1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/MC/MCInstrDesc.h" 56 #include "llvm/MC/MCRegisterInfo.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/LowLevelTypeImpl.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetIntrinsicInfo.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <cstring> 73 #include <iterator> 74 #include <utility> 75 76 using namespace llvm; 77 78 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 79 if (const MachineBasicBlock *MBB = MI.getParent()) 80 if (const MachineFunction *MF = MBB->getParent()) 81 return MF; 82 return nullptr; 83 } 84 85 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 86 // it. 87 static void tryToGetTargetInfo(const MachineInstr &MI, 88 const TargetRegisterInfo *&TRI, 89 const MachineRegisterInfo *&MRI, 90 const TargetIntrinsicInfo *&IntrinsicInfo, 91 const TargetInstrInfo *&TII) { 92 93 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 94 TRI = MF->getSubtarget().getRegisterInfo(); 95 MRI = &MF->getRegInfo(); 96 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 97 TII = MF->getSubtarget().getInstrInfo(); 98 } 99 } 100 101 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 102 if (MCID->ImplicitDefs) 103 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 104 ++ImpDefs) 105 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 106 if (MCID->ImplicitUses) 107 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 108 ++ImpUses) 109 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 110 } 111 112 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 113 /// implicit operands. It reserves space for the number of operands specified by 114 /// the MCInstrDesc. 115 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 116 DebugLoc dl, bool NoImp) 117 : MCID(&tid), debugLoc(std::move(dl)) { 118 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 119 120 // Reserve space for the expected number of operands. 121 if (unsigned NumOps = MCID->getNumOperands() + 122 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 123 CapOperands = OperandCapacity::get(NumOps); 124 Operands = MF.allocateOperandArray(CapOperands); 125 } 126 127 if (!NoImp) 128 addImplicitDefUseOperands(MF); 129 } 130 131 /// MachineInstr ctor - Copies MachineInstr arg exactly 132 /// 133 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 134 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) { 135 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 136 137 CapOperands = OperandCapacity::get(MI.getNumOperands()); 138 Operands = MF.allocateOperandArray(CapOperands); 139 140 // Copy operands. 141 for (const MachineOperand &MO : MI.operands()) 142 addOperand(MF, MO); 143 144 // Copy all the sensible flags. 145 setFlags(MI.Flags); 146 } 147 148 /// getRegInfo - If this instruction is embedded into a MachineFunction, 149 /// return the MachineRegisterInfo object for the current function, otherwise 150 /// return null. 151 MachineRegisterInfo *MachineInstr::getRegInfo() { 152 if (MachineBasicBlock *MBB = getParent()) 153 return &MBB->getParent()->getRegInfo(); 154 return nullptr; 155 } 156 157 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 158 /// this instruction from their respective use lists. This requires that the 159 /// operands already be on their use lists. 160 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 161 for (MachineOperand &MO : operands()) 162 if (MO.isReg()) 163 MRI.removeRegOperandFromUseList(&MO); 164 } 165 166 /// AddRegOperandsToUseLists - Add all of the register operands in 167 /// this instruction from their respective use lists. This requires that the 168 /// operands not be on their use lists yet. 169 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 170 for (MachineOperand &MO : operands()) 171 if (MO.isReg()) 172 MRI.addRegOperandToUseList(&MO); 173 } 174 175 void MachineInstr::addOperand(const MachineOperand &Op) { 176 MachineBasicBlock *MBB = getParent(); 177 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 178 MachineFunction *MF = MBB->getParent(); 179 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 180 addOperand(*MF, Op); 181 } 182 183 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 184 /// ranges. If MRI is non-null also update use-def chains. 185 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 186 unsigned NumOps, MachineRegisterInfo *MRI) { 187 if (MRI) 188 return MRI->moveOperands(Dst, Src, NumOps); 189 190 // MachineOperand is a trivially copyable type so we can just use memmove. 191 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 192 } 193 194 /// addOperand - Add the specified operand to the instruction. If it is an 195 /// implicit operand, it is added to the end of the operand list. If it is 196 /// an explicit operand it is added at the end of the explicit operand list 197 /// (before the first implicit operand). 198 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 199 assert(MCID && "Cannot add operands before providing an instr descriptor"); 200 201 // Check if we're adding one of our existing operands. 202 if (&Op >= Operands && &Op < Operands + NumOperands) { 203 // This is unusual: MI->addOperand(MI->getOperand(i)). 204 // If adding Op requires reallocating or moving existing operands around, 205 // the Op reference could go stale. Support it by copying Op. 206 MachineOperand CopyOp(Op); 207 return addOperand(MF, CopyOp); 208 } 209 210 // Find the insert location for the new operand. Implicit registers go at 211 // the end, everything else goes before the implicit regs. 212 // 213 // FIXME: Allow mixed explicit and implicit operands on inline asm. 214 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 215 // implicit-defs, but they must not be moved around. See the FIXME in 216 // InstrEmitter.cpp. 217 unsigned OpNo = getNumOperands(); 218 bool isImpReg = Op.isReg() && Op.isImplicit(); 219 if (!isImpReg && !isInlineAsm()) { 220 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 221 --OpNo; 222 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 223 } 224 } 225 226 #ifndef NDEBUG 227 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 228 // OpNo now points as the desired insertion point. Unless this is a variadic 229 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 230 // RegMask operands go between the explicit and implicit operands. 231 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 232 OpNo < MCID->getNumOperands() || isMetaDataOp) && 233 "Trying to add an operand to a machine instr that is already done!"); 234 #endif 235 236 MachineRegisterInfo *MRI = getRegInfo(); 237 238 // Determine if the Operands array needs to be reallocated. 239 // Save the old capacity and operand array. 240 OperandCapacity OldCap = CapOperands; 241 MachineOperand *OldOperands = Operands; 242 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 243 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 244 Operands = MF.allocateOperandArray(CapOperands); 245 // Move the operands before the insertion point. 246 if (OpNo) 247 moveOperands(Operands, OldOperands, OpNo, MRI); 248 } 249 250 // Move the operands following the insertion point. 251 if (OpNo != NumOperands) 252 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 253 MRI); 254 ++NumOperands; 255 256 // Deallocate the old operand array. 257 if (OldOperands != Operands && OldOperands) 258 MF.deallocateOperandArray(OldCap, OldOperands); 259 260 // Copy Op into place. It still needs to be inserted into the MRI use lists. 261 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 262 NewMO->ParentMI = this; 263 264 // When adding a register operand, tell MRI about it. 265 if (NewMO->isReg()) { 266 // Ensure isOnRegUseList() returns false, regardless of Op's status. 267 NewMO->Contents.Reg.Prev = nullptr; 268 // Ignore existing ties. This is not a property that can be copied. 269 NewMO->TiedTo = 0; 270 // Add the new operand to MRI, but only for instructions in an MBB. 271 if (MRI) 272 MRI->addRegOperandToUseList(NewMO); 273 // The MCID operand information isn't accurate until we start adding 274 // explicit operands. The implicit operands are added first, then the 275 // explicits are inserted before them. 276 if (!isImpReg) { 277 // Tie uses to defs as indicated in MCInstrDesc. 278 if (NewMO->isUse()) { 279 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 280 if (DefIdx != -1) 281 tieOperands(DefIdx, OpNo); 282 } 283 // If the register operand is flagged as early, mark the operand as such. 284 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 285 NewMO->setIsEarlyClobber(true); 286 } 287 } 288 } 289 290 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 291 /// fewer operand than it started with. 292 /// 293 void MachineInstr::RemoveOperand(unsigned OpNo) { 294 assert(OpNo < getNumOperands() && "Invalid operand number"); 295 untieRegOperand(OpNo); 296 297 #ifndef NDEBUG 298 // Moving tied operands would break the ties. 299 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 300 if (Operands[i].isReg()) 301 assert(!Operands[i].isTied() && "Cannot move tied operands"); 302 #endif 303 304 MachineRegisterInfo *MRI = getRegInfo(); 305 if (MRI && Operands[OpNo].isReg()) 306 MRI->removeRegOperandFromUseList(Operands + OpNo); 307 308 // Don't call the MachineOperand destructor. A lot of this code depends on 309 // MachineOperand having a trivial destructor anyway, and adding a call here 310 // wouldn't make it 'destructor-correct'. 311 312 if (unsigned N = NumOperands - 1 - OpNo) 313 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 314 --NumOperands; 315 } 316 317 void MachineInstr::dropMemRefs(MachineFunction &MF) { 318 if (memoperands_empty()) 319 return; 320 321 // See if we can just drop all of our extra info. 322 if (!getPreInstrSymbol() && !getPostInstrSymbol()) { 323 Info.clear(); 324 return; 325 } 326 if (!getPostInstrSymbol()) { 327 Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol()); 328 return; 329 } 330 if (!getPreInstrSymbol()) { 331 Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol()); 332 return; 333 } 334 335 // Otherwise allocate a fresh extra info with just these symbols. 336 Info.set<EIIK_OutOfLine>( 337 MF.createMIExtraInfo({}, getPreInstrSymbol(), getPostInstrSymbol())); 338 } 339 340 void MachineInstr::setMemRefs(MachineFunction &MF, 341 ArrayRef<MachineMemOperand *> MMOs) { 342 if (MMOs.empty()) { 343 dropMemRefs(MF); 344 return; 345 } 346 347 // Try to store a single MMO inline. 348 if (MMOs.size() == 1 && !getPreInstrSymbol() && !getPostInstrSymbol()) { 349 Info.set<EIIK_MMO>(MMOs[0]); 350 return; 351 } 352 353 // Otherwise create an extra info struct with all of our info. 354 Info.set<EIIK_OutOfLine>( 355 MF.createMIExtraInfo(MMOs, getPreInstrSymbol(), getPostInstrSymbol())); 356 } 357 358 void MachineInstr::addMemOperand(MachineFunction &MF, 359 MachineMemOperand *MO) { 360 SmallVector<MachineMemOperand *, 2> MMOs; 361 MMOs.append(memoperands_begin(), memoperands_end()); 362 MMOs.push_back(MO); 363 setMemRefs(MF, MMOs); 364 } 365 366 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 367 if (this == &MI) 368 // Nothing to do for a self-clone! 369 return; 370 371 assert(&MF == MI.getMF() && 372 "Invalid machine functions when cloning memory refrences!"); 373 // See if we can just steal the extra info already allocated for the 374 // instruction. We can do this whenever the pre- and post-instruction symbols 375 // are the same (including null). 376 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 377 getPostInstrSymbol() == MI.getPostInstrSymbol()) { 378 Info = MI.Info; 379 return; 380 } 381 382 // Otherwise, fall back on a copy-based clone. 383 setMemRefs(MF, MI.memoperands()); 384 } 385 386 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 387 /// identical. 388 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 389 ArrayRef<MachineMemOperand *> RHS) { 390 if (LHS.size() != RHS.size()) 391 return false; 392 393 auto LHSPointees = make_pointee_range(LHS); 394 auto RHSPointees = make_pointee_range(RHS); 395 return std::equal(LHSPointees.begin(), LHSPointees.end(), 396 RHSPointees.begin()); 397 } 398 399 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 400 ArrayRef<const MachineInstr *> MIs) { 401 // Try handling easy numbers of MIs with simpler mechanisms. 402 if (MIs.empty()) { 403 dropMemRefs(MF); 404 return; 405 } 406 if (MIs.size() == 1) { 407 cloneMemRefs(MF, *MIs[0]); 408 return; 409 } 410 // Because an empty memoperands list provides *no* information and must be 411 // handled conservatively (assuming the instruction can do anything), the only 412 // way to merge with it is to drop all other memoperands. 413 if (MIs[0]->memoperands_empty()) { 414 dropMemRefs(MF); 415 return; 416 } 417 418 // Handle the general case. 419 SmallVector<MachineMemOperand *, 2> MergedMMOs; 420 // Start with the first instruction. 421 assert(&MF == MIs[0]->getMF() && 422 "Invalid machine functions when cloning memory references!"); 423 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 424 // Now walk all the other instructions and accumulate any different MMOs. 425 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 426 assert(&MF == MI.getMF() && 427 "Invalid machine functions when cloning memory references!"); 428 429 // Skip MIs with identical operands to the first. This is a somewhat 430 // arbitrary hack but will catch common cases without being quadratic. 431 // TODO: We could fully implement merge semantics here if needed. 432 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 433 continue; 434 435 // Because an empty memoperands list provides *no* information and must be 436 // handled conservatively (assuming the instruction can do anything), the 437 // only way to merge with it is to drop all other memoperands. 438 if (MI.memoperands_empty()) { 439 dropMemRefs(MF); 440 return; 441 } 442 443 // Otherwise accumulate these into our temporary buffer of the merged state. 444 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 445 } 446 447 setMemRefs(MF, MergedMMOs); 448 } 449 450 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 451 MCSymbol *OldSymbol = getPreInstrSymbol(); 452 if (OldSymbol == Symbol) 453 return; 454 if (OldSymbol && !Symbol) { 455 // We're removing a symbol rather than adding one. Try to clean up any 456 // extra info carried around. 457 if (Info.is<EIIK_PreInstrSymbol>()) { 458 Info.clear(); 459 return; 460 } 461 462 if (memoperands_empty()) { 463 assert(getPostInstrSymbol() && 464 "Should never have only a single symbol allocated out-of-line!"); 465 Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol()); 466 return; 467 } 468 469 // Otherwise fallback on the generic update. 470 } else if (!Info || Info.is<EIIK_PreInstrSymbol>()) { 471 // If we don't have any other extra info, we can store this inline. 472 Info.set<EIIK_PreInstrSymbol>(Symbol); 473 return; 474 } 475 476 // Otherwise, allocate a full new set of extra info. 477 // FIXME: Maybe we should make the symbols in the extra info mutable? 478 Info.set<EIIK_OutOfLine>( 479 MF.createMIExtraInfo(memoperands(), Symbol, getPostInstrSymbol())); 480 } 481 482 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 483 MCSymbol *OldSymbol = getPostInstrSymbol(); 484 if (OldSymbol == Symbol) 485 return; 486 if (OldSymbol && !Symbol) { 487 // We're removing a symbol rather than adding one. Try to clean up any 488 // extra info carried around. 489 if (Info.is<EIIK_PostInstrSymbol>()) { 490 Info.clear(); 491 return; 492 } 493 494 if (memoperands_empty()) { 495 assert(getPreInstrSymbol() && 496 "Should never have only a single symbol allocated out-of-line!"); 497 Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol()); 498 return; 499 } 500 501 // Otherwise fallback on the generic update. 502 } else if (!Info || Info.is<EIIK_PostInstrSymbol>()) { 503 // If we don't have any other extra info, we can store this inline. 504 Info.set<EIIK_PostInstrSymbol>(Symbol); 505 return; 506 } 507 508 // Otherwise, allocate a full new set of extra info. 509 // FIXME: Maybe we should make the symbols in the extra info mutable? 510 Info.set<EIIK_OutOfLine>( 511 MF.createMIExtraInfo(memoperands(), getPreInstrSymbol(), Symbol)); 512 } 513 514 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 515 // For now, the just return the union of the flags. If the flags get more 516 // complicated over time, we might need more logic here. 517 return getFlags() | Other.getFlags(); 518 } 519 520 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 521 assert(!isBundledWithPred() && "Must be called on bundle header"); 522 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 523 if (MII->getDesc().getFlags() & Mask) { 524 if (Type == AnyInBundle) 525 return true; 526 } else { 527 if (Type == AllInBundle && !MII->isBundle()) 528 return false; 529 } 530 // This was the last instruction in the bundle. 531 if (!MII->isBundledWithSucc()) 532 return Type == AllInBundle; 533 } 534 } 535 536 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 537 MICheckType Check) const { 538 // If opcodes or number of operands are not the same then the two 539 // instructions are obviously not identical. 540 if (Other.getOpcode() != getOpcode() || 541 Other.getNumOperands() != getNumOperands()) 542 return false; 543 544 if (isBundle()) { 545 // We have passed the test above that both instructions have the same 546 // opcode, so we know that both instructions are bundles here. Let's compare 547 // MIs inside the bundle. 548 assert(Other.isBundle() && "Expected that both instructions are bundles."); 549 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 550 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 551 // Loop until we analysed the last intruction inside at least one of the 552 // bundles. 553 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 554 ++I1; 555 ++I2; 556 if (!I1->isIdenticalTo(*I2, Check)) 557 return false; 558 } 559 // If we've reached the end of just one of the two bundles, but not both, 560 // the instructions are not identical. 561 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 562 return false; 563 } 564 565 // Check operands to make sure they match. 566 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 567 const MachineOperand &MO = getOperand(i); 568 const MachineOperand &OMO = Other.getOperand(i); 569 if (!MO.isReg()) { 570 if (!MO.isIdenticalTo(OMO)) 571 return false; 572 continue; 573 } 574 575 // Clients may or may not want to ignore defs when testing for equality. 576 // For example, machine CSE pass only cares about finding common 577 // subexpressions, so it's safe to ignore virtual register defs. 578 if (MO.isDef()) { 579 if (Check == IgnoreDefs) 580 continue; 581 else if (Check == IgnoreVRegDefs) { 582 if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) || 583 !TargetRegisterInfo::isVirtualRegister(OMO.getReg())) 584 if (!MO.isIdenticalTo(OMO)) 585 return false; 586 } else { 587 if (!MO.isIdenticalTo(OMO)) 588 return false; 589 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 590 return false; 591 } 592 } else { 593 if (!MO.isIdenticalTo(OMO)) 594 return false; 595 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 596 return false; 597 } 598 } 599 // If DebugLoc does not match then two debug instructions are not identical. 600 if (isDebugInstr()) 601 if (getDebugLoc() && Other.getDebugLoc() && 602 getDebugLoc() != Other.getDebugLoc()) 603 return false; 604 return true; 605 } 606 607 const MachineFunction *MachineInstr::getMF() const { 608 return getParent()->getParent(); 609 } 610 611 MachineInstr *MachineInstr::removeFromParent() { 612 assert(getParent() && "Not embedded in a basic block!"); 613 return getParent()->remove(this); 614 } 615 616 MachineInstr *MachineInstr::removeFromBundle() { 617 assert(getParent() && "Not embedded in a basic block!"); 618 return getParent()->remove_instr(this); 619 } 620 621 void MachineInstr::eraseFromParent() { 622 assert(getParent() && "Not embedded in a basic block!"); 623 getParent()->erase(this); 624 } 625 626 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 627 assert(getParent() && "Not embedded in a basic block!"); 628 MachineBasicBlock *MBB = getParent(); 629 MachineFunction *MF = MBB->getParent(); 630 assert(MF && "Not embedded in a function!"); 631 632 MachineInstr *MI = (MachineInstr *)this; 633 MachineRegisterInfo &MRI = MF->getRegInfo(); 634 635 for (const MachineOperand &MO : MI->operands()) { 636 if (!MO.isReg() || !MO.isDef()) 637 continue; 638 unsigned Reg = MO.getReg(); 639 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 640 continue; 641 MRI.markUsesInDebugValueAsUndef(Reg); 642 } 643 MI->eraseFromParent(); 644 } 645 646 void MachineInstr::eraseFromBundle() { 647 assert(getParent() && "Not embedded in a basic block!"); 648 getParent()->erase_instr(this); 649 } 650 651 unsigned MachineInstr::getNumExplicitOperands() const { 652 unsigned NumOperands = MCID->getNumOperands(); 653 if (!MCID->isVariadic()) 654 return NumOperands; 655 656 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 657 const MachineOperand &MO = getOperand(I); 658 // The operands must always be in the following order: 659 // - explicit reg defs, 660 // - other explicit operands (reg uses, immediates, etc.), 661 // - implicit reg defs 662 // - implicit reg uses 663 if (MO.isReg() && MO.isImplicit()) 664 break; 665 ++NumOperands; 666 } 667 return NumOperands; 668 } 669 670 unsigned MachineInstr::getNumExplicitDefs() const { 671 unsigned NumDefs = MCID->getNumDefs(); 672 if (!MCID->isVariadic()) 673 return NumDefs; 674 675 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 676 const MachineOperand &MO = getOperand(I); 677 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 678 break; 679 ++NumDefs; 680 } 681 return NumDefs; 682 } 683 684 void MachineInstr::bundleWithPred() { 685 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 686 setFlag(BundledPred); 687 MachineBasicBlock::instr_iterator Pred = getIterator(); 688 --Pred; 689 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 690 Pred->setFlag(BundledSucc); 691 } 692 693 void MachineInstr::bundleWithSucc() { 694 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 695 setFlag(BundledSucc); 696 MachineBasicBlock::instr_iterator Succ = getIterator(); 697 ++Succ; 698 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 699 Succ->setFlag(BundledPred); 700 } 701 702 void MachineInstr::unbundleFromPred() { 703 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 704 clearFlag(BundledPred); 705 MachineBasicBlock::instr_iterator Pred = getIterator(); 706 --Pred; 707 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 708 Pred->clearFlag(BundledSucc); 709 } 710 711 void MachineInstr::unbundleFromSucc() { 712 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 713 clearFlag(BundledSucc); 714 MachineBasicBlock::instr_iterator Succ = getIterator(); 715 ++Succ; 716 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 717 Succ->clearFlag(BundledPred); 718 } 719 720 bool MachineInstr::isStackAligningInlineAsm() const { 721 if (isInlineAsm()) { 722 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 723 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 724 return true; 725 } 726 return false; 727 } 728 729 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 730 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 731 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 732 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 733 } 734 735 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 736 unsigned *GroupNo) const { 737 assert(isInlineAsm() && "Expected an inline asm instruction"); 738 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 739 740 // Ignore queries about the initial operands. 741 if (OpIdx < InlineAsm::MIOp_FirstOperand) 742 return -1; 743 744 unsigned Group = 0; 745 unsigned NumOps; 746 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 747 i += NumOps) { 748 const MachineOperand &FlagMO = getOperand(i); 749 // If we reach the implicit register operands, stop looking. 750 if (!FlagMO.isImm()) 751 return -1; 752 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 753 if (i + NumOps > OpIdx) { 754 if (GroupNo) 755 *GroupNo = Group; 756 return i; 757 } 758 ++Group; 759 } 760 return -1; 761 } 762 763 const DILabel *MachineInstr::getDebugLabel() const { 764 assert(isDebugLabel() && "not a DBG_LABEL"); 765 return cast<DILabel>(getOperand(0).getMetadata()); 766 } 767 768 const DILocalVariable *MachineInstr::getDebugVariable() const { 769 assert(isDebugValue() && "not a DBG_VALUE"); 770 return cast<DILocalVariable>(getOperand(2).getMetadata()); 771 } 772 773 const DIExpression *MachineInstr::getDebugExpression() const { 774 assert(isDebugValue() && "not a DBG_VALUE"); 775 return cast<DIExpression>(getOperand(3).getMetadata()); 776 } 777 778 const TargetRegisterClass* 779 MachineInstr::getRegClassConstraint(unsigned OpIdx, 780 const TargetInstrInfo *TII, 781 const TargetRegisterInfo *TRI) const { 782 assert(getParent() && "Can't have an MBB reference here!"); 783 assert(getMF() && "Can't have an MF reference here!"); 784 const MachineFunction &MF = *getMF(); 785 786 // Most opcodes have fixed constraints in their MCInstrDesc. 787 if (!isInlineAsm()) 788 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 789 790 if (!getOperand(OpIdx).isReg()) 791 return nullptr; 792 793 // For tied uses on inline asm, get the constraint from the def. 794 unsigned DefIdx; 795 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 796 OpIdx = DefIdx; 797 798 // Inline asm stores register class constraints in the flag word. 799 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 800 if (FlagIdx < 0) 801 return nullptr; 802 803 unsigned Flag = getOperand(FlagIdx).getImm(); 804 unsigned RCID; 805 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 806 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 807 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 808 InlineAsm::hasRegClassConstraint(Flag, RCID)) 809 return TRI->getRegClass(RCID); 810 811 // Assume that all registers in a memory operand are pointers. 812 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 813 return TRI->getPointerRegClass(MF); 814 815 return nullptr; 816 } 817 818 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 819 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 820 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 821 // Check every operands inside the bundle if we have 822 // been asked to. 823 if (ExploreBundle) 824 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 825 ++OpndIt) 826 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 827 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 828 else 829 // Otherwise, just check the current operands. 830 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 831 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 832 return CurRC; 833 } 834 835 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 836 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 837 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 838 assert(CurRC && "Invalid initial register class"); 839 // Check if Reg is constrained by some of its use/def from MI. 840 const MachineOperand &MO = getOperand(OpIdx); 841 if (!MO.isReg() || MO.getReg() != Reg) 842 return CurRC; 843 // If yes, accumulate the constraints through the operand. 844 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 845 } 846 847 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 848 unsigned OpIdx, const TargetRegisterClass *CurRC, 849 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 850 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 851 const MachineOperand &MO = getOperand(OpIdx); 852 assert(MO.isReg() && 853 "Cannot get register constraints for non-register operand"); 854 assert(CurRC && "Invalid initial register class"); 855 if (unsigned SubIdx = MO.getSubReg()) { 856 if (OpRC) 857 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 858 else 859 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 860 } else if (OpRC) 861 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 862 return CurRC; 863 } 864 865 /// Return the number of instructions inside the MI bundle, not counting the 866 /// header instruction. 867 unsigned MachineInstr::getBundleSize() const { 868 MachineBasicBlock::const_instr_iterator I = getIterator(); 869 unsigned Size = 0; 870 while (I->isBundledWithSucc()) { 871 ++Size; 872 ++I; 873 } 874 return Size; 875 } 876 877 /// Returns true if the MachineInstr has an implicit-use operand of exactly 878 /// the given register (not considering sub/super-registers). 879 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 880 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 881 const MachineOperand &MO = getOperand(i); 882 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 883 return true; 884 } 885 return false; 886 } 887 888 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 889 /// the specific register or -1 if it is not found. It further tightens 890 /// the search criteria to a use that kills the register if isKill is true. 891 int MachineInstr::findRegisterUseOperandIdx( 892 unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { 893 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 894 const MachineOperand &MO = getOperand(i); 895 if (!MO.isReg() || !MO.isUse()) 896 continue; 897 unsigned MOReg = MO.getReg(); 898 if (!MOReg) 899 continue; 900 if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && 901 TargetRegisterInfo::isPhysicalRegister(Reg) && 902 TRI->isSubRegister(MOReg, Reg))) 903 if (!isKill || MO.isKill()) 904 return i; 905 } 906 return -1; 907 } 908 909 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 910 /// indicating if this instruction reads or writes Reg. This also considers 911 /// partial defines. 912 std::pair<bool,bool> 913 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 914 SmallVectorImpl<unsigned> *Ops) const { 915 bool PartDef = false; // Partial redefine. 916 bool FullDef = false; // Full define. 917 bool Use = false; 918 919 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 920 const MachineOperand &MO = getOperand(i); 921 if (!MO.isReg() || MO.getReg() != Reg) 922 continue; 923 if (Ops) 924 Ops->push_back(i); 925 if (MO.isUse()) 926 Use |= !MO.isUndef(); 927 else if (MO.getSubReg() && !MO.isUndef()) 928 // A partial def undef doesn't count as reading the register. 929 PartDef = true; 930 else 931 FullDef = true; 932 } 933 // A partial redefine uses Reg unless there is also a full define. 934 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 935 } 936 937 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 938 /// the specified register or -1 if it is not found. If isDead is true, defs 939 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 940 /// also checks if there is a def of a super-register. 941 int 942 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 943 const TargetRegisterInfo *TRI) const { 944 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 945 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 946 const MachineOperand &MO = getOperand(i); 947 // Accept regmask operands when Overlap is set. 948 // Ignore them when looking for a specific def operand (Overlap == false). 949 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 950 return i; 951 if (!MO.isReg() || !MO.isDef()) 952 continue; 953 unsigned MOReg = MO.getReg(); 954 bool Found = (MOReg == Reg); 955 if (!Found && TRI && isPhys && 956 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 957 if (Overlap) 958 Found = TRI->regsOverlap(MOReg, Reg); 959 else 960 Found = TRI->isSubRegister(MOReg, Reg); 961 } 962 if (Found && (!isDead || MO.isDead())) 963 return i; 964 } 965 return -1; 966 } 967 968 /// findFirstPredOperandIdx() - Find the index of the first operand in the 969 /// operand list that is used to represent the predicate. It returns -1 if 970 /// none is found. 971 int MachineInstr::findFirstPredOperandIdx() const { 972 // Don't call MCID.findFirstPredOperandIdx() because this variant 973 // is sometimes called on an instruction that's not yet complete, and 974 // so the number of operands is less than the MCID indicates. In 975 // particular, the PTX target does this. 976 const MCInstrDesc &MCID = getDesc(); 977 if (MCID.isPredicable()) { 978 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 979 if (MCID.OpInfo[i].isPredicate()) 980 return i; 981 } 982 983 return -1; 984 } 985 986 // MachineOperand::TiedTo is 4 bits wide. 987 const unsigned TiedMax = 15; 988 989 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 990 /// 991 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 992 /// field. TiedTo can have these values: 993 /// 994 /// 0: Operand is not tied to anything. 995 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 996 /// TiedMax: Tied to an operand >= TiedMax-1. 997 /// 998 /// The tied def must be one of the first TiedMax operands on a normal 999 /// instruction. INLINEASM instructions allow more tied defs. 1000 /// 1001 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1002 MachineOperand &DefMO = getOperand(DefIdx); 1003 MachineOperand &UseMO = getOperand(UseIdx); 1004 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1005 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1006 assert(!DefMO.isTied() && "Def is already tied to another use"); 1007 assert(!UseMO.isTied() && "Use is already tied to another def"); 1008 1009 if (DefIdx < TiedMax) 1010 UseMO.TiedTo = DefIdx + 1; 1011 else { 1012 // Inline asm can use the group descriptors to find tied operands, but on 1013 // normal instruction, the tied def must be within the first TiedMax 1014 // operands. 1015 assert(isInlineAsm() && "DefIdx out of range"); 1016 UseMO.TiedTo = TiedMax; 1017 } 1018 1019 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1020 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1021 } 1022 1023 /// Given the index of a tied register operand, find the operand it is tied to. 1024 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1025 /// which must exist. 1026 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1027 const MachineOperand &MO = getOperand(OpIdx); 1028 assert(MO.isTied() && "Operand isn't tied"); 1029 1030 // Normally TiedTo is in range. 1031 if (MO.TiedTo < TiedMax) 1032 return MO.TiedTo - 1; 1033 1034 // Uses on normal instructions can be out of range. 1035 if (!isInlineAsm()) { 1036 // Normal tied defs must be in the 0..TiedMax-1 range. 1037 if (MO.isUse()) 1038 return TiedMax - 1; 1039 // MO is a def. Search for the tied use. 1040 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1041 const MachineOperand &UseMO = getOperand(i); 1042 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1043 return i; 1044 } 1045 llvm_unreachable("Can't find tied use"); 1046 } 1047 1048 // Now deal with inline asm by parsing the operand group descriptor flags. 1049 // Find the beginning of each operand group. 1050 SmallVector<unsigned, 8> GroupIdx; 1051 unsigned OpIdxGroup = ~0u; 1052 unsigned NumOps; 1053 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1054 i += NumOps) { 1055 const MachineOperand &FlagMO = getOperand(i); 1056 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1057 unsigned CurGroup = GroupIdx.size(); 1058 GroupIdx.push_back(i); 1059 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1060 // OpIdx belongs to this operand group. 1061 if (OpIdx > i && OpIdx < i + NumOps) 1062 OpIdxGroup = CurGroup; 1063 unsigned TiedGroup; 1064 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1065 continue; 1066 // Operands in this group are tied to operands in TiedGroup which must be 1067 // earlier. Find the number of operands between the two groups. 1068 unsigned Delta = i - GroupIdx[TiedGroup]; 1069 1070 // OpIdx is a use tied to TiedGroup. 1071 if (OpIdxGroup == CurGroup) 1072 return OpIdx - Delta; 1073 1074 // OpIdx is a def tied to this use group. 1075 if (OpIdxGroup == TiedGroup) 1076 return OpIdx + Delta; 1077 } 1078 llvm_unreachable("Invalid tied operand on inline asm"); 1079 } 1080 1081 /// clearKillInfo - Clears kill flags on all operands. 1082 /// 1083 void MachineInstr::clearKillInfo() { 1084 for (MachineOperand &MO : operands()) { 1085 if (MO.isReg() && MO.isUse()) 1086 MO.setIsKill(false); 1087 } 1088 } 1089 1090 void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg, 1091 unsigned SubIdx, 1092 const TargetRegisterInfo &RegInfo) { 1093 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1094 if (SubIdx) 1095 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1096 for (MachineOperand &MO : operands()) { 1097 if (!MO.isReg() || MO.getReg() != FromReg) 1098 continue; 1099 MO.substPhysReg(ToReg, RegInfo); 1100 } 1101 } else { 1102 for (MachineOperand &MO : operands()) { 1103 if (!MO.isReg() || MO.getReg() != FromReg) 1104 continue; 1105 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1106 } 1107 } 1108 } 1109 1110 /// isSafeToMove - Return true if it is safe to move this instruction. If 1111 /// SawStore is set to true, it means that there is a store (or call) between 1112 /// the instruction's location and its intended destination. 1113 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1114 // Ignore stuff that we obviously can't move. 1115 // 1116 // Treat volatile loads as stores. This is not strictly necessary for 1117 // volatiles, but it is required for atomic loads. It is not allowed to move 1118 // a load across an atomic load with Ordering > Monotonic. 1119 if (mayStore() || isCall() || isPHI() || 1120 (mayLoad() && hasOrderedMemoryRef())) { 1121 SawStore = true; 1122 return false; 1123 } 1124 1125 if (isPosition() || isDebugInstr() || isTerminator() || 1126 hasUnmodeledSideEffects()) 1127 return false; 1128 1129 // See if this instruction does a load. If so, we have to guarantee that the 1130 // loaded value doesn't change between the load and the its intended 1131 // destination. The check for isInvariantLoad gives the targe the chance to 1132 // classify the load as always returning a constant, e.g. a constant pool 1133 // load. 1134 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1135 // Otherwise, this is a real load. If there is a store between the load and 1136 // end of block, we can't move it. 1137 return !SawStore; 1138 1139 return true; 1140 } 1141 1142 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other, 1143 bool UseTBAA) { 1144 const MachineFunction *MF = getMF(); 1145 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1146 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1147 1148 // If neither instruction stores to memory, they can't alias in any 1149 // meaningful way, even if they read from the same address. 1150 if (!mayStore() && !Other.mayStore()) 1151 return false; 1152 1153 // Let the target decide if memory accesses cannot possibly overlap. 1154 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA)) 1155 return false; 1156 1157 // FIXME: Need to handle multiple memory operands to support all targets. 1158 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1159 return true; 1160 1161 MachineMemOperand *MMOa = *memoperands_begin(); 1162 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1163 1164 // The following interface to AA is fashioned after DAGCombiner::isAlias 1165 // and operates with MachineMemOperand offset with some important 1166 // assumptions: 1167 // - LLVM fundamentally assumes flat address spaces. 1168 // - MachineOperand offset can *only* result from legalization and 1169 // cannot affect queries other than the trivial case of overlap 1170 // checking. 1171 // - These offsets never wrap and never step outside 1172 // of allocated objects. 1173 // - There should never be any negative offsets here. 1174 // 1175 // FIXME: Modify API to hide this math from "user" 1176 // Even before we go to AA we can reason locally about some 1177 // memory objects. It can save compile time, and possibly catch some 1178 // corner cases not currently covered. 1179 1180 int64_t OffsetA = MMOa->getOffset(); 1181 int64_t OffsetB = MMOb->getOffset(); 1182 int64_t MinOffset = std::min(OffsetA, OffsetB); 1183 1184 uint64_t WidthA = MMOa->getSize(); 1185 uint64_t WidthB = MMOb->getSize(); 1186 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1187 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1188 1189 const Value *ValA = MMOa->getValue(); 1190 const Value *ValB = MMOb->getValue(); 1191 bool SameVal = (ValA && ValB && (ValA == ValB)); 1192 if (!SameVal) { 1193 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1194 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1195 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1196 return false; 1197 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1198 return false; 1199 if (PSVa && PSVb && (PSVa == PSVb)) 1200 SameVal = true; 1201 } 1202 1203 if (SameVal) { 1204 if (!KnownWidthA || !KnownWidthB) 1205 return true; 1206 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1207 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1208 return (MinOffset + LowWidth > MaxOffset); 1209 } 1210 1211 if (!AA) 1212 return true; 1213 1214 if (!ValA || !ValB) 1215 return true; 1216 1217 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1218 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1219 1220 int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset 1221 : MemoryLocation::UnknownSize; 1222 int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset 1223 : MemoryLocation::UnknownSize; 1224 1225 AliasResult AAResult = AA->alias( 1226 MemoryLocation(ValA, OverlapA, 1227 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1228 MemoryLocation(ValB, OverlapB, 1229 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1230 1231 return (AAResult != NoAlias); 1232 } 1233 1234 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1235 /// or volatile memory reference, or if the information describing the memory 1236 /// reference is not available. Return false if it is known to have no ordered 1237 /// memory references. 1238 bool MachineInstr::hasOrderedMemoryRef() const { 1239 // An instruction known never to access memory won't have a volatile access. 1240 if (!mayStore() && 1241 !mayLoad() && 1242 !isCall() && 1243 !hasUnmodeledSideEffects()) 1244 return false; 1245 1246 // Otherwise, if the instruction has no memory reference information, 1247 // conservatively assume it wasn't preserved. 1248 if (memoperands_empty()) 1249 return true; 1250 1251 // Check if any of our memory operands are ordered. 1252 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1253 return !MMO->isUnordered(); 1254 }); 1255 } 1256 1257 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1258 /// trap and is loading from a location whose value is invariant across a run of 1259 /// this function. 1260 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { 1261 // If the instruction doesn't load at all, it isn't an invariant load. 1262 if (!mayLoad()) 1263 return false; 1264 1265 // If the instruction has lost its memoperands, conservatively assume that 1266 // it may not be an invariant load. 1267 if (memoperands_empty()) 1268 return false; 1269 1270 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1271 1272 for (MachineMemOperand *MMO : memoperands()) { 1273 if (MMO->isVolatile()) return false; 1274 if (MMO->isStore()) return false; 1275 if (MMO->isInvariant() && MMO->isDereferenceable()) 1276 continue; 1277 1278 // A load from a constant PseudoSourceValue is invariant. 1279 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1280 if (PSV->isConstant(&MFI)) 1281 continue; 1282 1283 if (const Value *V = MMO->getValue()) { 1284 // If we have an AliasAnalysis, ask it whether the memory is constant. 1285 if (AA && 1286 AA->pointsToConstantMemory( 1287 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1288 continue; 1289 } 1290 1291 // Otherwise assume conservatively. 1292 return false; 1293 } 1294 1295 // Everything checks out. 1296 return true; 1297 } 1298 1299 /// isConstantValuePHI - If the specified instruction is a PHI that always 1300 /// merges together the same virtual register, return the register, otherwise 1301 /// return 0. 1302 unsigned MachineInstr::isConstantValuePHI() const { 1303 if (!isPHI()) 1304 return 0; 1305 assert(getNumOperands() >= 3 && 1306 "It's illegal to have a PHI without source operands"); 1307 1308 unsigned Reg = getOperand(1).getReg(); 1309 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1310 if (getOperand(i).getReg() != Reg) 1311 return 0; 1312 return Reg; 1313 } 1314 1315 bool MachineInstr::hasUnmodeledSideEffects() const { 1316 if (hasProperty(MCID::UnmodeledSideEffects)) 1317 return true; 1318 if (isInlineAsm()) { 1319 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1320 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1321 return true; 1322 } 1323 1324 return false; 1325 } 1326 1327 bool MachineInstr::isLoadFoldBarrier() const { 1328 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1329 } 1330 1331 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1332 /// 1333 bool MachineInstr::allDefsAreDead() const { 1334 for (const MachineOperand &MO : operands()) { 1335 if (!MO.isReg() || MO.isUse()) 1336 continue; 1337 if (!MO.isDead()) 1338 return false; 1339 } 1340 return true; 1341 } 1342 1343 /// copyImplicitOps - Copy implicit register operands from specified 1344 /// instruction to this instruction. 1345 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1346 const MachineInstr &MI) { 1347 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1348 i != e; ++i) { 1349 const MachineOperand &MO = MI.getOperand(i); 1350 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1351 addOperand(MF, MO); 1352 } 1353 } 1354 1355 bool MachineInstr::hasComplexRegisterTies() const { 1356 const MCInstrDesc &MCID = getDesc(); 1357 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1358 const auto &Operand = getOperand(I); 1359 if (!Operand.isReg() || Operand.isDef()) 1360 // Ignore the defined registers as MCID marks only the uses as tied. 1361 continue; 1362 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1363 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1364 if (ExpectedTiedIdx != TiedIdx) 1365 return true; 1366 } 1367 return false; 1368 } 1369 1370 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1371 const MachineRegisterInfo &MRI) const { 1372 const MachineOperand &Op = getOperand(OpIdx); 1373 if (!Op.isReg()) 1374 return LLT{}; 1375 1376 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1377 return MRI.getType(Op.getReg()); 1378 1379 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1380 if (!OpInfo.isGenericType()) 1381 return MRI.getType(Op.getReg()); 1382 1383 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1384 return LLT{}; 1385 1386 LLT TypeToPrint = MRI.getType(Op.getReg()); 1387 // Don't mark the type index printed if it wasn't actually printed: maybe 1388 // another operand with the same type index has an actual type attached: 1389 if (TypeToPrint.isValid()) 1390 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1391 return TypeToPrint; 1392 } 1393 1394 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1395 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1396 dbgs() << " "; 1397 print(dbgs()); 1398 } 1399 #endif 1400 1401 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1402 bool SkipDebugLoc, bool AddNewLine, 1403 const TargetInstrInfo *TII) const { 1404 const Module *M = nullptr; 1405 const Function *F = nullptr; 1406 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1407 F = &MF->getFunction(); 1408 M = F->getParent(); 1409 if (!TII) 1410 TII = MF->getSubtarget().getInstrInfo(); 1411 } 1412 1413 ModuleSlotTracker MST(M); 1414 if (F) 1415 MST.incorporateFunction(*F); 1416 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, TII); 1417 } 1418 1419 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1420 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1421 bool AddNewLine, const TargetInstrInfo *TII) const { 1422 // We can be a bit tidier if we know the MachineFunction. 1423 const MachineFunction *MF = nullptr; 1424 const TargetRegisterInfo *TRI = nullptr; 1425 const MachineRegisterInfo *MRI = nullptr; 1426 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1427 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1428 1429 if (isCFIInstruction()) 1430 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1431 1432 SmallBitVector PrintedTypes(8); 1433 bool ShouldPrintRegisterTies = hasComplexRegisterTies(); 1434 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1435 if (!ShouldPrintRegisterTies) 1436 return 0U; 1437 const MachineOperand &MO = getOperand(OpIdx); 1438 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1439 return findTiedOperandIdx(OpIdx); 1440 return 0U; 1441 }; 1442 unsigned StartOp = 0; 1443 unsigned e = getNumOperands(); 1444 1445 // Print explicitly defined operands on the left of an assignment syntax. 1446 while (StartOp < e) { 1447 const MachineOperand &MO = getOperand(StartOp); 1448 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1449 break; 1450 1451 if (StartOp != 0) 1452 OS << ", "; 1453 1454 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1455 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1456 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone, 1457 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1458 ++StartOp; 1459 } 1460 1461 if (StartOp != 0) 1462 OS << " = "; 1463 1464 if (getFlag(MachineInstr::FrameSetup)) 1465 OS << "frame-setup "; 1466 if (getFlag(MachineInstr::FrameDestroy)) 1467 OS << "frame-destroy "; 1468 if (getFlag(MachineInstr::FmNoNans)) 1469 OS << "nnan "; 1470 if (getFlag(MachineInstr::FmNoInfs)) 1471 OS << "ninf "; 1472 if (getFlag(MachineInstr::FmNsz)) 1473 OS << "nsz "; 1474 if (getFlag(MachineInstr::FmArcp)) 1475 OS << "arcp "; 1476 if (getFlag(MachineInstr::FmContract)) 1477 OS << "contract "; 1478 if (getFlag(MachineInstr::FmAfn)) 1479 OS << "afn "; 1480 if (getFlag(MachineInstr::FmReassoc)) 1481 OS << "reassoc "; 1482 1483 // Print the opcode name. 1484 if (TII) 1485 OS << TII->getName(getOpcode()); 1486 else 1487 OS << "UNKNOWN"; 1488 1489 if (SkipOpers) 1490 return; 1491 1492 // Print the rest of the operands. 1493 bool FirstOp = true; 1494 unsigned AsmDescOp = ~0u; 1495 unsigned AsmOpCount = 0; 1496 1497 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1498 // Print asm string. 1499 OS << " "; 1500 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1501 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1502 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1503 getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1504 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1505 IntrinsicInfo); 1506 1507 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1508 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1509 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1510 OS << " [sideeffect]"; 1511 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1512 OS << " [mayload]"; 1513 if (ExtraInfo & InlineAsm::Extra_MayStore) 1514 OS << " [maystore]"; 1515 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1516 OS << " [isconvergent]"; 1517 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1518 OS << " [alignstack]"; 1519 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1520 OS << " [attdialect]"; 1521 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1522 OS << " [inteldialect]"; 1523 1524 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1525 FirstOp = false; 1526 } 1527 1528 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1529 const MachineOperand &MO = getOperand(i); 1530 1531 if (FirstOp) FirstOp = false; else OS << ","; 1532 OS << " "; 1533 1534 if (isDebugValue() && MO.isMetadata()) { 1535 // Pretty print DBG_VALUE instructions. 1536 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1537 if (DIV && !DIV->getName().empty()) 1538 OS << "!\"" << DIV->getName() << '\"'; 1539 else { 1540 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1541 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1542 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1543 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1544 } 1545 } else if (isDebugLabel() && MO.isMetadata()) { 1546 // Pretty print DBG_LABEL instructions. 1547 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1548 if (DIL && !DIL->getName().empty()) 1549 OS << "\"" << DIL->getName() << '\"'; 1550 else { 1551 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1552 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1553 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1554 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1555 } 1556 } else if (i == AsmDescOp && MO.isImm()) { 1557 // Pretty print the inline asm operand descriptor. 1558 OS << '$' << AsmOpCount++; 1559 unsigned Flag = MO.getImm(); 1560 switch (InlineAsm::getKind(Flag)) { 1561 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1562 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1563 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1564 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1565 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1566 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1567 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1568 } 1569 1570 unsigned RCID = 0; 1571 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1572 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1573 if (TRI) { 1574 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1575 } else 1576 OS << ":RC" << RCID; 1577 } 1578 1579 if (InlineAsm::isMemKind(Flag)) { 1580 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1581 switch (MCID) { 1582 case InlineAsm::Constraint_es: OS << ":es"; break; 1583 case InlineAsm::Constraint_i: OS << ":i"; break; 1584 case InlineAsm::Constraint_m: OS << ":m"; break; 1585 case InlineAsm::Constraint_o: OS << ":o"; break; 1586 case InlineAsm::Constraint_v: OS << ":v"; break; 1587 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1588 case InlineAsm::Constraint_R: OS << ":R"; break; 1589 case InlineAsm::Constraint_S: OS << ":S"; break; 1590 case InlineAsm::Constraint_T: OS << ":T"; break; 1591 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1592 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1593 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1594 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1595 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1596 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1597 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1598 case InlineAsm::Constraint_X: OS << ":X"; break; 1599 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1600 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1601 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1602 default: OS << ":?"; break; 1603 } 1604 } 1605 1606 unsigned TiedTo = 0; 1607 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1608 OS << " tiedto:$" << TiedTo; 1609 1610 OS << ']'; 1611 1612 // Compute the index of the next operand descriptor. 1613 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1614 } else { 1615 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1616 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1617 if (MO.isImm() && isOperandSubregIdx(i)) 1618 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1619 else 1620 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1621 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1622 } 1623 } 1624 1625 // Print any optional symbols attached to this instruction as-if they were 1626 // operands. 1627 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1628 if (!FirstOp) { 1629 FirstOp = false; 1630 OS << ','; 1631 } 1632 OS << " pre-instr-symbol "; 1633 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1634 } 1635 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1636 if (!FirstOp) { 1637 FirstOp = false; 1638 OS << ','; 1639 } 1640 OS << " post-instr-symbol "; 1641 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1642 } 1643 1644 if (!SkipDebugLoc) { 1645 if (const DebugLoc &DL = getDebugLoc()) { 1646 if (!FirstOp) 1647 OS << ','; 1648 OS << " debug-location "; 1649 DL->printAsOperand(OS, MST); 1650 } 1651 } 1652 1653 if (!memoperands_empty()) { 1654 SmallVector<StringRef, 0> SSNs; 1655 const LLVMContext *Context = nullptr; 1656 std::unique_ptr<LLVMContext> CtxPtr; 1657 const MachineFrameInfo *MFI = nullptr; 1658 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1659 MFI = &MF->getFrameInfo(); 1660 Context = &MF->getFunction().getContext(); 1661 } else { 1662 CtxPtr = llvm::make_unique<LLVMContext>(); 1663 Context = CtxPtr.get(); 1664 } 1665 1666 OS << " :: "; 1667 bool NeedComma = false; 1668 for (const MachineMemOperand *Op : memoperands()) { 1669 if (NeedComma) 1670 OS << ", "; 1671 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1672 NeedComma = true; 1673 } 1674 } 1675 1676 if (SkipDebugLoc) 1677 return; 1678 1679 bool HaveSemi = false; 1680 1681 // Print debug location information. 1682 if (const DebugLoc &DL = getDebugLoc()) { 1683 if (!HaveSemi) { 1684 OS << ';'; 1685 HaveSemi = true; 1686 } 1687 OS << ' '; 1688 DL.print(OS); 1689 } 1690 1691 // Print extra comments for DEBUG_VALUE. 1692 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1693 if (!HaveSemi) { 1694 OS << ";"; 1695 HaveSemi = true; 1696 } 1697 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1698 OS << " line no:" << DV->getLine(); 1699 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1700 DebugLoc InlinedAtDL(InlinedAt); 1701 if (InlinedAtDL && MF) { 1702 OS << " inlined @[ "; 1703 InlinedAtDL.print(OS); 1704 OS << " ]"; 1705 } 1706 } 1707 if (isIndirectDebugValue()) 1708 OS << " indirect"; 1709 } 1710 // TODO: DBG_LABEL 1711 1712 if (AddNewLine) 1713 OS << '\n'; 1714 } 1715 1716 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1717 const TargetRegisterInfo *RegInfo, 1718 bool AddIfNotFound) { 1719 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1720 bool hasAliases = isPhysReg && 1721 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1722 bool Found = false; 1723 SmallVector<unsigned,4> DeadOps; 1724 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1725 MachineOperand &MO = getOperand(i); 1726 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1727 continue; 1728 1729 // DEBUG_VALUE nodes do not contribute to code generation and should 1730 // always be ignored. Failure to do so may result in trying to modify 1731 // KILL flags on DEBUG_VALUE nodes. 1732 if (MO.isDebug()) 1733 continue; 1734 1735 unsigned Reg = MO.getReg(); 1736 if (!Reg) 1737 continue; 1738 1739 if (Reg == IncomingReg) { 1740 if (!Found) { 1741 if (MO.isKill()) 1742 // The register is already marked kill. 1743 return true; 1744 if (isPhysReg && isRegTiedToDefOperand(i)) 1745 // Two-address uses of physregs must not be marked kill. 1746 return true; 1747 MO.setIsKill(); 1748 Found = true; 1749 } 1750 } else if (hasAliases && MO.isKill() && 1751 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1752 // A super-register kill already exists. 1753 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1754 return true; 1755 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1756 DeadOps.push_back(i); 1757 } 1758 } 1759 1760 // Trim unneeded kill operands. 1761 while (!DeadOps.empty()) { 1762 unsigned OpIdx = DeadOps.back(); 1763 if (getOperand(OpIdx).isImplicit()) 1764 RemoveOperand(OpIdx); 1765 else 1766 getOperand(OpIdx).setIsKill(false); 1767 DeadOps.pop_back(); 1768 } 1769 1770 // If not found, this means an alias of one of the operands is killed. Add a 1771 // new implicit operand if required. 1772 if (!Found && AddIfNotFound) { 1773 addOperand(MachineOperand::CreateReg(IncomingReg, 1774 false /*IsDef*/, 1775 true /*IsImp*/, 1776 true /*IsKill*/)); 1777 return true; 1778 } 1779 return Found; 1780 } 1781 1782 void MachineInstr::clearRegisterKills(unsigned Reg, 1783 const TargetRegisterInfo *RegInfo) { 1784 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1785 RegInfo = nullptr; 1786 for (MachineOperand &MO : operands()) { 1787 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1788 continue; 1789 unsigned OpReg = MO.getReg(); 1790 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1791 MO.setIsKill(false); 1792 } 1793 } 1794 1795 bool MachineInstr::addRegisterDead(unsigned Reg, 1796 const TargetRegisterInfo *RegInfo, 1797 bool AddIfNotFound) { 1798 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1799 bool hasAliases = isPhysReg && 1800 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1801 bool Found = false; 1802 SmallVector<unsigned,4> DeadOps; 1803 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1804 MachineOperand &MO = getOperand(i); 1805 if (!MO.isReg() || !MO.isDef()) 1806 continue; 1807 unsigned MOReg = MO.getReg(); 1808 if (!MOReg) 1809 continue; 1810 1811 if (MOReg == Reg) { 1812 MO.setIsDead(); 1813 Found = true; 1814 } else if (hasAliases && MO.isDead() && 1815 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1816 // There exists a super-register that's marked dead. 1817 if (RegInfo->isSuperRegister(Reg, MOReg)) 1818 return true; 1819 if (RegInfo->isSubRegister(Reg, MOReg)) 1820 DeadOps.push_back(i); 1821 } 1822 } 1823 1824 // Trim unneeded dead operands. 1825 while (!DeadOps.empty()) { 1826 unsigned OpIdx = DeadOps.back(); 1827 if (getOperand(OpIdx).isImplicit()) 1828 RemoveOperand(OpIdx); 1829 else 1830 getOperand(OpIdx).setIsDead(false); 1831 DeadOps.pop_back(); 1832 } 1833 1834 // If not found, this means an alias of one of the operands is dead. Add a 1835 // new implicit operand if required. 1836 if (Found || !AddIfNotFound) 1837 return Found; 1838 1839 addOperand(MachineOperand::CreateReg(Reg, 1840 true /*IsDef*/, 1841 true /*IsImp*/, 1842 false /*IsKill*/, 1843 true /*IsDead*/)); 1844 return true; 1845 } 1846 1847 void MachineInstr::clearRegisterDeads(unsigned Reg) { 1848 for (MachineOperand &MO : operands()) { 1849 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 1850 continue; 1851 MO.setIsDead(false); 1852 } 1853 } 1854 1855 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 1856 for (MachineOperand &MO : operands()) { 1857 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 1858 continue; 1859 MO.setIsUndef(IsUndef); 1860 } 1861 } 1862 1863 void MachineInstr::addRegisterDefined(unsigned Reg, 1864 const TargetRegisterInfo *RegInfo) { 1865 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1866 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 1867 if (MO) 1868 return; 1869 } else { 1870 for (const MachineOperand &MO : operands()) { 1871 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1872 MO.getSubReg() == 0) 1873 return; 1874 } 1875 } 1876 addOperand(MachineOperand::CreateReg(Reg, 1877 true /*IsDef*/, 1878 true /*IsImp*/)); 1879 } 1880 1881 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1882 const TargetRegisterInfo &TRI) { 1883 bool HasRegMask = false; 1884 for (MachineOperand &MO : operands()) { 1885 if (MO.isRegMask()) { 1886 HasRegMask = true; 1887 continue; 1888 } 1889 if (!MO.isReg() || !MO.isDef()) continue; 1890 unsigned Reg = MO.getReg(); 1891 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1892 // If there are no uses, including partial uses, the def is dead. 1893 if (llvm::none_of(UsedRegs, 1894 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 1895 MO.setIsDead(); 1896 } 1897 1898 // This is a call with a register mask operand. 1899 // Mask clobbers are always dead, so add defs for the non-dead defines. 1900 if (HasRegMask) 1901 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1902 I != E; ++I) 1903 addRegisterDefined(*I, &TRI); 1904 } 1905 1906 unsigned 1907 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1908 // Build up a buffer of hash code components. 1909 SmallVector<size_t, 8> HashComponents; 1910 HashComponents.reserve(MI->getNumOperands() + 1); 1911 HashComponents.push_back(MI->getOpcode()); 1912 for (const MachineOperand &MO : MI->operands()) { 1913 if (MO.isReg() && MO.isDef() && 1914 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1915 continue; // Skip virtual register defs. 1916 1917 HashComponents.push_back(hash_value(MO)); 1918 } 1919 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1920 } 1921 1922 void MachineInstr::emitError(StringRef Msg) const { 1923 // Find the source location cookie. 1924 unsigned LocCookie = 0; 1925 const MDNode *LocMD = nullptr; 1926 for (unsigned i = getNumOperands(); i != 0; --i) { 1927 if (getOperand(i-1).isMetadata() && 1928 (LocMD = getOperand(i-1).getMetadata()) && 1929 LocMD->getNumOperands() != 0) { 1930 if (const ConstantInt *CI = 1931 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 1932 LocCookie = CI->getZExtValue(); 1933 break; 1934 } 1935 } 1936 } 1937 1938 if (const MachineBasicBlock *MBB = getParent()) 1939 if (const MachineFunction *MF = MBB->getParent()) 1940 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1941 report_fatal_error(Msg); 1942 } 1943 1944 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 1945 const MCInstrDesc &MCID, bool IsIndirect, 1946 unsigned Reg, const MDNode *Variable, 1947 const MDNode *Expr) { 1948 assert(isa<DILocalVariable>(Variable) && "not a variable"); 1949 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 1950 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 1951 "Expected inlined-at fields to agree"); 1952 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); 1953 if (IsIndirect) 1954 MIB.addImm(0U); 1955 else 1956 MIB.addReg(0U, RegState::Debug); 1957 return MIB.addMetadata(Variable).addMetadata(Expr); 1958 } 1959 1960 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 1961 const MCInstrDesc &MCID, bool IsIndirect, 1962 MachineOperand &MO, const MDNode *Variable, 1963 const MDNode *Expr) { 1964 assert(isa<DILocalVariable>(Variable) && "not a variable"); 1965 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 1966 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 1967 "Expected inlined-at fields to agree"); 1968 if (MO.isReg()) 1969 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); 1970 1971 auto MIB = BuildMI(MF, DL, MCID).add(MO); 1972 if (IsIndirect) 1973 MIB.addImm(0U); 1974 else 1975 MIB.addReg(0U, RegState::Debug); 1976 return MIB.addMetadata(Variable).addMetadata(Expr); 1977 } 1978 1979 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 1980 MachineBasicBlock::iterator I, 1981 const DebugLoc &DL, const MCInstrDesc &MCID, 1982 bool IsIndirect, unsigned Reg, 1983 const MDNode *Variable, const MDNode *Expr) { 1984 MachineFunction &MF = *BB.getParent(); 1985 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 1986 BB.insert(I, MI); 1987 return MachineInstrBuilder(MF, MI); 1988 } 1989 1990 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 1991 MachineBasicBlock::iterator I, 1992 const DebugLoc &DL, const MCInstrDesc &MCID, 1993 bool IsIndirect, MachineOperand &MO, 1994 const MDNode *Variable, const MDNode *Expr) { 1995 MachineFunction &MF = *BB.getParent(); 1996 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); 1997 BB.insert(I, MI); 1998 return MachineInstrBuilder(MF, *MI); 1999 } 2000 2001 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2002 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2003 static const DIExpression *computeExprForSpill(const MachineInstr &MI) { 2004 assert(MI.getOperand(0).isReg() && "can't spill non-register"); 2005 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2006 "Expected inlined-at fields to agree"); 2007 2008 const DIExpression *Expr = MI.getDebugExpression(); 2009 if (MI.isIndirectDebugValue()) { 2010 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 2011 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 2012 } 2013 return Expr; 2014 } 2015 2016 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2017 MachineBasicBlock::iterator I, 2018 const MachineInstr &Orig, 2019 int FrameIndex) { 2020 const DIExpression *Expr = computeExprForSpill(Orig); 2021 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) 2022 .addFrameIndex(FrameIndex) 2023 .addImm(0U) 2024 .addMetadata(Orig.getDebugVariable()) 2025 .addMetadata(Expr); 2026 } 2027 2028 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { 2029 const DIExpression *Expr = computeExprForSpill(Orig); 2030 Orig.getOperand(0).ChangeToFrameIndex(FrameIndex); 2031 Orig.getOperand(1).ChangeToImmediate(0U); 2032 Orig.getOperand(3).setMetadata(Expr); 2033 } 2034 2035 void MachineInstr::collectDebugValues( 2036 SmallVectorImpl<MachineInstr *> &DbgValues) { 2037 MachineInstr &MI = *this; 2038 if (!MI.getOperand(0).isReg()) 2039 return; 2040 2041 MachineBasicBlock::iterator DI = MI; ++DI; 2042 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2043 DI != DE; ++DI) { 2044 if (!DI->isDebugValue()) 2045 return; 2046 if (DI->getOperand(0).isReg() && 2047 DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) 2048 DbgValues.push_back(&*DI); 2049 } 2050 } 2051