1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfo.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSlotTracker.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/MC/MCInstrDesc.h" 37 #include "llvm/MC/MCSymbol.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 using namespace llvm; 49 50 static cl::opt<bool> PrintWholeRegMask( 51 "print-whole-regmask", 52 cl::desc("Print the full contents of regmask operands in IR dumps"), 53 cl::init(true), cl::Hidden); 54 55 //===----------------------------------------------------------------------===// 56 // MachineOperand Implementation 57 //===----------------------------------------------------------------------===// 58 59 void MachineOperand::setReg(unsigned Reg) { 60 if (getReg() == Reg) return; // No change. 61 62 // Otherwise, we have to change the register. If this operand is embedded 63 // into a machine function, we need to update the old and new register's 64 // use/def lists. 65 if (MachineInstr *MI = getParent()) 66 if (MachineBasicBlock *MBB = MI->getParent()) 67 if (MachineFunction *MF = MBB->getParent()) { 68 MachineRegisterInfo &MRI = MF->getRegInfo(); 69 MRI.removeRegOperandFromUseList(this); 70 SmallContents.RegNo = Reg; 71 MRI.addRegOperandToUseList(this); 72 return; 73 } 74 75 // Otherwise, just change the register, no problem. :) 76 SmallContents.RegNo = Reg; 77 } 78 79 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 80 const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 82 if (SubIdx && getSubReg()) 83 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 84 setReg(Reg); 85 if (SubIdx) 86 setSubReg(SubIdx); 87 } 88 89 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 90 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 91 if (getSubReg()) { 92 Reg = TRI.getSubReg(Reg, getSubReg()); 93 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 94 // That won't happen in legal code. 95 setSubReg(0); 96 } 97 setReg(Reg); 98 } 99 100 /// Change a def to a use, or a use to a def. 101 void MachineOperand::setIsDef(bool Val) { 102 assert(isReg() && "Wrong MachineOperand accessor"); 103 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 104 if (IsDef == Val) 105 return; 106 // MRI may keep uses and defs in different list positions. 107 if (MachineInstr *MI = getParent()) 108 if (MachineBasicBlock *MBB = MI->getParent()) 109 if (MachineFunction *MF = MBB->getParent()) { 110 MachineRegisterInfo &MRI = MF->getRegInfo(); 111 MRI.removeRegOperandFromUseList(this); 112 IsDef = Val; 113 MRI.addRegOperandToUseList(this); 114 return; 115 } 116 IsDef = Val; 117 } 118 119 // If this operand is currently a register operand, and if this is in a 120 // function, deregister the operand from the register's use/def list. 121 void MachineOperand::removeRegFromUses() { 122 if (!isReg() || !isOnRegUseList()) 123 return; 124 125 if (MachineInstr *MI = getParent()) { 126 if (MachineBasicBlock *MBB = MI->getParent()) { 127 if (MachineFunction *MF = MBB->getParent()) 128 MF->getRegInfo().removeRegOperandFromUseList(this); 129 } 130 } 131 } 132 133 /// ChangeToImmediate - Replace this operand with a new immediate operand of 134 /// the specified value. If an operand is known to be an immediate already, 135 /// the setImm method should be used. 136 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 137 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 138 139 removeRegFromUses(); 140 141 OpKind = MO_Immediate; 142 Contents.ImmVal = ImmVal; 143 } 144 145 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 146 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 147 148 removeRegFromUses(); 149 150 OpKind = MO_FPImmediate; 151 Contents.CFP = FPImm; 152 } 153 154 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 155 assert((!isReg() || !isTied()) && 156 "Cannot change a tied operand into an external symbol"); 157 158 removeRegFromUses(); 159 160 OpKind = MO_ExternalSymbol; 161 Contents.OffsetedInfo.Val.SymbolName = SymName; 162 setOffset(0); // Offset is always 0. 163 setTargetFlags(TargetFlags); 164 } 165 166 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 167 assert((!isReg() || !isTied()) && 168 "Cannot change a tied operand into an MCSymbol"); 169 170 removeRegFromUses(); 171 172 OpKind = MO_MCSymbol; 173 Contents.Sym = Sym; 174 } 175 176 /// ChangeToRegister - Replace this operand with a new register operand of 177 /// the specified value. If an operand is known to be an register already, 178 /// the setReg method should be used. 179 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 180 bool isKill, bool isDead, bool isUndef, 181 bool isDebug) { 182 MachineRegisterInfo *RegInfo = nullptr; 183 if (MachineInstr *MI = getParent()) 184 if (MachineBasicBlock *MBB = MI->getParent()) 185 if (MachineFunction *MF = MBB->getParent()) 186 RegInfo = &MF->getRegInfo(); 187 // If this operand is already a register operand, remove it from the 188 // register's use/def lists. 189 bool WasReg = isReg(); 190 if (RegInfo && WasReg) 191 RegInfo->removeRegOperandFromUseList(this); 192 193 // Change this to a register and set the reg#. 194 OpKind = MO_Register; 195 SmallContents.RegNo = Reg; 196 SubReg_TargetFlags = 0; 197 IsDef = isDef; 198 IsImp = isImp; 199 IsKill = isKill; 200 IsDead = isDead; 201 IsUndef = isUndef; 202 IsInternalRead = false; 203 IsEarlyClobber = false; 204 IsDebug = isDebug; 205 // Ensure isOnRegUseList() returns false. 206 Contents.Reg.Prev = nullptr; 207 // Preserve the tie when the operand was already a register. 208 if (!WasReg) 209 TiedTo = 0; 210 211 // If this operand is embedded in a function, add the operand to the 212 // register's use/def list. 213 if (RegInfo) 214 RegInfo->addRegOperandToUseList(this); 215 } 216 217 /// isIdenticalTo - Return true if this operand is identical to the specified 218 /// operand. Note that this should stay in sync with the hash_value overload 219 /// below. 220 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 221 if (getType() != Other.getType() || 222 getTargetFlags() != Other.getTargetFlags()) 223 return false; 224 225 switch (getType()) { 226 case MachineOperand::MO_Register: 227 return getReg() == Other.getReg() && isDef() == Other.isDef() && 228 getSubReg() == Other.getSubReg(); 229 case MachineOperand::MO_Immediate: 230 return getImm() == Other.getImm(); 231 case MachineOperand::MO_CImmediate: 232 return getCImm() == Other.getCImm(); 233 case MachineOperand::MO_FPImmediate: 234 return getFPImm() == Other.getFPImm(); 235 case MachineOperand::MO_MachineBasicBlock: 236 return getMBB() == Other.getMBB(); 237 case MachineOperand::MO_FrameIndex: 238 return getIndex() == Other.getIndex(); 239 case MachineOperand::MO_ConstantPoolIndex: 240 case MachineOperand::MO_TargetIndex: 241 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 242 case MachineOperand::MO_JumpTableIndex: 243 return getIndex() == Other.getIndex(); 244 case MachineOperand::MO_GlobalAddress: 245 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 246 case MachineOperand::MO_ExternalSymbol: 247 return !strcmp(getSymbolName(), Other.getSymbolName()) && 248 getOffset() == Other.getOffset(); 249 case MachineOperand::MO_BlockAddress: 250 return getBlockAddress() == Other.getBlockAddress() && 251 getOffset() == Other.getOffset(); 252 case MachineOperand::MO_RegisterMask: 253 case MachineOperand::MO_RegisterLiveOut: 254 return getRegMask() == Other.getRegMask(); 255 case MachineOperand::MO_MCSymbol: 256 return getMCSymbol() == Other.getMCSymbol(); 257 case MachineOperand::MO_CFIIndex: 258 return getCFIIndex() == Other.getCFIIndex(); 259 case MachineOperand::MO_Metadata: 260 return getMetadata() == Other.getMetadata(); 261 case MachineOperand::MO_IntrinsicID: 262 return getIntrinsicID() == Other.getIntrinsicID(); 263 } 264 llvm_unreachable("Invalid machine operand type"); 265 } 266 267 // Note: this must stay exactly in sync with isIdenticalTo above. 268 hash_code llvm::hash_value(const MachineOperand &MO) { 269 switch (MO.getType()) { 270 case MachineOperand::MO_Register: 271 // Register operands don't have target flags. 272 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 273 case MachineOperand::MO_Immediate: 274 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 275 case MachineOperand::MO_CImmediate: 276 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 277 case MachineOperand::MO_FPImmediate: 278 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 279 case MachineOperand::MO_MachineBasicBlock: 280 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 281 case MachineOperand::MO_FrameIndex: 282 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 283 case MachineOperand::MO_ConstantPoolIndex: 284 case MachineOperand::MO_TargetIndex: 285 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 286 MO.getOffset()); 287 case MachineOperand::MO_JumpTableIndex: 288 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 289 case MachineOperand::MO_ExternalSymbol: 290 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 291 MO.getSymbolName()); 292 case MachineOperand::MO_GlobalAddress: 293 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 294 MO.getOffset()); 295 case MachineOperand::MO_BlockAddress: 296 return hash_combine(MO.getType(), MO.getTargetFlags(), 297 MO.getBlockAddress(), MO.getOffset()); 298 case MachineOperand::MO_RegisterMask: 299 case MachineOperand::MO_RegisterLiveOut: 300 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 301 case MachineOperand::MO_Metadata: 302 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 303 case MachineOperand::MO_MCSymbol: 304 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 305 case MachineOperand::MO_CFIIndex: 306 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 307 case MachineOperand::MO_IntrinsicID: 308 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID()); 309 } 310 llvm_unreachable("Invalid machine operand type"); 311 } 312 313 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI, 314 const TargetIntrinsicInfo *IntrinsicInfo) const { 315 ModuleSlotTracker DummyMST(nullptr); 316 print(OS, DummyMST, TRI, IntrinsicInfo); 317 } 318 319 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 320 const TargetRegisterInfo *TRI, 321 const TargetIntrinsicInfo *IntrinsicInfo) const { 322 switch (getType()) { 323 case MachineOperand::MO_Register: 324 OS << PrintReg(getReg(), TRI, getSubReg()); 325 326 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 327 isInternalRead() || isEarlyClobber() || isTied()) { 328 OS << '<'; 329 bool NeedComma = false; 330 if (isDef()) { 331 if (NeedComma) OS << ','; 332 if (isEarlyClobber()) 333 OS << "earlyclobber,"; 334 if (isImplicit()) 335 OS << "imp-"; 336 OS << "def"; 337 NeedComma = true; 338 // <def,read-undef> only makes sense when getSubReg() is set. 339 // Don't clutter the output otherwise. 340 if (isUndef() && getSubReg()) 341 OS << ",read-undef"; 342 } else if (isImplicit()) { 343 OS << "imp-use"; 344 NeedComma = true; 345 } 346 347 if (isKill()) { 348 if (NeedComma) OS << ','; 349 OS << "kill"; 350 NeedComma = true; 351 } 352 if (isDead()) { 353 if (NeedComma) OS << ','; 354 OS << "dead"; 355 NeedComma = true; 356 } 357 if (isUndef() && isUse()) { 358 if (NeedComma) OS << ','; 359 OS << "undef"; 360 NeedComma = true; 361 } 362 if (isInternalRead()) { 363 if (NeedComma) OS << ','; 364 OS << "internal"; 365 NeedComma = true; 366 } 367 if (isTied()) { 368 if (NeedComma) OS << ','; 369 OS << "tied"; 370 if (TiedTo != 15) 371 OS << unsigned(TiedTo - 1); 372 } 373 OS << '>'; 374 } 375 break; 376 case MachineOperand::MO_Immediate: 377 OS << getImm(); 378 break; 379 case MachineOperand::MO_CImmediate: 380 getCImm()->getValue().print(OS, false); 381 break; 382 case MachineOperand::MO_FPImmediate: 383 if (getFPImm()->getType()->isFloatTy()) { 384 OS << getFPImm()->getValueAPF().convertToFloat(); 385 } else if (getFPImm()->getType()->isHalfTy()) { 386 APFloat APF = getFPImm()->getValueAPF(); 387 bool Unused; 388 APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused); 389 OS << "half " << APF.convertToFloat(); 390 } else { 391 OS << getFPImm()->getValueAPF().convertToDouble(); 392 } 393 break; 394 case MachineOperand::MO_MachineBasicBlock: 395 OS << "<BB#" << getMBB()->getNumber() << ">"; 396 break; 397 case MachineOperand::MO_FrameIndex: 398 OS << "<fi#" << getIndex() << '>'; 399 break; 400 case MachineOperand::MO_ConstantPoolIndex: 401 OS << "<cp#" << getIndex(); 402 if (getOffset()) OS << "+" << getOffset(); 403 OS << '>'; 404 break; 405 case MachineOperand::MO_TargetIndex: 406 OS << "<ti#" << getIndex(); 407 if (getOffset()) OS << "+" << getOffset(); 408 OS << '>'; 409 break; 410 case MachineOperand::MO_JumpTableIndex: 411 OS << "<jt#" << getIndex() << '>'; 412 break; 413 case MachineOperand::MO_GlobalAddress: 414 OS << "<ga:"; 415 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 416 if (getOffset()) OS << "+" << getOffset(); 417 OS << '>'; 418 break; 419 case MachineOperand::MO_ExternalSymbol: 420 OS << "<es:" << getSymbolName(); 421 if (getOffset()) OS << "+" << getOffset(); 422 OS << '>'; 423 break; 424 case MachineOperand::MO_BlockAddress: 425 OS << '<'; 426 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 427 if (getOffset()) OS << "+" << getOffset(); 428 OS << '>'; 429 break; 430 case MachineOperand::MO_RegisterMask: { 431 unsigned NumRegsInMask = 0; 432 unsigned NumRegsEmitted = 0; 433 OS << "<regmask"; 434 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 435 unsigned MaskWord = i / 32; 436 unsigned MaskBit = i % 32; 437 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 438 if (PrintWholeRegMask || NumRegsEmitted <= 10) { 439 OS << " " << PrintReg(i, TRI); 440 NumRegsEmitted++; 441 } 442 NumRegsInMask++; 443 } 444 } 445 if (NumRegsEmitted != NumRegsInMask) 446 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 447 OS << ">"; 448 break; 449 } 450 case MachineOperand::MO_RegisterLiveOut: 451 OS << "<regliveout>"; 452 break; 453 case MachineOperand::MO_Metadata: 454 OS << '<'; 455 getMetadata()->printAsOperand(OS, MST); 456 OS << '>'; 457 break; 458 case MachineOperand::MO_MCSymbol: 459 OS << "<MCSym=" << *getMCSymbol() << '>'; 460 break; 461 case MachineOperand::MO_CFIIndex: 462 OS << "<call frame instruction>"; 463 break; 464 case MachineOperand::MO_IntrinsicID: { 465 Intrinsic::ID ID = getIntrinsicID(); 466 if (ID < Intrinsic::num_intrinsics) 467 OS << "<intrinsic:@" << Intrinsic::getName(ID) << ')'; 468 else if (IntrinsicInfo) 469 OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << ')'; 470 else 471 OS << "<intrinsic:" << ID << '>'; 472 break; 473 } 474 } 475 476 if (unsigned TF = getTargetFlags()) 477 OS << "[TF=" << TF << ']'; 478 } 479 480 //===----------------------------------------------------------------------===// 481 // MachineMemOperand Implementation 482 //===----------------------------------------------------------------------===// 483 484 /// getAddrSpace - Return the LLVM IR address space number that this pointer 485 /// points into. 486 unsigned MachinePointerInfo::getAddrSpace() const { 487 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 488 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 489 } 490 491 /// getConstantPool - Return a MachinePointerInfo record that refers to the 492 /// constant pool. 493 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 494 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 495 } 496 497 /// getFixedStack - Return a MachinePointerInfo record that refers to the 498 /// the specified FrameIndex. 499 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 500 int FI, int64_t Offset) { 501 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 502 } 503 504 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 505 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 506 } 507 508 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 509 return MachinePointerInfo(MF.getPSVManager().getGOT()); 510 } 511 512 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 513 int64_t Offset) { 514 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); 515 } 516 517 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, 518 uint64_t s, unsigned int a, 519 const AAMDNodes &AAInfo, 520 const MDNode *Ranges) 521 : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), 522 AAInfo(AAInfo), Ranges(Ranges) { 523 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 524 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 525 "invalid pointer value"); 526 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 527 assert((isLoad() || isStore()) && "Not a load/store!"); 528 } 529 530 /// Profile - Gather unique data for the object. 531 /// 532 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 533 ID.AddInteger(getOffset()); 534 ID.AddInteger(Size); 535 ID.AddPointer(getOpaqueValue()); 536 ID.AddInteger(getFlags()); 537 ID.AddInteger(getBaseAlignment()); 538 } 539 540 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 541 // The Value and Offset may differ due to CSE. But the flags and size 542 // should be the same. 543 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 544 assert(MMO->getSize() == getSize() && "Size mismatch!"); 545 546 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 547 // Update the alignment value. 548 BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; 549 // Also update the base and offset, because the new alignment may 550 // not be applicable with the old ones. 551 PtrInfo = MMO->PtrInfo; 552 } 553 } 554 555 /// getAlignment - Return the minimum known alignment in bytes of the 556 /// actual memory reference. 557 uint64_t MachineMemOperand::getAlignment() const { 558 return MinAlign(getBaseAlignment(), getOffset()); 559 } 560 561 void MachineMemOperand::print(raw_ostream &OS) const { 562 ModuleSlotTracker DummyMST(nullptr); 563 print(OS, DummyMST); 564 } 565 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 566 assert((isLoad() || isStore()) && 567 "SV has to be a load, store or both."); 568 569 if (isVolatile()) 570 OS << "Volatile "; 571 572 if (isLoad()) 573 OS << "LD"; 574 if (isStore()) 575 OS << "ST"; 576 OS << getSize(); 577 578 // Print the address information. 579 OS << "["; 580 if (const Value *V = getValue()) 581 V->printAsOperand(OS, /*PrintType=*/false, MST); 582 else if (const PseudoSourceValue *PSV = getPseudoValue()) 583 PSV->printCustom(OS); 584 else 585 OS << "<unknown>"; 586 587 unsigned AS = getAddrSpace(); 588 if (AS != 0) 589 OS << "(addrspace=" << AS << ')'; 590 591 // If the alignment of the memory reference itself differs from the alignment 592 // of the base pointer, print the base alignment explicitly, next to the base 593 // pointer. 594 if (getBaseAlignment() != getAlignment()) 595 OS << "(align=" << getBaseAlignment() << ")"; 596 597 if (getOffset() != 0) 598 OS << "+" << getOffset(); 599 OS << "]"; 600 601 // Print the alignment of the reference. 602 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 603 OS << "(align=" << getAlignment() << ")"; 604 605 // Print TBAA info. 606 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 607 OS << "(tbaa="; 608 if (TBAAInfo->getNumOperands() > 0) 609 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 610 else 611 OS << "<unknown>"; 612 OS << ")"; 613 } 614 615 // Print AA scope info. 616 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 617 OS << "(alias.scope="; 618 if (ScopeInfo->getNumOperands() > 0) 619 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 620 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 621 if (i != ie-1) 622 OS << ","; 623 } 624 else 625 OS << "<unknown>"; 626 OS << ")"; 627 } 628 629 // Print AA noalias scope info. 630 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 631 OS << "(noalias="; 632 if (NoAliasInfo->getNumOperands() > 0) 633 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 634 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 635 if (i != ie-1) 636 OS << ","; 637 } 638 else 639 OS << "<unknown>"; 640 OS << ")"; 641 } 642 643 // Print nontemporal info. 644 if (isNonTemporal()) 645 OS << "(nontemporal)"; 646 647 if (isInvariant()) 648 OS << "(invariant)"; 649 } 650 651 //===----------------------------------------------------------------------===// 652 // MachineInstr Implementation 653 //===----------------------------------------------------------------------===// 654 655 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 656 if (MCID->ImplicitDefs) 657 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 658 ++ImpDefs) 659 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 660 if (MCID->ImplicitUses) 661 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 662 ++ImpUses) 663 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 664 } 665 666 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 667 /// implicit operands. It reserves space for the number of operands specified by 668 /// the MCInstrDesc. 669 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 670 DebugLoc dl, bool NoImp) 671 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), 672 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), 673 debugLoc(std::move(dl)) 674 #ifdef LLVM_BUILD_GLOBAL_ISEL 675 , 676 Tys(0) 677 #endif 678 { 679 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 680 681 // Reserve space for the expected number of operands. 682 if (unsigned NumOps = MCID->getNumOperands() + 683 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 684 CapOperands = OperandCapacity::get(NumOps); 685 Operands = MF.allocateOperandArray(CapOperands); 686 } 687 688 if (!NoImp) 689 addImplicitDefUseOperands(MF); 690 } 691 692 /// MachineInstr ctor - Copies MachineInstr arg exactly 693 /// 694 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 695 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 696 Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs), 697 MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) 698 #ifdef LLVM_BUILD_GLOBAL_ISEL 699 , 700 Tys(0) 701 #endif 702 { 703 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 704 705 CapOperands = OperandCapacity::get(MI.getNumOperands()); 706 Operands = MF.allocateOperandArray(CapOperands); 707 708 // Copy operands. 709 for (const MachineOperand &MO : MI.operands()) 710 addOperand(MF, MO); 711 712 // Copy all the sensible flags. 713 setFlags(MI.Flags); 714 } 715 716 /// getRegInfo - If this instruction is embedded into a MachineFunction, 717 /// return the MachineRegisterInfo object for the current function, otherwise 718 /// return null. 719 MachineRegisterInfo *MachineInstr::getRegInfo() { 720 if (MachineBasicBlock *MBB = getParent()) 721 return &MBB->getParent()->getRegInfo(); 722 return nullptr; 723 } 724 725 // Implement dummy setter and getter for type when 726 // global-isel is not built. 727 // The proper implementation is WIP and is tracked here: 728 // PR26576. 729 #ifndef LLVM_BUILD_GLOBAL_ISEL 730 unsigned MachineInstr::getNumTypes() const { return 0; } 731 732 void MachineInstr::setType(LLT Ty, unsigned Idx) {} 733 734 LLT MachineInstr::getType(unsigned Idx) const { return LLT{}; } 735 736 void MachineInstr::removeTypes() {} 737 738 #else 739 unsigned MachineInstr::getNumTypes() const { return Tys.size(); } 740 741 void MachineInstr::setType(LLT Ty, unsigned Idx) { 742 assert((!Ty.isValid() || isPreISelGenericOpcode(getOpcode())) && 743 "Non generic instructions are not supposed to be typed"); 744 if (Tys.size() < Idx + 1) 745 Tys.resize(Idx+1); 746 Tys[Idx] = Ty; 747 } 748 749 LLT MachineInstr::getType(unsigned Idx) const { return Tys[Idx]; } 750 751 void MachineInstr::removeTypes() { 752 Tys.clear(); 753 } 754 #endif // LLVM_BUILD_GLOBAL_ISEL 755 756 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 757 /// this instruction from their respective use lists. This requires that the 758 /// operands already be on their use lists. 759 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 760 for (MachineOperand &MO : operands()) 761 if (MO.isReg()) 762 MRI.removeRegOperandFromUseList(&MO); 763 } 764 765 /// AddRegOperandsToUseLists - Add all of the register operands in 766 /// this instruction from their respective use lists. This requires that the 767 /// operands not be on their use lists yet. 768 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 769 for (MachineOperand &MO : operands()) 770 if (MO.isReg()) 771 MRI.addRegOperandToUseList(&MO); 772 } 773 774 void MachineInstr::addOperand(const MachineOperand &Op) { 775 MachineBasicBlock *MBB = getParent(); 776 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 777 MachineFunction *MF = MBB->getParent(); 778 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 779 addOperand(*MF, Op); 780 } 781 782 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 783 /// ranges. If MRI is non-null also update use-def chains. 784 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 785 unsigned NumOps, MachineRegisterInfo *MRI) { 786 if (MRI) 787 return MRI->moveOperands(Dst, Src, NumOps); 788 789 // MachineOperand is a trivially copyable type so we can just use memmove. 790 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 791 } 792 793 /// addOperand - Add the specified operand to the instruction. If it is an 794 /// implicit operand, it is added to the end of the operand list. If it is 795 /// an explicit operand it is added at the end of the explicit operand list 796 /// (before the first implicit operand). 797 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 798 assert(MCID && "Cannot add operands before providing an instr descriptor"); 799 800 // Check if we're adding one of our existing operands. 801 if (&Op >= Operands && &Op < Operands + NumOperands) { 802 // This is unusual: MI->addOperand(MI->getOperand(i)). 803 // If adding Op requires reallocating or moving existing operands around, 804 // the Op reference could go stale. Support it by copying Op. 805 MachineOperand CopyOp(Op); 806 return addOperand(MF, CopyOp); 807 } 808 809 // Find the insert location for the new operand. Implicit registers go at 810 // the end, everything else goes before the implicit regs. 811 // 812 // FIXME: Allow mixed explicit and implicit operands on inline asm. 813 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 814 // implicit-defs, but they must not be moved around. See the FIXME in 815 // InstrEmitter.cpp. 816 unsigned OpNo = getNumOperands(); 817 bool isImpReg = Op.isReg() && Op.isImplicit(); 818 if (!isImpReg && !isInlineAsm()) { 819 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 820 --OpNo; 821 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 822 } 823 } 824 825 #ifndef NDEBUG 826 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 827 // OpNo now points as the desired insertion point. Unless this is a variadic 828 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 829 // RegMask operands go between the explicit and implicit operands. 830 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 831 OpNo < MCID->getNumOperands() || isMetaDataOp) && 832 "Trying to add an operand to a machine instr that is already done!"); 833 #endif 834 835 MachineRegisterInfo *MRI = getRegInfo(); 836 837 // Determine if the Operands array needs to be reallocated. 838 // Save the old capacity and operand array. 839 OperandCapacity OldCap = CapOperands; 840 MachineOperand *OldOperands = Operands; 841 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 842 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 843 Operands = MF.allocateOperandArray(CapOperands); 844 // Move the operands before the insertion point. 845 if (OpNo) 846 moveOperands(Operands, OldOperands, OpNo, MRI); 847 } 848 849 // Move the operands following the insertion point. 850 if (OpNo != NumOperands) 851 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 852 MRI); 853 ++NumOperands; 854 855 // Deallocate the old operand array. 856 if (OldOperands != Operands && OldOperands) 857 MF.deallocateOperandArray(OldCap, OldOperands); 858 859 // Copy Op into place. It still needs to be inserted into the MRI use lists. 860 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 861 NewMO->ParentMI = this; 862 863 // When adding a register operand, tell MRI about it. 864 if (NewMO->isReg()) { 865 // Ensure isOnRegUseList() returns false, regardless of Op's status. 866 NewMO->Contents.Reg.Prev = nullptr; 867 // Ignore existing ties. This is not a property that can be copied. 868 NewMO->TiedTo = 0; 869 // Add the new operand to MRI, but only for instructions in an MBB. 870 if (MRI) 871 MRI->addRegOperandToUseList(NewMO); 872 // The MCID operand information isn't accurate until we start adding 873 // explicit operands. The implicit operands are added first, then the 874 // explicits are inserted before them. 875 if (!isImpReg) { 876 // Tie uses to defs as indicated in MCInstrDesc. 877 if (NewMO->isUse()) { 878 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 879 if (DefIdx != -1) 880 tieOperands(DefIdx, OpNo); 881 } 882 // If the register operand is flagged as early, mark the operand as such. 883 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 884 NewMO->setIsEarlyClobber(true); 885 } 886 } 887 } 888 889 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 890 /// fewer operand than it started with. 891 /// 892 void MachineInstr::RemoveOperand(unsigned OpNo) { 893 assert(OpNo < getNumOperands() && "Invalid operand number"); 894 untieRegOperand(OpNo); 895 896 #ifndef NDEBUG 897 // Moving tied operands would break the ties. 898 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 899 if (Operands[i].isReg()) 900 assert(!Operands[i].isTied() && "Cannot move tied operands"); 901 #endif 902 903 MachineRegisterInfo *MRI = getRegInfo(); 904 if (MRI && Operands[OpNo].isReg()) 905 MRI->removeRegOperandFromUseList(Operands + OpNo); 906 907 // Don't call the MachineOperand destructor. A lot of this code depends on 908 // MachineOperand having a trivial destructor anyway, and adding a call here 909 // wouldn't make it 'destructor-correct'. 910 911 if (unsigned N = NumOperands - 1 - OpNo) 912 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 913 --NumOperands; 914 } 915 916 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 917 /// This function should be used only occasionally. The setMemRefs function 918 /// is the primary method for setting up a MachineInstr's MemRefs list. 919 void MachineInstr::addMemOperand(MachineFunction &MF, 920 MachineMemOperand *MO) { 921 mmo_iterator OldMemRefs = MemRefs; 922 unsigned OldNumMemRefs = NumMemRefs; 923 924 unsigned NewNum = NumMemRefs + 1; 925 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 926 927 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 928 NewMemRefs[NewNum - 1] = MO; 929 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 930 } 931 932 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 933 /// identical. 934 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 935 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 936 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 937 if ((E1 - I1) != (E2 - I2)) 938 return false; 939 for (; I1 != E1; ++I1, ++I2) { 940 if (**I1 != **I2) 941 return false; 942 } 943 return true; 944 } 945 946 std::pair<MachineInstr::mmo_iterator, unsigned> 947 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 948 949 // If either of the incoming memrefs are empty, we must be conservative and 950 // treat this as if we've exhausted our space for memrefs and dropped them. 951 if (memoperands_empty() || Other.memoperands_empty()) 952 return std::make_pair(nullptr, 0); 953 954 // If both instructions have identical memrefs, we don't need to merge them. 955 // Since many instructions have a single memref, and we tend to merge things 956 // like pairs of loads from the same location, this catches a large number of 957 // cases in practice. 958 if (hasIdenticalMMOs(*this, Other)) 959 return std::make_pair(MemRefs, NumMemRefs); 960 961 // TODO: consider uniquing elements within the operand lists to reduce 962 // space usage and fall back to conservative information less often. 963 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 964 965 // If we don't have enough room to store this many memrefs, be conservative 966 // and drop them. Otherwise, we'd fail asserts when trying to add them to 967 // the new instruction. 968 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 969 return std::make_pair(nullptr, 0); 970 971 MachineFunction *MF = getParent()->getParent(); 972 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 973 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 974 MemBegin); 975 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 976 MemEnd); 977 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 978 "missing memrefs"); 979 980 return std::make_pair(MemBegin, CombinedNumMemRefs); 981 } 982 983 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 984 assert(!isBundledWithPred() && "Must be called on bundle header"); 985 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 986 if (MII->getDesc().getFlags() & Mask) { 987 if (Type == AnyInBundle) 988 return true; 989 } else { 990 if (Type == AllInBundle && !MII->isBundle()) 991 return false; 992 } 993 // This was the last instruction in the bundle. 994 if (!MII->isBundledWithSucc()) 995 return Type == AllInBundle; 996 } 997 } 998 999 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 1000 MICheckType Check) const { 1001 // If opcodes or number of operands are not the same then the two 1002 // instructions are obviously not identical. 1003 if (Other.getOpcode() != getOpcode() || 1004 Other.getNumOperands() != getNumOperands()) 1005 return false; 1006 1007 if (isBundle()) { 1008 // Both instructions are bundles, compare MIs inside the bundle. 1009 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 1010 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 1011 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 1012 MachineBasicBlock::const_instr_iterator E2 = Other.getParent()->instr_end(); 1013 while (++I1 != E1 && I1->isInsideBundle()) { 1014 ++I2; 1015 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(*I2, Check)) 1016 return false; 1017 } 1018 } 1019 1020 // Check operands to make sure they match. 1021 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1022 const MachineOperand &MO = getOperand(i); 1023 const MachineOperand &OMO = Other.getOperand(i); 1024 if (!MO.isReg()) { 1025 if (!MO.isIdenticalTo(OMO)) 1026 return false; 1027 continue; 1028 } 1029 1030 // Clients may or may not want to ignore defs when testing for equality. 1031 // For example, machine CSE pass only cares about finding common 1032 // subexpressions, so it's safe to ignore virtual register defs. 1033 if (MO.isDef()) { 1034 if (Check == IgnoreDefs) 1035 continue; 1036 else if (Check == IgnoreVRegDefs) { 1037 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1038 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 1039 if (MO.getReg() != OMO.getReg()) 1040 return false; 1041 } else { 1042 if (!MO.isIdenticalTo(OMO)) 1043 return false; 1044 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 1045 return false; 1046 } 1047 } else { 1048 if (!MO.isIdenticalTo(OMO)) 1049 return false; 1050 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1051 return false; 1052 } 1053 } 1054 // If DebugLoc does not match then two dbg.values are not identical. 1055 if (isDebugValue()) 1056 if (getDebugLoc() && Other.getDebugLoc() && 1057 getDebugLoc() != Other.getDebugLoc()) 1058 return false; 1059 return true; 1060 } 1061 1062 MachineInstr *MachineInstr::removeFromParent() { 1063 assert(getParent() && "Not embedded in a basic block!"); 1064 return getParent()->remove(this); 1065 } 1066 1067 MachineInstr *MachineInstr::removeFromBundle() { 1068 assert(getParent() && "Not embedded in a basic block!"); 1069 return getParent()->remove_instr(this); 1070 } 1071 1072 void MachineInstr::eraseFromParent() { 1073 assert(getParent() && "Not embedded in a basic block!"); 1074 getParent()->erase(this); 1075 } 1076 1077 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1078 assert(getParent() && "Not embedded in a basic block!"); 1079 MachineBasicBlock *MBB = getParent(); 1080 MachineFunction *MF = MBB->getParent(); 1081 assert(MF && "Not embedded in a function!"); 1082 1083 MachineInstr *MI = (MachineInstr *)this; 1084 MachineRegisterInfo &MRI = MF->getRegInfo(); 1085 1086 for (const MachineOperand &MO : MI->operands()) { 1087 if (!MO.isReg() || !MO.isDef()) 1088 continue; 1089 unsigned Reg = MO.getReg(); 1090 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1091 continue; 1092 MRI.markUsesInDebugValueAsUndef(Reg); 1093 } 1094 MI->eraseFromParent(); 1095 } 1096 1097 void MachineInstr::eraseFromBundle() { 1098 assert(getParent() && "Not embedded in a basic block!"); 1099 getParent()->erase_instr(this); 1100 } 1101 1102 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1103 /// 1104 unsigned MachineInstr::getNumExplicitOperands() const { 1105 unsigned NumOperands = MCID->getNumOperands(); 1106 if (!MCID->isVariadic()) 1107 return NumOperands; 1108 1109 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1110 const MachineOperand &MO = getOperand(i); 1111 if (!MO.isReg() || !MO.isImplicit()) 1112 NumOperands++; 1113 } 1114 return NumOperands; 1115 } 1116 1117 void MachineInstr::bundleWithPred() { 1118 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1119 setFlag(BundledPred); 1120 MachineBasicBlock::instr_iterator Pred = getIterator(); 1121 --Pred; 1122 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1123 Pred->setFlag(BundledSucc); 1124 } 1125 1126 void MachineInstr::bundleWithSucc() { 1127 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1128 setFlag(BundledSucc); 1129 MachineBasicBlock::instr_iterator Succ = getIterator(); 1130 ++Succ; 1131 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1132 Succ->setFlag(BundledPred); 1133 } 1134 1135 void MachineInstr::unbundleFromPred() { 1136 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1137 clearFlag(BundledPred); 1138 MachineBasicBlock::instr_iterator Pred = getIterator(); 1139 --Pred; 1140 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1141 Pred->clearFlag(BundledSucc); 1142 } 1143 1144 void MachineInstr::unbundleFromSucc() { 1145 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1146 clearFlag(BundledSucc); 1147 MachineBasicBlock::instr_iterator Succ = getIterator(); 1148 ++Succ; 1149 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1150 Succ->clearFlag(BundledPred); 1151 } 1152 1153 bool MachineInstr::isStackAligningInlineAsm() const { 1154 if (isInlineAsm()) { 1155 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1156 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1157 return true; 1158 } 1159 return false; 1160 } 1161 1162 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1163 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1164 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1165 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1166 } 1167 1168 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1169 unsigned *GroupNo) const { 1170 assert(isInlineAsm() && "Expected an inline asm instruction"); 1171 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1172 1173 // Ignore queries about the initial operands. 1174 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1175 return -1; 1176 1177 unsigned Group = 0; 1178 unsigned NumOps; 1179 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1180 i += NumOps) { 1181 const MachineOperand &FlagMO = getOperand(i); 1182 // If we reach the implicit register operands, stop looking. 1183 if (!FlagMO.isImm()) 1184 return -1; 1185 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1186 if (i + NumOps > OpIdx) { 1187 if (GroupNo) 1188 *GroupNo = Group; 1189 return i; 1190 } 1191 ++Group; 1192 } 1193 return -1; 1194 } 1195 1196 const DILocalVariable *MachineInstr::getDebugVariable() const { 1197 assert(isDebugValue() && "not a DBG_VALUE"); 1198 return cast<DILocalVariable>(getOperand(2).getMetadata()); 1199 } 1200 1201 const DIExpression *MachineInstr::getDebugExpression() const { 1202 assert(isDebugValue() && "not a DBG_VALUE"); 1203 return cast<DIExpression>(getOperand(3).getMetadata()); 1204 } 1205 1206 const TargetRegisterClass* 1207 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1208 const TargetInstrInfo *TII, 1209 const TargetRegisterInfo *TRI) const { 1210 assert(getParent() && "Can't have an MBB reference here!"); 1211 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1212 const MachineFunction &MF = *getParent()->getParent(); 1213 1214 // Most opcodes have fixed constraints in their MCInstrDesc. 1215 if (!isInlineAsm()) 1216 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1217 1218 if (!getOperand(OpIdx).isReg()) 1219 return nullptr; 1220 1221 // For tied uses on inline asm, get the constraint from the def. 1222 unsigned DefIdx; 1223 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1224 OpIdx = DefIdx; 1225 1226 // Inline asm stores register class constraints in the flag word. 1227 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1228 if (FlagIdx < 0) 1229 return nullptr; 1230 1231 unsigned Flag = getOperand(FlagIdx).getImm(); 1232 unsigned RCID; 1233 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 1234 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 1235 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 1236 InlineAsm::hasRegClassConstraint(Flag, RCID)) 1237 return TRI->getRegClass(RCID); 1238 1239 // Assume that all registers in a memory operand are pointers. 1240 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1241 return TRI->getPointerRegClass(MF); 1242 1243 return nullptr; 1244 } 1245 1246 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1247 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1248 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1249 // Check every operands inside the bundle if we have 1250 // been asked to. 1251 if (ExploreBundle) 1252 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 1253 ++OpndIt) 1254 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1255 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1256 else 1257 // Otherwise, just check the current operands. 1258 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1259 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1260 return CurRC; 1261 } 1262 1263 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1264 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1265 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1266 assert(CurRC && "Invalid initial register class"); 1267 // Check if Reg is constrained by some of its use/def from MI. 1268 const MachineOperand &MO = getOperand(OpIdx); 1269 if (!MO.isReg() || MO.getReg() != Reg) 1270 return CurRC; 1271 // If yes, accumulate the constraints through the operand. 1272 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1273 } 1274 1275 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1276 unsigned OpIdx, const TargetRegisterClass *CurRC, 1277 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1278 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1279 const MachineOperand &MO = getOperand(OpIdx); 1280 assert(MO.isReg() && 1281 "Cannot get register constraints for non-register operand"); 1282 assert(CurRC && "Invalid initial register class"); 1283 if (unsigned SubIdx = MO.getSubReg()) { 1284 if (OpRC) 1285 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1286 else 1287 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1288 } else if (OpRC) 1289 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1290 return CurRC; 1291 } 1292 1293 /// Return the number of instructions inside the MI bundle, not counting the 1294 /// header instruction. 1295 unsigned MachineInstr::getBundleSize() const { 1296 MachineBasicBlock::const_instr_iterator I = getIterator(); 1297 unsigned Size = 0; 1298 while (I->isBundledWithSucc()) { 1299 ++Size; 1300 ++I; 1301 } 1302 return Size; 1303 } 1304 1305 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1306 /// the given register (not considering sub/super-registers). 1307 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 1308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1309 const MachineOperand &MO = getOperand(i); 1310 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1311 return true; 1312 } 1313 return false; 1314 } 1315 1316 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1317 /// the specific register or -1 if it is not found. It further tightens 1318 /// the search criteria to a use that kills the register if isKill is true. 1319 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1320 const TargetRegisterInfo *TRI) const { 1321 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1322 const MachineOperand &MO = getOperand(i); 1323 if (!MO.isReg() || !MO.isUse()) 1324 continue; 1325 unsigned MOReg = MO.getReg(); 1326 if (!MOReg) 1327 continue; 1328 if (MOReg == Reg || 1329 (TRI && 1330 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1331 TargetRegisterInfo::isPhysicalRegister(Reg) && 1332 TRI->isSubRegister(MOReg, Reg))) 1333 if (!isKill || MO.isKill()) 1334 return i; 1335 } 1336 return -1; 1337 } 1338 1339 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1340 /// indicating if this instruction reads or writes Reg. This also considers 1341 /// partial defines. 1342 std::pair<bool,bool> 1343 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1344 SmallVectorImpl<unsigned> *Ops) const { 1345 bool PartDef = false; // Partial redefine. 1346 bool FullDef = false; // Full define. 1347 bool Use = false; 1348 1349 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1350 const MachineOperand &MO = getOperand(i); 1351 if (!MO.isReg() || MO.getReg() != Reg) 1352 continue; 1353 if (Ops) 1354 Ops->push_back(i); 1355 if (MO.isUse()) 1356 Use |= !MO.isUndef(); 1357 else if (MO.getSubReg() && !MO.isUndef()) 1358 // A partial <def,undef> doesn't count as reading the register. 1359 PartDef = true; 1360 else 1361 FullDef = true; 1362 } 1363 // A partial redefine uses Reg unless there is also a full define. 1364 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1365 } 1366 1367 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1368 /// the specified register or -1 if it is not found. If isDead is true, defs 1369 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1370 /// also checks if there is a def of a super-register. 1371 int 1372 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1373 const TargetRegisterInfo *TRI) const { 1374 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1375 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1376 const MachineOperand &MO = getOperand(i); 1377 // Accept regmask operands when Overlap is set. 1378 // Ignore them when looking for a specific def operand (Overlap == false). 1379 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1380 return i; 1381 if (!MO.isReg() || !MO.isDef()) 1382 continue; 1383 unsigned MOReg = MO.getReg(); 1384 bool Found = (MOReg == Reg); 1385 if (!Found && TRI && isPhys && 1386 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1387 if (Overlap) 1388 Found = TRI->regsOverlap(MOReg, Reg); 1389 else 1390 Found = TRI->isSubRegister(MOReg, Reg); 1391 } 1392 if (Found && (!isDead || MO.isDead())) 1393 return i; 1394 } 1395 return -1; 1396 } 1397 1398 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1399 /// operand list that is used to represent the predicate. It returns -1 if 1400 /// none is found. 1401 int MachineInstr::findFirstPredOperandIdx() const { 1402 // Don't call MCID.findFirstPredOperandIdx() because this variant 1403 // is sometimes called on an instruction that's not yet complete, and 1404 // so the number of operands is less than the MCID indicates. In 1405 // particular, the PTX target does this. 1406 const MCInstrDesc &MCID = getDesc(); 1407 if (MCID.isPredicable()) { 1408 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1409 if (MCID.OpInfo[i].isPredicate()) 1410 return i; 1411 } 1412 1413 return -1; 1414 } 1415 1416 // MachineOperand::TiedTo is 4 bits wide. 1417 const unsigned TiedMax = 15; 1418 1419 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1420 /// 1421 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1422 /// field. TiedTo can have these values: 1423 /// 1424 /// 0: Operand is not tied to anything. 1425 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1426 /// TiedMax: Tied to an operand >= TiedMax-1. 1427 /// 1428 /// The tied def must be one of the first TiedMax operands on a normal 1429 /// instruction. INLINEASM instructions allow more tied defs. 1430 /// 1431 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1432 MachineOperand &DefMO = getOperand(DefIdx); 1433 MachineOperand &UseMO = getOperand(UseIdx); 1434 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1435 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1436 assert(!DefMO.isTied() && "Def is already tied to another use"); 1437 assert(!UseMO.isTied() && "Use is already tied to another def"); 1438 1439 if (DefIdx < TiedMax) 1440 UseMO.TiedTo = DefIdx + 1; 1441 else { 1442 // Inline asm can use the group descriptors to find tied operands, but on 1443 // normal instruction, the tied def must be within the first TiedMax 1444 // operands. 1445 assert(isInlineAsm() && "DefIdx out of range"); 1446 UseMO.TiedTo = TiedMax; 1447 } 1448 1449 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1450 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1451 } 1452 1453 /// Given the index of a tied register operand, find the operand it is tied to. 1454 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1455 /// which must exist. 1456 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1457 const MachineOperand &MO = getOperand(OpIdx); 1458 assert(MO.isTied() && "Operand isn't tied"); 1459 1460 // Normally TiedTo is in range. 1461 if (MO.TiedTo < TiedMax) 1462 return MO.TiedTo - 1; 1463 1464 // Uses on normal instructions can be out of range. 1465 if (!isInlineAsm()) { 1466 // Normal tied defs must be in the 0..TiedMax-1 range. 1467 if (MO.isUse()) 1468 return TiedMax - 1; 1469 // MO is a def. Search for the tied use. 1470 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1471 const MachineOperand &UseMO = getOperand(i); 1472 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1473 return i; 1474 } 1475 llvm_unreachable("Can't find tied use"); 1476 } 1477 1478 // Now deal with inline asm by parsing the operand group descriptor flags. 1479 // Find the beginning of each operand group. 1480 SmallVector<unsigned, 8> GroupIdx; 1481 unsigned OpIdxGroup = ~0u; 1482 unsigned NumOps; 1483 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1484 i += NumOps) { 1485 const MachineOperand &FlagMO = getOperand(i); 1486 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1487 unsigned CurGroup = GroupIdx.size(); 1488 GroupIdx.push_back(i); 1489 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1490 // OpIdx belongs to this operand group. 1491 if (OpIdx > i && OpIdx < i + NumOps) 1492 OpIdxGroup = CurGroup; 1493 unsigned TiedGroup; 1494 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1495 continue; 1496 // Operands in this group are tied to operands in TiedGroup which must be 1497 // earlier. Find the number of operands between the two groups. 1498 unsigned Delta = i - GroupIdx[TiedGroup]; 1499 1500 // OpIdx is a use tied to TiedGroup. 1501 if (OpIdxGroup == CurGroup) 1502 return OpIdx - Delta; 1503 1504 // OpIdx is a def tied to this use group. 1505 if (OpIdxGroup == TiedGroup) 1506 return OpIdx + Delta; 1507 } 1508 llvm_unreachable("Invalid tied operand on inline asm"); 1509 } 1510 1511 /// clearKillInfo - Clears kill flags on all operands. 1512 /// 1513 void MachineInstr::clearKillInfo() { 1514 for (MachineOperand &MO : operands()) { 1515 if (MO.isReg() && MO.isUse()) 1516 MO.setIsKill(false); 1517 } 1518 } 1519 1520 void MachineInstr::substituteRegister(unsigned FromReg, 1521 unsigned ToReg, 1522 unsigned SubIdx, 1523 const TargetRegisterInfo &RegInfo) { 1524 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1525 if (SubIdx) 1526 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1527 for (MachineOperand &MO : operands()) { 1528 if (!MO.isReg() || MO.getReg() != FromReg) 1529 continue; 1530 MO.substPhysReg(ToReg, RegInfo); 1531 } 1532 } else { 1533 for (MachineOperand &MO : operands()) { 1534 if (!MO.isReg() || MO.getReg() != FromReg) 1535 continue; 1536 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1537 } 1538 } 1539 } 1540 1541 /// isSafeToMove - Return true if it is safe to move this instruction. If 1542 /// SawStore is set to true, it means that there is a store (or call) between 1543 /// the instruction's location and its intended destination. 1544 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1545 // Ignore stuff that we obviously can't move. 1546 // 1547 // Treat volatile loads as stores. This is not strictly necessary for 1548 // volatiles, but it is required for atomic loads. It is not allowed to move 1549 // a load across an atomic load with Ordering > Monotonic. 1550 if (mayStore() || isCall() || 1551 (mayLoad() && hasOrderedMemoryRef())) { 1552 SawStore = true; 1553 return false; 1554 } 1555 1556 if (isPosition() || isDebugValue() || isTerminator() || 1557 hasUnmodeledSideEffects()) 1558 return false; 1559 1560 // See if this instruction does a load. If so, we have to guarantee that the 1561 // loaded value doesn't change between the load and the its intended 1562 // destination. The check for isInvariantLoad gives the targe the chance to 1563 // classify the load as always returning a constant, e.g. a constant pool 1564 // load. 1565 if (mayLoad() && !isInvariantLoad(AA)) 1566 // Otherwise, this is a real load. If there is a store between the load and 1567 // end of block, we can't move it. 1568 return !SawStore; 1569 1570 return true; 1571 } 1572 1573 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1574 /// or volatile memory reference, or if the information describing the memory 1575 /// reference is not available. Return false if it is known to have no ordered 1576 /// memory references. 1577 bool MachineInstr::hasOrderedMemoryRef() const { 1578 // An instruction known never to access memory won't have a volatile access. 1579 if (!mayStore() && 1580 !mayLoad() && 1581 !isCall() && 1582 !hasUnmodeledSideEffects()) 1583 return false; 1584 1585 // Otherwise, if the instruction has no memory reference information, 1586 // conservatively assume it wasn't preserved. 1587 if (memoperands_empty()) 1588 return true; 1589 1590 // Check if any of our memory operands are ordered. 1591 return any_of(memoperands(), [](const MachineMemOperand *MMO) { 1592 return !MMO->isUnordered(); 1593 }); 1594 } 1595 1596 /// isInvariantLoad - Return true if this instruction is loading from a 1597 /// location whose value is invariant across the function. For example, 1598 /// loading a value from the constant pool or from the argument area 1599 /// of a function if it does not change. This should only return true of 1600 /// *all* loads the instruction does are invariant (if it does multiple loads). 1601 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1602 // If the instruction doesn't load at all, it isn't an invariant load. 1603 if (!mayLoad()) 1604 return false; 1605 1606 // If the instruction has lost its memoperands, conservatively assume that 1607 // it may not be an invariant load. 1608 if (memoperands_empty()) 1609 return false; 1610 1611 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1612 1613 for (MachineMemOperand *MMO : memoperands()) { 1614 if (MMO->isVolatile()) return false; 1615 if (MMO->isStore()) return false; 1616 if (MMO->isInvariant()) continue; 1617 1618 // A load from a constant PseudoSourceValue is invariant. 1619 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1620 if (PSV->isConstant(&MFI)) 1621 continue; 1622 1623 if (const Value *V = MMO->getValue()) { 1624 // If we have an AliasAnalysis, ask it whether the memory is constant. 1625 if (AA && 1626 AA->pointsToConstantMemory( 1627 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1628 continue; 1629 } 1630 1631 // Otherwise assume conservatively. 1632 return false; 1633 } 1634 1635 // Everything checks out. 1636 return true; 1637 } 1638 1639 /// isConstantValuePHI - If the specified instruction is a PHI that always 1640 /// merges together the same virtual register, return the register, otherwise 1641 /// return 0. 1642 unsigned MachineInstr::isConstantValuePHI() const { 1643 if (!isPHI()) 1644 return 0; 1645 assert(getNumOperands() >= 3 && 1646 "It's illegal to have a PHI without source operands"); 1647 1648 unsigned Reg = getOperand(1).getReg(); 1649 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1650 if (getOperand(i).getReg() != Reg) 1651 return 0; 1652 return Reg; 1653 } 1654 1655 bool MachineInstr::hasUnmodeledSideEffects() const { 1656 if (hasProperty(MCID::UnmodeledSideEffects)) 1657 return true; 1658 if (isInlineAsm()) { 1659 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1660 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1661 return true; 1662 } 1663 1664 return false; 1665 } 1666 1667 bool MachineInstr::isLoadFoldBarrier() const { 1668 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1669 } 1670 1671 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1672 /// 1673 bool MachineInstr::allDefsAreDead() const { 1674 for (const MachineOperand &MO : operands()) { 1675 if (!MO.isReg() || MO.isUse()) 1676 continue; 1677 if (!MO.isDead()) 1678 return false; 1679 } 1680 return true; 1681 } 1682 1683 /// copyImplicitOps - Copy implicit register operands from specified 1684 /// instruction to this instruction. 1685 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1686 const MachineInstr &MI) { 1687 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1688 i != e; ++i) { 1689 const MachineOperand &MO = MI.getOperand(i); 1690 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1691 addOperand(MF, MO); 1692 } 1693 } 1694 1695 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1696 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1697 dbgs() << " " << *this; 1698 #endif 1699 } 1700 1701 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const { 1702 const Module *M = nullptr; 1703 if (const MachineBasicBlock *MBB = getParent()) 1704 if (const MachineFunction *MF = MBB->getParent()) 1705 M = MF->getFunction()->getParent(); 1706 1707 ModuleSlotTracker MST(M); 1708 print(OS, MST, SkipOpers); 1709 } 1710 1711 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1712 bool SkipOpers) const { 1713 // We can be a bit tidier if we know the MachineFunction. 1714 const MachineFunction *MF = nullptr; 1715 const TargetRegisterInfo *TRI = nullptr; 1716 const MachineRegisterInfo *MRI = nullptr; 1717 const TargetInstrInfo *TII = nullptr; 1718 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1719 1720 if (const MachineBasicBlock *MBB = getParent()) { 1721 MF = MBB->getParent(); 1722 if (MF) { 1723 MRI = &MF->getRegInfo(); 1724 TRI = MF->getSubtarget().getRegisterInfo(); 1725 TII = MF->getSubtarget().getInstrInfo(); 1726 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 1727 } 1728 } 1729 1730 // Save a list of virtual registers. 1731 SmallVector<unsigned, 8> VirtRegs; 1732 1733 // Print explicitly defined operands on the left of an assignment syntax. 1734 unsigned StartOp = 0, e = getNumOperands(); 1735 for (; StartOp < e && getOperand(StartOp).isReg() && 1736 getOperand(StartOp).isDef() && 1737 !getOperand(StartOp).isImplicit(); 1738 ++StartOp) { 1739 if (StartOp != 0) OS << ", "; 1740 getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo); 1741 unsigned Reg = getOperand(StartOp).getReg(); 1742 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1743 VirtRegs.push_back(Reg); 1744 unsigned Size; 1745 if (MRI && (Size = MRI->getSize(Reg))) 1746 OS << '(' << Size << ')'; 1747 } 1748 } 1749 1750 if (StartOp != 0) 1751 OS << " = "; 1752 1753 // Print the opcode name. 1754 if (TII) 1755 OS << TII->getName(getOpcode()); 1756 else 1757 OS << "UNKNOWN"; 1758 1759 if (getNumTypes() > 0) { 1760 OS << " { "; 1761 for (unsigned i = 0; i < getNumTypes(); ++i) { 1762 getType(i).print(OS); 1763 if (i + 1 != getNumTypes()) 1764 OS << ", "; 1765 } 1766 OS << " } "; 1767 } 1768 1769 if (SkipOpers) 1770 return; 1771 1772 // Print the rest of the operands. 1773 bool OmittedAnyCallClobbers = false; 1774 bool FirstOp = true; 1775 unsigned AsmDescOp = ~0u; 1776 unsigned AsmOpCount = 0; 1777 1778 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1779 // Print asm string. 1780 OS << " "; 1781 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1782 1783 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1784 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1785 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1786 OS << " [sideeffect]"; 1787 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1788 OS << " [mayload]"; 1789 if (ExtraInfo & InlineAsm::Extra_MayStore) 1790 OS << " [maystore]"; 1791 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1792 OS << " [isconvergent]"; 1793 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1794 OS << " [alignstack]"; 1795 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1796 OS << " [attdialect]"; 1797 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1798 OS << " [inteldialect]"; 1799 1800 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1801 FirstOp = false; 1802 } 1803 1804 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1805 const MachineOperand &MO = getOperand(i); 1806 1807 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1808 VirtRegs.push_back(MO.getReg()); 1809 1810 // Omit call-clobbered registers which aren't used anywhere. This makes 1811 // call instructions much less noisy on targets where calls clobber lots 1812 // of registers. Don't rely on MO.isDead() because we may be called before 1813 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1814 if (MRI && isCall() && 1815 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1816 unsigned Reg = MO.getReg(); 1817 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1818 if (MRI->use_empty(Reg)) { 1819 bool HasAliasLive = false; 1820 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 1821 unsigned AliasReg = *AI; 1822 if (!MRI->use_empty(AliasReg)) { 1823 HasAliasLive = true; 1824 break; 1825 } 1826 } 1827 if (!HasAliasLive) { 1828 OmittedAnyCallClobbers = true; 1829 continue; 1830 } 1831 } 1832 } 1833 } 1834 1835 if (FirstOp) FirstOp = false; else OS << ","; 1836 OS << " "; 1837 if (i < getDesc().NumOperands) { 1838 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1839 if (MCOI.isPredicate()) 1840 OS << "pred:"; 1841 if (MCOI.isOptionalDef()) 1842 OS << "opt:"; 1843 } 1844 if (isDebugValue() && MO.isMetadata()) { 1845 // Pretty print DBG_VALUE instructions. 1846 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1847 if (DIV && !DIV->getName().empty()) 1848 OS << "!\"" << DIV->getName() << '\"'; 1849 else 1850 MO.print(OS, MST, TRI); 1851 } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1852 OS << TRI->getSubRegIndexName(MO.getImm()); 1853 } else if (i == AsmDescOp && MO.isImm()) { 1854 // Pretty print the inline asm operand descriptor. 1855 OS << '$' << AsmOpCount++; 1856 unsigned Flag = MO.getImm(); 1857 switch (InlineAsm::getKind(Flag)) { 1858 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1859 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1860 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1861 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1862 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1863 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1864 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1865 } 1866 1867 unsigned RCID = 0; 1868 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1869 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1870 if (TRI) { 1871 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1872 } else 1873 OS << ":RC" << RCID; 1874 } 1875 1876 if (InlineAsm::isMemKind(Flag)) { 1877 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1878 switch (MCID) { 1879 case InlineAsm::Constraint_es: OS << ":es"; break; 1880 case InlineAsm::Constraint_i: OS << ":i"; break; 1881 case InlineAsm::Constraint_m: OS << ":m"; break; 1882 case InlineAsm::Constraint_o: OS << ":o"; break; 1883 case InlineAsm::Constraint_v: OS << ":v"; break; 1884 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1885 case InlineAsm::Constraint_R: OS << ":R"; break; 1886 case InlineAsm::Constraint_S: OS << ":S"; break; 1887 case InlineAsm::Constraint_T: OS << ":T"; break; 1888 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1889 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1890 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1891 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1892 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1893 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1894 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1895 case InlineAsm::Constraint_X: OS << ":X"; break; 1896 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1897 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1898 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1899 default: OS << ":?"; break; 1900 } 1901 } 1902 1903 unsigned TiedTo = 0; 1904 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1905 OS << " tiedto:$" << TiedTo; 1906 1907 OS << ']'; 1908 1909 // Compute the index of the next operand descriptor. 1910 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1911 } else 1912 MO.print(OS, MST, TRI); 1913 } 1914 1915 // Briefly indicate whether any call clobbers were omitted. 1916 if (OmittedAnyCallClobbers) { 1917 if (!FirstOp) OS << ","; 1918 OS << " ..."; 1919 } 1920 1921 bool HaveSemi = false; 1922 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 1923 if (Flags & PrintableFlags) { 1924 if (!HaveSemi) { 1925 OS << ";"; 1926 HaveSemi = true; 1927 } 1928 OS << " flags: "; 1929 1930 if (Flags & FrameSetup) 1931 OS << "FrameSetup"; 1932 1933 if (Flags & FrameDestroy) 1934 OS << "FrameDestroy"; 1935 } 1936 1937 if (!memoperands_empty()) { 1938 if (!HaveSemi) { 1939 OS << ";"; 1940 HaveSemi = true; 1941 } 1942 1943 OS << " mem:"; 1944 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1945 i != e; ++i) { 1946 (*i)->print(OS, MST); 1947 if (std::next(i) != e) 1948 OS << " "; 1949 } 1950 } 1951 1952 // Print the regclass of any virtual registers encountered. 1953 if (MRI && !VirtRegs.empty()) { 1954 if (!HaveSemi) { 1955 OS << ";"; 1956 HaveSemi = true; 1957 } 1958 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1959 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); 1960 if (!RC) 1961 continue; 1962 // Generic virtual registers do not have register classes. 1963 if (RC.is<const RegisterBank *>()) 1964 OS << " " << RC.get<const RegisterBank *>()->getName(); 1965 else 1966 OS << " " 1967 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); 1968 OS << ':' << PrintReg(VirtRegs[i]); 1969 for (unsigned j = i+1; j != VirtRegs.size();) { 1970 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { 1971 ++j; 1972 continue; 1973 } 1974 if (VirtRegs[i] != VirtRegs[j]) 1975 OS << "," << PrintReg(VirtRegs[j]); 1976 VirtRegs.erase(VirtRegs.begin()+j); 1977 } 1978 } 1979 } 1980 1981 // Print debug location information. 1982 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1983 if (!HaveSemi) 1984 OS << ";"; 1985 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1986 OS << " line no:" << DV->getLine(); 1987 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1988 DebugLoc InlinedAtDL(InlinedAt); 1989 if (InlinedAtDL && MF) { 1990 OS << " inlined @[ "; 1991 InlinedAtDL.print(OS); 1992 OS << " ]"; 1993 } 1994 } 1995 if (isIndirectDebugValue()) 1996 OS << " indirect"; 1997 } else if (debugLoc && MF) { 1998 if (!HaveSemi) 1999 OS << ";"; 2000 OS << " dbg:"; 2001 debugLoc.print(OS); 2002 } 2003 2004 OS << '\n'; 2005 } 2006 2007 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 2008 const TargetRegisterInfo *RegInfo, 2009 bool AddIfNotFound) { 2010 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 2011 bool hasAliases = isPhysReg && 2012 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 2013 bool Found = false; 2014 SmallVector<unsigned,4> DeadOps; 2015 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2016 MachineOperand &MO = getOperand(i); 2017 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2018 continue; 2019 2020 // DEBUG_VALUE nodes do not contribute to code generation and should 2021 // always be ignored. Failure to do so may result in trying to modify 2022 // KILL flags on DEBUG_VALUE nodes. 2023 if (MO.isDebug()) 2024 continue; 2025 2026 unsigned Reg = MO.getReg(); 2027 if (!Reg) 2028 continue; 2029 2030 if (Reg == IncomingReg) { 2031 if (!Found) { 2032 if (MO.isKill()) 2033 // The register is already marked kill. 2034 return true; 2035 if (isPhysReg && isRegTiedToDefOperand(i)) 2036 // Two-address uses of physregs must not be marked kill. 2037 return true; 2038 MO.setIsKill(); 2039 Found = true; 2040 } 2041 } else if (hasAliases && MO.isKill() && 2042 TargetRegisterInfo::isPhysicalRegister(Reg)) { 2043 // A super-register kill already exists. 2044 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2045 return true; 2046 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2047 DeadOps.push_back(i); 2048 } 2049 } 2050 2051 // Trim unneeded kill operands. 2052 while (!DeadOps.empty()) { 2053 unsigned OpIdx = DeadOps.back(); 2054 if (getOperand(OpIdx).isImplicit()) 2055 RemoveOperand(OpIdx); 2056 else 2057 getOperand(OpIdx).setIsKill(false); 2058 DeadOps.pop_back(); 2059 } 2060 2061 // If not found, this means an alias of one of the operands is killed. Add a 2062 // new implicit operand if required. 2063 if (!Found && AddIfNotFound) { 2064 addOperand(MachineOperand::CreateReg(IncomingReg, 2065 false /*IsDef*/, 2066 true /*IsImp*/, 2067 true /*IsKill*/)); 2068 return true; 2069 } 2070 return Found; 2071 } 2072 2073 void MachineInstr::clearRegisterKills(unsigned Reg, 2074 const TargetRegisterInfo *RegInfo) { 2075 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 2076 RegInfo = nullptr; 2077 for (MachineOperand &MO : operands()) { 2078 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2079 continue; 2080 unsigned OpReg = MO.getReg(); 2081 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2082 MO.setIsKill(false); 2083 } 2084 } 2085 2086 bool MachineInstr::addRegisterDead(unsigned Reg, 2087 const TargetRegisterInfo *RegInfo, 2088 bool AddIfNotFound) { 2089 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 2090 bool hasAliases = isPhysReg && 2091 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2092 bool Found = false; 2093 SmallVector<unsigned,4> DeadOps; 2094 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2095 MachineOperand &MO = getOperand(i); 2096 if (!MO.isReg() || !MO.isDef()) 2097 continue; 2098 unsigned MOReg = MO.getReg(); 2099 if (!MOReg) 2100 continue; 2101 2102 if (MOReg == Reg) { 2103 MO.setIsDead(); 2104 Found = true; 2105 } else if (hasAliases && MO.isDead() && 2106 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 2107 // There exists a super-register that's marked dead. 2108 if (RegInfo->isSuperRegister(Reg, MOReg)) 2109 return true; 2110 if (RegInfo->isSubRegister(Reg, MOReg)) 2111 DeadOps.push_back(i); 2112 } 2113 } 2114 2115 // Trim unneeded dead operands. 2116 while (!DeadOps.empty()) { 2117 unsigned OpIdx = DeadOps.back(); 2118 if (getOperand(OpIdx).isImplicit()) 2119 RemoveOperand(OpIdx); 2120 else 2121 getOperand(OpIdx).setIsDead(false); 2122 DeadOps.pop_back(); 2123 } 2124 2125 // If not found, this means an alias of one of the operands is dead. Add a 2126 // new implicit operand if required. 2127 if (Found || !AddIfNotFound) 2128 return Found; 2129 2130 addOperand(MachineOperand::CreateReg(Reg, 2131 true /*IsDef*/, 2132 true /*IsImp*/, 2133 false /*IsKill*/, 2134 true /*IsDead*/)); 2135 return true; 2136 } 2137 2138 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2139 for (MachineOperand &MO : operands()) { 2140 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2141 continue; 2142 MO.setIsDead(false); 2143 } 2144 } 2145 2146 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2147 for (MachineOperand &MO : operands()) { 2148 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2149 continue; 2150 MO.setIsUndef(IsUndef); 2151 } 2152 } 2153 2154 void MachineInstr::addRegisterDefined(unsigned Reg, 2155 const TargetRegisterInfo *RegInfo) { 2156 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2157 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2158 if (MO) 2159 return; 2160 } else { 2161 for (const MachineOperand &MO : operands()) { 2162 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2163 MO.getSubReg() == 0) 2164 return; 2165 } 2166 } 2167 addOperand(MachineOperand::CreateReg(Reg, 2168 true /*IsDef*/, 2169 true /*IsImp*/)); 2170 } 2171 2172 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2173 const TargetRegisterInfo &TRI) { 2174 bool HasRegMask = false; 2175 for (MachineOperand &MO : operands()) { 2176 if (MO.isRegMask()) { 2177 HasRegMask = true; 2178 continue; 2179 } 2180 if (!MO.isReg() || !MO.isDef()) continue; 2181 unsigned Reg = MO.getReg(); 2182 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2183 // If there are no uses, including partial uses, the def is dead. 2184 if (none_of(UsedRegs, 2185 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2186 MO.setIsDead(); 2187 } 2188 2189 // This is a call with a register mask operand. 2190 // Mask clobbers are always dead, so add defs for the non-dead defines. 2191 if (HasRegMask) 2192 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2193 I != E; ++I) 2194 addRegisterDefined(*I, &TRI); 2195 } 2196 2197 unsigned 2198 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2199 // Build up a buffer of hash code components. 2200 SmallVector<size_t, 8> HashComponents; 2201 HashComponents.reserve(MI->getNumOperands() + 1); 2202 HashComponents.push_back(MI->getOpcode()); 2203 for (const MachineOperand &MO : MI->operands()) { 2204 if (MO.isReg() && MO.isDef() && 2205 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2206 continue; // Skip virtual register defs. 2207 2208 HashComponents.push_back(hash_value(MO)); 2209 } 2210 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2211 } 2212 2213 void MachineInstr::emitError(StringRef Msg) const { 2214 // Find the source location cookie. 2215 unsigned LocCookie = 0; 2216 const MDNode *LocMD = nullptr; 2217 for (unsigned i = getNumOperands(); i != 0; --i) { 2218 if (getOperand(i-1).isMetadata() && 2219 (LocMD = getOperand(i-1).getMetadata()) && 2220 LocMD->getNumOperands() != 0) { 2221 if (const ConstantInt *CI = 2222 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2223 LocCookie = CI->getZExtValue(); 2224 break; 2225 } 2226 } 2227 } 2228 2229 if (const MachineBasicBlock *MBB = getParent()) 2230 if (const MachineFunction *MF = MBB->getParent()) 2231 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2232 report_fatal_error(Msg); 2233 } 2234 2235 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2236 const MCInstrDesc &MCID, bool IsIndirect, 2237 unsigned Reg, unsigned Offset, 2238 const MDNode *Variable, const MDNode *Expr) { 2239 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2240 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2241 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2242 "Expected inlined-at fields to agree"); 2243 if (IsIndirect) 2244 return BuildMI(MF, DL, MCID) 2245 .addReg(Reg, RegState::Debug) 2246 .addImm(Offset) 2247 .addMetadata(Variable) 2248 .addMetadata(Expr); 2249 else { 2250 assert(Offset == 0 && "A direct address cannot have an offset."); 2251 return BuildMI(MF, DL, MCID) 2252 .addReg(Reg, RegState::Debug) 2253 .addReg(0U, RegState::Debug) 2254 .addMetadata(Variable) 2255 .addMetadata(Expr); 2256 } 2257 } 2258 2259 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2260 MachineBasicBlock::iterator I, 2261 const DebugLoc &DL, const MCInstrDesc &MCID, 2262 bool IsIndirect, unsigned Reg, 2263 unsigned Offset, const MDNode *Variable, 2264 const MDNode *Expr) { 2265 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2266 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2267 MachineFunction &MF = *BB.getParent(); 2268 MachineInstr *MI = 2269 BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr); 2270 BB.insert(I, MI); 2271 return MachineInstrBuilder(MF, MI); 2272 } 2273