1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/Constants.h" 16 #include "llvm/Function.h" 17 #include "llvm/InlineAsm.h" 18 #include "llvm/Metadata.h" 19 #include "llvm/Type.h" 20 #include "llvm/Value.h" 21 #include "llvm/Assembly/Writer.h" 22 #include "llvm/CodeGen/MachineConstantPool.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/PseudoSourceValue.h" 27 #include "llvm/MC/MCSymbol.h" 28 #include "llvm/Target/TargetMachine.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetInstrDesc.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/DebugInfo.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/LeakDetector.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/ADT/FoldingSet.h" 40 using namespace llvm; 41 42 //===----------------------------------------------------------------------===// 43 // MachineOperand Implementation 44 //===----------------------------------------------------------------------===// 45 46 /// AddRegOperandToRegInfo - Add this register operand to the specified 47 /// MachineRegisterInfo. If it is null, then the next/prev fields should be 48 /// explicitly nulled out. 49 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { 50 assert(isReg() && "Can only add reg operand to use lists"); 51 52 // If the reginfo pointer is null, just explicitly null out or next/prev 53 // pointers, to ensure they are not garbage. 54 if (RegInfo == 0) { 55 Contents.Reg.Prev = 0; 56 Contents.Reg.Next = 0; 57 return; 58 } 59 60 // Otherwise, add this operand to the head of the registers use/def list. 61 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); 62 63 // For SSA values, we prefer to keep the definition at the start of the list. 64 // we do this by skipping over the definition if it is at the head of the 65 // list. 66 if (*Head && (*Head)->isDef()) 67 Head = &(*Head)->Contents.Reg.Next; 68 69 Contents.Reg.Next = *Head; 70 if (Contents.Reg.Next) { 71 assert(getReg() == Contents.Reg.Next->getReg() && 72 "Different regs on the same list!"); 73 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; 74 } 75 76 Contents.Reg.Prev = Head; 77 *Head = this; 78 } 79 80 /// RemoveRegOperandFromRegInfo - Remove this register operand from the 81 /// MachineRegisterInfo it is linked with. 82 void MachineOperand::RemoveRegOperandFromRegInfo() { 83 assert(isOnRegUseList() && "Reg operand is not on a use list"); 84 // Unlink this from the doubly linked list of operands. 85 MachineOperand *NextOp = Contents.Reg.Next; 86 *Contents.Reg.Prev = NextOp; 87 if (NextOp) { 88 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); 89 NextOp->Contents.Reg.Prev = Contents.Reg.Prev; 90 } 91 Contents.Reg.Prev = 0; 92 Contents.Reg.Next = 0; 93 } 94 95 void MachineOperand::setReg(unsigned Reg) { 96 if (getReg() == Reg) return; // No change. 97 98 // Otherwise, we have to change the register. If this operand is embedded 99 // into a machine function, we need to update the old and new register's 100 // use/def lists. 101 if (MachineInstr *MI = getParent()) 102 if (MachineBasicBlock *MBB = MI->getParent()) 103 if (MachineFunction *MF = MBB->getParent()) { 104 RemoveRegOperandFromRegInfo(); 105 SmallContents.RegNo = Reg; 106 AddRegOperandToRegInfo(&MF->getRegInfo()); 107 return; 108 } 109 110 // Otherwise, just change the register, no problem. :) 111 SmallContents.RegNo = Reg; 112 } 113 114 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 115 const TargetRegisterInfo &TRI) { 116 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 117 if (SubIdx && getSubReg()) 118 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 119 setReg(Reg); 120 if (SubIdx) 121 setSubReg(SubIdx); 122 } 123 124 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 125 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 126 if (getSubReg()) { 127 Reg = TRI.getSubReg(Reg, getSubReg()); 128 assert(Reg && "Invalid SubReg for physical register"); 129 setSubReg(0); 130 } 131 setReg(Reg); 132 } 133 134 /// ChangeToImmediate - Replace this operand with a new immediate operand of 135 /// the specified value. If an operand is known to be an immediate already, 136 /// the setImm method should be used. 137 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 138 // If this operand is currently a register operand, and if this is in a 139 // function, deregister the operand from the register's use/def list. 140 if (isReg() && getParent() && getParent()->getParent() && 141 getParent()->getParent()->getParent()) 142 RemoveRegOperandFromRegInfo(); 143 144 OpKind = MO_Immediate; 145 Contents.ImmVal = ImmVal; 146 } 147 148 /// ChangeToRegister - Replace this operand with a new register operand of 149 /// the specified value. If an operand is known to be an register already, 150 /// the setReg method should be used. 151 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 152 bool isKill, bool isDead, bool isUndef, 153 bool isDebug) { 154 // If this operand is already a register operand, use setReg to update the 155 // register's use/def lists. 156 if (isReg()) { 157 assert(!isEarlyClobber()); 158 setReg(Reg); 159 } else { 160 // Otherwise, change this to a register and set the reg#. 161 OpKind = MO_Register; 162 SmallContents.RegNo = Reg; 163 164 // If this operand is embedded in a function, add the operand to the 165 // register's use/def list. 166 if (MachineInstr *MI = getParent()) 167 if (MachineBasicBlock *MBB = MI->getParent()) 168 if (MachineFunction *MF = MBB->getParent()) 169 AddRegOperandToRegInfo(&MF->getRegInfo()); 170 } 171 172 IsDef = isDef; 173 IsImp = isImp; 174 IsKill = isKill; 175 IsDead = isDead; 176 IsUndef = isUndef; 177 IsEarlyClobber = false; 178 IsDebug = isDebug; 179 SubReg = 0; 180 } 181 182 /// isIdenticalTo - Return true if this operand is identical to the specified 183 /// operand. 184 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 185 if (getType() != Other.getType() || 186 getTargetFlags() != Other.getTargetFlags()) 187 return false; 188 189 switch (getType()) { 190 default: llvm_unreachable("Unrecognized operand type"); 191 case MachineOperand::MO_Register: 192 return getReg() == Other.getReg() && isDef() == Other.isDef() && 193 getSubReg() == Other.getSubReg(); 194 case MachineOperand::MO_Immediate: 195 return getImm() == Other.getImm(); 196 case MachineOperand::MO_FPImmediate: 197 return getFPImm() == Other.getFPImm(); 198 case MachineOperand::MO_MachineBasicBlock: 199 return getMBB() == Other.getMBB(); 200 case MachineOperand::MO_FrameIndex: 201 return getIndex() == Other.getIndex(); 202 case MachineOperand::MO_ConstantPoolIndex: 203 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 204 case MachineOperand::MO_JumpTableIndex: 205 return getIndex() == Other.getIndex(); 206 case MachineOperand::MO_GlobalAddress: 207 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 208 case MachineOperand::MO_ExternalSymbol: 209 return !strcmp(getSymbolName(), Other.getSymbolName()) && 210 getOffset() == Other.getOffset(); 211 case MachineOperand::MO_BlockAddress: 212 return getBlockAddress() == Other.getBlockAddress(); 213 case MachineOperand::MO_MCSymbol: 214 return getMCSymbol() == Other.getMCSymbol(); 215 case MachineOperand::MO_Metadata: 216 return getMetadata() == Other.getMetadata(); 217 } 218 } 219 220 /// print - Print the specified machine operand. 221 /// 222 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 223 // If the instruction is embedded into a basic block, we can find the 224 // target info for the instruction. 225 if (!TM) 226 if (const MachineInstr *MI = getParent()) 227 if (const MachineBasicBlock *MBB = MI->getParent()) 228 if (const MachineFunction *MF = MBB->getParent()) 229 TM = &MF->getTarget(); 230 231 switch (getType()) { 232 case MachineOperand::MO_Register: 233 if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) { 234 OS << "%reg" << getReg(); 235 } else { 236 if (TM) 237 OS << "%" << TM->getRegisterInfo()->get(getReg()).Name; 238 else 239 OS << "%physreg" << getReg(); 240 } 241 242 if (getSubReg() != 0) { 243 if (TM) 244 OS << ':' << TM->getRegisterInfo()->getSubRegIndexName(getSubReg()); 245 else 246 OS << ':' << getSubReg(); 247 } 248 249 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 250 isEarlyClobber()) { 251 OS << '<'; 252 bool NeedComma = false; 253 if (isDef()) { 254 if (NeedComma) OS << ','; 255 if (isEarlyClobber()) 256 OS << "earlyclobber,"; 257 if (isImplicit()) 258 OS << "imp-"; 259 OS << "def"; 260 NeedComma = true; 261 } else if (isImplicit()) { 262 OS << "imp-use"; 263 NeedComma = true; 264 } 265 266 if (isKill() || isDead() || isUndef()) { 267 if (NeedComma) OS << ','; 268 if (isKill()) OS << "kill"; 269 if (isDead()) OS << "dead"; 270 if (isUndef()) { 271 if (isKill() || isDead()) 272 OS << ','; 273 OS << "undef"; 274 } 275 } 276 OS << '>'; 277 } 278 break; 279 case MachineOperand::MO_Immediate: 280 OS << getImm(); 281 break; 282 case MachineOperand::MO_FPImmediate: 283 if (getFPImm()->getType()->isFloatTy()) 284 OS << getFPImm()->getValueAPF().convertToFloat(); 285 else 286 OS << getFPImm()->getValueAPF().convertToDouble(); 287 break; 288 case MachineOperand::MO_MachineBasicBlock: 289 OS << "<BB#" << getMBB()->getNumber() << ">"; 290 break; 291 case MachineOperand::MO_FrameIndex: 292 OS << "<fi#" << getIndex() << '>'; 293 break; 294 case MachineOperand::MO_ConstantPoolIndex: 295 OS << "<cp#" << getIndex(); 296 if (getOffset()) OS << "+" << getOffset(); 297 OS << '>'; 298 break; 299 case MachineOperand::MO_JumpTableIndex: 300 OS << "<jt#" << getIndex() << '>'; 301 break; 302 case MachineOperand::MO_GlobalAddress: 303 OS << "<ga:"; 304 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 305 if (getOffset()) OS << "+" << getOffset(); 306 OS << '>'; 307 break; 308 case MachineOperand::MO_ExternalSymbol: 309 OS << "<es:" << getSymbolName(); 310 if (getOffset()) OS << "+" << getOffset(); 311 OS << '>'; 312 break; 313 case MachineOperand::MO_BlockAddress: 314 OS << '<'; 315 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 316 OS << '>'; 317 break; 318 case MachineOperand::MO_Metadata: 319 OS << '<'; 320 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 321 OS << '>'; 322 break; 323 case MachineOperand::MO_MCSymbol: 324 OS << "<MCSym=" << *getMCSymbol() << '>'; 325 break; 326 default: 327 llvm_unreachable("Unrecognized operand type"); 328 } 329 330 if (unsigned TF = getTargetFlags()) 331 OS << "[TF=" << TF << ']'; 332 } 333 334 //===----------------------------------------------------------------------===// 335 // MachineMemOperand Implementation 336 //===----------------------------------------------------------------------===// 337 338 /// getAddrSpace - Return the LLVM IR address space number that this pointer 339 /// points into. 340 unsigned MachinePointerInfo::getAddrSpace() const { 341 if (V == 0) return 0; 342 return cast<PointerType>(V->getType())->getAddressSpace(); 343 } 344 345 /// getConstantPool - Return a MachinePointerInfo record that refers to the 346 /// constant pool. 347 MachinePointerInfo MachinePointerInfo::getConstantPool() { 348 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 349 } 350 351 /// getFixedStack - Return a MachinePointerInfo record that refers to the 352 /// the specified FrameIndex. 353 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 354 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 355 } 356 357 MachinePointerInfo MachinePointerInfo::getJumpTable() { 358 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 359 } 360 361 MachinePointerInfo MachinePointerInfo::getGOT() { 362 return MachinePointerInfo(PseudoSourceValue::getGOT()); 363 } 364 365 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 366 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 367 } 368 369 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 370 uint64_t s, unsigned int a, 371 const MDNode *TBAAInfo) 372 : PtrInfo(ptrinfo), Size(s), 373 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 374 TBAAInfo(TBAAInfo) { 375 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 376 "invalid pointer value"); 377 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 378 assert((isLoad() || isStore()) && "Not a load/store!"); 379 } 380 381 /// Profile - Gather unique data for the object. 382 /// 383 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 384 ID.AddInteger(getOffset()); 385 ID.AddInteger(Size); 386 ID.AddPointer(getValue()); 387 ID.AddInteger(Flags); 388 } 389 390 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 391 // The Value and Offset may differ due to CSE. But the flags and size 392 // should be the same. 393 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 394 assert(MMO->getSize() == getSize() && "Size mismatch!"); 395 396 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 397 // Update the alignment value. 398 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 399 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 400 // Also update the base and offset, because the new alignment may 401 // not be applicable with the old ones. 402 PtrInfo = MMO->PtrInfo; 403 } 404 } 405 406 /// getAlignment - Return the minimum known alignment in bytes of the 407 /// actual memory reference. 408 uint64_t MachineMemOperand::getAlignment() const { 409 return MinAlign(getBaseAlignment(), getOffset()); 410 } 411 412 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 413 assert((MMO.isLoad() || MMO.isStore()) && 414 "SV has to be a load, store or both."); 415 416 if (MMO.isVolatile()) 417 OS << "Volatile "; 418 419 if (MMO.isLoad()) 420 OS << "LD"; 421 if (MMO.isStore()) 422 OS << "ST"; 423 OS << MMO.getSize(); 424 425 // Print the address information. 426 OS << "["; 427 if (!MMO.getValue()) 428 OS << "<unknown>"; 429 else 430 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 431 432 // If the alignment of the memory reference itself differs from the alignment 433 // of the base pointer, print the base alignment explicitly, next to the base 434 // pointer. 435 if (MMO.getBaseAlignment() != MMO.getAlignment()) 436 OS << "(align=" << MMO.getBaseAlignment() << ")"; 437 438 if (MMO.getOffset() != 0) 439 OS << "+" << MMO.getOffset(); 440 OS << "]"; 441 442 // Print the alignment of the reference. 443 if (MMO.getBaseAlignment() != MMO.getAlignment() || 444 MMO.getBaseAlignment() != MMO.getSize()) 445 OS << "(align=" << MMO.getAlignment() << ")"; 446 447 // Print TBAA info. 448 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 449 OS << "(tbaa="; 450 if (TBAAInfo->getNumOperands() > 0) 451 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 452 else 453 OS << "<unknown>"; 454 OS << ")"; 455 } 456 457 return OS; 458 } 459 460 //===----------------------------------------------------------------------===// 461 // MachineInstr Implementation 462 //===----------------------------------------------------------------------===// 463 464 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with 465 /// TID NULL and no operands. 466 MachineInstr::MachineInstr() 467 : TID(0), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 468 Parent(0) { 469 // Make sure that we get added to a machine basicblock 470 LeakDetector::addGarbageObject(this); 471 } 472 473 void MachineInstr::addImplicitDefUseOperands() { 474 if (TID->ImplicitDefs) 475 for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs) 476 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 477 if (TID->ImplicitUses) 478 for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses) 479 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 480 } 481 482 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 483 /// implicit operands. It reserves space for the number of operands specified by 484 /// the TargetInstrDesc. 485 MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp) 486 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), 487 MemRefs(0), MemRefsEnd(0), Parent(0) { 488 if (!NoImp) 489 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 490 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 491 if (!NoImp) 492 addImplicitDefUseOperands(); 493 // Make sure that we get added to a machine basicblock 494 LeakDetector::addGarbageObject(this); 495 } 496 497 /// MachineInstr ctor - As above, but with a DebugLoc. 498 MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl, 499 bool NoImp) 500 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 501 Parent(0), debugLoc(dl) { 502 if (!NoImp) 503 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 504 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 505 if (!NoImp) 506 addImplicitDefUseOperands(); 507 // Make sure that we get added to a machine basicblock 508 LeakDetector::addGarbageObject(this); 509 } 510 511 /// MachineInstr ctor - Work exactly the same as the ctor two above, except 512 /// that the MachineInstr is created and added to the end of the specified 513 /// basic block. 514 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid) 515 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), 516 MemRefs(0), MemRefsEnd(0), Parent(0) { 517 assert(MBB && "Cannot use inserting ctor with null basic block!"); 518 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 519 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 520 addImplicitDefUseOperands(); 521 // Make sure that we get added to a machine basicblock 522 LeakDetector::addGarbageObject(this); 523 MBB->push_back(this); // Add instruction to end of basic block! 524 } 525 526 /// MachineInstr ctor - As above, but with a DebugLoc. 527 /// 528 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 529 const TargetInstrDesc &tid) 530 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 531 Parent(0), debugLoc(dl) { 532 assert(MBB && "Cannot use inserting ctor with null basic block!"); 533 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 534 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 535 addImplicitDefUseOperands(); 536 // Make sure that we get added to a machine basicblock 537 LeakDetector::addGarbageObject(this); 538 MBB->push_back(this); // Add instruction to end of basic block! 539 } 540 541 /// MachineInstr ctor - Copies MachineInstr arg exactly 542 /// 543 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 544 : TID(&MI.getDesc()), NumImplicitOps(0), AsmPrinterFlags(0), 545 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd), 546 Parent(0), debugLoc(MI.getDebugLoc()) { 547 Operands.reserve(MI.getNumOperands()); 548 549 // Add operands 550 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 551 addOperand(MI.getOperand(i)); 552 NumImplicitOps = MI.NumImplicitOps; 553 554 // Set parent to null. 555 Parent = 0; 556 557 LeakDetector::addGarbageObject(this); 558 } 559 560 MachineInstr::~MachineInstr() { 561 LeakDetector::removeGarbageObject(this); 562 #ifndef NDEBUG 563 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 564 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 565 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 566 "Reg operand def/use list corrupted"); 567 } 568 #endif 569 } 570 571 /// getRegInfo - If this instruction is embedded into a MachineFunction, 572 /// return the MachineRegisterInfo object for the current function, otherwise 573 /// return null. 574 MachineRegisterInfo *MachineInstr::getRegInfo() { 575 if (MachineBasicBlock *MBB = getParent()) 576 return &MBB->getParent()->getRegInfo(); 577 return 0; 578 } 579 580 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 581 /// this instruction from their respective use lists. This requires that the 582 /// operands already be on their use lists. 583 void MachineInstr::RemoveRegOperandsFromUseLists() { 584 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 585 if (Operands[i].isReg()) 586 Operands[i].RemoveRegOperandFromRegInfo(); 587 } 588 } 589 590 /// AddRegOperandsToUseLists - Add all of the register operands in 591 /// this instruction from their respective use lists. This requires that the 592 /// operands not be on their use lists yet. 593 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { 594 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 595 if (Operands[i].isReg()) 596 Operands[i].AddRegOperandToRegInfo(&RegInfo); 597 } 598 } 599 600 601 /// addOperand - Add the specified operand to the instruction. If it is an 602 /// implicit operand, it is added to the end of the operand list. If it is 603 /// an explicit operand it is added at the end of the explicit operand list 604 /// (before the first implicit operand). 605 void MachineInstr::addOperand(const MachineOperand &Op) { 606 bool isImpReg = Op.isReg() && Op.isImplicit(); 607 assert((isImpReg || !OperandsComplete()) && 608 "Trying to add an operand to a machine instr that is already done!"); 609 610 MachineRegisterInfo *RegInfo = getRegInfo(); 611 612 // If we are adding the operand to the end of the list, our job is simpler. 613 // This is true most of the time, so this is a reasonable optimization. 614 if (isImpReg || NumImplicitOps == 0) { 615 // We can only do this optimization if we know that the operand list won't 616 // reallocate. 617 if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) { 618 Operands.push_back(Op); 619 620 // Set the parent of the operand. 621 Operands.back().ParentMI = this; 622 623 // If the operand is a register, update the operand's use list. 624 if (Op.isReg()) { 625 Operands.back().AddRegOperandToRegInfo(RegInfo); 626 // If the register operand is flagged as early, mark the operand as such 627 unsigned OpNo = Operands.size() - 1; 628 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 629 Operands[OpNo].setIsEarlyClobber(true); 630 } 631 return; 632 } 633 } 634 635 // Otherwise, we have to insert a real operand before any implicit ones. 636 unsigned OpNo = Operands.size()-NumImplicitOps; 637 638 // If this instruction isn't embedded into a function, then we don't need to 639 // update any operand lists. 640 if (RegInfo == 0) { 641 // Simple insertion, no reginfo update needed for other register operands. 642 Operands.insert(Operands.begin()+OpNo, Op); 643 Operands[OpNo].ParentMI = this; 644 645 // Do explicitly set the reginfo for this operand though, to ensure the 646 // next/prev fields are properly nulled out. 647 if (Operands[OpNo].isReg()) { 648 Operands[OpNo].AddRegOperandToRegInfo(0); 649 // If the register operand is flagged as early, mark the operand as such 650 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 651 Operands[OpNo].setIsEarlyClobber(true); 652 } 653 654 } else if (Operands.size()+1 <= Operands.capacity()) { 655 // Otherwise, we have to remove register operands from their register use 656 // list, add the operand, then add the register operands back to their use 657 // list. This also must handle the case when the operand list reallocates 658 // to somewhere else. 659 660 // If insertion of this operand won't cause reallocation of the operand 661 // list, just remove the implicit operands, add the operand, then re-add all 662 // the rest of the operands. 663 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 664 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 665 Operands[i].RemoveRegOperandFromRegInfo(); 666 } 667 668 // Add the operand. If it is a register, add it to the reg list. 669 Operands.insert(Operands.begin()+OpNo, Op); 670 Operands[OpNo].ParentMI = this; 671 672 if (Operands[OpNo].isReg()) { 673 Operands[OpNo].AddRegOperandToRegInfo(RegInfo); 674 // If the register operand is flagged as early, mark the operand as such 675 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 676 Operands[OpNo].setIsEarlyClobber(true); 677 } 678 679 // Re-add all the implicit ops. 680 for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) { 681 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 682 Operands[i].AddRegOperandToRegInfo(RegInfo); 683 } 684 } else { 685 // Otherwise, we will be reallocating the operand list. Remove all reg 686 // operands from their list, then readd them after the operand list is 687 // reallocated. 688 RemoveRegOperandsFromUseLists(); 689 690 Operands.insert(Operands.begin()+OpNo, Op); 691 Operands[OpNo].ParentMI = this; 692 693 // Re-add all the operands. 694 AddRegOperandsToUseLists(*RegInfo); 695 696 // If the register operand is flagged as early, mark the operand as such 697 if (Operands[OpNo].isReg() 698 && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 699 Operands[OpNo].setIsEarlyClobber(true); 700 } 701 } 702 703 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 704 /// fewer operand than it started with. 705 /// 706 void MachineInstr::RemoveOperand(unsigned OpNo) { 707 assert(OpNo < Operands.size() && "Invalid operand number"); 708 709 // Special case removing the last one. 710 if (OpNo == Operands.size()-1) { 711 // If needed, remove from the reg def/use list. 712 if (Operands.back().isReg() && Operands.back().isOnRegUseList()) 713 Operands.back().RemoveRegOperandFromRegInfo(); 714 715 Operands.pop_back(); 716 return; 717 } 718 719 // Otherwise, we are removing an interior operand. If we have reginfo to 720 // update, remove all operands that will be shifted down from their reg lists, 721 // move everything down, then re-add them. 722 MachineRegisterInfo *RegInfo = getRegInfo(); 723 if (RegInfo) { 724 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 725 if (Operands[i].isReg()) 726 Operands[i].RemoveRegOperandFromRegInfo(); 727 } 728 } 729 730 Operands.erase(Operands.begin()+OpNo); 731 732 if (RegInfo) { 733 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 734 if (Operands[i].isReg()) 735 Operands[i].AddRegOperandToRegInfo(RegInfo); 736 } 737 } 738 } 739 740 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 741 /// This function should be used only occasionally. The setMemRefs function 742 /// is the primary method for setting up a MachineInstr's MemRefs list. 743 void MachineInstr::addMemOperand(MachineFunction &MF, 744 MachineMemOperand *MO) { 745 mmo_iterator OldMemRefs = MemRefs; 746 mmo_iterator OldMemRefsEnd = MemRefsEnd; 747 748 size_t NewNum = (MemRefsEnd - MemRefs) + 1; 749 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 750 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum; 751 752 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs); 753 NewMemRefs[NewNum - 1] = MO; 754 755 MemRefs = NewMemRefs; 756 MemRefsEnd = NewMemRefsEnd; 757 } 758 759 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 760 MICheckType Check) const { 761 // If opcodes or number of operands are not the same then the two 762 // instructions are obviously not identical. 763 if (Other->getOpcode() != getOpcode() || 764 Other->getNumOperands() != getNumOperands()) 765 return false; 766 767 // Check operands to make sure they match. 768 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 769 const MachineOperand &MO = getOperand(i); 770 const MachineOperand &OMO = Other->getOperand(i); 771 // Clients may or may not want to ignore defs when testing for equality. 772 // For example, machine CSE pass only cares about finding common 773 // subexpressions, so it's safe to ignore virtual register defs. 774 if (Check != CheckDefs && MO.isReg() && MO.isDef()) { 775 if (Check == IgnoreDefs) 776 continue; 777 // Check == IgnoreVRegDefs 778 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 779 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 780 if (MO.getReg() != OMO.getReg()) 781 return false; 782 } else if (!MO.isIdenticalTo(OMO)) 783 return false; 784 } 785 return true; 786 } 787 788 /// removeFromParent - This method unlinks 'this' from the containing basic 789 /// block, and returns it, but does not delete it. 790 MachineInstr *MachineInstr::removeFromParent() { 791 assert(getParent() && "Not embedded in a basic block!"); 792 getParent()->remove(this); 793 return this; 794 } 795 796 797 /// eraseFromParent - This method unlinks 'this' from the containing basic 798 /// block, and deletes it. 799 void MachineInstr::eraseFromParent() { 800 assert(getParent() && "Not embedded in a basic block!"); 801 getParent()->erase(this); 802 } 803 804 805 /// OperandComplete - Return true if it's illegal to add a new operand 806 /// 807 bool MachineInstr::OperandsComplete() const { 808 unsigned short NumOperands = TID->getNumOperands(); 809 if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands) 810 return true; // Broken: we have all the operands of this instruction! 811 return false; 812 } 813 814 /// getNumExplicitOperands - Returns the number of non-implicit operands. 815 /// 816 unsigned MachineInstr::getNumExplicitOperands() const { 817 unsigned NumOperands = TID->getNumOperands(); 818 if (!TID->isVariadic()) 819 return NumOperands; 820 821 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 822 const MachineOperand &MO = getOperand(i); 823 if (!MO.isReg() || !MO.isImplicit()) 824 NumOperands++; 825 } 826 return NumOperands; 827 } 828 829 830 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 831 /// the specific register or -1 if it is not found. It further tightens 832 /// the search criteria to a use that kills the register if isKill is true. 833 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 834 const TargetRegisterInfo *TRI) const { 835 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 836 const MachineOperand &MO = getOperand(i); 837 if (!MO.isReg() || !MO.isUse()) 838 continue; 839 unsigned MOReg = MO.getReg(); 840 if (!MOReg) 841 continue; 842 if (MOReg == Reg || 843 (TRI && 844 TargetRegisterInfo::isPhysicalRegister(MOReg) && 845 TargetRegisterInfo::isPhysicalRegister(Reg) && 846 TRI->isSubRegister(MOReg, Reg))) 847 if (!isKill || MO.isKill()) 848 return i; 849 } 850 return -1; 851 } 852 853 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 854 /// indicating if this instruction reads or writes Reg. This also considers 855 /// partial defines. 856 std::pair<bool,bool> 857 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 858 SmallVectorImpl<unsigned> *Ops) const { 859 bool PartDef = false; // Partial redefine. 860 bool FullDef = false; // Full define. 861 bool Use = false; 862 863 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 864 const MachineOperand &MO = getOperand(i); 865 if (!MO.isReg() || MO.getReg() != Reg) 866 continue; 867 if (Ops) 868 Ops->push_back(i); 869 if (MO.isUse()) 870 Use |= !MO.isUndef(); 871 else if (MO.getSubReg()) 872 PartDef = true; 873 else 874 FullDef = true; 875 } 876 // A partial redefine uses Reg unless there is also a full define. 877 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 878 } 879 880 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 881 /// the specified register or -1 if it is not found. If isDead is true, defs 882 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 883 /// also checks if there is a def of a super-register. 884 int 885 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 886 const TargetRegisterInfo *TRI) const { 887 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 888 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 889 const MachineOperand &MO = getOperand(i); 890 if (!MO.isReg() || !MO.isDef()) 891 continue; 892 unsigned MOReg = MO.getReg(); 893 bool Found = (MOReg == Reg); 894 if (!Found && TRI && isPhys && 895 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 896 if (Overlap) 897 Found = TRI->regsOverlap(MOReg, Reg); 898 else 899 Found = TRI->isSubRegister(MOReg, Reg); 900 } 901 if (Found && (!isDead || MO.isDead())) 902 return i; 903 } 904 return -1; 905 } 906 907 /// findFirstPredOperandIdx() - Find the index of the first operand in the 908 /// operand list that is used to represent the predicate. It returns -1 if 909 /// none is found. 910 int MachineInstr::findFirstPredOperandIdx() const { 911 const TargetInstrDesc &TID = getDesc(); 912 if (TID.isPredicable()) { 913 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 914 if (TID.OpInfo[i].isPredicate()) 915 return i; 916 } 917 918 return -1; 919 } 920 921 /// isRegTiedToUseOperand - Given the index of a register def operand, 922 /// check if the register def is tied to a source operand, due to either 923 /// two-address elimination or inline assembly constraints. Returns the 924 /// first tied use operand index by reference is UseOpIdx is not null. 925 bool MachineInstr:: 926 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 927 if (isInlineAsm()) { 928 assert(DefOpIdx >= 3); 929 const MachineOperand &MO = getOperand(DefOpIdx); 930 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 931 return false; 932 // Determine the actual operand index that corresponds to this index. 933 unsigned DefNo = 0; 934 unsigned DefPart = 0; 935 for (unsigned i = 2, e = getNumOperands(); i < e; ) { 936 const MachineOperand &FMO = getOperand(i); 937 // After the normal asm operands there may be additional imp-def regs. 938 if (!FMO.isImm()) 939 return false; 940 // Skip over this def. 941 unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm()); 942 unsigned PrevDef = i + 1; 943 i = PrevDef + NumOps; 944 if (i > DefOpIdx) { 945 DefPart = DefOpIdx - PrevDef; 946 break; 947 } 948 ++DefNo; 949 } 950 for (unsigned i = 2, e = getNumOperands(); i != e; ++i) { 951 const MachineOperand &FMO = getOperand(i); 952 if (!FMO.isImm()) 953 continue; 954 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 955 continue; 956 unsigned Idx; 957 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 958 Idx == DefNo) { 959 if (UseOpIdx) 960 *UseOpIdx = (unsigned)i + 1 + DefPart; 961 return true; 962 } 963 } 964 return false; 965 } 966 967 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 968 const TargetInstrDesc &TID = getDesc(); 969 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) { 970 const MachineOperand &MO = getOperand(i); 971 if (MO.isReg() && MO.isUse() && 972 TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) { 973 if (UseOpIdx) 974 *UseOpIdx = (unsigned)i; 975 return true; 976 } 977 } 978 return false; 979 } 980 981 /// isRegTiedToDefOperand - Return true if the operand of the specified index 982 /// is a register use and it is tied to an def operand. It also returns the def 983 /// operand index by reference. 984 bool MachineInstr:: 985 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 986 if (isInlineAsm()) { 987 const MachineOperand &MO = getOperand(UseOpIdx); 988 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 989 return false; 990 991 // Find the flag operand corresponding to UseOpIdx 992 unsigned FlagIdx, NumOps=0; 993 for (FlagIdx = 2; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) { 994 const MachineOperand &UFMO = getOperand(FlagIdx); 995 // After the normal asm operands there may be additional imp-def regs. 996 if (!UFMO.isImm()) 997 return false; 998 NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm()); 999 assert(NumOps < getNumOperands() && "Invalid inline asm flag"); 1000 if (UseOpIdx < FlagIdx+NumOps+1) 1001 break; 1002 } 1003 if (FlagIdx >= UseOpIdx) 1004 return false; 1005 const MachineOperand &UFMO = getOperand(FlagIdx); 1006 unsigned DefNo; 1007 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 1008 if (!DefOpIdx) 1009 return true; 1010 1011 unsigned DefIdx = 2; 1012 // Remember to adjust the index. First operand is asm string, second is 1013 // the AlignStack bit, then there is a flag for each. 1014 while (DefNo) { 1015 const MachineOperand &FMO = getOperand(DefIdx); 1016 assert(FMO.isImm()); 1017 // Skip over this def. 1018 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 1019 --DefNo; 1020 } 1021 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 1022 return true; 1023 } 1024 return false; 1025 } 1026 1027 const TargetInstrDesc &TID = getDesc(); 1028 if (UseOpIdx >= TID.getNumOperands()) 1029 return false; 1030 const MachineOperand &MO = getOperand(UseOpIdx); 1031 if (!MO.isReg() || !MO.isUse()) 1032 return false; 1033 int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO); 1034 if (DefIdx == -1) 1035 return false; 1036 if (DefOpIdx) 1037 *DefOpIdx = (unsigned)DefIdx; 1038 return true; 1039 } 1040 1041 /// clearKillInfo - Clears kill flags on all operands. 1042 /// 1043 void MachineInstr::clearKillInfo() { 1044 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1045 MachineOperand &MO = getOperand(i); 1046 if (MO.isReg() && MO.isUse()) 1047 MO.setIsKill(false); 1048 } 1049 } 1050 1051 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1052 /// 1053 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1054 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1055 const MachineOperand &MO = MI->getOperand(i); 1056 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1057 continue; 1058 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1059 MachineOperand &MOp = getOperand(j); 1060 if (!MOp.isIdenticalTo(MO)) 1061 continue; 1062 if (MO.isKill()) 1063 MOp.setIsKill(); 1064 else 1065 MOp.setIsDead(); 1066 break; 1067 } 1068 } 1069 } 1070 1071 /// copyPredicates - Copies predicate operand(s) from MI. 1072 void MachineInstr::copyPredicates(const MachineInstr *MI) { 1073 const TargetInstrDesc &TID = MI->getDesc(); 1074 if (!TID.isPredicable()) 1075 return; 1076 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1077 if (TID.OpInfo[i].isPredicate()) { 1078 // Predicated operands must be last operands. 1079 addOperand(MI->getOperand(i)); 1080 } 1081 } 1082 } 1083 1084 void MachineInstr::substituteRegister(unsigned FromReg, 1085 unsigned ToReg, 1086 unsigned SubIdx, 1087 const TargetRegisterInfo &RegInfo) { 1088 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1089 if (SubIdx) 1090 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1091 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1092 MachineOperand &MO = getOperand(i); 1093 if (!MO.isReg() || MO.getReg() != FromReg) 1094 continue; 1095 MO.substPhysReg(ToReg, RegInfo); 1096 } 1097 } else { 1098 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1099 MachineOperand &MO = getOperand(i); 1100 if (!MO.isReg() || MO.getReg() != FromReg) 1101 continue; 1102 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1103 } 1104 } 1105 } 1106 1107 /// isSafeToMove - Return true if it is safe to move this instruction. If 1108 /// SawStore is set to true, it means that there is a store (or call) between 1109 /// the instruction's location and its intended destination. 1110 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1111 AliasAnalysis *AA, 1112 bool &SawStore) const { 1113 // Ignore stuff that we obviously can't move. 1114 if (TID->mayStore() || TID->isCall()) { 1115 SawStore = true; 1116 return false; 1117 } 1118 1119 if (isLabel() || isDebugValue() || 1120 TID->isTerminator() || TID->hasUnmodeledSideEffects()) 1121 return false; 1122 1123 // See if this instruction does a load. If so, we have to guarantee that the 1124 // loaded value doesn't change between the load and the its intended 1125 // destination. The check for isInvariantLoad gives the targe the chance to 1126 // classify the load as always returning a constant, e.g. a constant pool 1127 // load. 1128 if (TID->mayLoad() && !isInvariantLoad(AA)) 1129 // Otherwise, this is a real load. If there is a store between the load and 1130 // end of block, or if the load is volatile, we can't move it. 1131 return !SawStore && !hasVolatileMemoryRef(); 1132 1133 return true; 1134 } 1135 1136 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1137 /// instruction which defined the specified register instead of copying it. 1138 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1139 AliasAnalysis *AA, 1140 unsigned DstReg) const { 1141 bool SawStore = false; 1142 if (!TII->isTriviallyReMaterializable(this, AA) || 1143 !isSafeToMove(TII, AA, SawStore)) 1144 return false; 1145 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1146 const MachineOperand &MO = getOperand(i); 1147 if (!MO.isReg()) 1148 continue; 1149 // FIXME: For now, do not remat any instruction with register operands. 1150 // Later on, we can loosen the restriction is the register operands have 1151 // not been modified between the def and use. Note, this is different from 1152 // MachineSink because the code is no longer in two-address form (at least 1153 // partially). 1154 if (MO.isUse()) 1155 return false; 1156 else if (!MO.isDead() && MO.getReg() != DstReg) 1157 return false; 1158 } 1159 return true; 1160 } 1161 1162 /// hasVolatileMemoryRef - Return true if this instruction may have a 1163 /// volatile memory reference, or if the information describing the 1164 /// memory reference is not available. Return false if it is known to 1165 /// have no volatile memory references. 1166 bool MachineInstr::hasVolatileMemoryRef() const { 1167 // An instruction known never to access memory won't have a volatile access. 1168 if (!TID->mayStore() && 1169 !TID->mayLoad() && 1170 !TID->isCall() && 1171 !TID->hasUnmodeledSideEffects()) 1172 return false; 1173 1174 // Otherwise, if the instruction has no memory reference information, 1175 // conservatively assume it wasn't preserved. 1176 if (memoperands_empty()) 1177 return true; 1178 1179 // Check the memory reference information for volatile references. 1180 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1181 if ((*I)->isVolatile()) 1182 return true; 1183 1184 return false; 1185 } 1186 1187 /// isInvariantLoad - Return true if this instruction is loading from a 1188 /// location whose value is invariant across the function. For example, 1189 /// loading a value from the constant pool or from the argument area 1190 /// of a function if it does not change. This should only return true of 1191 /// *all* loads the instruction does are invariant (if it does multiple loads). 1192 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1193 // If the instruction doesn't load at all, it isn't an invariant load. 1194 if (!TID->mayLoad()) 1195 return false; 1196 1197 // If the instruction has lost its memoperands, conservatively assume that 1198 // it may not be an invariant load. 1199 if (memoperands_empty()) 1200 return false; 1201 1202 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1203 1204 for (mmo_iterator I = memoperands_begin(), 1205 E = memoperands_end(); I != E; ++I) { 1206 if ((*I)->isVolatile()) return false; 1207 if ((*I)->isStore()) return false; 1208 1209 if (const Value *V = (*I)->getValue()) { 1210 // A load from a constant PseudoSourceValue is invariant. 1211 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1212 if (PSV->isConstant(MFI)) 1213 continue; 1214 // If we have an AliasAnalysis, ask it whether the memory is constant. 1215 if (AA && AA->pointsToConstantMemory( 1216 AliasAnalysis::Location(V, (*I)->getSize(), 1217 (*I)->getTBAAInfo()))) 1218 continue; 1219 } 1220 1221 // Otherwise assume conservatively. 1222 return false; 1223 } 1224 1225 // Everything checks out. 1226 return true; 1227 } 1228 1229 /// isConstantValuePHI - If the specified instruction is a PHI that always 1230 /// merges together the same virtual register, return the register, otherwise 1231 /// return 0. 1232 unsigned MachineInstr::isConstantValuePHI() const { 1233 if (!isPHI()) 1234 return 0; 1235 assert(getNumOperands() >= 3 && 1236 "It's illegal to have a PHI without source operands"); 1237 1238 unsigned Reg = getOperand(1).getReg(); 1239 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1240 if (getOperand(i).getReg() != Reg) 1241 return 0; 1242 return Reg; 1243 } 1244 1245 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1246 /// 1247 bool MachineInstr::allDefsAreDead() const { 1248 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1249 const MachineOperand &MO = getOperand(i); 1250 if (!MO.isReg() || MO.isUse()) 1251 continue; 1252 if (!MO.isDead()) 1253 return false; 1254 } 1255 return true; 1256 } 1257 1258 /// copyImplicitOps - Copy implicit register operands from specified 1259 /// instruction to this instruction. 1260 void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1261 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1262 i != e; ++i) { 1263 const MachineOperand &MO = MI->getOperand(i); 1264 if (MO.isReg() && MO.isImplicit()) 1265 addOperand(MO); 1266 } 1267 } 1268 1269 void MachineInstr::dump() const { 1270 dbgs() << " " << *this; 1271 } 1272 1273 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1274 raw_ostream &CommentOS) { 1275 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1276 if (!DL.isUnknown()) { // Print source line info. 1277 DIScope Scope(DL.getScope(Ctx)); 1278 // Omit the directory, because it's likely to be long and uninteresting. 1279 if (Scope.Verify()) 1280 CommentOS << Scope.getFilename(); 1281 else 1282 CommentOS << "<unknown>"; 1283 CommentOS << ':' << DL.getLine(); 1284 if (DL.getCol() != 0) 1285 CommentOS << ':' << DL.getCol(); 1286 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1287 if (!InlinedAtDL.isUnknown()) { 1288 CommentOS << " @[ "; 1289 printDebugLoc(InlinedAtDL, MF, CommentOS); 1290 CommentOS << " ]"; 1291 } 1292 } 1293 } 1294 1295 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1296 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1297 const MachineFunction *MF = 0; 1298 const MachineRegisterInfo *MRI = 0; 1299 if (const MachineBasicBlock *MBB = getParent()) { 1300 MF = MBB->getParent(); 1301 if (!TM && MF) 1302 TM = &MF->getTarget(); 1303 if (MF) 1304 MRI = &MF->getRegInfo(); 1305 } 1306 1307 // Save a list of virtual registers. 1308 SmallVector<unsigned, 8> VirtRegs; 1309 1310 // Print explicitly defined operands on the left of an assignment syntax. 1311 unsigned StartOp = 0, e = getNumOperands(); 1312 for (; StartOp < e && getOperand(StartOp).isReg() && 1313 getOperand(StartOp).isDef() && 1314 !getOperand(StartOp).isImplicit(); 1315 ++StartOp) { 1316 if (StartOp != 0) OS << ", "; 1317 getOperand(StartOp).print(OS, TM); 1318 unsigned Reg = getOperand(StartOp).getReg(); 1319 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) 1320 VirtRegs.push_back(Reg); 1321 } 1322 1323 if (StartOp != 0) 1324 OS << " = "; 1325 1326 // Print the opcode name. 1327 OS << getDesc().getName(); 1328 1329 // Print the rest of the operands. 1330 bool OmittedAnyCallClobbers = false; 1331 bool FirstOp = true; 1332 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1333 const MachineOperand &MO = getOperand(i); 1334 1335 if (MO.isReg() && MO.getReg() && 1336 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1337 VirtRegs.push_back(MO.getReg()); 1338 1339 // Omit call-clobbered registers which aren't used anywhere. This makes 1340 // call instructions much less noisy on targets where calls clobber lots 1341 // of registers. Don't rely on MO.isDead() because we may be called before 1342 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1343 if (MF && getDesc().isCall() && 1344 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1345 unsigned Reg = MO.getReg(); 1346 if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) { 1347 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1348 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1349 bool HasAliasLive = false; 1350 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg); 1351 unsigned AliasReg = *Alias; ++Alias) 1352 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1353 HasAliasLive = true; 1354 break; 1355 } 1356 if (!HasAliasLive) { 1357 OmittedAnyCallClobbers = true; 1358 continue; 1359 } 1360 } 1361 } 1362 } 1363 1364 if (FirstOp) FirstOp = false; else OS << ","; 1365 OS << " "; 1366 if (i < getDesc().NumOperands) { 1367 const TargetOperandInfo &TOI = getDesc().OpInfo[i]; 1368 if (TOI.isPredicate()) 1369 OS << "pred:"; 1370 if (TOI.isOptionalDef()) 1371 OS << "opt:"; 1372 } 1373 if (isDebugValue() && MO.isMetadata()) { 1374 // Pretty print DBG_VALUE instructions. 1375 const MDNode *MD = MO.getMetadata(); 1376 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1377 OS << "!\"" << MDS->getString() << '\"'; 1378 else 1379 MO.print(OS, TM); 1380 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1381 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1382 } else 1383 MO.print(OS, TM); 1384 } 1385 1386 // Briefly indicate whether any call clobbers were omitted. 1387 if (OmittedAnyCallClobbers) { 1388 if (!FirstOp) OS << ","; 1389 OS << " ..."; 1390 } 1391 1392 bool HaveSemi = false; 1393 if (!memoperands_empty()) { 1394 if (!HaveSemi) OS << ";"; HaveSemi = true; 1395 1396 OS << " mem:"; 1397 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1398 i != e; ++i) { 1399 OS << **i; 1400 if (llvm::next(i) != e) 1401 OS << " "; 1402 } 1403 } 1404 1405 // Print the regclass of any virtual registers encountered. 1406 if (MRI && !VirtRegs.empty()) { 1407 if (!HaveSemi) OS << ";"; HaveSemi = true; 1408 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1409 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1410 OS << " " << RC->getName() << ":%reg" << VirtRegs[i]; 1411 for (unsigned j = i+1; j != VirtRegs.size();) { 1412 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1413 ++j; 1414 continue; 1415 } 1416 if (VirtRegs[i] != VirtRegs[j]) 1417 OS << "," << VirtRegs[j]; 1418 VirtRegs.erase(VirtRegs.begin()+j); 1419 } 1420 } 1421 } 1422 1423 if (!debugLoc.isUnknown() && MF) { 1424 if (!HaveSemi) OS << ";"; 1425 OS << " dbg:"; 1426 printDebugLoc(debugLoc, MF, OS); 1427 } 1428 1429 OS << "\n"; 1430 } 1431 1432 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1433 const TargetRegisterInfo *RegInfo, 1434 bool AddIfNotFound) { 1435 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1436 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1437 bool Found = false; 1438 SmallVector<unsigned,4> DeadOps; 1439 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1440 MachineOperand &MO = getOperand(i); 1441 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1442 continue; 1443 unsigned Reg = MO.getReg(); 1444 if (!Reg) 1445 continue; 1446 1447 if (Reg == IncomingReg) { 1448 if (!Found) { 1449 if (MO.isKill()) 1450 // The register is already marked kill. 1451 return true; 1452 if (isPhysReg && isRegTiedToDefOperand(i)) 1453 // Two-address uses of physregs must not be marked kill. 1454 return true; 1455 MO.setIsKill(); 1456 Found = true; 1457 } 1458 } else if (hasAliases && MO.isKill() && 1459 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1460 // A super-register kill already exists. 1461 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1462 return true; 1463 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1464 DeadOps.push_back(i); 1465 } 1466 } 1467 1468 // Trim unneeded kill operands. 1469 while (!DeadOps.empty()) { 1470 unsigned OpIdx = DeadOps.back(); 1471 if (getOperand(OpIdx).isImplicit()) 1472 RemoveOperand(OpIdx); 1473 else 1474 getOperand(OpIdx).setIsKill(false); 1475 DeadOps.pop_back(); 1476 } 1477 1478 // If not found, this means an alias of one of the operands is killed. Add a 1479 // new implicit operand if required. 1480 if (!Found && AddIfNotFound) { 1481 addOperand(MachineOperand::CreateReg(IncomingReg, 1482 false /*IsDef*/, 1483 true /*IsImp*/, 1484 true /*IsKill*/)); 1485 return true; 1486 } 1487 return Found; 1488 } 1489 1490 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1491 const TargetRegisterInfo *RegInfo, 1492 bool AddIfNotFound) { 1493 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1494 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1495 bool Found = false; 1496 SmallVector<unsigned,4> DeadOps; 1497 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1498 MachineOperand &MO = getOperand(i); 1499 if (!MO.isReg() || !MO.isDef()) 1500 continue; 1501 unsigned Reg = MO.getReg(); 1502 if (!Reg) 1503 continue; 1504 1505 if (Reg == IncomingReg) { 1506 if (!Found) { 1507 if (MO.isDead()) 1508 // The register is already marked dead. 1509 return true; 1510 MO.setIsDead(); 1511 Found = true; 1512 } 1513 } else if (hasAliases && MO.isDead() && 1514 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1515 // There exists a super-register that's marked dead. 1516 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1517 return true; 1518 if (RegInfo->getSubRegisters(IncomingReg) && 1519 RegInfo->getSuperRegisters(Reg) && 1520 RegInfo->isSubRegister(IncomingReg, Reg)) 1521 DeadOps.push_back(i); 1522 } 1523 } 1524 1525 // Trim unneeded dead operands. 1526 while (!DeadOps.empty()) { 1527 unsigned OpIdx = DeadOps.back(); 1528 if (getOperand(OpIdx).isImplicit()) 1529 RemoveOperand(OpIdx); 1530 else 1531 getOperand(OpIdx).setIsDead(false); 1532 DeadOps.pop_back(); 1533 } 1534 1535 // If not found, this means an alias of one of the operands is dead. Add a 1536 // new implicit operand if required. 1537 if (Found || !AddIfNotFound) 1538 return Found; 1539 1540 addOperand(MachineOperand::CreateReg(IncomingReg, 1541 true /*IsDef*/, 1542 true /*IsImp*/, 1543 false /*IsKill*/, 1544 true /*IsDead*/)); 1545 return true; 1546 } 1547 1548 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1549 const TargetRegisterInfo *RegInfo) { 1550 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1551 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1552 if (MO) 1553 return; 1554 } else { 1555 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1556 const MachineOperand &MO = getOperand(i); 1557 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1558 MO.getSubReg() == 0) 1559 return; 1560 } 1561 } 1562 addOperand(MachineOperand::CreateReg(IncomingReg, 1563 true /*IsDef*/, 1564 true /*IsImp*/)); 1565 } 1566 1567 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs, 1568 const TargetRegisterInfo &TRI) { 1569 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1570 MachineOperand &MO = getOperand(i); 1571 if (!MO.isReg() || !MO.isDef()) continue; 1572 unsigned Reg = MO.getReg(); 1573 if (Reg == 0) continue; 1574 bool Dead = true; 1575 for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(), 1576 E = UsedRegs.end(); I != E; ++I) 1577 if (TRI.regsOverlap(*I, Reg)) { 1578 Dead = false; 1579 break; 1580 } 1581 // If there are no uses, including partial uses, the def is dead. 1582 if (Dead) MO.setIsDead(); 1583 } 1584 } 1585 1586 unsigned 1587 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1588 unsigned Hash = MI->getOpcode() * 37; 1589 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1590 const MachineOperand &MO = MI->getOperand(i); 1591 uint64_t Key = (uint64_t)MO.getType() << 32; 1592 switch (MO.getType()) { 1593 default: break; 1594 case MachineOperand::MO_Register: 1595 if (MO.isDef() && MO.getReg() && 1596 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1597 continue; // Skip virtual register defs. 1598 Key |= MO.getReg(); 1599 break; 1600 case MachineOperand::MO_Immediate: 1601 Key |= MO.getImm(); 1602 break; 1603 case MachineOperand::MO_FrameIndex: 1604 case MachineOperand::MO_ConstantPoolIndex: 1605 case MachineOperand::MO_JumpTableIndex: 1606 Key |= MO.getIndex(); 1607 break; 1608 case MachineOperand::MO_MachineBasicBlock: 1609 Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB()); 1610 break; 1611 case MachineOperand::MO_GlobalAddress: 1612 Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal()); 1613 break; 1614 case MachineOperand::MO_BlockAddress: 1615 Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress()); 1616 break; 1617 case MachineOperand::MO_MCSymbol: 1618 Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol()); 1619 break; 1620 } 1621 Key += ~(Key << 32); 1622 Key ^= (Key >> 22); 1623 Key += ~(Key << 13); 1624 Key ^= (Key >> 8); 1625 Key += (Key << 3); 1626 Key ^= (Key >> 15); 1627 Key += ~(Key << 27); 1628 Key ^= (Key >> 31); 1629 Hash = (unsigned)Key + Hash * 37; 1630 } 1631 return Hash; 1632 } 1633