->setFlag(BundledPred); 1128 } 1129 1130 void MachineInstr::unbundleFromPred() { 1131 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1132 clearFlag(BundledPred); 1133 MachineBasicBlock::instr_iterator Pred = getIterator(); 1134 --Pred; 1135 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1136 Pred->clearFlag(BundledSucc); 1137 } 1138 1139 void MachineInstr::unbundleFromSucc() { 1140 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1141 clearFlag(BundledSucc); 1142 MachineBasicBlock::instr_iterator Succ = getIterator(); 1143 ++Succ; 1144 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1145 Succ->clearFlag(BundledPred); 1146 } 1147 1148 bool MachineInstr::isStackAligningInlineAsm() const { 1149 if (isInlineAsm()) { 1150 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1151 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1152 return true; 1153 } 1154 return false; 1155 } 1156 1157 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1158 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1159 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1160 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1161 } 1162 1163 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1164 unsigned *GroupNo) const { 1165 assert(isInlineAsm() && "Expected an inline asm instruction"); 1166 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1167 1168 // Ignore queries about the initial operands. 1169 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1170 return -1; 1171 1172 unsigned Group = 0; 1173 unsigned NumOps; 1174 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1175 i += NumOps) { 1176 const MachineOperand &FlagMO = getOperand(i); 1177 // If we reach the implicit register operands, stop looking. 1178 if (!FlagMO.isImm()) 1179 return -1; 1180 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1181 if (i + NumOps > OpIdx) { 1182 if (GroupNo) 1183 *GroupNo = Group; 1184 return i; 1185 } 1186 ++Group; 1187 } 1188 return -1; 1189 } 1190 1191 const DILocalVariable *MachineInstr::getDebugVariable() const { 1192 assert(isDebugValue() && "not a DBG_VALUE"); 1193 return cast<DILocalVariable>(getOperand(2).getMetadata()); 1194 } 1195 1196 const DIExpression *MachineInstr::getDebugExpression() const { 1197 assert(isDebugValue() && "not a DBG_VALUE"); 1198 return cast<DIExpression>(getOperand(3).getMetadata()); 1199 } 1200 1201 const TargetRegisterClass* 1202 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1203 const TargetInstrInfo *TII, 1204 const TargetRegisterInfo *TRI) const { 1205 assert(getParent() && "Can't have an MBB reference here!"); 1206 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1207 const MachineFunction &MF = *getParent()->getParent(); 1208 1209 // Most opcodes have fixed constraints in their MCInstrDesc. 1210 if (!isInlineAsm()) 1211 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1212 1213 if (!getOperand(OpIdx).isReg()) 1214 return nullptr; 1215 1216 // For tied uses on inline asm, get the constraint from the def. 1217 unsigned DefIdx; 1218 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1219 OpIdx = DefIdx; 1220 1221 // Inline asm stores register class constraints in the flag word. 1222 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1223 if (FlagIdx < 0) 1224 return nullptr; 1225 1226 unsigned Flag = getOperand(FlagIdx).getImm(); 1227 unsigned RCID; 1228 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 1229 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 1230 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 1231 InlineAsm::hasRegClassConstraint(Flag, RCID)) 1232 return TRI->getRegClass(RCID); 1233 1234 // Assume that all registers in a memory operand are pointers. 1235 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1236 return TRI->getPointerRegClass(MF); 1237 1238 return nullptr; 1239 } 1240 1241 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1242 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1243 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1244 // Check every operands inside the bundle if we have 1245 // been asked to. 1246 if (ExploreBundle) 1247 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 1248 ++OpndIt) 1249 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1250 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1251 else 1252 // Otherwise, just check the current operands. 1253 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1254 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1255 return CurRC; 1256 } 1257 1258 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1259 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1260 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1261 assert(CurRC && "Invalid initial register class"); 1262 // Check if Reg is constrained by some of its use/def from MI. 1263 const MachineOperand &MO = getOperand(OpIdx); 1264 if (!MO.isReg() || MO.getReg() != Reg) 1265 return CurRC; 1266 // If yes, accumulate the constraints through the operand. 1267 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1268 } 1269 1270 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1271 unsigned OpIdx, const TargetRegisterClass *CurRC, 1272 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1273 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1274 const MachineOperand &MO = getOperand(OpIdx); 1275 assert(MO.isReg() && 1276 "Cannot get register constraints for non-register operand"); 1277 assert(CurRC && "Invalid initial register class"); 1278 if (unsigned SubIdx = MO.getSubReg()) { 1279 if (OpRC) 1280 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1281 else 1282 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1283 } else if (OpRC) 1284 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1285 return CurRC; 1286 } 1287 1288 /// Return the number of instructions inside the MI bundle, not counting the 1289 /// header instruction. 1290 unsigned MachineInstr::getBundleSize() const { 1291 MachineBasicBlock::const_instr_iterator I = getIterator(); 1292 unsigned Size = 0; 1293 while (I->isBundledWithSucc()) { 1294 ++Size; 1295 ++I; 1296 } 1297 return Size; 1298 } 1299 1300 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1301 /// the given register (not considering sub/super-registers). 1302 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 1303 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1304 const MachineOperand &MO = getOperand(i); 1305 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1306 return true; 1307 } 1308 return false; 1309 } 1310 1311 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1312 /// the specific register or -1 if it is not found. It further tightens 1313 /// the search criteria to a use that kills the register if isKill is true. 1314 int MachineInstr::findRegisterUseOperandIdx( 1315 unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1316 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1317 const MachineOperand &MO = getOperand(i); 1318 if (!MO.isReg() || !MO.isUse()) 1319 continue; 1320 unsigned MOReg = MO.getReg(); 1321 if (!MOReg) 1322 continue; 1323 if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && 1324 TargetRegisterInfo::isPhysicalRegister(Reg) && 1325 TRI->isSubRegister(MOReg, Reg))) 1326 if (!isKill || MO.isKill()) 1327 return i; 1328 } 1329 return -1; 1330 } 1331 1332 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1333 /// indicating if this instruction reads or writes Reg. This also considers 1334 /// partial defines. 1335 std::pair<bool,bool> 1336 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1337 SmallVectorImpl<unsigned> *Ops) const { 1338 bool PartDef = false; // Partial redefine. 1339 bool FullDef = false; // Full define. 1340 bool Use = false; 1341 1342 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1343 const MachineOperand &MO = getOperand(i); 1344 if (!MO.isReg() || MO.getReg() != Reg) 1345 continue; 1346 if (Ops) 1347 Ops->push_back(i); 1348 if (MO.isUse()) 1349 Use |= !MO.isUndef(); 1350 else if (MO.getSubReg() && !MO.isUndef()) 1351 // A partial <def,undef> doesn't count as reading the register. 1352 PartDef = true; 1353 else 1354 FullDef = true; 1355 } 1356 // A partial redefine uses Reg unless there is also a full define. 1357 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1358 } 1359 1360 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1361 /// the specified register or -1 if it is not found. If isDead is true, defs 1362 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1363 /// also checks if there is a def of a super-register. 1364 int 1365 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1366 const TargetRegisterInfo *TRI) const { 1367 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1368 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1369 const MachineOperand &MO = getOperand(i); 1370 // Accept regmask operands when Overlap is set. 1371 // Ignore them when looking for a specific def operand (Overlap == false). 1372 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1373 return i; 1374 if (!MO.isReg() || !MO.isDef()) 1375 continue; 1376 unsigned MOReg = MO.getReg(); 1377 bool Found = (MOReg == Reg); 1378 if (!Found && TRI && isPhys && 1379 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1380 if (Overlap) 1381 Found = TRI->regsOverlap(MOReg, Reg); 1382 else 1383 Found = TRI->isSubRegister(MOReg, Reg); 1384 } 1385 if (Found && (!isDead || MO.isDead())) 1386 return i; 1387 } 1388 return -1; 1389 } 1390 1391 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1392 /// operand list that is used to represent the predicate. It returns -1 if 1393 /// none is found. 1394 int MachineInstr::findFirstPredOperandIdx() const { 1395 // Don't call MCID.findFirstPredOperandIdx() because this variant 1396 // is sometimes called on an instruction that's not yet complete, and 1397 // so the number of operands is less than the MCID indicates. In 1398 // particular, the PTX target does this. 1399 const MCInstrDesc &MCID = getDesc(); 1400 if (MCID.isPredicable()) { 1401 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1402 if (MCID.OpInfo[i].isPredicate()) 1403 return i; 1404 } 1405 1406 return -1; 1407 } 1408 1409 // MachineOperand::TiedTo is 4 bits wide. 1410 const unsigned TiedMax = 15; 1411 1412 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1413 /// 1414 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1415 /// field. TiedTo can have these values: 1416 /// 1417 /// 0: Operand is not tied to anything. 1418 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1419 /// TiedMax: Tied to an operand >= TiedMax-1. 1420 /// 1421 /// The tied def must be one of the first TiedMax operands on a normal 1422 /// instruction. INLINEASM instructions allow more tied defs. 1423 /// 1424 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1425 MachineOperand &DefMO = getOperand(DefIdx); 1426 MachineOperand &UseMO = getOperand(UseIdx); 1427 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1428 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1429 assert(!DefMO.isTied() && "Def is already tied to another use"); 1430 assert(!UseMO.isTied() && "Use is already tied to another def"); 1431 1432 if (DefIdx < TiedMax) 1433 UseMO.TiedTo = DefIdx + 1; 1434 else { 1435 // Inline asm can use the group descriptors to find tied operands, but on 1436 // normal instruction, the tied def must be within the first TiedMax 1437 // operands. 1438 assert(isInlineAsm() && "DefIdx out of range"); 1439 UseMO.TiedTo = TiedMax; 1440 } 1441 1442 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1443 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1444 } 1445 1446 /// Given the index of a tied register operand, find the operand it is tied to. 1447 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1448 /// which must exist. 1449 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1450 const MachineOperand &MO = getOperand(OpIdx); 1451 assert(MO.isTied() && "Operand isn't tied"); 1452 1453 // Normally TiedTo is in range. 1454 if (MO.TiedTo < TiedMax) 1455 return MO.TiedTo - 1; 1456 1457 // Uses on normal instructions can be out of range. 1458 if (!isInlineAsm()) { 1459 // Normal tied defs must be in the 0..TiedMax-1 range. 1460 if (MO.isUse()) 1461 return TiedMax - 1; 1462 // MO is a def. Search for the tied use. 1463 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1464 const MachineOperand &UseMO = getOperand(i); 1465 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1466 return i; 1467 } 1468 llvm_unreachable("Can't find tied use"); 1469 } 1470 1471 // Now deal with inline asm by parsing the operand group descriptor flags. 1472 // Find the beginning of each operand group. 1473 SmallVector<unsigned, 8> GroupIdx; 1474 unsigned OpIdxGroup = ~0u; 1475 unsigned NumOps; 1476 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1477 i += NumOps) { 1478 const MachineOperand &FlagMO = getOperand(i); 1479 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1480 unsigned CurGroup = GroupIdx.size(); 1481 GroupIdx.push_back(i); 1482 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1483 // OpIdx belongs to this operand group. 1484 if (OpIdx > i && OpIdx < i + NumOps) 1485 OpIdxGroup = CurGroup; 1486 unsigned TiedGroup; 1487 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1488 continue; 1489 // Operands in this group are tied to operands in TiedGroup which must be 1490 // earlier. Find the number of operands between the two groups. 1491 unsigned Delta = i - GroupIdx[TiedGroup]; 1492 1493 // OpIdx is a use tied to TiedGroup. 1494 if (OpIdxGroup == CurGroup) 1495 return OpIdx - Delta; 1496 1497 // OpIdx is a def tied to this use group. 1498 if (OpIdxGroup == TiedGroup) 1499 return OpIdx + Delta; 1500 } 1501 llvm_unreachable("Invalid tied operand on inline asm"); 1502 } 1503 1504 /// clearKillInfo - Clears kill flags on all operands. 1505 /// 1506 void MachineInstr::clearKillInfo() { 1507 for (MachineOperand &MO : operands()) { 1508 if (MO.isReg() && MO.isUse()) 1509 MO.setIsKill(false); 1510 } 1511 } 1512 1513 void MachineInstr::substituteRegister(unsigned FromReg, 1514 unsigned ToReg, 1515 unsigned SubIdx, 1516 const TargetRegisterInfo &RegInfo) { 1517 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1518 if (SubIdx) 1519 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1520 for (MachineOperand &MO : operands()) { 1521 if (!MO.isReg() || MO.getReg() != FromReg) 1522 continue; 1523 MO.substPhysReg(ToReg, RegInfo); 1524 } 1525 } else { 1526 for (MachineOperand &MO : operands()) { 1527 if (!MO.isReg() || MO.getReg() != FromReg) 1528 continue; 1529 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1530 } 1531 } 1532 } 1533 1534 /// isSafeToMove - Return true if it is safe to move this instruction. If 1535 /// SawStore is set to true, it means that there is a store (or call) between 1536 /// the instruction's location and its intended destination. 1537 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1538 // Ignore stuff that we obviously can't move. 1539 // 1540 // Treat volatile loads as stores. This is not strictly necessary for 1541 // volatiles, but it is required for atomic loads. It is not allowed to move 1542 // a load across an atomic load with Ordering > Monotonic. 1543 if (mayStore() || isCall() || 1544 (mayLoad() && hasOrderedMemoryRef())) { 1545 SawStore = true; 1546 return false; 1547 } 1548 1549 if (isPosition() || isDebugValue() || isTerminator() || 1550 hasUnmodeledSideEffects()) 1551 return false; 1552 1553 // See if this instruction does a load. If so, we have to guarantee that the 1554 // loaded value doesn't change between the load and the its intended 1555 // destination. The check for isInvariantLoad gives the targe the chance to 1556 // classify the load as always returning a constant, e.g. a constant pool 1557 // load. 1558 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1559 // Otherwise, this is a real load. If there is a store between the load and 1560 // end of block, we can't move it. 1561 return !SawStore; 1562 1563 return true; 1564 } 1565 1566 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1567 /// or volatile memory reference, or if the information describing the memory 1568 /// reference is not available. Return false if it is known to have no ordered 1569 /// memory references. 1570 bool MachineInstr::hasOrderedMemoryRef() const { 1571 // An instruction known never to access memory won't have a volatile access. 1572 if (!mayStore() && 1573 !mayLoad() && 1574 !isCall() && 1575 !hasUnmodeledSideEffects()) 1576 return false; 1577 1578 // Otherwise, if the instruction has no memory reference information, 1579 // conservatively assume it wasn't preserved. 1580 if (memoperands_empty()) 1581 return true; 1582 1583 // Check if any of our memory operands are ordered. 1584 return any_of(memoperands(), [](const MachineMemOperand *MMO) { 1585 return !MMO->isUnordered(); 1586 }); 1587 } 1588 1589 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1590 /// trap and is loading from a location whose value is invariant across a run of 1591 /// this function. 1592 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { 1593 // If the instruction doesn't load at all, it isn't an invariant load. 1594 if (!mayLoad()) 1595 return false; 1596 1597 // If the instruction has lost its memoperands, conservatively assume that 1598 // it may not be an invariant load. 1599 if (memoperands_empty()) 1600 return false; 1601 1602 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1603 1604 for (MachineMemOperand *MMO : memoperands()) { 1605 if (MMO->isVolatile()) return false; 1606 if (MMO->isStore()) return false; 1607 if (MMO->isInvariant() && MMO->isDereferenceable()) 1608 continue; 1609 1610 // A load from a constant PseudoSourceValue is invariant. 1611 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1612 if (PSV->isConstant(&MFI)) 1613 continue; 1614 1615 if (const Value *V = MMO->getValue()) { 1616 // If we have an AliasAnalysis, ask it whether the memory is constant. 1617 if (AA && 1618 AA->pointsToConstantMemory( 1619 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1620 continue; 1621 } 1622 1623 // Otherwise assume conservatively. 1624 return false; 1625 } 1626 1627 // Everything checks out. 1628 return true; 1629 } 1630 1631 /// isConstantValuePHI - If the specified instruction is a PHI that always 1632 /// merges together the same virtual register, return the register, otherwise 1633 /// return 0. 1634 unsigned MachineInstr::isConstantValuePHI() const { 1635 if (!isPHI()) 1636 return 0; 1637 assert(getNumOperands() >= 3 && 1638 "It's illegal to have a PHI without source operands"); 1639 1640 unsigned Reg = getOperand(1).getReg(); 1641 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1642 if (getOperand(i).getReg() != Reg) 1643 return 0; 1644 return Reg; 1645 } 1646 1647 bool MachineInstr::hasUnmodeledSideEffects() const { 1648 if (hasProperty(MCID::UnmodeledSideEffects)) 1649 return true; 1650 if (isInlineAsm()) { 1651 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1652 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1653 return true; 1654 } 1655 1656 return false; 1657 } 1658 1659 bool MachineInstr::isLoadFoldBarrier() const { 1660 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1661 } 1662 1663 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1664 /// 1665 bool MachineInstr::allDefsAreDead() const { 1666 for (const MachineOperand &MO : operands()) { 1667 if (!MO.isReg() || MO.isUse()) 1668 continue; 1669 if (!MO.isDead()) 1670 return false; 1671 } 1672 return true; 1673 } 1674 1675 /// copyImplicitOps - Copy implicit register operands from specified 1676 /// instruction to this instruction. 1677 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1678 const MachineInstr &MI) { 1679 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1680 i != e; ++i) { 1681 const MachineOperand &MO = MI.getOperand(i); 1682 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1683 addOperand(MF, MO); 1684 } 1685 } 1686 1687 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1688 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1689 dbgs() << " " << *this; 1690 #endif 1691 } 1692 1693 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const { 1694 const Module *M = nullptr; 1695 if (const MachineBasicBlock *MBB = getParent()) 1696 if (const MachineFunction *MF = MBB->getParent()) 1697 M = MF->getFunction()->getParent(); 1698 1699 ModuleSlotTracker MST(M); 1700 print(OS, MST, SkipOpers); 1701 } 1702 1703 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1704 bool SkipOpers) const { 1705 // We can be a bit tidier if we know the MachineFunction. 1706 const MachineFunction *MF = nullptr; 1707 const TargetRegisterInfo *TRI = nullptr; 1708 const MachineRegisterInfo *MRI = nullptr; 1709 const TargetInstrInfo *TII = nullptr; 1710 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1711 1712 if (const MachineBasicBlock *MBB = getParent()) { 1713 MF = MBB->getParent(); 1714 if (MF) { 1715 MRI = &MF->getRegInfo(); 1716 TRI = MF->getSubtarget().getRegisterInfo(); 1717 TII = MF->getSubtarget().getInstrInfo(); 1718 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 1719 } 1720 } 1721 1722 // Save a list of virtual registers. 1723 SmallVector<unsigned, 8> VirtRegs; 1724 1725 // Print explicitly defined operands on the left of an assignment syntax. 1726 unsigned StartOp = 0, e = getNumOperands(); 1727 for (; StartOp < e && getOperand(StartOp).isReg() && 1728 getOperand(StartOp).isDef() && 1729 !getOperand(StartOp).isImplicit(); 1730 ++StartOp) { 1731 if (StartOp != 0) OS << ", "; 1732 getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo); 1733 unsigned Reg = getOperand(StartOp).getReg(); 1734 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1735 VirtRegs.push_back(Reg); 1736 LLT Ty = MRI ? MRI->getType(Reg) : LLT{}; 1737 if (Ty.isValid()) 1738 OS << '(' << Ty << ')'; 1739 } 1740 } 1741 1742 if (StartOp != 0) 1743 OS << " = "; 1744 1745 // Print the opcode name. 1746 if (TII) 1747 OS << TII->getName(getOpcode()); 1748 else 1749 OS << "UNKNOWN"; 1750 1751 if (SkipOpers) 1752 return; 1753 1754 // Print the rest of the operands. 1755 bool OmittedAnyCallClobbers = false; 1756 bool FirstOp = true; 1757 unsigned AsmDescOp = ~0u; 1758 unsigned AsmOpCount = 0; 1759 1760 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1761 // Print asm string. 1762 OS << " "; 1763 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1764 1765 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1766 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1767 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1768 OS << " [sideeffect]"; 1769 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1770 OS << " [mayload]"; 1771 if (ExtraInfo & InlineAsm::Extra_MayStore) 1772 OS << " [maystore]"; 1773 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1774 OS << " [isconvergent]"; 1775 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1776 OS << " [alignstack]"; 1777 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1778 OS << " [attdialect]"; 1779 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1780 OS << " [inteldialect]"; 1781 1782 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1783 FirstOp = false; 1784 } 1785 1786 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1787 const MachineOperand &MO = getOperand(i); 1788 1789 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1790 VirtRegs.push_back(MO.getReg()); 1791 1792 // Omit call-clobbered registers which aren't used anywhere. This makes 1793 // call instructions much less noisy on targets where calls clobber lots 1794 // of registers. Don't rely on MO.isDead() because we may be called before 1795 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1796 if (MRI && isCall() && 1797 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1798 unsigned Reg = MO.getReg(); 1799 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1800 if (MRI->use_empty(Reg)) { 1801 bool HasAliasLive = false; 1802 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 1803 unsigned AliasReg = *AI; 1804 if (!MRI->use_empty(AliasReg)) { 1805 HasAliasLive = true; 1806 break; 1807 } 1808 } 1809 if (!HasAliasLive) { 1810 OmittedAnyCallClobbers = true; 1811 continue; 1812 } 1813 } 1814 } 1815 } 1816 1817 if (FirstOp) FirstOp = false; else OS << ","; 1818 OS << " "; 1819 if (i < getDesc().NumOperands) { 1820 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1821 if (MCOI.isPredicate()) 1822 OS << "pred:"; 1823 if (MCOI.isOptionalDef()) 1824 OS << "opt:"; 1825 } 1826 if (isDebugValue() && MO.isMetadata()) { 1827 // Pretty print DBG_VALUE instructions. 1828 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1829 if (DIV && !DIV->getName().empty()) 1830 OS << "!\"" << DIV->getName() << '\"'; 1831 else 1832 MO.print(OS, MST, TRI); 1833 } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1834 OS << TRI->getSubRegIndexName(MO.getImm()); 1835 } else if (i == AsmDescOp && MO.isImm()) { 1836 // Pretty print the inline asm operand descriptor. 1837 OS << '$' << AsmOpCount++; 1838 unsigned Flag = MO.getImm(); 1839 switch (InlineAsm::getKind(Flag)) { 1840 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1841 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1842 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1843 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1844 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1845 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1846 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1847 } 1848 1849 unsigned RCID = 0; 1850 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1851 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1852 if (TRI) { 1853 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1854 } else 1855 OS << ":RC" << RCID; 1856 } 1857 1858 if (InlineAsm::isMemKind(Flag)) { 1859 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1860 switch (MCID) { 1861 case InlineAsm::Constraint_es: OS << ":es"; break; 1862 case InlineAsm::Constraint_i: OS << ":i"; break; 1863 case InlineAsm::Constraint_m: OS << ":m"; break; 1864 case InlineAsm::Constraint_o: OS << ":o"; break; 1865 case InlineAsm::Constraint_v: OS << ":v"; break; 1866 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1867 case InlineAsm::Constraint_R: OS << ":R"; break; 1868 case InlineAsm::Constraint_S: OS << ":S"; break; 1869 case InlineAsm::Constraint_T: OS << ":T"; break; 1870 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1871 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1872 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1873 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1874 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1875 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1876 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1877 case InlineAsm::Constraint_X: OS << ":X"; break; 1878 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1879 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1880 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1881 default: OS << ":?"; break; 1882 } 1883 } 1884 1885 unsigned TiedTo = 0; 1886 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1887 OS << " tiedto:$" << TiedTo; 1888 1889 OS << ']'; 1890 1891 // Compute the index of the next operand descriptor. 1892 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1893 } else 1894 MO.print(OS, MST, TRI); 1895 } 1896 1897 // Briefly indicate whether any call clobbers were omitted. 1898 if (OmittedAnyCallClobbers) { 1899 if (!FirstOp) OS << ","; 1900 OS << " ..."; 1901 } 1902 1903 bool HaveSemi = false; 1904 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 1905 if (Flags & PrintableFlags) { 1906 if (!HaveSemi) { 1907 OS << ";"; 1908 HaveSemi = true; 1909 } 1910 OS << " flags: "; 1911 1912 if (Flags & FrameSetup) 1913 OS << "FrameSetup"; 1914 1915 if (Flags & FrameDestroy) 1916 OS << "FrameDestroy"; 1917 } 1918 1919 if (!memoperands_empty()) { 1920 if (!HaveSemi) { 1921 OS << ";"; 1922 HaveSemi = true; 1923 } 1924 1925 OS << " mem:"; 1926 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1927 i != e; ++i) { 1928 (*i)->print(OS, MST); 1929 if (std::next(i) != e) 1930 OS << " "; 1931 } 1932 } 1933 1934 // Print the regclass of any virtual registers encountered. 1935 if (MRI && !VirtRegs.empty()) { 1936 if (!HaveSemi) { 1937 OS << ";"; 1938 HaveSemi = true; 1939 } 1940 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1941 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); 1942 if (!RC) 1943 continue; 1944 // Generic virtual registers do not have register classes. 1945 if (RC.is<const RegisterBank *>()) 1946 OS << " " << RC.get<const RegisterBank *>()->getName(); 1947 else 1948 OS << " " 1949 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); 1950 OS << ':' << PrintReg(VirtRegs[i]); 1951 for (unsigned j = i+1; j != VirtRegs.size();) { 1952 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { 1953 ++j; 1954 continue; 1955 } 1956 if (VirtRegs[i] != VirtRegs[j]) 1957 OS << "," << PrintReg(VirtRegs[j]); 1958 VirtRegs.erase(VirtRegs.begin()+j); 1959 } 1960 } 1961 } 1962 1963 // Print debug location information. 1964 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1965 if (!HaveSemi) 1966 OS << ";"; 1967 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1968 OS << " line no:" << DV->getLine(); 1969 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1970 DebugLoc InlinedAtDL(InlinedAt); 1971 if (InlinedAtDL && MF) { 1972 OS << " inlined @[ "; 1973 InlinedAtDL.print(OS); 1974 OS << " ]"; 1975 } 1976 } 1977 if (isIndirectDebugValue()) 1978 OS << " indirect"; 1979 } else if (debugLoc && MF) { 1980 if (!HaveSemi) 1981 OS << ";"; 1982 OS << " dbg:"; 1983 debugLoc.print(OS); 1984 } 1985 1986 OS << '\n'; 1987 } 1988 1989 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1990 const TargetRegisterInfo *RegInfo, 1991 bool AddIfNotFound) { 1992 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1993 bool hasAliases = isPhysReg && 1994 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1995 bool Found = false; 1996 SmallVector<unsigned,4> DeadOps; 1997 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1998 MachineOperand &MO = getOperand(i); 1999 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2000 continue; 2001 2002 // DEBUG_VALUE nodes do not contribute to code generation and should 2003 // always be ignored. Failure to do so may result in trying to modify 2004 // KILL flags on DEBUG_VALUE nodes. 2005 if (MO.isDebug()) 2006 continue; 2007 2008 unsigned Reg = MO.getReg(); 2009 if (!Reg) 2010 continue; 2011 2012 if (Reg == IncomingReg) { 2013 if (!Found) { 2014 if (MO.isKill()) 2015 // The register is already marked kill. 2016 return true; 2017 if (isPhysReg && isRegTiedToDefOperand(i)) 2018 // Two-address uses of physregs must not be marked kill. 2019 return true; 2020 MO.setIsKill(); 2021 Found = true; 2022 } 2023 } else if (hasAliases && MO.isKill() && 2024 TargetRegisterInfo::isPhysicalRegister(Reg)) { 2025 // A super-register kill already exists. 2026 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2027 return true; 2028 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2029 DeadOps.push_back(i); 2030 } 2031 } 2032 2033 // Trim unneeded kill operands. 2034 while (!DeadOps.empty()) { 2035 unsigned OpIdx = DeadOps.back(); 2036 if (getOperand(OpIdx).isImplicit()) 2037 RemoveOperand(OpIdx); 2038 else 2039 getOperand(OpIdx).setIsKill(false); 2040 DeadOps.pop_back(); 2041 } 2042 2043 // If not found, this means an alias of one of the operands is killed. Add a 2044 // new implicit operand if required. 2045 if (!Found && AddIfNotFound) { 2046 addOperand(MachineOperand::CreateReg(IncomingReg, 2047 false /*IsDef*/, 2048 true /*IsImp*/, 2049 true /*IsKill*/)); 2050 return true; 2051 } 2052 return Found; 2053 } 2054 2055 void MachineInstr::clearRegisterKills(unsigned Reg, 2056 const TargetRegisterInfo *RegInfo) { 2057 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 2058 RegInfo = nullptr; 2059 for (MachineOperand &MO : operands()) { 2060 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2061 continue; 2062 unsigned OpReg = MO.getReg(); 2063 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2064 MO.setIsKill(false); 2065 } 2066 } 2067 2068 bool MachineInstr::addRegisterDead(unsigned Reg, 2069 const TargetRegisterInfo *RegInfo, 2070 bool AddIfNotFound) { 2071 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 2072 bool hasAliases = isPhysReg && 2073 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2074 bool Found = false; 2075 SmallVector<unsigned,4> DeadOps; 2076 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2077 MachineOperand &MO = getOperand(i); 2078 if (!MO.isReg() || !MO.isDef()) 2079 continue; 2080 unsigned MOReg = MO.getReg(); 2081 if (!MOReg) 2082 continue; 2083 2084 if (MOReg == Reg) { 2085 MO.setIsDead(); 2086 Found = true; 2087 } else if (hasAliases && MO.isDead() && 2088 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 2089 // There exists a super-register that's marked dead. 2090 if (RegInfo->isSuperRegister(Reg, MOReg)) 2091 return true; 2092 if (RegInfo->isSubRegister(Reg, MOReg)) 2093 DeadOps.push_back(i); 2094 } 2095 } 2096 2097 // Trim unneeded dead operands. 2098 while (!DeadOps.empty()) { 2099 unsigned OpIdx = DeadOps.back(); 2100 if (getOperand(OpIdx).isImplicit()) 2101 RemoveOperand(OpIdx); 2102 else 2103 getOperand(OpIdx).setIsDead(false); 2104 DeadOps.pop_back(); 2105 } 2106 2107 // If not found, this means an alias of one of the operands is dead. Add a 2108 // new implicit operand if required. 2109 if (Found || !AddIfNotFound) 2110 return Found; 2111 2112 addOperand(MachineOperand::CreateReg(Reg, 2113 true /*IsDef*/, 2114 true /*IsImp*/, 2115 false /*IsKill*/, 2116 true /*IsDead*/)); 2117 return true; 2118 } 2119 2120 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2121 for (MachineOperand &MO : operands()) { 2122 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2123 continue; 2124 MO.setIsDead(false); 2125 } 2126 } 2127 2128 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2129 for (MachineOperand &MO : operands()) { 2130 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2131 continue; 2132 MO.setIsUndef(IsUndef); 2133 } 2134 } 2135 2136 void MachineInstr::addRegisterDefined(unsigned Reg, 2137 const TargetRegisterInfo *RegInfo) { 2138 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2139 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2140 if (MO) 2141 return; 2142 } else { 2143 for (const MachineOperand &MO : operands()) { 2144 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2145 MO.getSubReg() == 0) 2146 return; 2147 } 2148 } 2149 addOperand(MachineOperand::CreateReg(Reg, 2150 true /*IsDef*/, 2151 true /*IsImp*/)); 2152 } 2153 2154 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2155 const TargetRegisterInfo &TRI) { 2156 bool HasRegMask = false; 2157 for (MachineOperand &MO : operands()) { 2158 if (MO.isRegMask()) { 2159 HasRegMask = true; 2160 continue; 2161 } 2162 if (!MO.isReg() || !MO.isDef()) continue; 2163 unsigned Reg = MO.getReg(); 2164 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2165 // If there are no uses, including partial uses, the def is dead. 2166 if (none_of(UsedRegs, 2167 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2168 MO.setIsDead(); 2169 } 2170 2171 // This is a call with a register mask operand. 2172 // Mask clobbers are always dead, so add defs for the non-dead defines. 2173 if (HasRegMask) 2174 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2175 I != E; ++I) 2176 addRegisterDefined(*I, &TRI); 2177 } 2178 2179 unsigned 2180 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2181 // Build up a buffer of hash code components. 2182 SmallVector<size_t, 8> HashComponents; 2183 HashComponents.reserve(MI->getNumOperands() + 1); 2184 HashComponents.push_back(MI->getOpcode()); 2185 for (const MachineOperand &MO : MI->operands()) { 2186 if (MO.isReg() && MO.isDef() && 2187 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2188 continue; // Skip virtual register defs. 2189 2190 HashComponents.push_back(hash_value(MO)); 2191 } 2192 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2193 } 2194 2195 void MachineInstr::emitError(StringRef Msg) const { 2196 // Find the source location cookie. 2197 unsigned LocCookie = 0; 2198 const MDNode *LocMD = nullptr; 2199 for (unsigned i = getNumOperands(); i != 0; --i) { 2200 if (getOperand(i-1).isMetadata() && 2201 (LocMD = getOperand(i-1).getMetadata()) && 2202 LocMD->getNumOperands() != 0) { 2203 if (const ConstantInt *CI = 2204 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2205 LocCookie = CI->getZExtValue(); 2206 break; 2207 } 2208 } 2209 } 2210 2211 if (const MachineBasicBlock *MBB = getParent()) 2212 if (const MachineFunction *MF = MBB->getParent()) 2213 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2214 report_fatal_error(Msg); 2215 } 2216 2217 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2218 const MCInstrDesc &MCID, bool IsIndirect, 2219 unsigned Reg, unsigned Offset, 2220 const MDNode *Variable, const MDNode *Expr) { 2221 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2222 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2223 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2224 "Expected inlined-at fields to agree"); 2225 if (IsIndirect) 2226 return BuildMI(MF, DL, MCID) 2227 .addReg(Reg, RegState::Debug) 2228 .addImm(Offset) 2229 .addMetadata(Variable) 2230 .addMetadata(Expr); 2231 else { 2232 assert(Offset == 0 && "A direct address cannot have an offset."); 2233 return BuildMI(MF, DL, MCID) 2234 .addReg(Reg, RegState::Debug) 2235 .addReg(0U, RegState::Debug) 2236 .addMetadata(Variable) 2237 .addMetadata(Expr); 2238 } 2239 } 2240 2241 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2242 MachineBasicBlock::iterator I, 2243 const DebugLoc &DL, const MCInstrDesc &MCID, 2244 bool IsIndirect, unsigned Reg, 2245 unsigned Offset, const MDNode *Variable, 2246 const MDNode *Expr) { 2247 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2248 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2249 MachineFunction &MF = *BB.getParent(); 2250 MachineInstr *MI = 2251 BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr); 2252 BB.insert(I, MI); 2253 return MachineInstrBuilder(MF, MI); 2254 } 2255