1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallBitVector.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Operator.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCInstrDesc.h" 57 #include "llvm/MC/MCRegisterInfo.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/LowLevelTypeImpl.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetIntrinsicInfo.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <cstring> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 79 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 80 if (const MachineBasicBlock *MBB = MI.getParent()) 81 if (const MachineFunction *MF = MBB->getParent()) 82 return MF; 83 return nullptr; 84 } 85 86 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 87 // it. 88 static void tryToGetTargetInfo(const MachineInstr &MI, 89 const TargetRegisterInfo *&TRI, 90 const MachineRegisterInfo *&MRI, 91 const TargetIntrinsicInfo *&IntrinsicInfo, 92 const TargetInstrInfo *&TII) { 93 94 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 95 TRI = MF->getSubtarget().getRegisterInfo(); 96 MRI = &MF->getRegInfo(); 97 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 98 TII = MF->getSubtarget().getInstrInfo(); 99 } 100 } 101 102 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 103 if (MCID->ImplicitDefs) 104 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 105 ++ImpDefs) 106 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 107 if (MCID->ImplicitUses) 108 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 109 ++ImpUses) 110 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 111 } 112 113 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 114 /// implicit operands. It reserves space for the number of operands specified by 115 /// the MCInstrDesc. 116 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 117 DebugLoc dl, bool NoImp) 118 : MCID(&tid), debugLoc(std::move(dl)) { 119 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 120 121 // Reserve space for the expected number of operands. 122 if (unsigned NumOps = MCID->getNumOperands() + 123 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 124 CapOperands = OperandCapacity::get(NumOps); 125 Operands = MF.allocateOperandArray(CapOperands); 126 } 127 128 if (!NoImp) 129 addImplicitDefUseOperands(MF); 130 } 131 132 /// MachineInstr ctor - Copies MachineInstr arg exactly 133 /// 134 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 135 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) { 136 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 137 138 CapOperands = OperandCapacity::get(MI.getNumOperands()); 139 Operands = MF.allocateOperandArray(CapOperands); 140 141 // Copy operands. 142 for (const MachineOperand &MO : MI.operands()) 143 addOperand(MF, MO); 144 145 // Copy all the sensible flags. 146 setFlags(MI.Flags); 147 } 148 149 /// getRegInfo - If this instruction is embedded into a MachineFunction, 150 /// return the MachineRegisterInfo object for the current function, otherwise 151 /// return null. 152 MachineRegisterInfo *MachineInstr::getRegInfo() { 153 if (MachineBasicBlock *MBB = getParent()) 154 return &MBB->getParent()->getRegInfo(); 155 return nullptr; 156 } 157 158 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 159 /// this instruction from their respective use lists. This requires that the 160 /// operands already be on their use lists. 161 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 162 for (MachineOperand &MO : operands()) 163 if (MO.isReg()) 164 MRI.removeRegOperandFromUseList(&MO); 165 } 166 167 /// AddRegOperandsToUseLists - Add all of the register operands in 168 /// this instruction from their respective use lists. This requires that the 169 /// operands not be on their use lists yet. 170 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 171 for (MachineOperand &MO : operands()) 172 if (MO.isReg()) 173 MRI.addRegOperandToUseList(&MO); 174 } 175 176 void MachineInstr::addOperand(const MachineOperand &Op) { 177 MachineBasicBlock *MBB = getParent(); 178 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 179 MachineFunction *MF = MBB->getParent(); 180 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 181 addOperand(*MF, Op); 182 } 183 184 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 185 /// ranges. If MRI is non-null also update use-def chains. 186 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 187 unsigned NumOps, MachineRegisterInfo *MRI) { 188 if (MRI) 189 return MRI->moveOperands(Dst, Src, NumOps); 190 // MachineOperand is a trivially copyable type so we can just use memmove. 191 assert(Dst && Src && "Unknown operands"); 192 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 193 } 194 195 /// addOperand - Add the specified operand to the instruction. If it is an 196 /// implicit operand, it is added to the end of the operand list. If it is 197 /// an explicit operand it is added at the end of the explicit operand list 198 /// (before the first implicit operand). 199 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 200 assert(MCID && "Cannot add operands before providing an instr descriptor"); 201 202 // Check if we're adding one of our existing operands. 203 if (&Op >= Operands && &Op < Operands + NumOperands) { 204 // This is unusual: MI->addOperand(MI->getOperand(i)). 205 // If adding Op requires reallocating or moving existing operands around, 206 // the Op reference could go stale. Support it by copying Op. 207 MachineOperand CopyOp(Op); 208 return addOperand(MF, CopyOp); 209 } 210 211 // Find the insert location for the new operand. Implicit registers go at 212 // the end, everything else goes before the implicit regs. 213 // 214 // FIXME: Allow mixed explicit and implicit operands on inline asm. 215 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 216 // implicit-defs, but they must not be moved around. See the FIXME in 217 // InstrEmitter.cpp. 218 unsigned OpNo = getNumOperands(); 219 bool isImpReg = Op.isReg() && Op.isImplicit(); 220 if (!isImpReg && !isInlineAsm()) { 221 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 222 --OpNo; 223 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 224 } 225 } 226 227 #ifndef NDEBUG 228 bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || 229 Op.getType() == MachineOperand::MO_MCSymbol; 230 // OpNo now points as the desired insertion point. Unless this is a variadic 231 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 232 // RegMask operands go between the explicit and implicit operands. 233 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 234 OpNo < MCID->getNumOperands() || isDebugOp) && 235 "Trying to add an operand to a machine instr that is already done!"); 236 #endif 237 238 MachineRegisterInfo *MRI = getRegInfo(); 239 240 // Determine if the Operands array needs to be reallocated. 241 // Save the old capacity and operand array. 242 OperandCapacity OldCap = CapOperands; 243 MachineOperand *OldOperands = Operands; 244 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 245 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 246 Operands = MF.allocateOperandArray(CapOperands); 247 // Move the operands before the insertion point. 248 if (OpNo) 249 moveOperands(Operands, OldOperands, OpNo, MRI); 250 } 251 252 // Move the operands following the insertion point. 253 if (OpNo != NumOperands) 254 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 255 MRI); 256 ++NumOperands; 257 258 // Deallocate the old operand array. 259 if (OldOperands != Operands && OldOperands) 260 MF.deallocateOperandArray(OldCap, OldOperands); 261 262 // Copy Op into place. It still needs to be inserted into the MRI use lists. 263 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 264 NewMO->ParentMI = this; 265 266 // When adding a register operand, tell MRI about it. 267 if (NewMO->isReg()) { 268 // Ensure isOnRegUseList() returns false, regardless of Op's status. 269 NewMO->Contents.Reg.Prev = nullptr; 270 // Ignore existing ties. This is not a property that can be copied. 271 NewMO->TiedTo = 0; 272 // Add the new operand to MRI, but only for instructions in an MBB. 273 if (MRI) 274 MRI->addRegOperandToUseList(NewMO); 275 // The MCID operand information isn't accurate until we start adding 276 // explicit operands. The implicit operands are added first, then the 277 // explicits are inserted before them. 278 if (!isImpReg) { 279 // Tie uses to defs as indicated in MCInstrDesc. 280 if (NewMO->isUse()) { 281 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 282 if (DefIdx != -1) 283 tieOperands(DefIdx, OpNo); 284 } 285 // If the register operand is flagged as early, mark the operand as such. 286 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 287 NewMO->setIsEarlyClobber(true); 288 } 289 } 290 } 291 292 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 293 /// fewer operand than it started with. 294 /// 295 void MachineInstr::RemoveOperand(unsigned OpNo) { 296 assert(OpNo < getNumOperands() && "Invalid operand number"); 297 untieRegOperand(OpNo); 298 299 #ifndef NDEBUG 300 // Moving tied operands would break the ties. 301 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 302 if (Operands[i].isReg()) 303 assert(!Operands[i].isTied() && "Cannot move tied operands"); 304 #endif 305 306 MachineRegisterInfo *MRI = getRegInfo(); 307 if (MRI && Operands[OpNo].isReg()) 308 MRI->removeRegOperandFromUseList(Operands + OpNo); 309 310 // Don't call the MachineOperand destructor. A lot of this code depends on 311 // MachineOperand having a trivial destructor anyway, and adding a call here 312 // wouldn't make it 'destructor-correct'. 313 314 if (unsigned N = NumOperands - 1 - OpNo) 315 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 316 --NumOperands; 317 } 318 319 void MachineInstr::setExtraInfo(MachineFunction &MF, 320 ArrayRef<MachineMemOperand *> MMOs, 321 MCSymbol *PreInstrSymbol, 322 MCSymbol *PostInstrSymbol, 323 MDNode *HeapAllocMarker) { 324 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 325 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 326 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 327 int NumPointers = 328 MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker; 329 330 // Drop all extra info if there is none. 331 if (NumPointers <= 0) { 332 Info.clear(); 333 return; 334 } 335 336 // If more than one pointer, then store out of line. Store heap alloc markers 337 // out of line because PointerSumType cannot hold more than 4 tag types with 338 // 32-bit pointers. 339 // FIXME: Maybe we should make the symbols in the extra info mutable? 340 else if (NumPointers > 1 || HasHeapAllocMarker) { 341 Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo( 342 MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker)); 343 return; 344 } 345 346 // Otherwise store the single pointer inline. 347 if (HasPreInstrSymbol) 348 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 349 else if (HasPostInstrSymbol) 350 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 351 else 352 Info.set<EIIK_MMO>(MMOs[0]); 353 } 354 355 void MachineInstr::dropMemRefs(MachineFunction &MF) { 356 if (memoperands_empty()) 357 return; 358 359 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 360 getHeapAllocMarker()); 361 } 362 363 void MachineInstr::setMemRefs(MachineFunction &MF, 364 ArrayRef<MachineMemOperand *> MMOs) { 365 if (MMOs.empty()) { 366 dropMemRefs(MF); 367 return; 368 } 369 370 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 371 getHeapAllocMarker()); 372 } 373 374 void MachineInstr::addMemOperand(MachineFunction &MF, 375 MachineMemOperand *MO) { 376 SmallVector<MachineMemOperand *, 2> MMOs; 377 MMOs.append(memoperands_begin(), memoperands_end()); 378 MMOs.push_back(MO); 379 setMemRefs(MF, MMOs); 380 } 381 382 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 383 if (this == &MI) 384 // Nothing to do for a self-clone! 385 return; 386 387 assert(&MF == MI.getMF() && 388 "Invalid machine functions when cloning memory refrences!"); 389 // See if we can just steal the extra info already allocated for the 390 // instruction. We can do this whenever the pre- and post-instruction symbols 391 // are the same (including null). 392 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 393 getPostInstrSymbol() == MI.getPostInstrSymbol() && 394 getHeapAllocMarker() == MI.getHeapAllocMarker()) { 395 Info = MI.Info; 396 return; 397 } 398 399 // Otherwise, fall back on a copy-based clone. 400 setMemRefs(MF, MI.memoperands()); 401 } 402 403 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 404 /// identical. 405 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 406 ArrayRef<MachineMemOperand *> RHS) { 407 if (LHS.size() != RHS.size()) 408 return false; 409 410 auto LHSPointees = make_pointee_range(LHS); 411 auto RHSPointees = make_pointee_range(RHS); 412 return std::equal(LHSPointees.begin(), LHSPointees.end(), 413 RHSPointees.begin()); 414 } 415 416 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 417 ArrayRef<const MachineInstr *> MIs) { 418 // Try handling easy numbers of MIs with simpler mechanisms. 419 if (MIs.empty()) { 420 dropMemRefs(MF); 421 return; 422 } 423 if (MIs.size() == 1) { 424 cloneMemRefs(MF, *MIs[0]); 425 return; 426 } 427 // Because an empty memoperands list provides *no* information and must be 428 // handled conservatively (assuming the instruction can do anything), the only 429 // way to merge with it is to drop all other memoperands. 430 if (MIs[0]->memoperands_empty()) { 431 dropMemRefs(MF); 432 return; 433 } 434 435 // Handle the general case. 436 SmallVector<MachineMemOperand *, 2> MergedMMOs; 437 // Start with the first instruction. 438 assert(&MF == MIs[0]->getMF() && 439 "Invalid machine functions when cloning memory references!"); 440 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 441 // Now walk all the other instructions and accumulate any different MMOs. 442 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 443 assert(&MF == MI.getMF() && 444 "Invalid machine functions when cloning memory references!"); 445 446 // Skip MIs with identical operands to the first. This is a somewhat 447 // arbitrary hack but will catch common cases without being quadratic. 448 // TODO: We could fully implement merge semantics here if needed. 449 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 450 continue; 451 452 // Because an empty memoperands list provides *no* information and must be 453 // handled conservatively (assuming the instruction can do anything), the 454 // only way to merge with it is to drop all other memoperands. 455 if (MI.memoperands_empty()) { 456 dropMemRefs(MF); 457 return; 458 } 459 460 // Otherwise accumulate these into our temporary buffer of the merged state. 461 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 462 } 463 464 setMemRefs(MF, MergedMMOs); 465 } 466 467 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 468 // Do nothing if old and new symbols are the same. 469 if (Symbol == getPreInstrSymbol()) 470 return; 471 472 // If there was only one symbol and we're removing it, just clear info. 473 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 474 Info.clear(); 475 return; 476 } 477 478 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 479 getHeapAllocMarker()); 480 } 481 482 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 483 // Do nothing if old and new symbols are the same. 484 if (Symbol == getPostInstrSymbol()) 485 return; 486 487 // If there was only one symbol and we're removing it, just clear info. 488 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 489 Info.clear(); 490 return; 491 } 492 493 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 494 getHeapAllocMarker()); 495 } 496 497 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 498 // Do nothing if old and new symbols are the same. 499 if (Marker == getHeapAllocMarker()) 500 return; 501 502 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 503 Marker); 504 } 505 506 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 507 const MachineInstr &MI) { 508 if (this == &MI) 509 // Nothing to do for a self-clone! 510 return; 511 512 assert(&MF == MI.getMF() && 513 "Invalid machine functions when cloning instruction symbols!"); 514 515 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 516 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 517 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 518 } 519 520 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 521 // For now, the just return the union of the flags. If the flags get more 522 // complicated over time, we might need more logic here. 523 return getFlags() | Other.getFlags(); 524 } 525 526 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 527 uint16_t MIFlags = 0; 528 // Copy the wrapping flags. 529 if (const OverflowingBinaryOperator *OB = 530 dyn_cast<OverflowingBinaryOperator>(&I)) { 531 if (OB->hasNoSignedWrap()) 532 MIFlags |= MachineInstr::MIFlag::NoSWrap; 533 if (OB->hasNoUnsignedWrap()) 534 MIFlags |= MachineInstr::MIFlag::NoUWrap; 535 } 536 537 // Copy the exact flag. 538 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 539 if (PE->isExact()) 540 MIFlags |= MachineInstr::MIFlag::IsExact; 541 542 // Copy the fast-math flags. 543 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 544 const FastMathFlags Flags = FP->getFastMathFlags(); 545 if (Flags.noNaNs()) 546 MIFlags |= MachineInstr::MIFlag::FmNoNans; 547 if (Flags.noInfs()) 548 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 549 if (Flags.noSignedZeros()) 550 MIFlags |= MachineInstr::MIFlag::FmNsz; 551 if (Flags.allowReciprocal()) 552 MIFlags |= MachineInstr::MIFlag::FmArcp; 553 if (Flags.allowContract()) 554 MIFlags |= MachineInstr::MIFlag::FmContract; 555 if (Flags.approxFunc()) 556 MIFlags |= MachineInstr::MIFlag::FmAfn; 557 if (Flags.allowReassoc()) 558 MIFlags |= MachineInstr::MIFlag::FmReassoc; 559 } 560 561 return MIFlags; 562 } 563 564 void MachineInstr::copyIRFlags(const Instruction &I) { 565 Flags = copyFlagsFromInstruction(I); 566 } 567 568 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 569 assert(!isBundledWithPred() && "Must be called on bundle header"); 570 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 571 if (MII->getDesc().getFlags() & Mask) { 572 if (Type == AnyInBundle) 573 return true; 574 } else { 575 if (Type == AllInBundle && !MII->isBundle()) 576 return false; 577 } 578 // This was the last instruction in the bundle. 579 if (!MII->isBundledWithSucc()) 580 return Type == AllInBundle; 581 } 582 } 583 584 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 585 MICheckType Check) const { 586 // If opcodes or number of operands are not the same then the two 587 // instructions are obviously not identical. 588 if (Other.getOpcode() != getOpcode() || 589 Other.getNumOperands() != getNumOperands()) 590 return false; 591 592 if (isBundle()) { 593 // We have passed the test above that both instructions have the same 594 // opcode, so we know that both instructions are bundles here. Let's compare 595 // MIs inside the bundle. 596 assert(Other.isBundle() && "Expected that both instructions are bundles."); 597 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 598 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 599 // Loop until we analysed the last intruction inside at least one of the 600 // bundles. 601 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 602 ++I1; 603 ++I2; 604 if (!I1->isIdenticalTo(*I2, Check)) 605 return false; 606 } 607 // If we've reached the end of just one of the two bundles, but not both, 608 // the instructions are not identical. 609 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 610 return false; 611 } 612 613 // Check operands to make sure they match. 614 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 615 const MachineOperand &MO = getOperand(i); 616 const MachineOperand &OMO = Other.getOperand(i); 617 if (!MO.isReg()) { 618 if (!MO.isIdenticalTo(OMO)) 619 return false; 620 continue; 621 } 622 623 // Clients may or may not want to ignore defs when testing for equality. 624 // For example, machine CSE pass only cares about finding common 625 // subexpressions, so it's safe to ignore virtual register defs. 626 if (MO.isDef()) { 627 if (Check == IgnoreDefs) 628 continue; 629 else if (Check == IgnoreVRegDefs) { 630 if (!Register::isVirtualRegister(MO.getReg()) || 631 !Register::isVirtualRegister(OMO.getReg())) 632 if (!MO.isIdenticalTo(OMO)) 633 return false; 634 } else { 635 if (!MO.isIdenticalTo(OMO)) 636 return false; 637 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 638 return false; 639 } 640 } else { 641 if (!MO.isIdenticalTo(OMO)) 642 return false; 643 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 644 return false; 645 } 646 } 647 // If DebugLoc does not match then two debug instructions are not identical. 648 if (isDebugInstr()) 649 if (getDebugLoc() && Other.getDebugLoc() && 650 getDebugLoc() != Other.getDebugLoc()) 651 return false; 652 return true; 653 } 654 655 const MachineFunction *MachineInstr::getMF() const { 656 return getParent()->getParent(); 657 } 658 659 MachineInstr *MachineInstr::removeFromParent() { 660 assert(getParent() && "Not embedded in a basic block!"); 661 return getParent()->remove(this); 662 } 663 664 MachineInstr *MachineInstr::removeFromBundle() { 665 assert(getParent() && "Not embedded in a basic block!"); 666 return getParent()->remove_instr(this); 667 } 668 669 void MachineInstr::eraseFromParent() { 670 assert(getParent() && "Not embedded in a basic block!"); 671 getParent()->erase(this); 672 } 673 674 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 675 assert(getParent() && "Not embedded in a basic block!"); 676 MachineBasicBlock *MBB = getParent(); 677 MachineFunction *MF = MBB->getParent(); 678 assert(MF && "Not embedded in a function!"); 679 680 MachineInstr *MI = (MachineInstr *)this; 681 MachineRegisterInfo &MRI = MF->getRegInfo(); 682 683 for (const MachineOperand &MO : MI->operands()) { 684 if (!MO.isReg() || !MO.isDef()) 685 continue; 686 Register Reg = MO.getReg(); 687 if (!Reg.isVirtual()) 688 continue; 689 MRI.markUsesInDebugValueAsUndef(Reg); 690 } 691 MI->eraseFromParent(); 692 } 693 694 void MachineInstr::eraseFromBundle() { 695 assert(getParent() && "Not embedded in a basic block!"); 696 getParent()->erase_instr(this); 697 } 698 699 bool MachineInstr::isCandidateForCallSiteEntry() const { 700 if (!isCall(MachineInstr::IgnoreBundle)) 701 return false; 702 switch (getOpcode()) { 703 case TargetOpcode::PATCHABLE_EVENT_CALL: 704 case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL: 705 case TargetOpcode::PATCHPOINT: 706 case TargetOpcode::STACKMAP: 707 case TargetOpcode::STATEPOINT: 708 return false; 709 } 710 return true; 711 } 712 713 unsigned MachineInstr::getNumExplicitOperands() const { 714 unsigned NumOperands = MCID->getNumOperands(); 715 if (!MCID->isVariadic()) 716 return NumOperands; 717 718 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 719 const MachineOperand &MO = getOperand(I); 720 // The operands must always be in the following order: 721 // - explicit reg defs, 722 // - other explicit operands (reg uses, immediates, etc.), 723 // - implicit reg defs 724 // - implicit reg uses 725 if (MO.isReg() && MO.isImplicit()) 726 break; 727 ++NumOperands; 728 } 729 return NumOperands; 730 } 731 732 unsigned MachineInstr::getNumExplicitDefs() const { 733 unsigned NumDefs = MCID->getNumDefs(); 734 if (!MCID->isVariadic()) 735 return NumDefs; 736 737 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 738 const MachineOperand &MO = getOperand(I); 739 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 740 break; 741 ++NumDefs; 742 } 743 return NumDefs; 744 } 745 746 void MachineInstr::bundleWithPred() { 747 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 748 setFlag(BundledPred); 749 MachineBasicBlock::instr_iterator Pred = getIterator(); 750 --Pred; 751 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 752 Pred->setFlag(BundledSucc); 753 } 754 755 void MachineInstr::bundleWithSucc() { 756 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 757 setFlag(BundledSucc); 758 MachineBasicBlock::instr_iterator Succ = getIterator(); 759 ++Succ; 760 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 761 Succ->setFlag(BundledPred); 762 } 763 764 void MachineInstr::unbundleFromPred() { 765 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 766 clearFlag(BundledPred); 767 MachineBasicBlock::instr_iterator Pred = getIterator(); 768 --Pred; 769 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 770 Pred->clearFlag(BundledSucc); 771 } 772 773 void MachineInstr::unbundleFromSucc() { 774 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 775 clearFlag(BundledSucc); 776 MachineBasicBlock::instr_iterator Succ = getIterator(); 777 ++Succ; 778 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 779 Succ->clearFlag(BundledPred); 780 } 781 782 bool MachineInstr::isStackAligningInlineAsm() const { 783 if (isInlineAsm()) { 784 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 785 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 786 return true; 787 } 788 return false; 789 } 790 791 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 792 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 793 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 794 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 795 } 796 797 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 798 unsigned *GroupNo) const { 799 assert(isInlineAsm() && "Expected an inline asm instruction"); 800 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 801 802 // Ignore queries about the initial operands. 803 if (OpIdx < InlineAsm::MIOp_FirstOperand) 804 return -1; 805 806 unsigned Group = 0; 807 unsigned NumOps; 808 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 809 i += NumOps) { 810 const MachineOperand &FlagMO = getOperand(i); 811 // If we reach the implicit register operands, stop looking. 812 if (!FlagMO.isImm()) 813 return -1; 814 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 815 if (i + NumOps > OpIdx) { 816 if (GroupNo) 817 *GroupNo = Group; 818 return i; 819 } 820 ++Group; 821 } 822 return -1; 823 } 824 825 const DILabel *MachineInstr::getDebugLabel() const { 826 assert(isDebugLabel() && "not a DBG_LABEL"); 827 return cast<DILabel>(getOperand(0).getMetadata()); 828 } 829 830 const DILocalVariable *MachineInstr::getDebugVariable() const { 831 assert(isDebugValue() && "not a DBG_VALUE"); 832 return cast<DILocalVariable>(getOperand(2).getMetadata()); 833 } 834 835 const DIExpression *MachineInstr::getDebugExpression() const { 836 assert(isDebugValue() && "not a DBG_VALUE"); 837 return cast<DIExpression>(getOperand(3).getMetadata()); 838 } 839 840 bool MachineInstr::isDebugEntryValue() const { 841 return isDebugValue() && getDebugExpression()->isEntryValue(); 842 } 843 844 const TargetRegisterClass* 845 MachineInstr::getRegClassConstraint(unsigned OpIdx, 846 const TargetInstrInfo *TII, 847 const TargetRegisterInfo *TRI) const { 848 assert(getParent() && "Can't have an MBB reference here!"); 849 assert(getMF() && "Can't have an MF reference here!"); 850 const MachineFunction &MF = *getMF(); 851 852 // Most opcodes have fixed constraints in their MCInstrDesc. 853 if (!isInlineAsm()) 854 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 855 856 if (!getOperand(OpIdx).isReg()) 857 return nullptr; 858 859 // For tied uses on inline asm, get the constraint from the def. 860 unsigned DefIdx; 861 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 862 OpIdx = DefIdx; 863 864 // Inline asm stores register class constraints in the flag word. 865 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 866 if (FlagIdx < 0) 867 return nullptr; 868 869 unsigned Flag = getOperand(FlagIdx).getImm(); 870 unsigned RCID; 871 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 872 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 873 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 874 InlineAsm::hasRegClassConstraint(Flag, RCID)) 875 return TRI->getRegClass(RCID); 876 877 // Assume that all registers in a memory operand are pointers. 878 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 879 return TRI->getPointerRegClass(MF); 880 881 return nullptr; 882 } 883 884 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 885 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 886 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 887 // Check every operands inside the bundle if we have 888 // been asked to. 889 if (ExploreBundle) 890 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 891 ++OpndIt) 892 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 893 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 894 else 895 // Otherwise, just check the current operands. 896 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 897 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 898 return CurRC; 899 } 900 901 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 902 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 903 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 904 assert(CurRC && "Invalid initial register class"); 905 // Check if Reg is constrained by some of its use/def from MI. 906 const MachineOperand &MO = getOperand(OpIdx); 907 if (!MO.isReg() || MO.getReg() != Reg) 908 return CurRC; 909 // If yes, accumulate the constraints through the operand. 910 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 911 } 912 913 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 914 unsigned OpIdx, const TargetRegisterClass *CurRC, 915 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 916 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 917 const MachineOperand &MO = getOperand(OpIdx); 918 assert(MO.isReg() && 919 "Cannot get register constraints for non-register operand"); 920 assert(CurRC && "Invalid initial register class"); 921 if (unsigned SubIdx = MO.getSubReg()) { 922 if (OpRC) 923 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 924 else 925 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 926 } else if (OpRC) 927 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 928 return CurRC; 929 } 930 931 /// Return the number of instructions inside the MI bundle, not counting the 932 /// header instruction. 933 unsigned MachineInstr::getBundleSize() const { 934 MachineBasicBlock::const_instr_iterator I = getIterator(); 935 unsigned Size = 0; 936 while (I->isBundledWithSucc()) { 937 ++Size; 938 ++I; 939 } 940 return Size; 941 } 942 943 /// Returns true if the MachineInstr has an implicit-use operand of exactly 944 /// the given register (not considering sub/super-registers). 945 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 946 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 947 const MachineOperand &MO = getOperand(i); 948 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 949 return true; 950 } 951 return false; 952 } 953 954 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 955 /// the specific register or -1 if it is not found. It further tightens 956 /// the search criteria to a use that kills the register if isKill is true. 957 int MachineInstr::findRegisterUseOperandIdx( 958 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 959 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 960 const MachineOperand &MO = getOperand(i); 961 if (!MO.isReg() || !MO.isUse()) 962 continue; 963 Register MOReg = MO.getReg(); 964 if (!MOReg) 965 continue; 966 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 967 if (!isKill || MO.isKill()) 968 return i; 969 } 970 return -1; 971 } 972 973 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 974 /// indicating if this instruction reads or writes Reg. This also considers 975 /// partial defines. 976 std::pair<bool,bool> 977 MachineInstr::readsWritesVirtualRegister(Register Reg, 978 SmallVectorImpl<unsigned> *Ops) const { 979 bool PartDef = false; // Partial redefine. 980 bool FullDef = false; // Full define. 981 bool Use = false; 982 983 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 984 const MachineOperand &MO = getOperand(i); 985 if (!MO.isReg() || MO.getReg() != Reg) 986 continue; 987 if (Ops) 988 Ops->push_back(i); 989 if (MO.isUse()) 990 Use |= !MO.isUndef(); 991 else if (MO.getSubReg() && !MO.isUndef()) 992 // A partial def undef doesn't count as reading the register. 993 PartDef = true; 994 else 995 FullDef = true; 996 } 997 // A partial redefine uses Reg unless there is also a full define. 998 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 999 } 1000 1001 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1002 /// the specified register or -1 if it is not found. If isDead is true, defs 1003 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1004 /// also checks if there is a def of a super-register. 1005 int 1006 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1007 const TargetRegisterInfo *TRI) const { 1008 bool isPhys = Register::isPhysicalRegister(Reg); 1009 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1010 const MachineOperand &MO = getOperand(i); 1011 // Accept regmask operands when Overlap is set. 1012 // Ignore them when looking for a specific def operand (Overlap == false). 1013 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1014 return i; 1015 if (!MO.isReg() || !MO.isDef()) 1016 continue; 1017 Register MOReg = MO.getReg(); 1018 bool Found = (MOReg == Reg); 1019 if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { 1020 if (Overlap) 1021 Found = TRI->regsOverlap(MOReg, Reg); 1022 else 1023 Found = TRI->isSubRegister(MOReg, Reg); 1024 } 1025 if (Found && (!isDead || MO.isDead())) 1026 return i; 1027 } 1028 return -1; 1029 } 1030 1031 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1032 /// operand list that is used to represent the predicate. It returns -1 if 1033 /// none is found. 1034 int MachineInstr::findFirstPredOperandIdx() const { 1035 // Don't call MCID.findFirstPredOperandIdx() because this variant 1036 // is sometimes called on an instruction that's not yet complete, and 1037 // so the number of operands is less than the MCID indicates. In 1038 // particular, the PTX target does this. 1039 const MCInstrDesc &MCID = getDesc(); 1040 if (MCID.isPredicable()) { 1041 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1042 if (MCID.OpInfo[i].isPredicate()) 1043 return i; 1044 } 1045 1046 return -1; 1047 } 1048 1049 // MachineOperand::TiedTo is 4 bits wide. 1050 const unsigned TiedMax = 15; 1051 1052 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1053 /// 1054 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1055 /// field. TiedTo can have these values: 1056 /// 1057 /// 0: Operand is not tied to anything. 1058 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1059 /// TiedMax: Tied to an operand >= TiedMax-1. 1060 /// 1061 /// The tied def must be one of the first TiedMax operands on a normal 1062 /// instruction. INLINEASM instructions allow more tied defs. 1063 /// 1064 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1065 MachineOperand &DefMO = getOperand(DefIdx); 1066 MachineOperand &UseMO = getOperand(UseIdx); 1067 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1068 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1069 assert(!DefMO.isTied() && "Def is already tied to another use"); 1070 assert(!UseMO.isTied() && "Use is already tied to another def"); 1071 1072 if (DefIdx < TiedMax) 1073 UseMO.TiedTo = DefIdx + 1; 1074 else { 1075 // Inline asm can use the group descriptors to find tied operands, but on 1076 // normal instruction, the tied def must be within the first TiedMax 1077 // operands. 1078 assert(isInlineAsm() && "DefIdx out of range"); 1079 UseMO.TiedTo = TiedMax; 1080 } 1081 1082 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1083 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1084 } 1085 1086 /// Given the index of a tied register operand, find the operand it is tied to. 1087 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1088 /// which must exist. 1089 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1090 const MachineOperand &MO = getOperand(OpIdx); 1091 assert(MO.isTied() && "Operand isn't tied"); 1092 1093 // Normally TiedTo is in range. 1094 if (MO.TiedTo < TiedMax) 1095 return MO.TiedTo - 1; 1096 1097 // Uses on normal instructions can be out of range. 1098 if (!isInlineAsm()) { 1099 // Normal tied defs must be in the 0..TiedMax-1 range. 1100 if (MO.isUse()) 1101 return TiedMax - 1; 1102 // MO is a def. Search for the tied use. 1103 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1104 const MachineOperand &UseMO = getOperand(i); 1105 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1106 return i; 1107 } 1108 llvm_unreachable("Can't find tied use"); 1109 } 1110 1111 // Now deal with inline asm by parsing the operand group descriptor flags. 1112 // Find the beginning of each operand group. 1113 SmallVector<unsigned, 8> GroupIdx; 1114 unsigned OpIdxGroup = ~0u; 1115 unsigned NumOps; 1116 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1117 i += NumOps) { 1118 const MachineOperand &FlagMO = getOperand(i); 1119 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1120 unsigned CurGroup = GroupIdx.size(); 1121 GroupIdx.push_back(i); 1122 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1123 // OpIdx belongs to this operand group. 1124 if (OpIdx > i && OpIdx < i + NumOps) 1125 OpIdxGroup = CurGroup; 1126 unsigned TiedGroup; 1127 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1128 continue; 1129 // Operands in this group are tied to operands in TiedGroup which must be 1130 // earlier. Find the number of operands between the two groups. 1131 unsigned Delta = i - GroupIdx[TiedGroup]; 1132 1133 // OpIdx is a use tied to TiedGroup. 1134 if (OpIdxGroup == CurGroup) 1135 return OpIdx - Delta; 1136 1137 // OpIdx is a def tied to this use group. 1138 if (OpIdxGroup == TiedGroup) 1139 return OpIdx + Delta; 1140 } 1141 llvm_unreachable("Invalid tied operand on inline asm"); 1142 } 1143 1144 /// clearKillInfo - Clears kill flags on all operands. 1145 /// 1146 void MachineInstr::clearKillInfo() { 1147 for (MachineOperand &MO : operands()) { 1148 if (MO.isReg() && MO.isUse()) 1149 MO.setIsKill(false); 1150 } 1151 } 1152 1153 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1154 unsigned SubIdx, 1155 const TargetRegisterInfo &RegInfo) { 1156 if (Register::isPhysicalRegister(ToReg)) { 1157 if (SubIdx) 1158 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1159 for (MachineOperand &MO : operands()) { 1160 if (!MO.isReg() || MO.getReg() != FromReg) 1161 continue; 1162 MO.substPhysReg(ToReg, RegInfo); 1163 } 1164 } else { 1165 for (MachineOperand &MO : operands()) { 1166 if (!MO.isReg() || MO.getReg() != FromReg) 1167 continue; 1168 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1169 } 1170 } 1171 } 1172 1173 /// isSafeToMove - Return true if it is safe to move this instruction. If 1174 /// SawStore is set to true, it means that there is a store (or call) between 1175 /// the instruction's location and its intended destination. 1176 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1177 // Ignore stuff that we obviously can't move. 1178 // 1179 // Treat volatile loads as stores. This is not strictly necessary for 1180 // volatiles, but it is required for atomic loads. It is not allowed to move 1181 // a load across an atomic load with Ordering > Monotonic. 1182 if (mayStore() || isCall() || isPHI() || 1183 (mayLoad() && hasOrderedMemoryRef())) { 1184 SawStore = true; 1185 return false; 1186 } 1187 1188 if (isPosition() || isDebugInstr() || isTerminator() || 1189 mayRaiseFPException() || hasUnmodeledSideEffects()) 1190 return false; 1191 1192 // See if this instruction does a load. If so, we have to guarantee that the 1193 // loaded value doesn't change between the load and the its intended 1194 // destination. The check for isInvariantLoad gives the targe the chance to 1195 // classify the load as always returning a constant, e.g. a constant pool 1196 // load. 1197 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1198 // Otherwise, this is a real load. If there is a store between the load and 1199 // end of block, we can't move it. 1200 return !SawStore; 1201 1202 return true; 1203 } 1204 1205 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1206 bool UseTBAA) const { 1207 const MachineFunction *MF = getMF(); 1208 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1209 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1210 1211 // If neither instruction stores to memory, they can't alias in any 1212 // meaningful way, even if they read from the same address. 1213 if (!mayStore() && !Other.mayStore()) 1214 return false; 1215 1216 // Let the target decide if memory accesses cannot possibly overlap. 1217 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1218 return false; 1219 1220 // FIXME: Need to handle multiple memory operands to support all targets. 1221 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1222 return true; 1223 1224 MachineMemOperand *MMOa = *memoperands_begin(); 1225 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1226 1227 // The following interface to AA is fashioned after DAGCombiner::isAlias 1228 // and operates with MachineMemOperand offset with some important 1229 // assumptions: 1230 // - LLVM fundamentally assumes flat address spaces. 1231 // - MachineOperand offset can *only* result from legalization and 1232 // cannot affect queries other than the trivial case of overlap 1233 // checking. 1234 // - These offsets never wrap and never step outside 1235 // of allocated objects. 1236 // - There should never be any negative offsets here. 1237 // 1238 // FIXME: Modify API to hide this math from "user" 1239 // Even before we go to AA we can reason locally about some 1240 // memory objects. It can save compile time, and possibly catch some 1241 // corner cases not currently covered. 1242 1243 int64_t OffsetA = MMOa->getOffset(); 1244 int64_t OffsetB = MMOb->getOffset(); 1245 int64_t MinOffset = std::min(OffsetA, OffsetB); 1246 1247 uint64_t WidthA = MMOa->getSize(); 1248 uint64_t WidthB = MMOb->getSize(); 1249 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1250 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1251 1252 const Value *ValA = MMOa->getValue(); 1253 const Value *ValB = MMOb->getValue(); 1254 bool SameVal = (ValA && ValB && (ValA == ValB)); 1255 if (!SameVal) { 1256 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1257 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1258 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1259 return false; 1260 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1261 return false; 1262 if (PSVa && PSVb && (PSVa == PSVb)) 1263 SameVal = true; 1264 } 1265 1266 if (SameVal) { 1267 if (!KnownWidthA || !KnownWidthB) 1268 return true; 1269 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1270 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1271 return (MinOffset + LowWidth > MaxOffset); 1272 } 1273 1274 if (!AA) 1275 return true; 1276 1277 if (!ValA || !ValB) 1278 return true; 1279 1280 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1281 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1282 1283 int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset 1284 : MemoryLocation::UnknownSize; 1285 int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset 1286 : MemoryLocation::UnknownSize; 1287 1288 AliasResult AAResult = AA->alias( 1289 MemoryLocation(ValA, OverlapA, 1290 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1291 MemoryLocation(ValB, OverlapB, 1292 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1293 1294 return (AAResult != NoAlias); 1295 } 1296 1297 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1298 /// or volatile memory reference, or if the information describing the memory 1299 /// reference is not available. Return false if it is known to have no ordered 1300 /// memory references. 1301 bool MachineInstr::hasOrderedMemoryRef() const { 1302 // An instruction known never to access memory won't have a volatile access. 1303 if (!mayStore() && 1304 !mayLoad() && 1305 !isCall() && 1306 !hasUnmodeledSideEffects()) 1307 return false; 1308 1309 // Otherwise, if the instruction has no memory reference information, 1310 // conservatively assume it wasn't preserved. 1311 if (memoperands_empty()) 1312 return true; 1313 1314 // Check if any of our memory operands are ordered. 1315 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1316 return !MMO->isUnordered(); 1317 }); 1318 } 1319 1320 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1321 /// trap and is loading from a location whose value is invariant across a run of 1322 /// this function. 1323 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const { 1324 // If the instruction doesn't load at all, it isn't an invariant load. 1325 if (!mayLoad()) 1326 return false; 1327 1328 // If the instruction has lost its memoperands, conservatively assume that 1329 // it may not be an invariant load. 1330 if (memoperands_empty()) 1331 return false; 1332 1333 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1334 1335 for (MachineMemOperand *MMO : memoperands()) { 1336 if (!MMO->isUnordered()) 1337 // If the memory operand has ordering side effects, we can't move the 1338 // instruction. Such an instruction is technically an invariant load, 1339 // but the caller code would need updated to expect that. 1340 return false; 1341 if (MMO->isStore()) return false; 1342 if (MMO->isInvariant() && MMO->isDereferenceable()) 1343 continue; 1344 1345 // A load from a constant PseudoSourceValue is invariant. 1346 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1347 if (PSV->isConstant(&MFI)) 1348 continue; 1349 1350 if (const Value *V = MMO->getValue()) { 1351 // If we have an AliasAnalysis, ask it whether the memory is constant. 1352 if (AA && 1353 AA->pointsToConstantMemory( 1354 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1355 continue; 1356 } 1357 1358 // Otherwise assume conservatively. 1359 return false; 1360 } 1361 1362 // Everything checks out. 1363 return true; 1364 } 1365 1366 /// isConstantValuePHI - If the specified instruction is a PHI that always 1367 /// merges together the same virtual register, return the register, otherwise 1368 /// return 0. 1369 unsigned MachineInstr::isConstantValuePHI() const { 1370 if (!isPHI()) 1371 return 0; 1372 assert(getNumOperands() >= 3 && 1373 "It's illegal to have a PHI without source operands"); 1374 1375 Register Reg = getOperand(1).getReg(); 1376 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1377 if (getOperand(i).getReg() != Reg) 1378 return 0; 1379 return Reg; 1380 } 1381 1382 bool MachineInstr::hasUnmodeledSideEffects() const { 1383 if (hasProperty(MCID::UnmodeledSideEffects)) 1384 return true; 1385 if (isInlineAsm()) { 1386 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1387 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1388 return true; 1389 } 1390 1391 return false; 1392 } 1393 1394 bool MachineInstr::isLoadFoldBarrier() const { 1395 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1396 } 1397 1398 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1399 /// 1400 bool MachineInstr::allDefsAreDead() const { 1401 for (const MachineOperand &MO : operands()) { 1402 if (!MO.isReg() || MO.isUse()) 1403 continue; 1404 if (!MO.isDead()) 1405 return false; 1406 } 1407 return true; 1408 } 1409 1410 /// copyImplicitOps - Copy implicit register operands from specified 1411 /// instruction to this instruction. 1412 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1413 const MachineInstr &MI) { 1414 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1415 i != e; ++i) { 1416 const MachineOperand &MO = MI.getOperand(i); 1417 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1418 addOperand(MF, MO); 1419 } 1420 } 1421 1422 bool MachineInstr::hasComplexRegisterTies() const { 1423 const MCInstrDesc &MCID = getDesc(); 1424 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1425 const auto &Operand = getOperand(I); 1426 if (!Operand.isReg() || Operand.isDef()) 1427 // Ignore the defined registers as MCID marks only the uses as tied. 1428 continue; 1429 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1430 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1431 if (ExpectedTiedIdx != TiedIdx) 1432 return true; 1433 } 1434 return false; 1435 } 1436 1437 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1438 const MachineRegisterInfo &MRI) const { 1439 const MachineOperand &Op = getOperand(OpIdx); 1440 if (!Op.isReg()) 1441 return LLT{}; 1442 1443 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1444 return MRI.getType(Op.getReg()); 1445 1446 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1447 if (!OpInfo.isGenericType()) 1448 return MRI.getType(Op.getReg()); 1449 1450 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1451 return LLT{}; 1452 1453 LLT TypeToPrint = MRI.getType(Op.getReg()); 1454 // Don't mark the type index printed if it wasn't actually printed: maybe 1455 // another operand with the same type index has an actual type attached: 1456 if (TypeToPrint.isValid()) 1457 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1458 return TypeToPrint; 1459 } 1460 1461 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1462 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1463 dbgs() << " "; 1464 print(dbgs()); 1465 } 1466 #endif 1467 1468 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1469 bool SkipDebugLoc, bool AddNewLine, 1470 const TargetInstrInfo *TII) const { 1471 const Module *M = nullptr; 1472 const Function *F = nullptr; 1473 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1474 F = &MF->getFunction(); 1475 M = F->getParent(); 1476 if (!TII) 1477 TII = MF->getSubtarget().getInstrInfo(); 1478 } 1479 1480 ModuleSlotTracker MST(M); 1481 if (F) 1482 MST.incorporateFunction(*F); 1483 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1484 } 1485 1486 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1487 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1488 bool AddNewLine, const TargetInstrInfo *TII) const { 1489 // We can be a bit tidier if we know the MachineFunction. 1490 const MachineFunction *MF = nullptr; 1491 const TargetRegisterInfo *TRI = nullptr; 1492 const MachineRegisterInfo *MRI = nullptr; 1493 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1494 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1495 1496 if (isCFIInstruction()) 1497 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1498 1499 SmallBitVector PrintedTypes(8); 1500 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1501 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1502 if (!ShouldPrintRegisterTies) 1503 return 0U; 1504 const MachineOperand &MO = getOperand(OpIdx); 1505 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1506 return findTiedOperandIdx(OpIdx); 1507 return 0U; 1508 }; 1509 unsigned StartOp = 0; 1510 unsigned e = getNumOperands(); 1511 1512 // Print explicitly defined operands on the left of an assignment syntax. 1513 while (StartOp < e) { 1514 const MachineOperand &MO = getOperand(StartOp); 1515 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1516 break; 1517 1518 if (StartOp != 0) 1519 OS << ", "; 1520 1521 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1522 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1523 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1524 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1525 ++StartOp; 1526 } 1527 1528 if (StartOp != 0) 1529 OS << " = "; 1530 1531 if (getFlag(MachineInstr::FrameSetup)) 1532 OS << "frame-setup "; 1533 if (getFlag(MachineInstr::FrameDestroy)) 1534 OS << "frame-destroy "; 1535 if (getFlag(MachineInstr::FmNoNans)) 1536 OS << "nnan "; 1537 if (getFlag(MachineInstr::FmNoInfs)) 1538 OS << "ninf "; 1539 if (getFlag(MachineInstr::FmNsz)) 1540 OS << "nsz "; 1541 if (getFlag(MachineInstr::FmArcp)) 1542 OS << "arcp "; 1543 if (getFlag(MachineInstr::FmContract)) 1544 OS << "contract "; 1545 if (getFlag(MachineInstr::FmAfn)) 1546 OS << "afn "; 1547 if (getFlag(MachineInstr::FmReassoc)) 1548 OS << "reassoc "; 1549 if (getFlag(MachineInstr::NoUWrap)) 1550 OS << "nuw "; 1551 if (getFlag(MachineInstr::NoSWrap)) 1552 OS << "nsw "; 1553 if (getFlag(MachineInstr::IsExact)) 1554 OS << "exact "; 1555 if (getFlag(MachineInstr::NoFPExcept)) 1556 OS << "nofpexcept "; 1557 1558 // Print the opcode name. 1559 if (TII) 1560 OS << TII->getName(getOpcode()); 1561 else 1562 OS << "UNKNOWN"; 1563 1564 if (SkipOpers) 1565 return; 1566 1567 // Print the rest of the operands. 1568 bool FirstOp = true; 1569 unsigned AsmDescOp = ~0u; 1570 unsigned AsmOpCount = 0; 1571 1572 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1573 // Print asm string. 1574 OS << " "; 1575 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1576 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1577 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1578 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1579 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1580 IntrinsicInfo); 1581 1582 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1583 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1584 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1585 OS << " [sideeffect]"; 1586 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1587 OS << " [mayload]"; 1588 if (ExtraInfo & InlineAsm::Extra_MayStore) 1589 OS << " [maystore]"; 1590 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1591 OS << " [isconvergent]"; 1592 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1593 OS << " [alignstack]"; 1594 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1595 OS << " [attdialect]"; 1596 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1597 OS << " [inteldialect]"; 1598 1599 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1600 FirstOp = false; 1601 } 1602 1603 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1604 const MachineOperand &MO = getOperand(i); 1605 1606 if (FirstOp) FirstOp = false; else OS << ","; 1607 OS << " "; 1608 1609 if (isDebugValue() && MO.isMetadata()) { 1610 // Pretty print DBG_VALUE instructions. 1611 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1612 if (DIV && !DIV->getName().empty()) 1613 OS << "!\"" << DIV->getName() << '\"'; 1614 else { 1615 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1616 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1617 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1618 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1619 } 1620 } else if (isDebugLabel() && MO.isMetadata()) { 1621 // Pretty print DBG_LABEL instructions. 1622 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1623 if (DIL && !DIL->getName().empty()) 1624 OS << "\"" << DIL->getName() << '\"'; 1625 else { 1626 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1627 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1628 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1629 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1630 } 1631 } else if (i == AsmDescOp && MO.isImm()) { 1632 // Pretty print the inline asm operand descriptor. 1633 OS << '$' << AsmOpCount++; 1634 unsigned Flag = MO.getImm(); 1635 switch (InlineAsm::getKind(Flag)) { 1636 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1637 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1638 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1639 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1640 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1641 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1642 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1643 } 1644 1645 unsigned RCID = 0; 1646 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1647 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1648 if (TRI) { 1649 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1650 } else 1651 OS << ":RC" << RCID; 1652 } 1653 1654 if (InlineAsm::isMemKind(Flag)) { 1655 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1656 switch (MCID) { 1657 case InlineAsm::Constraint_es: OS << ":es"; break; 1658 case InlineAsm::Constraint_i: OS << ":i"; break; 1659 case InlineAsm::Constraint_m: OS << ":m"; break; 1660 case InlineAsm::Constraint_o: OS << ":o"; break; 1661 case InlineAsm::Constraint_v: OS << ":v"; break; 1662 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1663 case InlineAsm::Constraint_R: OS << ":R"; break; 1664 case InlineAsm::Constraint_S: OS << ":S"; break; 1665 case InlineAsm::Constraint_T: OS << ":T"; break; 1666 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1667 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1668 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1669 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1670 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1671 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1672 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1673 case InlineAsm::Constraint_X: OS << ":X"; break; 1674 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1675 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1676 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1677 default: OS << ":?"; break; 1678 } 1679 } 1680 1681 unsigned TiedTo = 0; 1682 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1683 OS << " tiedto:$" << TiedTo; 1684 1685 OS << ']'; 1686 1687 // Compute the index of the next operand descriptor. 1688 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1689 } else { 1690 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1691 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1692 if (MO.isImm() && isOperandSubregIdx(i)) 1693 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1694 else 1695 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1696 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1697 } 1698 } 1699 1700 // Print any optional symbols attached to this instruction as-if they were 1701 // operands. 1702 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1703 if (!FirstOp) { 1704 FirstOp = false; 1705 OS << ','; 1706 } 1707 OS << " pre-instr-symbol "; 1708 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1709 } 1710 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1711 if (!FirstOp) { 1712 FirstOp = false; 1713 OS << ','; 1714 } 1715 OS << " post-instr-symbol "; 1716 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1717 } 1718 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1719 if (!FirstOp) { 1720 FirstOp = false; 1721 OS << ','; 1722 } 1723 OS << " heap-alloc-marker "; 1724 HeapAllocMarker->printAsOperand(OS, MST); 1725 } 1726 1727 if (!SkipDebugLoc) { 1728 if (const DebugLoc &DL = getDebugLoc()) { 1729 if (!FirstOp) 1730 OS << ','; 1731 OS << " debug-location "; 1732 DL->printAsOperand(OS, MST); 1733 } 1734 } 1735 1736 if (!memoperands_empty()) { 1737 SmallVector<StringRef, 0> SSNs; 1738 const LLVMContext *Context = nullptr; 1739 std::unique_ptr<LLVMContext> CtxPtr; 1740 const MachineFrameInfo *MFI = nullptr; 1741 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1742 MFI = &MF->getFrameInfo(); 1743 Context = &MF->getFunction().getContext(); 1744 } else { 1745 CtxPtr = std::make_unique<LLVMContext>(); 1746 Context = CtxPtr.get(); 1747 } 1748 1749 OS << " :: "; 1750 bool NeedComma = false; 1751 for (const MachineMemOperand *Op : memoperands()) { 1752 if (NeedComma) 1753 OS << ", "; 1754 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1755 NeedComma = true; 1756 } 1757 } 1758 1759 if (SkipDebugLoc) 1760 return; 1761 1762 bool HaveSemi = false; 1763 1764 // Print debug location information. 1765 if (const DebugLoc &DL = getDebugLoc()) { 1766 if (!HaveSemi) { 1767 OS << ';'; 1768 HaveSemi = true; 1769 } 1770 OS << ' '; 1771 DL.print(OS); 1772 } 1773 1774 // Print extra comments for DEBUG_VALUE. 1775 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1776 if (!HaveSemi) { 1777 OS << ";"; 1778 HaveSemi = true; 1779 } 1780 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1781 OS << " line no:" << DV->getLine(); 1782 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1783 DebugLoc InlinedAtDL(InlinedAt); 1784 if (InlinedAtDL && MF) { 1785 OS << " inlined @[ "; 1786 InlinedAtDL.print(OS); 1787 OS << " ]"; 1788 } 1789 } 1790 if (isIndirectDebugValue()) 1791 OS << " indirect"; 1792 } 1793 // TODO: DBG_LABEL 1794 1795 if (AddNewLine) 1796 OS << '\n'; 1797 } 1798 1799 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1800 const TargetRegisterInfo *RegInfo, 1801 bool AddIfNotFound) { 1802 bool isPhysReg = Register::isPhysicalRegister(IncomingReg); 1803 bool hasAliases = isPhysReg && 1804 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1805 bool Found = false; 1806 SmallVector<unsigned,4> DeadOps; 1807 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1808 MachineOperand &MO = getOperand(i); 1809 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1810 continue; 1811 1812 // DEBUG_VALUE nodes do not contribute to code generation and should 1813 // always be ignored. Failure to do so may result in trying to modify 1814 // KILL flags on DEBUG_VALUE nodes. 1815 if (MO.isDebug()) 1816 continue; 1817 1818 Register Reg = MO.getReg(); 1819 if (!Reg) 1820 continue; 1821 1822 if (Reg == IncomingReg) { 1823 if (!Found) { 1824 if (MO.isKill()) 1825 // The register is already marked kill. 1826 return true; 1827 if (isPhysReg && isRegTiedToDefOperand(i)) 1828 // Two-address uses of physregs must not be marked kill. 1829 return true; 1830 MO.setIsKill(); 1831 Found = true; 1832 } 1833 } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { 1834 // A super-register kill already exists. 1835 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1836 return true; 1837 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1838 DeadOps.push_back(i); 1839 } 1840 } 1841 1842 // Trim unneeded kill operands. 1843 while (!DeadOps.empty()) { 1844 unsigned OpIdx = DeadOps.back(); 1845 if (getOperand(OpIdx).isImplicit() && 1846 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1847 RemoveOperand(OpIdx); 1848 else 1849 getOperand(OpIdx).setIsKill(false); 1850 DeadOps.pop_back(); 1851 } 1852 1853 // If not found, this means an alias of one of the operands is killed. Add a 1854 // new implicit operand if required. 1855 if (!Found && AddIfNotFound) { 1856 addOperand(MachineOperand::CreateReg(IncomingReg, 1857 false /*IsDef*/, 1858 true /*IsImp*/, 1859 true /*IsKill*/)); 1860 return true; 1861 } 1862 return Found; 1863 } 1864 1865 void MachineInstr::clearRegisterKills(Register Reg, 1866 const TargetRegisterInfo *RegInfo) { 1867 if (!Register::isPhysicalRegister(Reg)) 1868 RegInfo = nullptr; 1869 for (MachineOperand &MO : operands()) { 1870 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1871 continue; 1872 Register OpReg = MO.getReg(); 1873 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1874 MO.setIsKill(false); 1875 } 1876 } 1877 1878 bool MachineInstr::addRegisterDead(Register Reg, 1879 const TargetRegisterInfo *RegInfo, 1880 bool AddIfNotFound) { 1881 bool isPhysReg = Register::isPhysicalRegister(Reg); 1882 bool hasAliases = isPhysReg && 1883 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1884 bool Found = false; 1885 SmallVector<unsigned,4> DeadOps; 1886 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1887 MachineOperand &MO = getOperand(i); 1888 if (!MO.isReg() || !MO.isDef()) 1889 continue; 1890 Register MOReg = MO.getReg(); 1891 if (!MOReg) 1892 continue; 1893 1894 if (MOReg == Reg) { 1895 MO.setIsDead(); 1896 Found = true; 1897 } else if (hasAliases && MO.isDead() && 1898 Register::isPhysicalRegister(MOReg)) { 1899 // There exists a super-register that's marked dead. 1900 if (RegInfo->isSuperRegister(Reg, MOReg)) 1901 return true; 1902 if (RegInfo->isSubRegister(Reg, MOReg)) 1903 DeadOps.push_back(i); 1904 } 1905 } 1906 1907 // Trim unneeded dead operands. 1908 while (!DeadOps.empty()) { 1909 unsigned OpIdx = DeadOps.back(); 1910 if (getOperand(OpIdx).isImplicit() && 1911 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1912 RemoveOperand(OpIdx); 1913 else 1914 getOperand(OpIdx).setIsDead(false); 1915 DeadOps.pop_back(); 1916 } 1917 1918 // If not found, this means an alias of one of the operands is dead. Add a 1919 // new implicit operand if required. 1920 if (Found || !AddIfNotFound) 1921 return Found; 1922 1923 addOperand(MachineOperand::CreateReg(Reg, 1924 true /*IsDef*/, 1925 true /*IsImp*/, 1926 false /*IsKill*/, 1927 true /*IsDead*/)); 1928 return true; 1929 } 1930 1931 void MachineInstr::clearRegisterDeads(Register Reg) { 1932 for (MachineOperand &MO : operands()) { 1933 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 1934 continue; 1935 MO.setIsDead(false); 1936 } 1937 } 1938 1939 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 1940 for (MachineOperand &MO : operands()) { 1941 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 1942 continue; 1943 MO.setIsUndef(IsUndef); 1944 } 1945 } 1946 1947 void MachineInstr::addRegisterDefined(Register Reg, 1948 const TargetRegisterInfo *RegInfo) { 1949 if (Register::isPhysicalRegister(Reg)) { 1950 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 1951 if (MO) 1952 return; 1953 } else { 1954 for (const MachineOperand &MO : operands()) { 1955 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1956 MO.getSubReg() == 0) 1957 return; 1958 } 1959 } 1960 addOperand(MachineOperand::CreateReg(Reg, 1961 true /*IsDef*/, 1962 true /*IsImp*/)); 1963 } 1964 1965 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 1966 const TargetRegisterInfo &TRI) { 1967 bool HasRegMask = false; 1968 for (MachineOperand &MO : operands()) { 1969 if (MO.isRegMask()) { 1970 HasRegMask = true; 1971 continue; 1972 } 1973 if (!MO.isReg() || !MO.isDef()) continue; 1974 Register Reg = MO.getReg(); 1975 if (!Reg.isPhysical()) 1976 continue; 1977 // If there are no uses, including partial uses, the def is dead. 1978 if (llvm::none_of(UsedRegs, 1979 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 1980 MO.setIsDead(); 1981 } 1982 1983 // This is a call with a register mask operand. 1984 // Mask clobbers are always dead, so add defs for the non-dead defines. 1985 if (HasRegMask) 1986 for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1987 I != E; ++I) 1988 addRegisterDefined(*I, &TRI); 1989 } 1990 1991 unsigned 1992 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1993 // Build up a buffer of hash code components. 1994 SmallVector<size_t, 16> HashComponents; 1995 HashComponents.reserve(MI->getNumOperands() + 1); 1996 HashComponents.push_back(MI->getOpcode()); 1997 for (const MachineOperand &MO : MI->operands()) { 1998 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 1999 continue; // Skip virtual register defs. 2000 2001 HashComponents.push_back(hash_value(MO)); 2002 } 2003 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2004 } 2005 2006 void MachineInstr::emitError(StringRef Msg) const { 2007 // Find the source location cookie. 2008 unsigned LocCookie = 0; 2009 const MDNode *LocMD = nullptr; 2010 for (unsigned i = getNumOperands(); i != 0; --i) { 2011 if (getOperand(i-1).isMetadata() && 2012 (LocMD = getOperand(i-1).getMetadata()) && 2013 LocMD->getNumOperands() != 0) { 2014 if (const ConstantInt *CI = 2015 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2016 LocCookie = CI->getZExtValue(); 2017 break; 2018 } 2019 } 2020 } 2021 2022 if (const MachineBasicBlock *MBB = getParent()) 2023 if (const MachineFunction *MF = MBB->getParent()) 2024 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2025 report_fatal_error(Msg); 2026 } 2027 2028 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2029 const MCInstrDesc &MCID, bool IsIndirect, 2030 Register Reg, const MDNode *Variable, 2031 const MDNode *Expr) { 2032 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2033 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2034 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2035 "Expected inlined-at fields to agree"); 2036 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); 2037 if (IsIndirect) 2038 MIB.addImm(0U); 2039 else 2040 MIB.addReg(0U, RegState::Debug); 2041 return MIB.addMetadata(Variable).addMetadata(Expr); 2042 } 2043 2044 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2045 const MCInstrDesc &MCID, bool IsIndirect, 2046 MachineOperand &MO, const MDNode *Variable, 2047 const MDNode *Expr) { 2048 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2049 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2050 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2051 "Expected inlined-at fields to agree"); 2052 if (MO.isReg()) 2053 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); 2054 2055 auto MIB = BuildMI(MF, DL, MCID).add(MO); 2056 if (IsIndirect) 2057 MIB.addImm(0U); 2058 else 2059 MIB.addReg(0U, RegState::Debug); 2060 return MIB.addMetadata(Variable).addMetadata(Expr); 2061 } 2062 2063 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2064 MachineBasicBlock::iterator I, 2065 const DebugLoc &DL, const MCInstrDesc &MCID, 2066 bool IsIndirect, Register Reg, 2067 const MDNode *Variable, const MDNode *Expr) { 2068 MachineFunction &MF = *BB.getParent(); 2069 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2070 BB.insert(I, MI); 2071 return MachineInstrBuilder(MF, MI); 2072 } 2073 2074 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2075 MachineBasicBlock::iterator I, 2076 const DebugLoc &DL, const MCInstrDesc &MCID, 2077 bool IsIndirect, MachineOperand &MO, 2078 const MDNode *Variable, const MDNode *Expr) { 2079 MachineFunction &MF = *BB.getParent(); 2080 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); 2081 BB.insert(I, MI); 2082 return MachineInstrBuilder(MF, *MI); 2083 } 2084 2085 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2086 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2087 static const DIExpression *computeExprForSpill(const MachineInstr &MI) { 2088 assert(MI.getOperand(0).isReg() && "can't spill non-register"); 2089 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2090 "Expected inlined-at fields to agree"); 2091 2092 const DIExpression *Expr = MI.getDebugExpression(); 2093 if (MI.isIndirectDebugValue()) { 2094 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 2095 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2096 } 2097 return Expr; 2098 } 2099 2100 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2101 MachineBasicBlock::iterator I, 2102 const MachineInstr &Orig, 2103 int FrameIndex) { 2104 const DIExpression *Expr = computeExprForSpill(Orig); 2105 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) 2106 .addFrameIndex(FrameIndex) 2107 .addImm(0U) 2108 .addMetadata(Orig.getDebugVariable()) 2109 .addMetadata(Expr); 2110 } 2111 2112 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { 2113 const DIExpression *Expr = computeExprForSpill(Orig); 2114 Orig.getOperand(0).ChangeToFrameIndex(FrameIndex); 2115 Orig.getOperand(1).ChangeToImmediate(0U); 2116 Orig.getOperand(3).setMetadata(Expr); 2117 } 2118 2119 void MachineInstr::collectDebugValues( 2120 SmallVectorImpl<MachineInstr *> &DbgValues) { 2121 MachineInstr &MI = *this; 2122 if (!MI.getOperand(0).isReg()) 2123 return; 2124 2125 MachineBasicBlock::iterator DI = MI; ++DI; 2126 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2127 DI != DE; ++DI) { 2128 if (!DI->isDebugValue()) 2129 return; 2130 if (DI->getOperand(0).isReg() && 2131 DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) 2132 DbgValues.push_back(&*DI); 2133 } 2134 } 2135 2136 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2137 // Collect matching debug values. 2138 SmallVector<MachineInstr *, 2> DbgValues; 2139 2140 if (!getOperand(0).isReg()) 2141 return; 2142 2143 unsigned DefReg = getOperand(0).getReg(); 2144 auto *MRI = getRegInfo(); 2145 for (auto &MO : MRI->use_operands(DefReg)) { 2146 auto *DI = MO.getParent(); 2147 if (!DI->isDebugValue()) 2148 continue; 2149 if (DI->getOperand(0).isReg() && 2150 DI->getOperand(0).getReg() == DefReg){ 2151 DbgValues.push_back(DI); 2152 } 2153 } 2154 2155 // Propagate Reg to debug value instructions. 2156 for (auto *DBI : DbgValues) 2157 DBI->getOperand(0).setReg(Reg); 2158 } 2159 2160 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2161 2162 static unsigned getSpillSlotSize(MMOList &Accesses, 2163 const MachineFrameInfo &MFI) { 2164 unsigned Size = 0; 2165 for (auto A : Accesses) 2166 if (MFI.isSpillSlotObjectIndex( 2167 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2168 ->getFrameIndex())) 2169 Size += A->getSize(); 2170 return Size; 2171 } 2172 2173 Optional<unsigned> 2174 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2175 int FI; 2176 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2177 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2178 if (MFI.isSpillSlotObjectIndex(FI)) 2179 return (*memoperands_begin())->getSize(); 2180 } 2181 return None; 2182 } 2183 2184 Optional<unsigned> 2185 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2186 MMOList Accesses; 2187 if (TII->hasStoreToStackSlot(*this, Accesses)) 2188 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2189 return None; 2190 } 2191 2192 Optional<unsigned> 2193 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2194 int FI; 2195 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2196 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2197 if (MFI.isSpillSlotObjectIndex(FI)) 2198 return (*memoperands_begin())->getSize(); 2199 } 2200 return None; 2201 } 2202 2203 Optional<unsigned> 2204 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2205 MMOList Accesses; 2206 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2207 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2208 return None; 2209 } 2210