1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineMemOperand.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/PseudoSourceValue.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/ModuleSlotTracker.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/MC/MCInstrDesc.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetInstrInfo.h" 42 #include "llvm/Target/TargetMachine.h" 43 #include "llvm/Target/TargetRegisterInfo.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 using namespace llvm; 46 47 static cl::opt<bool> PrintWholeRegMask( 48 "print-whole-regmask", 49 cl::desc("Print the full contents of regmask operands in IR dumps"), 50 cl::init(true), cl::Hidden); 51 52 //===----------------------------------------------------------------------===// 53 // MachineOperand Implementation 54 //===----------------------------------------------------------------------===// 55 56 void MachineOperand::setReg(unsigned Reg) { 57 if (getReg() == Reg) return; // No change. 58 59 // Otherwise, we have to change the register. If this operand is embedded 60 // into a machine function, we need to update the old and new register's 61 // use/def lists. 62 if (MachineInstr *MI = getParent()) 63 if (MachineBasicBlock *MBB = MI->getParent()) 64 if (MachineFunction *MF = MBB->getParent()) { 65 MachineRegisterInfo &MRI = MF->getRegInfo(); 66 MRI.removeRegOperandFromUseList(this); 67 SmallContents.RegNo = Reg; 68 MRI.addRegOperandToUseList(this); 69 return; 70 } 71 72 // Otherwise, just change the register, no problem. :) 73 SmallContents.RegNo = Reg; 74 } 75 76 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 77 const TargetRegisterInfo &TRI) { 78 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 79 if (SubIdx && getSubReg()) 80 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 81 setReg(Reg); 82 if (SubIdx) 83 setSubReg(SubIdx); 84 } 85 86 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 87 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 88 if (getSubReg()) { 89 Reg = TRI.getSubReg(Reg, getSubReg()); 90 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 91 // That won't happen in legal code. 92 setSubReg(0); 93 } 94 setReg(Reg); 95 } 96 97 /// Change a def to a use, or a use to a def. 98 void MachineOperand::setIsDef(bool Val) { 99 assert(isReg() && "Wrong MachineOperand accessor"); 100 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 101 if (IsDef == Val) 102 return; 103 // MRI may keep uses and defs in different list positions. 104 if (MachineInstr *MI = getParent()) 105 if (MachineBasicBlock *MBB = MI->getParent()) 106 if (MachineFunction *MF = MBB->getParent()) { 107 MachineRegisterInfo &MRI = MF->getRegInfo(); 108 MRI.removeRegOperandFromUseList(this); 109 IsDef = Val; 110 MRI.addRegOperandToUseList(this); 111 return; 112 } 113 IsDef = Val; 114 } 115 116 // If this operand is currently a register operand, and if this is in a 117 // function, deregister the operand from the register's use/def list. 118 void MachineOperand::removeRegFromUses() { 119 if (!isReg() || !isOnRegUseList()) 120 return; 121 122 if (MachineInstr *MI = getParent()) { 123 if (MachineBasicBlock *MBB = MI->getParent()) { 124 if (MachineFunction *MF = MBB->getParent()) 125 MF->getRegInfo().removeRegOperandFromUseList(this); 126 } 127 } 128 } 129 130 /// ChangeToImmediate - Replace this operand with a new immediate operand of 131 /// the specified value. If an operand is known to be an immediate already, 132 /// the setImm method should be used. 133 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 134 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 135 136 removeRegFromUses(); 137 138 OpKind = MO_Immediate; 139 Contents.ImmVal = ImmVal; 140 } 141 142 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 143 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 144 145 removeRegFromUses(); 146 147 OpKind = MO_FPImmediate; 148 Contents.CFP = FPImm; 149 } 150 151 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 152 assert((!isReg() || !isTied()) && 153 "Cannot change a tied operand into an external symbol"); 154 155 removeRegFromUses(); 156 157 OpKind = MO_ExternalSymbol; 158 Contents.OffsetedInfo.Val.SymbolName = SymName; 159 setOffset(0); // Offset is always 0. 160 setTargetFlags(TargetFlags); 161 } 162 163 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 164 assert((!isReg() || !isTied()) && 165 "Cannot change a tied operand into an MCSymbol"); 166 167 removeRegFromUses(); 168 169 OpKind = MO_MCSymbol; 170 Contents.Sym = Sym; 171 } 172 173 /// ChangeToRegister - Replace this operand with a new register operand of 174 /// the specified value. If an operand is known to be an register already, 175 /// the setReg method should be used. 176 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 177 bool isKill, bool isDead, bool isUndef, 178 bool isDebug) { 179 MachineRegisterInfo *RegInfo = nullptr; 180 if (MachineInstr *MI = getParent()) 181 if (MachineBasicBlock *MBB = MI->getParent()) 182 if (MachineFunction *MF = MBB->getParent()) 183 RegInfo = &MF->getRegInfo(); 184 // If this operand is already a register operand, remove it from the 185 // register's use/def lists. 186 bool WasReg = isReg(); 187 if (RegInfo && WasReg) 188 RegInfo->removeRegOperandFromUseList(this); 189 190 // Change this to a register and set the reg#. 191 OpKind = MO_Register; 192 SmallContents.RegNo = Reg; 193 SubReg_TargetFlags = 0; 194 IsDef = isDef; 195 IsImp = isImp; 196 IsKill = isKill; 197 IsDead = isDead; 198 IsUndef = isUndef; 199 IsInternalRead = false; 200 IsEarlyClobber = false; 201 IsDebug = isDebug; 202 // Ensure isOnRegUseList() returns false. 203 Contents.Reg.Prev = nullptr; 204 // Preserve the tie when the operand was already a register. 205 if (!WasReg) 206 TiedTo = 0; 207 208 // If this operand is embedded in a function, add the operand to the 209 // register's use/def list. 210 if (RegInfo) 211 RegInfo->addRegOperandToUseList(this); 212 } 213 214 /// isIdenticalTo - Return true if this operand is identical to the specified 215 /// operand. Note that this should stay in sync with the hash_value overload 216 /// below. 217 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 218 if (getType() != Other.getType() || 219 getTargetFlags() != Other.getTargetFlags()) 220 return false; 221 222 switch (getType()) { 223 case MachineOperand::MO_Register: 224 return getReg() == Other.getReg() && isDef() == Other.isDef() && 225 getSubReg() == Other.getSubReg(); 226 case MachineOperand::MO_Immediate: 227 return getImm() == Other.getImm(); 228 case MachineOperand::MO_CImmediate: 229 return getCImm() == Other.getCImm(); 230 case MachineOperand::MO_FPImmediate: 231 return getFPImm() == Other.getFPImm(); 232 case MachineOperand::MO_MachineBasicBlock: 233 return getMBB() == Other.getMBB(); 234 case MachineOperand::MO_FrameIndex: 235 return getIndex() == Other.getIndex(); 236 case MachineOperand::MO_ConstantPoolIndex: 237 case MachineOperand::MO_TargetIndex: 238 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 239 case MachineOperand::MO_JumpTableIndex: 240 return getIndex() == Other.getIndex(); 241 case MachineOperand::MO_GlobalAddress: 242 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 243 case MachineOperand::MO_ExternalSymbol: 244 return !strcmp(getSymbolName(), Other.getSymbolName()) && 245 getOffset() == Other.getOffset(); 246 case MachineOperand::MO_BlockAddress: 247 return getBlockAddress() == Other.getBlockAddress() && 248 getOffset() == Other.getOffset(); 249 case MachineOperand::MO_RegisterMask: 250 case MachineOperand::MO_RegisterLiveOut: 251 return getRegMask() == Other.getRegMask(); 252 case MachineOperand::MO_MCSymbol: 253 return getMCSymbol() == Other.getMCSymbol(); 254 case MachineOperand::MO_CFIIndex: 255 return getCFIIndex() == Other.getCFIIndex(); 256 case MachineOperand::MO_Metadata: 257 return getMetadata() == Other.getMetadata(); 258 } 259 llvm_unreachable("Invalid machine operand type"); 260 } 261 262 // Note: this must stay exactly in sync with isIdenticalTo above. 263 hash_code llvm::hash_value(const MachineOperand &MO) { 264 switch (MO.getType()) { 265 case MachineOperand::MO_Register: 266 // Register operands don't have target flags. 267 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 268 case MachineOperand::MO_Immediate: 269 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 270 case MachineOperand::MO_CImmediate: 271 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 272 case MachineOperand::MO_FPImmediate: 273 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 274 case MachineOperand::MO_MachineBasicBlock: 275 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 276 case MachineOperand::MO_FrameIndex: 277 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 278 case MachineOperand::MO_ConstantPoolIndex: 279 case MachineOperand::MO_TargetIndex: 280 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 281 MO.getOffset()); 282 case MachineOperand::MO_JumpTableIndex: 283 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 284 case MachineOperand::MO_ExternalSymbol: 285 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 286 MO.getSymbolName()); 287 case MachineOperand::MO_GlobalAddress: 288 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 289 MO.getOffset()); 290 case MachineOperand::MO_BlockAddress: 291 return hash_combine(MO.getType(), MO.getTargetFlags(), 292 MO.getBlockAddress(), MO.getOffset()); 293 case MachineOperand::MO_RegisterMask: 294 case MachineOperand::MO_RegisterLiveOut: 295 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 296 case MachineOperand::MO_Metadata: 297 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 298 case MachineOperand::MO_MCSymbol: 299 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 300 case MachineOperand::MO_CFIIndex: 301 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 302 } 303 llvm_unreachable("Invalid machine operand type"); 304 } 305 306 void MachineOperand::print(raw_ostream &OS, 307 const TargetRegisterInfo *TRI) const { 308 ModuleSlotTracker DummyMST(nullptr); 309 print(OS, DummyMST, TRI); 310 } 311 312 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 313 const TargetRegisterInfo *TRI) const { 314 switch (getType()) { 315 case MachineOperand::MO_Register: 316 OS << PrintReg(getReg(), TRI, getSubReg()); 317 318 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 319 isInternalRead() || isEarlyClobber() || isTied()) { 320 OS << '<'; 321 bool NeedComma = false; 322 if (isDef()) { 323 if (NeedComma) OS << ','; 324 if (isEarlyClobber()) 325 OS << "earlyclobber,"; 326 if (isImplicit()) 327 OS << "imp-"; 328 OS << "def"; 329 NeedComma = true; 330 // <def,read-undef> only makes sense when getSubReg() is set. 331 // Don't clutter the output otherwise. 332 if (isUndef() && getSubReg()) 333 OS << ",read-undef"; 334 } else if (isImplicit()) { 335 OS << "imp-use"; 336 NeedComma = true; 337 } 338 339 if (isKill()) { 340 if (NeedComma) OS << ','; 341 OS << "kill"; 342 NeedComma = true; 343 } 344 if (isDead()) { 345 if (NeedComma) OS << ','; 346 OS << "dead"; 347 NeedComma = true; 348 } 349 if (isUndef() && isUse()) { 350 if (NeedComma) OS << ','; 351 OS << "undef"; 352 NeedComma = true; 353 } 354 if (isInternalRead()) { 355 if (NeedComma) OS << ','; 356 OS << "internal"; 357 NeedComma = true; 358 } 359 if (isTied()) { 360 if (NeedComma) OS << ','; 361 OS << "tied"; 362 if (TiedTo != 15) 363 OS << unsigned(TiedTo - 1); 364 } 365 OS << '>'; 366 } 367 break; 368 case MachineOperand::MO_Immediate: 369 OS << getImm(); 370 break; 371 case MachineOperand::MO_CImmediate: 372 getCImm()->getValue().print(OS, false); 373 break; 374 case MachineOperand::MO_FPImmediate: 375 if (getFPImm()->getType()->isFloatTy()) { 376 OS << getFPImm()->getValueAPF().convertToFloat(); 377 } else if (getFPImm()->getType()->isHalfTy()) { 378 APFloat APF = getFPImm()->getValueAPF(); 379 bool Unused; 380 APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused); 381 OS << "half " << APF.convertToFloat(); 382 } else { 383 OS << getFPImm()->getValueAPF().convertToDouble(); 384 } 385 break; 386 case MachineOperand::MO_MachineBasicBlock: 387 OS << "<BB#" << getMBB()->getNumber() << ">"; 388 break; 389 case MachineOperand::MO_FrameIndex: 390 OS << "<fi#" << getIndex() << '>'; 391 break; 392 case MachineOperand::MO_ConstantPoolIndex: 393 OS << "<cp#" << getIndex(); 394 if (getOffset()) OS << "+" << getOffset(); 395 OS << '>'; 396 break; 397 case MachineOperand::MO_TargetIndex: 398 OS << "<ti#" << getIndex(); 399 if (getOffset()) OS << "+" << getOffset(); 400 OS << '>'; 401 break; 402 case MachineOperand::MO_JumpTableIndex: 403 OS << "<jt#" << getIndex() << '>'; 404 break; 405 case MachineOperand::MO_GlobalAddress: 406 OS << "<ga:"; 407 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 408 if (getOffset()) OS << "+" << getOffset(); 409 OS << '>'; 410 break; 411 case MachineOperand::MO_ExternalSymbol: 412 OS << "<es:" << getSymbolName(); 413 if (getOffset()) OS << "+" << getOffset(); 414 OS << '>'; 415 break; 416 case MachineOperand::MO_BlockAddress: 417 OS << '<'; 418 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 419 if (getOffset()) OS << "+" << getOffset(); 420 OS << '>'; 421 break; 422 case MachineOperand::MO_RegisterMask: { 423 unsigned NumRegsInMask = 0; 424 unsigned NumRegsEmitted = 0; 425 OS << "<regmask"; 426 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 427 unsigned MaskWord = i / 32; 428 unsigned MaskBit = i % 32; 429 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 430 if (PrintWholeRegMask || NumRegsEmitted <= 10) { 431 OS << " " << PrintReg(i, TRI); 432 NumRegsEmitted++; 433 } 434 NumRegsInMask++; 435 } 436 } 437 if (NumRegsEmitted != NumRegsInMask) 438 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 439 OS << ">"; 440 break; 441 } 442 case MachineOperand::MO_RegisterLiveOut: 443 OS << "<regliveout>"; 444 break; 445 case MachineOperand::MO_Metadata: 446 OS << '<'; 447 getMetadata()->printAsOperand(OS, MST); 448 OS << '>'; 449 break; 450 case MachineOperand::MO_MCSymbol: 451 OS << "<MCSym=" << *getMCSymbol() << '>'; 452 break; 453 case MachineOperand::MO_CFIIndex: 454 OS << "<call frame instruction>"; 455 break; 456 } 457 458 if (unsigned TF = getTargetFlags()) 459 OS << "[TF=" << TF << ']'; 460 } 461 462 //===----------------------------------------------------------------------===// 463 // MachineMemOperand Implementation 464 //===----------------------------------------------------------------------===// 465 466 /// getAddrSpace - Return the LLVM IR address space number that this pointer 467 /// points into. 468 unsigned MachinePointerInfo::getAddrSpace() const { 469 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 470 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 471 } 472 473 /// getConstantPool - Return a MachinePointerInfo record that refers to the 474 /// constant pool. 475 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 476 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 477 } 478 479 /// getFixedStack - Return a MachinePointerInfo record that refers to the 480 /// the specified FrameIndex. 481 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 482 int FI, int64_t Offset) { 483 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 484 } 485 486 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 487 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 488 } 489 490 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 491 return MachinePointerInfo(MF.getPSVManager().getGOT()); 492 } 493 494 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 495 int64_t Offset) { 496 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); 497 } 498 499 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 500 uint64_t s, unsigned int a, 501 const AAMDNodes &AAInfo, 502 const MDNode *Ranges) 503 : PtrInfo(ptrinfo), Size(s), 504 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 505 AAInfo(AAInfo), Ranges(Ranges) { 506 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 507 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 508 "invalid pointer value"); 509 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 510 assert((isLoad() || isStore()) && "Not a load/store!"); 511 } 512 513 /// Profile - Gather unique data for the object. 514 /// 515 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 516 ID.AddInteger(getOffset()); 517 ID.AddInteger(Size); 518 ID.AddPointer(getOpaqueValue()); 519 ID.AddInteger(Flags); 520 } 521 522 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 523 // The Value and Offset may differ due to CSE. But the flags and size 524 // should be the same. 525 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 526 assert(MMO->getSize() == getSize() && "Size mismatch!"); 527 528 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 529 // Update the alignment value. 530 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 531 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 532 // Also update the base and offset, because the new alignment may 533 // not be applicable with the old ones. 534 PtrInfo = MMO->PtrInfo; 535 } 536 } 537 538 /// getAlignment - Return the minimum known alignment in bytes of the 539 /// actual memory reference. 540 uint64_t MachineMemOperand::getAlignment() const { 541 return MinAlign(getBaseAlignment(), getOffset()); 542 } 543 544 void MachineMemOperand::print(raw_ostream &OS) const { 545 ModuleSlotTracker DummyMST(nullptr); 546 print(OS, DummyMST); 547 } 548 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 549 assert((isLoad() || isStore()) && 550 "SV has to be a load, store or both."); 551 552 if (isVolatile()) 553 OS << "Volatile "; 554 555 if (isLoad()) 556 OS << "LD"; 557 if (isStore()) 558 OS << "ST"; 559 OS << getSize(); 560 561 // Print the address information. 562 OS << "["; 563 if (const Value *V = getValue()) 564 V->printAsOperand(OS, /*PrintType=*/false, MST); 565 else if (const PseudoSourceValue *PSV = getPseudoValue()) 566 PSV->printCustom(OS); 567 else 568 OS << "<unknown>"; 569 570 unsigned AS = getAddrSpace(); 571 if (AS != 0) 572 OS << "(addrspace=" << AS << ')'; 573 574 // If the alignment of the memory reference itself differs from the alignment 575 // of the base pointer, print the base alignment explicitly, next to the base 576 // pointer. 577 if (getBaseAlignment() != getAlignment()) 578 OS << "(align=" << getBaseAlignment() << ")"; 579 580 if (getOffset() != 0) 581 OS << "+" << getOffset(); 582 OS << "]"; 583 584 // Print the alignment of the reference. 585 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 586 OS << "(align=" << getAlignment() << ")"; 587 588 // Print TBAA info. 589 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 590 OS << "(tbaa="; 591 if (TBAAInfo->getNumOperands() > 0) 592 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 593 else 594 OS << "<unknown>"; 595 OS << ")"; 596 } 597 598 // Print AA scope info. 599 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 600 OS << "(alias.scope="; 601 if (ScopeInfo->getNumOperands() > 0) 602 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 603 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 604 if (i != ie-1) 605 OS << ","; 606 } 607 else 608 OS << "<unknown>"; 609 OS << ")"; 610 } 611 612 // Print AA noalias scope info. 613 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 614 OS << "(noalias="; 615 if (NoAliasInfo->getNumOperands() > 0) 616 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 617 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 618 if (i != ie-1) 619 OS << ","; 620 } 621 else 622 OS << "<unknown>"; 623 OS << ")"; 624 } 625 626 // Print nontemporal info. 627 if (isNonTemporal()) 628 OS << "(nontemporal)"; 629 630 if (isInvariant()) 631 OS << "(invariant)"; 632 } 633 634 //===----------------------------------------------------------------------===// 635 // MachineInstr Implementation 636 //===----------------------------------------------------------------------===// 637 638 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 639 if (MCID->ImplicitDefs) 640 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 641 ++ImpDefs) 642 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 643 if (MCID->ImplicitUses) 644 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 645 ++ImpUses) 646 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 647 } 648 649 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 650 /// implicit operands. It reserves space for the number of operands specified by 651 /// the MCInstrDesc. 652 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 653 DebugLoc dl, bool NoImp) 654 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), 655 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), 656 debugLoc(std::move(dl)) 657 #ifdef LLVM_BUILD_GLOBAL_ISEL 658 , 659 Ty(nullptr) 660 #endif 661 { 662 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 663 664 // Reserve space for the expected number of operands. 665 if (unsigned NumOps = MCID->getNumOperands() + 666 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 667 CapOperands = OperandCapacity::get(NumOps); 668 Operands = MF.allocateOperandArray(CapOperands); 669 } 670 671 if (!NoImp) 672 addImplicitDefUseOperands(MF); 673 } 674 675 /// MachineInstr ctor - Copies MachineInstr arg exactly 676 /// 677 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 678 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 679 Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs), 680 MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) 681 #ifdef LLVM_BUILD_GLOBAL_ISEL 682 , 683 Ty(nullptr) 684 #endif 685 { 686 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 687 688 CapOperands = OperandCapacity::get(MI.getNumOperands()); 689 Operands = MF.allocateOperandArray(CapOperands); 690 691 // Copy operands. 692 for (const MachineOperand &MO : MI.operands()) 693 addOperand(MF, MO); 694 695 // Copy all the sensible flags. 696 setFlags(MI.Flags); 697 } 698 699 /// getRegInfo - If this instruction is embedded into a MachineFunction, 700 /// return the MachineRegisterInfo object for the current function, otherwise 701 /// return null. 702 MachineRegisterInfo *MachineInstr::getRegInfo() { 703 if (MachineBasicBlock *MBB = getParent()) 704 return &MBB->getParent()->getRegInfo(); 705 return nullptr; 706 } 707 708 // Implement dummy setter and getter for type when 709 // global-isel is not built. 710 // The proper implementation is WIP and is tracked here: 711 // PR26576. 712 #ifndef LLVM_BUILD_GLOBAL_ISEL 713 void MachineInstr::setType(Type *Ty) {} 714 715 Type *MachineInstr::getType() const { return nullptr; } 716 717 #else 718 void MachineInstr::setType(Type *Ty) { 719 assert((!Ty || isPreISelGenericOpcode(getOpcode())) && 720 "Non generic instructions are not supposed to be typed"); 721 this->Ty = Ty; 722 } 723 724 Type *MachineInstr::getType() const { return Ty; } 725 #endif // LLVM_BUILD_GLOBAL_ISEL 726 727 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 728 /// this instruction from their respective use lists. This requires that the 729 /// operands already be on their use lists. 730 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 731 for (MachineOperand &MO : operands()) 732 if (MO.isReg()) 733 MRI.removeRegOperandFromUseList(&MO); 734 } 735 736 /// AddRegOperandsToUseLists - Add all of the register operands in 737 /// this instruction from their respective use lists. This requires that the 738 /// operands not be on their use lists yet. 739 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 740 for (MachineOperand &MO : operands()) 741 if (MO.isReg()) 742 MRI.addRegOperandToUseList(&MO); 743 } 744 745 void MachineInstr::addOperand(const MachineOperand &Op) { 746 MachineBasicBlock *MBB = getParent(); 747 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 748 MachineFunction *MF = MBB->getParent(); 749 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 750 addOperand(*MF, Op); 751 } 752 753 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 754 /// ranges. If MRI is non-null also update use-def chains. 755 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 756 unsigned NumOps, MachineRegisterInfo *MRI) { 757 if (MRI) 758 return MRI->moveOperands(Dst, Src, NumOps); 759 760 // MachineOperand is a trivially copyable type so we can just use memmove. 761 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 762 } 763 764 /// addOperand - Add the specified operand to the instruction. If it is an 765 /// implicit operand, it is added to the end of the operand list. If it is 766 /// an explicit operand it is added at the end of the explicit operand list 767 /// (before the first implicit operand). 768 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 769 assert(MCID && "Cannot add operands before providing an instr descriptor"); 770 771 // Check if we're adding one of our existing operands. 772 if (&Op >= Operands && &Op < Operands + NumOperands) { 773 // This is unusual: MI->addOperand(MI->getOperand(i)). 774 // If adding Op requires reallocating or moving existing operands around, 775 // the Op reference could go stale. Support it by copying Op. 776 MachineOperand CopyOp(Op); 777 return addOperand(MF, CopyOp); 778 } 779 780 // Find the insert location for the new operand. Implicit registers go at 781 // the end, everything else goes before the implicit regs. 782 // 783 // FIXME: Allow mixed explicit and implicit operands on inline asm. 784 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 785 // implicit-defs, but they must not be moved around. See the FIXME in 786 // InstrEmitter.cpp. 787 unsigned OpNo = getNumOperands(); 788 bool isImpReg = Op.isReg() && Op.isImplicit(); 789 if (!isImpReg && !isInlineAsm()) { 790 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 791 --OpNo; 792 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 793 } 794 } 795 796 #ifndef NDEBUG 797 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 798 // OpNo now points as the desired insertion point. Unless this is a variadic 799 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 800 // RegMask operands go between the explicit and implicit operands. 801 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 802 OpNo < MCID->getNumOperands() || isMetaDataOp) && 803 "Trying to add an operand to a machine instr that is already done!"); 804 #endif 805 806 MachineRegisterInfo *MRI = getRegInfo(); 807 808 // Determine if the Operands array needs to be reallocated. 809 // Save the old capacity and operand array. 810 OperandCapacity OldCap = CapOperands; 811 MachineOperand *OldOperands = Operands; 812 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 813 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 814 Operands = MF.allocateOperandArray(CapOperands); 815 // Move the operands before the insertion point. 816 if (OpNo) 817 moveOperands(Operands, OldOperands, OpNo, MRI); 818 } 819 820 // Move the operands following the insertion point. 821 if (OpNo != NumOperands) 822 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 823 MRI); 824 ++NumOperands; 825 826 // Deallocate the old operand array. 827 if (OldOperands != Operands && OldOperands) 828 MF.deallocateOperandArray(OldCap, OldOperands); 829 830 // Copy Op into place. It still needs to be inserted into the MRI use lists. 831 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 832 NewMO->ParentMI = this; 833 834 // When adding a register operand, tell MRI about it. 835 if (NewMO->isReg()) { 836 // Ensure isOnRegUseList() returns false, regardless of Op's status. 837 NewMO->Contents.Reg.Prev = nullptr; 838 // Ignore existing ties. This is not a property that can be copied. 839 NewMO->TiedTo = 0; 840 // Add the new operand to MRI, but only for instructions in an MBB. 841 if (MRI) 842 MRI->addRegOperandToUseList(NewMO); 843 // The MCID operand information isn't accurate until we start adding 844 // explicit operands. The implicit operands are added first, then the 845 // explicits are inserted before them. 846 if (!isImpReg) { 847 // Tie uses to defs as indicated in MCInstrDesc. 848 if (NewMO->isUse()) { 849 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 850 if (DefIdx != -1) 851 tieOperands(DefIdx, OpNo); 852 } 853 // If the register operand is flagged as early, mark the operand as such. 854 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 855 NewMO->setIsEarlyClobber(true); 856 } 857 } 858 } 859 860 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 861 /// fewer operand than it started with. 862 /// 863 void MachineInstr::RemoveOperand(unsigned OpNo) { 864 assert(OpNo < getNumOperands() && "Invalid operand number"); 865 untieRegOperand(OpNo); 866 867 #ifndef NDEBUG 868 // Moving tied operands would break the ties. 869 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 870 if (Operands[i].isReg()) 871 assert(!Operands[i].isTied() && "Cannot move tied operands"); 872 #endif 873 874 MachineRegisterInfo *MRI = getRegInfo(); 875 if (MRI && Operands[OpNo].isReg()) 876 MRI->removeRegOperandFromUseList(Operands + OpNo); 877 878 // Don't call the MachineOperand destructor. A lot of this code depends on 879 // MachineOperand having a trivial destructor anyway, and adding a call here 880 // wouldn't make it 'destructor-correct'. 881 882 if (unsigned N = NumOperands - 1 - OpNo) 883 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 884 --NumOperands; 885 } 886 887 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 888 /// This function should be used only occasionally. The setMemRefs function 889 /// is the primary method for setting up a MachineInstr's MemRefs list. 890 void MachineInstr::addMemOperand(MachineFunction &MF, 891 MachineMemOperand *MO) { 892 mmo_iterator OldMemRefs = MemRefs; 893 unsigned OldNumMemRefs = NumMemRefs; 894 895 unsigned NewNum = NumMemRefs + 1; 896 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 897 898 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 899 NewMemRefs[NewNum - 1] = MO; 900 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 901 } 902 903 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 904 /// identical. 905 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 906 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 907 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 908 if ((E1 - I1) != (E2 - I2)) 909 return false; 910 for (; I1 != E1; ++I1, ++I2) { 911 if (**I1 != **I2) 912 return false; 913 } 914 return true; 915 } 916 917 std::pair<MachineInstr::mmo_iterator, unsigned> 918 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 919 920 // If either of the incoming memrefs are empty, we must be conservative and 921 // treat this as if we've exhausted our space for memrefs and dropped them. 922 if (memoperands_empty() || Other.memoperands_empty()) 923 return std::make_pair(nullptr, 0); 924 925 // If both instructions have identical memrefs, we don't need to merge them. 926 // Since many instructions have a single memref, and we tend to merge things 927 // like pairs of loads from the same location, this catches a large number of 928 // cases in practice. 929 if (hasIdenticalMMOs(*this, Other)) 930 return std::make_pair(MemRefs, NumMemRefs); 931 932 // TODO: consider uniquing elements within the operand lists to reduce 933 // space usage and fall back to conservative information less often. 934 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 935 936 // If we don't have enough room to store this many memrefs, be conservative 937 // and drop them. Otherwise, we'd fail asserts when trying to add them to 938 // the new instruction. 939 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 940 return std::make_pair(nullptr, 0); 941 942 MachineFunction *MF = getParent()->getParent(); 943 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 944 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 945 MemBegin); 946 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 947 MemEnd); 948 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 949 "missing memrefs"); 950 951 return std::make_pair(MemBegin, CombinedNumMemRefs); 952 } 953 954 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 955 assert(!isBundledWithPred() && "Must be called on bundle header"); 956 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 957 if (MII->getDesc().getFlags() & Mask) { 958 if (Type == AnyInBundle) 959 return true; 960 } else { 961 if (Type == AllInBundle && !MII->isBundle()) 962 return false; 963 } 964 // This was the last instruction in the bundle. 965 if (!MII->isBundledWithSucc()) 966 return Type == AllInBundle; 967 } 968 } 969 970 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 971 MICheckType Check) const { 972 // If opcodes or number of operands are not the same then the two 973 // instructions are obviously not identical. 974 if (Other.getOpcode() != getOpcode() || 975 Other.getNumOperands() != getNumOperands()) 976 return false; 977 978 if (isBundle()) { 979 // Both instructions are bundles, compare MIs inside the bundle. 980 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 981 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 982 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 983 MachineBasicBlock::const_instr_iterator E2 = Other.getParent()->instr_end(); 984 while (++I1 != E1 && I1->isInsideBundle()) { 985 ++I2; 986 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(*I2, Check)) 987 return false; 988 } 989 } 990 991 // Check operands to make sure they match. 992 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 993 const MachineOperand &MO = getOperand(i); 994 const MachineOperand &OMO = Other.getOperand(i); 995 if (!MO.isReg()) { 996 if (!MO.isIdenticalTo(OMO)) 997 return false; 998 continue; 999 } 1000 1001 // Clients may or may not want to ignore defs when testing for equality. 1002 // For example, machine CSE pass only cares about finding common 1003 // subexpressions, so it's safe to ignore virtual register defs. 1004 if (MO.isDef()) { 1005 if (Check == IgnoreDefs) 1006 continue; 1007 else if (Check == IgnoreVRegDefs) { 1008 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1009 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 1010 if (MO.getReg() != OMO.getReg()) 1011 return false; 1012 } else { 1013 if (!MO.isIdenticalTo(OMO)) 1014 return false; 1015 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 1016 return false; 1017 } 1018 } else { 1019 if (!MO.isIdenticalTo(OMO)) 1020 return false; 1021 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1022 return false; 1023 } 1024 } 1025 // If DebugLoc does not match then two dbg.values are not identical. 1026 if (isDebugValue()) 1027 if (getDebugLoc() && Other.getDebugLoc() && 1028 getDebugLoc() != Other.getDebugLoc()) 1029 return false; 1030 return true; 1031 } 1032 1033 MachineInstr *MachineInstr::removeFromParent() { 1034 assert(getParent() && "Not embedded in a basic block!"); 1035 return getParent()->remove(this); 1036 } 1037 1038 MachineInstr *MachineInstr::removeFromBundle() { 1039 assert(getParent() && "Not embedded in a basic block!"); 1040 return getParent()->remove_instr(this); 1041 } 1042 1043 void MachineInstr::eraseFromParent() { 1044 assert(getParent() && "Not embedded in a basic block!"); 1045 getParent()->erase(this); 1046 } 1047 1048 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1049 assert(getParent() && "Not embedded in a basic block!"); 1050 MachineBasicBlock *MBB = getParent(); 1051 MachineFunction *MF = MBB->getParent(); 1052 assert(MF && "Not embedded in a function!"); 1053 1054 MachineInstr *MI = (MachineInstr *)this; 1055 MachineRegisterInfo &MRI = MF->getRegInfo(); 1056 1057 for (const MachineOperand &MO : MI->operands()) { 1058 if (!MO.isReg() || !MO.isDef()) 1059 continue; 1060 unsigned Reg = MO.getReg(); 1061 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1062 continue; 1063 MRI.markUsesInDebugValueAsUndef(Reg); 1064 } 1065 MI->eraseFromParent(); 1066 } 1067 1068 void MachineInstr::eraseFromBundle() { 1069 assert(getParent() && "Not embedded in a basic block!"); 1070 getParent()->erase_instr(this); 1071 } 1072 1073 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1074 /// 1075 unsigned MachineInstr::getNumExplicitOperands() const { 1076 unsigned NumOperands = MCID->getNumOperands(); 1077 if (!MCID->isVariadic()) 1078 return NumOperands; 1079 1080 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1081 const MachineOperand &MO = getOperand(i); 1082 if (!MO.isReg() || !MO.isImplicit()) 1083 NumOperands++; 1084 } 1085 return NumOperands; 1086 } 1087 1088 void MachineInstr::bundleWithPred() { 1089 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1090 setFlag(BundledPred); 1091 MachineBasicBlock::instr_iterator Pred = getIterator(); 1092 --Pred; 1093 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1094 Pred->setFlag(BundledSucc); 1095 } 1096 1097 void MachineInstr::bundleWithSucc() { 1098 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1099 setFlag(BundledSucc); 1100 MachineBasicBlock::instr_iterator Succ = getIterator(); 1101 ++Succ; 1102 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1103 Succ->setFlag(BundledPred); 1104 } 1105 1106 void MachineInstr::unbundleFromPred() { 1107 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1108 clearFlag(BundledPred); 1109 MachineBasicBlock::instr_iterator Pred = getIterator(); 1110 --Pred; 1111 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1112 Pred->clearFlag(BundledSucc); 1113 } 1114 1115 void MachineInstr::unbundleFromSucc() { 1116 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1117 clearFlag(BundledSucc); 1118 MachineBasicBlock::instr_iterator Succ = getIterator(); 1119 ++Succ; 1120 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1121 Succ->clearFlag(BundledPred); 1122 } 1123 1124 bool MachineInstr::isStackAligningInlineAsm() const { 1125 if (isInlineAsm()) { 1126 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1127 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1128 return true; 1129 } 1130 return false; 1131 } 1132 1133 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1134 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1135 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1136 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1137 } 1138 1139 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1140 unsigned *GroupNo) const { 1141 assert(isInlineAsm() && "Expected an inline asm instruction"); 1142 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1143 1144 // Ignore queries about the initial operands. 1145 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1146 return -1; 1147 1148 unsigned Group = 0; 1149 unsigned NumOps; 1150 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1151 i += NumOps) { 1152 const MachineOperand &FlagMO = getOperand(i); 1153 // If we reach the implicit register operands, stop looking. 1154 if (!FlagMO.isImm()) 1155 return -1; 1156 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1157 if (i + NumOps > OpIdx) { 1158 if (GroupNo) 1159 *GroupNo = Group; 1160 return i; 1161 } 1162 ++Group; 1163 } 1164 return -1; 1165 } 1166 1167 const TargetRegisterClass* 1168 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1169 const TargetInstrInfo *TII, 1170 const TargetRegisterInfo *TRI) const { 1171 assert(getParent() && "Can't have an MBB reference here!"); 1172 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1173 const MachineFunction &MF = *getParent()->getParent(); 1174 1175 // Most opcodes have fixed constraints in their MCInstrDesc. 1176 if (!isInlineAsm()) 1177 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1178 1179 if (!getOperand(OpIdx).isReg()) 1180 return nullptr; 1181 1182 // For tied uses on inline asm, get the constraint from the def. 1183 unsigned DefIdx; 1184 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1185 OpIdx = DefIdx; 1186 1187 // Inline asm stores register class constraints in the flag word. 1188 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1189 if (FlagIdx < 0) 1190 return nullptr; 1191 1192 unsigned Flag = getOperand(FlagIdx).getImm(); 1193 unsigned RCID; 1194 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 1195 return TRI->getRegClass(RCID); 1196 1197 // Assume that all registers in a memory operand are pointers. 1198 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1199 return TRI->getPointerRegClass(MF); 1200 1201 return nullptr; 1202 } 1203 1204 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1205 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1206 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1207 // Check every operands inside the bundle if we have 1208 // been asked to. 1209 if (ExploreBundle) 1210 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 1211 ++OpndIt) 1212 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1213 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1214 else 1215 // Otherwise, just check the current operands. 1216 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1217 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1218 return CurRC; 1219 } 1220 1221 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1222 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1223 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1224 assert(CurRC && "Invalid initial register class"); 1225 // Check if Reg is constrained by some of its use/def from MI. 1226 const MachineOperand &MO = getOperand(OpIdx); 1227 if (!MO.isReg() || MO.getReg() != Reg) 1228 return CurRC; 1229 // If yes, accumulate the constraints through the operand. 1230 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1231 } 1232 1233 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1234 unsigned OpIdx, const TargetRegisterClass *CurRC, 1235 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1236 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1237 const MachineOperand &MO = getOperand(OpIdx); 1238 assert(MO.isReg() && 1239 "Cannot get register constraints for non-register operand"); 1240 assert(CurRC && "Invalid initial register class"); 1241 if (unsigned SubIdx = MO.getSubReg()) { 1242 if (OpRC) 1243 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1244 else 1245 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1246 } else if (OpRC) 1247 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1248 return CurRC; 1249 } 1250 1251 /// Return the number of instructions inside the MI bundle, not counting the 1252 /// header instruction. 1253 unsigned MachineInstr::getBundleSize() const { 1254 MachineBasicBlock::const_instr_iterator I = getIterator(); 1255 unsigned Size = 0; 1256 while (I->isBundledWithSucc()) { 1257 ++Size; 1258 ++I; 1259 } 1260 return Size; 1261 } 1262 1263 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1264 /// the specific register or -1 if it is not found. It further tightens 1265 /// the search criteria to a use that kills the register if isKill is true. 1266 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1267 const TargetRegisterInfo *TRI) const { 1268 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1269 const MachineOperand &MO = getOperand(i); 1270 if (!MO.isReg() || !MO.isUse()) 1271 continue; 1272 unsigned MOReg = MO.getReg(); 1273 if (!MOReg) 1274 continue; 1275 if (MOReg == Reg || 1276 (TRI && 1277 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1278 TargetRegisterInfo::isPhysicalRegister(Reg) && 1279 TRI->isSubRegister(MOReg, Reg))) 1280 if (!isKill || MO.isKill()) 1281 return i; 1282 } 1283 return -1; 1284 } 1285 1286 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1287 /// indicating if this instruction reads or writes Reg. This also considers 1288 /// partial defines. 1289 std::pair<bool,bool> 1290 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1291 SmallVectorImpl<unsigned> *Ops) const { 1292 bool PartDef = false; // Partial redefine. 1293 bool FullDef = false; // Full define. 1294 bool Use = false; 1295 1296 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1297 const MachineOperand &MO = getOperand(i); 1298 if (!MO.isReg() || MO.getReg() != Reg) 1299 continue; 1300 if (Ops) 1301 Ops->push_back(i); 1302 if (MO.isUse()) 1303 Use |= !MO.isUndef(); 1304 else if (MO.getSubReg() && !MO.isUndef()) 1305 // A partial <def,undef> doesn't count as reading the register. 1306 PartDef = true; 1307 else 1308 FullDef = true; 1309 } 1310 // A partial redefine uses Reg unless there is also a full define. 1311 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1312 } 1313 1314 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1315 /// the specified register or -1 if it is not found. If isDead is true, defs 1316 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1317 /// also checks if there is a def of a super-register. 1318 int 1319 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1320 const TargetRegisterInfo *TRI) const { 1321 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1322 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1323 const MachineOperand &MO = getOperand(i); 1324 // Accept regmask operands when Overlap is set. 1325 // Ignore them when looking for a specific def operand (Overlap == false). 1326 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1327 return i; 1328 if (!MO.isReg() || !MO.isDef()) 1329 continue; 1330 unsigned MOReg = MO.getReg(); 1331 bool Found = (MOReg == Reg); 1332 if (!Found && TRI && isPhys && 1333 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1334 if (Overlap) 1335 Found = TRI->regsOverlap(MOReg, Reg); 1336 else 1337 Found = TRI->isSubRegister(MOReg, Reg); 1338 } 1339 if (Found && (!isDead || MO.isDead())) 1340 return i; 1341 } 1342 return -1; 1343 } 1344 1345 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1346 /// operand list that is used to represent the predicate. It returns -1 if 1347 /// none is found. 1348 int MachineInstr::findFirstPredOperandIdx() const { 1349 // Don't call MCID.findFirstPredOperandIdx() because this variant 1350 // is sometimes called on an instruction that's not yet complete, and 1351 // so the number of operands is less than the MCID indicates. In 1352 // particular, the PTX target does this. 1353 const MCInstrDesc &MCID = getDesc(); 1354 if (MCID.isPredicable()) { 1355 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1356 if (MCID.OpInfo[i].isPredicate()) 1357 return i; 1358 } 1359 1360 return -1; 1361 } 1362 1363 // MachineOperand::TiedTo is 4 bits wide. 1364 const unsigned TiedMax = 15; 1365 1366 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1367 /// 1368 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1369 /// field. TiedTo can have these values: 1370 /// 1371 /// 0: Operand is not tied to anything. 1372 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1373 /// TiedMax: Tied to an operand >= TiedMax-1. 1374 /// 1375 /// The tied def must be one of the first TiedMax operands on a normal 1376 /// instruction. INLINEASM instructions allow more tied defs. 1377 /// 1378 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1379 MachineOperand &DefMO = getOperand(DefIdx); 1380 MachineOperand &UseMO = getOperand(UseIdx); 1381 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1382 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1383 assert(!DefMO.isTied() && "Def is already tied to another use"); 1384 assert(!UseMO.isTied() && "Use is already tied to another def"); 1385 1386 if (DefIdx < TiedMax) 1387 UseMO.TiedTo = DefIdx + 1; 1388 else { 1389 // Inline asm can use the group descriptors to find tied operands, but on 1390 // normal instruction, the tied def must be within the first TiedMax 1391 // operands. 1392 assert(isInlineAsm() && "DefIdx out of range"); 1393 UseMO.TiedTo = TiedMax; 1394 } 1395 1396 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1397 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1398 } 1399 1400 /// Given the index of a tied register operand, find the operand it is tied to. 1401 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1402 /// which must exist. 1403 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1404 const MachineOperand &MO = getOperand(OpIdx); 1405 assert(MO.isTied() && "Operand isn't tied"); 1406 1407 // Normally TiedTo is in range. 1408 if (MO.TiedTo < TiedMax) 1409 return MO.TiedTo - 1; 1410 1411 // Uses on normal instructions can be out of range. 1412 if (!isInlineAsm()) { 1413 // Normal tied defs must be in the 0..TiedMax-1 range. 1414 if (MO.isUse()) 1415 return TiedMax - 1; 1416 // MO is a def. Search for the tied use. 1417 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1418 const MachineOperand &UseMO = getOperand(i); 1419 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1420 return i; 1421 } 1422 llvm_unreachable("Can't find tied use"); 1423 } 1424 1425 // Now deal with inline asm by parsing the operand group descriptor flags. 1426 // Find the beginning of each operand group. 1427 SmallVector<unsigned, 8> GroupIdx; 1428 unsigned OpIdxGroup = ~0u; 1429 unsigned NumOps; 1430 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1431 i += NumOps) { 1432 const MachineOperand &FlagMO = getOperand(i); 1433 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1434 unsigned CurGroup = GroupIdx.size(); 1435 GroupIdx.push_back(i); 1436 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1437 // OpIdx belongs to this operand group. 1438 if (OpIdx > i && OpIdx < i + NumOps) 1439 OpIdxGroup = CurGroup; 1440 unsigned TiedGroup; 1441 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1442 continue; 1443 // Operands in this group are tied to operands in TiedGroup which must be 1444 // earlier. Find the number of operands between the two groups. 1445 unsigned Delta = i - GroupIdx[TiedGroup]; 1446 1447 // OpIdx is a use tied to TiedGroup. 1448 if (OpIdxGroup == CurGroup) 1449 return OpIdx - Delta; 1450 1451 // OpIdx is a def tied to this use group. 1452 if (OpIdxGroup == TiedGroup) 1453 return OpIdx + Delta; 1454 } 1455 llvm_unreachable("Invalid tied operand on inline asm"); 1456 } 1457 1458 /// clearKillInfo - Clears kill flags on all operands. 1459 /// 1460 void MachineInstr::clearKillInfo() { 1461 for (MachineOperand &MO : operands()) { 1462 if (MO.isReg() && MO.isUse()) 1463 MO.setIsKill(false); 1464 } 1465 } 1466 1467 void MachineInstr::substituteRegister(unsigned FromReg, 1468 unsigned ToReg, 1469 unsigned SubIdx, 1470 const TargetRegisterInfo &RegInfo) { 1471 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1472 if (SubIdx) 1473 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1474 for (MachineOperand &MO : operands()) { 1475 if (!MO.isReg() || MO.getReg() != FromReg) 1476 continue; 1477 MO.substPhysReg(ToReg, RegInfo); 1478 } 1479 } else { 1480 for (MachineOperand &MO : operands()) { 1481 if (!MO.isReg() || MO.getReg() != FromReg) 1482 continue; 1483 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1484 } 1485 } 1486 } 1487 1488 /// isSafeToMove - Return true if it is safe to move this instruction. If 1489 /// SawStore is set to true, it means that there is a store (or call) between 1490 /// the instruction's location and its intended destination. 1491 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1492 // Ignore stuff that we obviously can't move. 1493 // 1494 // Treat volatile loads as stores. This is not strictly necessary for 1495 // volatiles, but it is required for atomic loads. It is not allowed to move 1496 // a load across an atomic load with Ordering > Monotonic. 1497 if (mayStore() || isCall() || 1498 (mayLoad() && hasOrderedMemoryRef())) { 1499 SawStore = true; 1500 return false; 1501 } 1502 1503 if (isPosition() || isDebugValue() || isTerminator() || 1504 hasUnmodeledSideEffects()) 1505 return false; 1506 1507 // See if this instruction does a load. If so, we have to guarantee that the 1508 // loaded value doesn't change between the load and the its intended 1509 // destination. The check for isInvariantLoad gives the targe the chance to 1510 // classify the load as always returning a constant, e.g. a constant pool 1511 // load. 1512 if (mayLoad() && !isInvariantLoad(AA)) 1513 // Otherwise, this is a real load. If there is a store between the load and 1514 // end of block, we can't move it. 1515 return !SawStore; 1516 1517 return true; 1518 } 1519 1520 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1521 /// or volatile memory reference, or if the information describing the memory 1522 /// reference is not available. Return false if it is known to have no ordered 1523 /// memory references. 1524 bool MachineInstr::hasOrderedMemoryRef() const { 1525 // An instruction known never to access memory won't have a volatile access. 1526 if (!mayStore() && 1527 !mayLoad() && 1528 !isCall() && 1529 !hasUnmodeledSideEffects()) 1530 return false; 1531 1532 // Otherwise, if the instruction has no memory reference information, 1533 // conservatively assume it wasn't preserved. 1534 if (memoperands_empty()) 1535 return true; 1536 1537 // Check the memory reference information for ordered references. 1538 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1539 if (!(*I)->isUnordered()) 1540 return true; 1541 1542 return false; 1543 } 1544 1545 /// isInvariantLoad - Return true if this instruction is loading from a 1546 /// location whose value is invariant across the function. For example, 1547 /// loading a value from the constant pool or from the argument area 1548 /// of a function if it does not change. This should only return true of 1549 /// *all* loads the instruction does are invariant (if it does multiple loads). 1550 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1551 // If the instruction doesn't load at all, it isn't an invariant load. 1552 if (!mayLoad()) 1553 return false; 1554 1555 // If the instruction has lost its memoperands, conservatively assume that 1556 // it may not be an invariant load. 1557 if (memoperands_empty()) 1558 return false; 1559 1560 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1561 1562 for (mmo_iterator I = memoperands_begin(), 1563 E = memoperands_end(); I != E; ++I) { 1564 if ((*I)->isVolatile()) return false; 1565 if ((*I)->isStore()) return false; 1566 if ((*I)->isInvariant()) return true; 1567 1568 1569 // A load from a constant PseudoSourceValue is invariant. 1570 if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) 1571 if (PSV->isConstant(MFI)) 1572 continue; 1573 1574 if (const Value *V = (*I)->getValue()) { 1575 // If we have an AliasAnalysis, ask it whether the memory is constant. 1576 if (AA && 1577 AA->pointsToConstantMemory( 1578 MemoryLocation(V, (*I)->getSize(), (*I)->getAAInfo()))) 1579 continue; 1580 } 1581 1582 // Otherwise assume conservatively. 1583 return false; 1584 } 1585 1586 // Everything checks out. 1587 return true; 1588 } 1589 1590 /// isConstantValuePHI - If the specified instruction is a PHI that always 1591 /// merges together the same virtual register, return the register, otherwise 1592 /// return 0. 1593 unsigned MachineInstr::isConstantValuePHI() const { 1594 if (!isPHI()) 1595 return 0; 1596 assert(getNumOperands() >= 3 && 1597 "It's illegal to have a PHI without source operands"); 1598 1599 unsigned Reg = getOperand(1).getReg(); 1600 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1601 if (getOperand(i).getReg() != Reg) 1602 return 0; 1603 return Reg; 1604 } 1605 1606 bool MachineInstr::hasUnmodeledSideEffects() const { 1607 if (hasProperty(MCID::UnmodeledSideEffects)) 1608 return true; 1609 if (isInlineAsm()) { 1610 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1611 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1612 return true; 1613 } 1614 1615 return false; 1616 } 1617 1618 bool MachineInstr::isLoadFoldBarrier() const { 1619 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1620 } 1621 1622 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1623 /// 1624 bool MachineInstr::allDefsAreDead() const { 1625 for (const MachineOperand &MO : operands()) { 1626 if (!MO.isReg() || MO.isUse()) 1627 continue; 1628 if (!MO.isDead()) 1629 return false; 1630 } 1631 return true; 1632 } 1633 1634 /// copyImplicitOps - Copy implicit register operands from specified 1635 /// instruction to this instruction. 1636 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1637 const MachineInstr &MI) { 1638 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1639 i != e; ++i) { 1640 const MachineOperand &MO = MI.getOperand(i); 1641 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1642 addOperand(MF, MO); 1643 } 1644 } 1645 1646 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1647 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1648 dbgs() << " " << *this; 1649 #endif 1650 } 1651 1652 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const { 1653 const Module *M = nullptr; 1654 if (const MachineBasicBlock *MBB = getParent()) 1655 if (const MachineFunction *MF = MBB->getParent()) 1656 M = MF->getFunction()->getParent(); 1657 1658 ModuleSlotTracker MST(M); 1659 print(OS, MST, SkipOpers); 1660 } 1661 1662 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1663 bool SkipOpers) const { 1664 // We can be a bit tidier if we know the MachineFunction. 1665 const MachineFunction *MF = nullptr; 1666 const TargetRegisterInfo *TRI = nullptr; 1667 const MachineRegisterInfo *MRI = nullptr; 1668 const TargetInstrInfo *TII = nullptr; 1669 if (const MachineBasicBlock *MBB = getParent()) { 1670 MF = MBB->getParent(); 1671 if (MF) { 1672 MRI = &MF->getRegInfo(); 1673 TRI = MF->getSubtarget().getRegisterInfo(); 1674 TII = MF->getSubtarget().getInstrInfo(); 1675 } 1676 } 1677 1678 // Save a list of virtual registers. 1679 SmallVector<unsigned, 8> VirtRegs; 1680 1681 // Print explicitly defined operands on the left of an assignment syntax. 1682 unsigned StartOp = 0, e = getNumOperands(); 1683 for (; StartOp < e && getOperand(StartOp).isReg() && 1684 getOperand(StartOp).isDef() && 1685 !getOperand(StartOp).isImplicit(); 1686 ++StartOp) { 1687 if (StartOp != 0) OS << ", "; 1688 getOperand(StartOp).print(OS, MST, TRI); 1689 unsigned Reg = getOperand(StartOp).getReg(); 1690 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1691 VirtRegs.push_back(Reg); 1692 unsigned Size; 1693 if (MRI && (Size = MRI->getSize(Reg))) 1694 OS << '(' << Size << ')'; 1695 } 1696 } 1697 1698 if (StartOp != 0) 1699 OS << " = "; 1700 1701 // Print the opcode name. 1702 if (TII) 1703 OS << TII->getName(getOpcode()); 1704 else 1705 OS << "UNKNOWN"; 1706 1707 if (getType()) { 1708 OS << ' '; 1709 getType()->print(OS, /*IsForDebug*/ false, /*NoDetails*/ true); 1710 OS << ' '; 1711 } 1712 1713 if (SkipOpers) 1714 return; 1715 1716 // Print the rest of the operands. 1717 bool OmittedAnyCallClobbers = false; 1718 bool FirstOp = true; 1719 unsigned AsmDescOp = ~0u; 1720 unsigned AsmOpCount = 0; 1721 1722 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1723 // Print asm string. 1724 OS << " "; 1725 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1726 1727 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1728 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1729 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1730 OS << " [sideeffect]"; 1731 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1732 OS << " [mayload]"; 1733 if (ExtraInfo & InlineAsm::Extra_MayStore) 1734 OS << " [maystore]"; 1735 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1736 OS << " [alignstack]"; 1737 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1738 OS << " [attdialect]"; 1739 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1740 OS << " [inteldialect]"; 1741 1742 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1743 FirstOp = false; 1744 } 1745 1746 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1747 const MachineOperand &MO = getOperand(i); 1748 1749 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1750 VirtRegs.push_back(MO.getReg()); 1751 1752 // Omit call-clobbered registers which aren't used anywhere. This makes 1753 // call instructions much less noisy on targets where calls clobber lots 1754 // of registers. Don't rely on MO.isDead() because we may be called before 1755 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1756 if (MRI && isCall() && 1757 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1758 unsigned Reg = MO.getReg(); 1759 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1760 if (MRI->use_empty(Reg)) { 1761 bool HasAliasLive = false; 1762 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 1763 unsigned AliasReg = *AI; 1764 if (!MRI->use_empty(AliasReg)) { 1765 HasAliasLive = true; 1766 break; 1767 } 1768 } 1769 if (!HasAliasLive) { 1770 OmittedAnyCallClobbers = true; 1771 continue; 1772 } 1773 } 1774 } 1775 } 1776 1777 if (FirstOp) FirstOp = false; else OS << ","; 1778 OS << " "; 1779 if (i < getDesc().NumOperands) { 1780 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1781 if (MCOI.isPredicate()) 1782 OS << "pred:"; 1783 if (MCOI.isOptionalDef()) 1784 OS << "opt:"; 1785 } 1786 if (isDebugValue() && MO.isMetadata()) { 1787 // Pretty print DBG_VALUE instructions. 1788 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1789 if (DIV && !DIV->getName().empty()) 1790 OS << "!\"" << DIV->getName() << '\"'; 1791 else 1792 MO.print(OS, MST, TRI); 1793 } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1794 OS << TRI->getSubRegIndexName(MO.getImm()); 1795 } else if (i == AsmDescOp && MO.isImm()) { 1796 // Pretty print the inline asm operand descriptor. 1797 OS << '$' << AsmOpCount++; 1798 unsigned Flag = MO.getImm(); 1799 switch (InlineAsm::getKind(Flag)) { 1800 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1801 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1802 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1803 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1804 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1805 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1806 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1807 } 1808 1809 unsigned RCID = 0; 1810 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1811 if (TRI) { 1812 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1813 } else 1814 OS << ":RC" << RCID; 1815 } 1816 1817 unsigned TiedTo = 0; 1818 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1819 OS << " tiedto:$" << TiedTo; 1820 1821 OS << ']'; 1822 1823 // Compute the index of the next operand descriptor. 1824 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1825 } else 1826 MO.print(OS, MST, TRI); 1827 } 1828 1829 // Briefly indicate whether any call clobbers were omitted. 1830 if (OmittedAnyCallClobbers) { 1831 if (!FirstOp) OS << ","; 1832 OS << " ..."; 1833 } 1834 1835 bool HaveSemi = false; 1836 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 1837 if (Flags & PrintableFlags) { 1838 if (!HaveSemi) { 1839 OS << ";"; 1840 HaveSemi = true; 1841 } 1842 OS << " flags: "; 1843 1844 if (Flags & FrameSetup) 1845 OS << "FrameSetup"; 1846 1847 if (Flags & FrameDestroy) 1848 OS << "FrameDestroy"; 1849 } 1850 1851 if (!memoperands_empty()) { 1852 if (!HaveSemi) { 1853 OS << ";"; 1854 HaveSemi = true; 1855 } 1856 1857 OS << " mem:"; 1858 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1859 i != e; ++i) { 1860 (*i)->print(OS, MST); 1861 if (std::next(i) != e) 1862 OS << " "; 1863 } 1864 } 1865 1866 // Print the regclass of any virtual registers encountered. 1867 if (MRI && !VirtRegs.empty()) { 1868 if (!HaveSemi) { 1869 OS << ";"; 1870 HaveSemi = true; 1871 } 1872 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1873 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); 1874 if (!RC) 1875 continue; 1876 // Generic virtual registers do not have register classes. 1877 if (RC.is<const RegisterBank *>()) 1878 OS << " " << RC.get<const RegisterBank *>()->getName(); 1879 else 1880 OS << " " 1881 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); 1882 OS << ':' << PrintReg(VirtRegs[i]); 1883 for (unsigned j = i+1; j != VirtRegs.size();) { 1884 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { 1885 ++j; 1886 continue; 1887 } 1888 if (VirtRegs[i] != VirtRegs[j]) 1889 OS << "," << PrintReg(VirtRegs[j]); 1890 VirtRegs.erase(VirtRegs.begin()+j); 1891 } 1892 } 1893 } 1894 1895 // Print debug location information. 1896 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1897 if (!HaveSemi) 1898 OS << ";"; 1899 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1900 OS << " line no:" << DV->getLine(); 1901 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1902 DebugLoc InlinedAtDL(InlinedAt); 1903 if (InlinedAtDL && MF) { 1904 OS << " inlined @[ "; 1905 InlinedAtDL.print(OS); 1906 OS << " ]"; 1907 } 1908 } 1909 if (isIndirectDebugValue()) 1910 OS << " indirect"; 1911 } else if (debugLoc && MF) { 1912 if (!HaveSemi) 1913 OS << ";"; 1914 OS << " dbg:"; 1915 debugLoc.print(OS); 1916 } 1917 1918 OS << '\n'; 1919 } 1920 1921 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1922 const TargetRegisterInfo *RegInfo, 1923 bool AddIfNotFound) { 1924 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1925 bool hasAliases = isPhysReg && 1926 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1927 bool Found = false; 1928 SmallVector<unsigned,4> DeadOps; 1929 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1930 MachineOperand &MO = getOperand(i); 1931 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1932 continue; 1933 unsigned Reg = MO.getReg(); 1934 if (!Reg) 1935 continue; 1936 1937 if (Reg == IncomingReg) { 1938 if (!Found) { 1939 if (MO.isKill()) 1940 // The register is already marked kill. 1941 return true; 1942 if (isPhysReg && isRegTiedToDefOperand(i)) 1943 // Two-address uses of physregs must not be marked kill. 1944 return true; 1945 MO.setIsKill(); 1946 Found = true; 1947 } 1948 } else if (hasAliases && MO.isKill() && 1949 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1950 // A super-register kill already exists. 1951 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1952 return true; 1953 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1954 DeadOps.push_back(i); 1955 } 1956 } 1957 1958 // Trim unneeded kill operands. 1959 while (!DeadOps.empty()) { 1960 unsigned OpIdx = DeadOps.back(); 1961 if (getOperand(OpIdx).isImplicit()) 1962 RemoveOperand(OpIdx); 1963 else 1964 getOperand(OpIdx).setIsKill(false); 1965 DeadOps.pop_back(); 1966 } 1967 1968 // If not found, this means an alias of one of the operands is killed. Add a 1969 // new implicit operand if required. 1970 if (!Found && AddIfNotFound) { 1971 addOperand(MachineOperand::CreateReg(IncomingReg, 1972 false /*IsDef*/, 1973 true /*IsImp*/, 1974 true /*IsKill*/)); 1975 return true; 1976 } 1977 return Found; 1978 } 1979 1980 void MachineInstr::clearRegisterKills(unsigned Reg, 1981 const TargetRegisterInfo *RegInfo) { 1982 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1983 RegInfo = nullptr; 1984 for (MachineOperand &MO : operands()) { 1985 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1986 continue; 1987 unsigned OpReg = MO.getReg(); 1988 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1989 MO.setIsKill(false); 1990 } 1991 } 1992 1993 bool MachineInstr::addRegisterDead(unsigned Reg, 1994 const TargetRegisterInfo *RegInfo, 1995 bool AddIfNotFound) { 1996 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1997 bool hasAliases = isPhysReg && 1998 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1999 bool Found = false; 2000 SmallVector<unsigned,4> DeadOps; 2001 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2002 MachineOperand &MO = getOperand(i); 2003 if (!MO.isReg() || !MO.isDef()) 2004 continue; 2005 unsigned MOReg = MO.getReg(); 2006 if (!MOReg) 2007 continue; 2008 2009 if (MOReg == Reg) { 2010 MO.setIsDead(); 2011 Found = true; 2012 } else if (hasAliases && MO.isDead() && 2013 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 2014 // There exists a super-register that's marked dead. 2015 if (RegInfo->isSuperRegister(Reg, MOReg)) 2016 return true; 2017 if (RegInfo->isSubRegister(Reg, MOReg)) 2018 DeadOps.push_back(i); 2019 } 2020 } 2021 2022 // Trim unneeded dead operands. 2023 while (!DeadOps.empty()) { 2024 unsigned OpIdx = DeadOps.back(); 2025 if (getOperand(OpIdx).isImplicit()) 2026 RemoveOperand(OpIdx); 2027 else 2028 getOperand(OpIdx).setIsDead(false); 2029 DeadOps.pop_back(); 2030 } 2031 2032 // If not found, this means an alias of one of the operands is dead. Add a 2033 // new implicit operand if required. 2034 if (Found || !AddIfNotFound) 2035 return Found; 2036 2037 addOperand(MachineOperand::CreateReg(Reg, 2038 true /*IsDef*/, 2039 true /*IsImp*/, 2040 false /*IsKill*/, 2041 true /*IsDead*/)); 2042 return true; 2043 } 2044 2045 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2046 for (MachineOperand &MO : operands()) { 2047 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2048 continue; 2049 MO.setIsDead(false); 2050 } 2051 } 2052 2053 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2054 for (MachineOperand &MO : operands()) { 2055 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2056 continue; 2057 MO.setIsUndef(IsUndef); 2058 } 2059 } 2060 2061 void MachineInstr::addRegisterDefined(unsigned Reg, 2062 const TargetRegisterInfo *RegInfo) { 2063 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2064 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2065 if (MO) 2066 return; 2067 } else { 2068 for (const MachineOperand &MO : operands()) { 2069 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2070 MO.getSubReg() == 0) 2071 return; 2072 } 2073 } 2074 addOperand(MachineOperand::CreateReg(Reg, 2075 true /*IsDef*/, 2076 true /*IsImp*/)); 2077 } 2078 2079 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2080 const TargetRegisterInfo &TRI) { 2081 bool HasRegMask = false; 2082 for (MachineOperand &MO : operands()) { 2083 if (MO.isRegMask()) { 2084 HasRegMask = true; 2085 continue; 2086 } 2087 if (!MO.isReg() || !MO.isDef()) continue; 2088 unsigned Reg = MO.getReg(); 2089 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2090 // If there are no uses, including partial uses, the def is dead. 2091 if (std::none_of(UsedRegs.begin(), UsedRegs.end(), 2092 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2093 MO.setIsDead(); 2094 } 2095 2096 // This is a call with a register mask operand. 2097 // Mask clobbers are always dead, so add defs for the non-dead defines. 2098 if (HasRegMask) 2099 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2100 I != E; ++I) 2101 addRegisterDefined(*I, &TRI); 2102 } 2103 2104 unsigned 2105 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2106 // Build up a buffer of hash code components. 2107 SmallVector<size_t, 8> HashComponents; 2108 HashComponents.reserve(MI->getNumOperands() + 1); 2109 HashComponents.push_back(MI->getOpcode()); 2110 for (const MachineOperand &MO : MI->operands()) { 2111 if (MO.isReg() && MO.isDef() && 2112 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2113 continue; // Skip virtual register defs. 2114 2115 HashComponents.push_back(hash_value(MO)); 2116 } 2117 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2118 } 2119 2120 void MachineInstr::emitError(StringRef Msg) const { 2121 // Find the source location cookie. 2122 unsigned LocCookie = 0; 2123 const MDNode *LocMD = nullptr; 2124 for (unsigned i = getNumOperands(); i != 0; --i) { 2125 if (getOperand(i-1).isMetadata() && 2126 (LocMD = getOperand(i-1).getMetadata()) && 2127 LocMD->getNumOperands() != 0) { 2128 if (const ConstantInt *CI = 2129 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2130 LocCookie = CI->getZExtValue(); 2131 break; 2132 } 2133 } 2134 } 2135 2136 if (const MachineBasicBlock *MBB = getParent()) 2137 if (const MachineFunction *MF = MBB->getParent()) 2138 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2139 report_fatal_error(Msg); 2140 } 2141