1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfo.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSlotTracker.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/MC/MCInstrDesc.h" 37 #include "llvm/MC/MCSymbol.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 using namespace llvm; 49 50 static cl::opt<bool> PrintWholeRegMask( 51 "print-whole-regmask", 52 cl::desc("Print the full contents of regmask operands in IR dumps"), 53 cl::init(true), cl::Hidden); 54 55 //===----------------------------------------------------------------------===// 56 // MachineOperand Implementation 57 //===----------------------------------------------------------------------===// 58 59 void MachineOperand::setReg(unsigned Reg) { 60 if (getReg() == Reg) return; // No change. 61 62 // Otherwise, we have to change the register. If this operand is embedded 63 // into a machine function, we need to update the old and new register's 64 // use/def lists. 65 if (MachineInstr *MI = getParent()) 66 if (MachineBasicBlock *MBB = MI->getParent()) 67 if (MachineFunction *MF = MBB->getParent()) { 68 MachineRegisterInfo &MRI = MF->getRegInfo(); 69 MRI.removeRegOperandFromUseList(this); 70 SmallContents.RegNo = Reg; 71 MRI.addRegOperandToUseList(this); 72 return; 73 } 74 75 // Otherwise, just change the register, no problem. :) 76 SmallContents.RegNo = Reg; 77 } 78 79 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 80 const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 82 if (SubIdx && getSubReg()) 83 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 84 setReg(Reg); 85 if (SubIdx) 86 setSubReg(SubIdx); 87 } 88 89 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 90 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 91 if (getSubReg()) { 92 Reg = TRI.getSubReg(Reg, getSubReg()); 93 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 94 // That won't happen in legal code. 95 setSubReg(0); 96 if (isDef()) 97 setIsUndef(false); 98 } 99 setReg(Reg); 100 } 101 102 /// Change a def to a use, or a use to a def. 103 void MachineOperand::setIsDef(bool Val) { 104 assert(isReg() && "Wrong MachineOperand accessor"); 105 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 106 if (IsDef == Val) 107 return; 108 // MRI may keep uses and defs in different list positions. 109 if (MachineInstr *MI = getParent()) 110 if (MachineBasicBlock *MBB = MI->getParent()) 111 if (MachineFunction *MF = MBB->getParent()) { 112 MachineRegisterInfo &MRI = MF->getRegInfo(); 113 MRI.removeRegOperandFromUseList(this); 114 IsDef = Val; 115 MRI.addRegOperandToUseList(this); 116 return; 117 } 118 IsDef = Val; 119 } 120 121 // If this operand is currently a register operand, and if this is in a 122 // function, deregister the operand from the register's use/def list. 123 void MachineOperand::removeRegFromUses() { 124 if (!isReg() || !isOnRegUseList()) 125 return; 126 127 if (MachineInstr *MI = getParent()) { 128 if (MachineBasicBlock *MBB = MI->getParent()) { 129 if (MachineFunction *MF = MBB->getParent()) 130 MF->getRegInfo().removeRegOperandFromUseList(this); 131 } 132 } 133 } 134 135 /// ChangeToImmediate - Replace this operand with a new immediate operand of 136 /// the specified value. If an operand is known to be an immediate already, 137 /// the setImm method should be used. 138 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 139 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 140 141 removeRegFromUses(); 142 143 OpKind = MO_Immediate; 144 Contents.ImmVal = ImmVal; 145 } 146 147 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 148 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 149 150 removeRegFromUses(); 151 152 OpKind = MO_FPImmediate; 153 Contents.CFP = FPImm; 154 } 155 156 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 157 assert((!isReg() || !isTied()) && 158 "Cannot change a tied operand into an external symbol"); 159 160 removeRegFromUses(); 161 162 OpKind = MO_ExternalSymbol; 163 Contents.OffsetedInfo.Val.SymbolName = SymName; 164 setOffset(0); // Offset is always 0. 165 setTargetFlags(TargetFlags); 166 } 167 168 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 169 assert((!isReg() || !isTied()) && 170 "Cannot change a tied operand into an MCSymbol"); 171 172 removeRegFromUses(); 173 174 OpKind = MO_MCSymbol; 175 Contents.Sym = Sym; 176 } 177 178 /// ChangeToRegister - Replace this operand with a new register operand of 179 /// the specified value. If an operand is known to be an register already, 180 /// the setReg method should be used. 181 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 182 bool isKill, bool isDead, bool isUndef, 183 bool isDebug) { 184 MachineRegisterInfo *RegInfo = nullptr; 185 if (MachineInstr *MI = getParent()) 186 if (MachineBasicBlock *MBB = MI->getParent()) 187 if (MachineFunction *MF = MBB->getParent()) 188 RegInfo = &MF->getRegInfo(); 189 // If this operand is already a register operand, remove it from the 190 // register's use/def lists. 191 bool WasReg = isReg(); 192 if (RegInfo && WasReg) 193 RegInfo->removeRegOperandFromUseList(this); 194 195 // Change this to a register and set the reg#. 196 OpKind = MO_Register; 197 SmallContents.RegNo = Reg; 198 SubReg_TargetFlags = 0; 199 IsDef = isDef; 200 IsImp = isImp; 201 IsKill = isKill; 202 IsDead = isDead; 203 IsUndef = isUndef; 204 IsInternalRead = false; 205 IsEarlyClobber = false; 206 IsDebug = isDebug; 207 // Ensure isOnRegUseList() returns false. 208 Contents.Reg.Prev = nullptr; 209 // Preserve the tie when the operand was already a register. 210 if (!WasReg) 211 TiedTo = 0; 212 213 // If this operand is embedded in a function, add the operand to the 214 // register's use/def list. 215 if (RegInfo) 216 RegInfo->addRegOperandToUseList(this); 217 } 218 219 /// isIdenticalTo - Return true if this operand is identical to the specified 220 /// operand. Note that this should stay in sync with the hash_value overload 221 /// below. 222 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 223 if (getType() != Other.getType() || 224 getTargetFlags() != Other.getTargetFlags()) 225 return false; 226 227 switch (getType()) { 228 case MachineOperand::MO_Register: 229 return getReg() == Other.getReg() && isDef() == Other.isDef() && 230 getSubReg() == Other.getSubReg(); 231 case MachineOperand::MO_Immediate: 232 return getImm() == Other.getImm(); 233 case MachineOperand::MO_CImmediate: 234 return getCImm() == Other.getCImm(); 235 case MachineOperand::MO_FPImmediate: 236 return getFPImm() == Other.getFPImm(); 237 case MachineOperand::MO_MachineBasicBlock: 238 return getMBB() == Other.getMBB(); 239 case MachineOperand::MO_FrameIndex: 240 return getIndex() == Other.getIndex(); 241 case MachineOperand::MO_ConstantPoolIndex: 242 case MachineOperand::MO_TargetIndex: 243 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 244 case MachineOperand::MO_JumpTableIndex: 245 return getIndex() == Other.getIndex(); 246 case MachineOperand::MO_GlobalAddress: 247 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 248 case MachineOperand::MO_ExternalSymbol: 249 return !strcmp(getSymbolName(), Other.getSymbolName()) && 250 getOffset() == Other.getOffset(); 251 case MachineOperand::MO_BlockAddress: 252 return getBlockAddress() == Other.getBlockAddress() && 253 getOffset() == Other.getOffset(); 254 case MachineOperand::MO_RegisterMask: 255 case MachineOperand::MO_RegisterLiveOut: 256 return getRegMask() == Other.getRegMask(); 257 case MachineOperand::MO_MCSymbol: 258 return getMCSymbol() == Other.getMCSymbol(); 259 case MachineOperand::MO_CFIIndex: 260 return getCFIIndex() == Other.getCFIIndex(); 261 case MachineOperand::MO_Metadata: 262 return getMetadata() == Other.getMetadata(); 263 case MachineOperand::MO_IntrinsicID: 264 return getIntrinsicID() == Other.getIntrinsicID(); 265 case MachineOperand::MO_Predicate: 266 return getPredicate() == Other.getPredicate(); 267 } 268 llvm_unreachable("Invalid machine operand type"); 269 } 270 271 // Note: this must stay exactly in sync with isIdenticalTo above. 272 hash_code llvm::hash_value(const MachineOperand &MO) { 273 switch (MO.getType()) { 274 case MachineOperand::MO_Register: 275 // Register operands don't have target flags. 276 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 277 case MachineOperand::MO_Immediate: 278 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 279 case MachineOperand::MO_CImmediate: 280 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 281 case MachineOperand::MO_FPImmediate: 282 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 283 case MachineOperand::MO_MachineBasicBlock: 284 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 285 case MachineOperand::MO_FrameIndex: 286 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 287 case MachineOperand::MO_ConstantPoolIndex: 288 case MachineOperand::MO_TargetIndex: 289 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 290 MO.getOffset()); 291 case MachineOperand::MO_JumpTableIndex: 292 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 293 case MachineOperand::MO_ExternalSymbol: 294 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 295 MO.getSymbolName()); 296 case MachineOperand::MO_GlobalAddress: 297 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 298 MO.getOffset()); 299 case MachineOperand::MO_BlockAddress: 300 return hash_combine(MO.getType(), MO.getTargetFlags(), 301 MO.getBlockAddress(), MO.getOffset()); 302 case MachineOperand::MO_RegisterMask: 303 case MachineOperand::MO_RegisterLiveOut: 304 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 305 case MachineOperand::MO_Metadata: 306 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 307 case MachineOperand::MO_MCSymbol: 308 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 309 case MachineOperand::MO_CFIIndex: 310 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 311 case MachineOperand::MO_IntrinsicID: 312 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID()); 313 case MachineOperand::MO_Predicate: 314 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate()); 315 } 316 llvm_unreachable("Invalid machine operand type"); 317 } 318 319 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI, 320 const TargetIntrinsicInfo *IntrinsicInfo) const { 321 ModuleSlotTracker DummyMST(nullptr); 322 print(OS, DummyMST, TRI, IntrinsicInfo); 323 } 324 325 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 326 const TargetRegisterInfo *TRI, 327 const TargetIntrinsicInfo *IntrinsicInfo) const { 328 switch (getType()) { 329 case MachineOperand::MO_Register: 330 OS << PrintReg(getReg(), TRI, getSubReg()); 331 332 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 333 isInternalRead() || isEarlyClobber() || isTied()) { 334 OS << '<'; 335 bool NeedComma = false; 336 if (isDef()) { 337 if (NeedComma) OS << ','; 338 if (isEarlyClobber()) 339 OS << "earlyclobber,"; 340 if (isImplicit()) 341 OS << "imp-"; 342 OS << "def"; 343 NeedComma = true; 344 // <def,read-undef> only makes sense when getSubReg() is set. 345 // Don't clutter the output otherwise. 346 if (isUndef() && getSubReg()) 347 OS << ",read-undef"; 348 } else if (isImplicit()) { 349 OS << "imp-use"; 350 NeedComma = true; 351 } 352 353 if (isKill()) { 354 if (NeedComma) OS << ','; 355 OS << "kill"; 356 NeedComma = true; 357 } 358 if (isDead()) { 359 if (NeedComma) OS << ','; 360 OS << "dead"; 361 NeedComma = true; 362 } 363 if (isUndef() && isUse()) { 364 if (NeedComma) OS << ','; 365 OS << "undef"; 366 NeedComma = true; 367 } 368 if (isInternalRead()) { 369 if (NeedComma) OS << ','; 370 OS << "internal"; 371 NeedComma = true; 372 } 373 if (isTied()) { 374 if (NeedComma) OS << ','; 375 OS << "tied"; 376 if (TiedTo != 15) 377 OS << unsigned(TiedTo - 1); 378 } 379 OS << '>'; 380 } 381 break; 382 case MachineOperand::MO_Immediate: 383 OS << getImm(); 384 break; 385 case MachineOperand::MO_CImmediate: 386 getCImm()->getValue().print(OS, false); 387 break; 388 case MachineOperand::MO_FPImmediate: 389 if (getFPImm()->getType()->isFloatTy()) { 390 OS << getFPImm()->getValueAPF().convertToFloat(); 391 } else if (getFPImm()->getType()->isHalfTy()) { 392 APFloat APF = getFPImm()->getValueAPF(); 393 bool Unused; 394 APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused); 395 OS << "half " << APF.convertToFloat(); 396 } else { 397 OS << getFPImm()->getValueAPF().convertToDouble(); 398 } 399 break; 400 case MachineOperand::MO_MachineBasicBlock: 401 OS << "<BB#" << getMBB()->getNumber() << ">"; 402 break; 403 case MachineOperand::MO_FrameIndex: 404 OS << "<fi#" << getIndex() << '>'; 405 break; 406 case MachineOperand::MO_ConstantPoolIndex: 407 OS << "<cp#" << getIndex(); 408 if (getOffset()) OS << "+" << getOffset(); 409 OS << '>'; 410 break; 411 case MachineOperand::MO_TargetIndex: 412 OS << "<ti#" << getIndex(); 413 if (getOffset()) OS << "+" << getOffset(); 414 OS << '>'; 415 break; 416 case MachineOperand::MO_JumpTableIndex: 417 OS << "<jt#" << getIndex() << '>'; 418 break; 419 case MachineOperand::MO_GlobalAddress: 420 OS << "<ga:"; 421 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 422 if (getOffset()) OS << "+" << getOffset(); 423 OS << '>'; 424 break; 425 case MachineOperand::MO_ExternalSymbol: 426 OS << "<es:" << getSymbolName(); 427 if (getOffset()) OS << "+" << getOffset(); 428 OS << '>'; 429 break; 430 case MachineOperand::MO_BlockAddress: 431 OS << '<'; 432 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 433 if (getOffset()) OS << "+" << getOffset(); 434 OS << '>'; 435 break; 436 case MachineOperand::MO_RegisterMask: { 437 unsigned NumRegsInMask = 0; 438 unsigned NumRegsEmitted = 0; 439 OS << "<regmask"; 440 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 441 unsigned MaskWord = i / 32; 442 unsigned MaskBit = i % 32; 443 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 444 if (PrintWholeRegMask || NumRegsEmitted <= 10) { 445 OS << " " << PrintReg(i, TRI); 446 NumRegsEmitted++; 447 } 448 NumRegsInMask++; 449 } 450 } 451 if (NumRegsEmitted != NumRegsInMask) 452 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 453 OS << ">"; 454 break; 455 } 456 case MachineOperand::MO_RegisterLiveOut: 457 OS << "<regliveout>"; 458 break; 459 case MachineOperand::MO_Metadata: 460 OS << '<'; 461 getMetadata()->printAsOperand(OS, MST); 462 OS << '>'; 463 break; 464 case MachineOperand::MO_MCSymbol: 465 OS << "<MCSym=" << *getMCSymbol() << '>'; 466 break; 467 case MachineOperand::MO_CFIIndex: 468 OS << "<call frame instruction>"; 469 break; 470 case MachineOperand::MO_IntrinsicID: { 471 Intrinsic::ID ID = getIntrinsicID(); 472 if (ID < Intrinsic::num_intrinsics) 473 OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << ')'; 474 else if (IntrinsicInfo) 475 OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << ')'; 476 else 477 OS << "<intrinsic:" << ID << '>'; 478 break; 479 } 480 case MachineOperand::MO_Predicate: { 481 auto Pred = static_cast<CmpInst::Predicate>(getPredicate()); 482 OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred") 483 << CmpInst::getPredicateName(Pred) << '>'; 484 } 485 } 486 if (unsigned TF = getTargetFlags()) 487 OS << "[TF=" << TF << ']'; 488 } 489 490 //===----------------------------------------------------------------------===// 491 // MachineMemOperand Implementation 492 //===----------------------------------------------------------------------===// 493 494 /// getAddrSpace - Return the LLVM IR address space number that this pointer 495 /// points into. 496 unsigned MachinePointerInfo::getAddrSpace() const { 497 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 498 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 499 } 500 501 /// getConstantPool - Return a MachinePointerInfo record that refers to the 502 /// constant pool. 503 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 504 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 505 } 506 507 /// getFixedStack - Return a MachinePointerInfo record that refers to the 508 /// the specified FrameIndex. 509 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 510 int FI, int64_t Offset) { 511 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 512 } 513 514 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 515 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 516 } 517 518 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 519 return MachinePointerInfo(MF.getPSVManager().getGOT()); 520 } 521 522 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 523 int64_t Offset) { 524 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); 525 } 526 527 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, 528 uint64_t s, unsigned int a, 529 const AAMDNodes &AAInfo, 530 const MDNode *Ranges) 531 : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), 532 AAInfo(AAInfo), Ranges(Ranges) { 533 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 534 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 535 "invalid pointer value"); 536 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 537 assert((isLoad() || isStore()) && "Not a load/store!"); 538 } 539 540 /// Profile - Gather unique data for the object. 541 /// 542 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 543 ID.AddInteger(getOffset()); 544 ID.AddInteger(Size); 545 ID.AddPointer(getOpaqueValue()); 546 ID.AddInteger(getFlags()); 547 ID.AddInteger(getBaseAlignment()); 548 } 549 550 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 551 // The Value and Offset may differ due to CSE. But the flags and size 552 // should be the same. 553 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 554 assert(MMO->getSize() == getSize() && "Size mismatch!"); 555 556 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 557 // Update the alignment value. 558 BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; 559 // Also update the base and offset, because the new alignment may 560 // not be applicable with the old ones. 561 PtrInfo = MMO->PtrInfo; 562 } 563 } 564 565 /// getAlignment - Return the minimum known alignment in bytes of the 566 /// actual memory reference. 567 uint64_t MachineMemOperand::getAlignment() const { 568 return MinAlign(getBaseAlignment(), getOffset()); 569 } 570 571 void MachineMemOperand::print(raw_ostream &OS) const { 572 ModuleSlotTracker DummyMST(nullptr); 573 print(OS, DummyMST); 574 } 575 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 576 assert((isLoad() || isStore()) && 577 "SV has to be a load, store or both."); 578 579 if (isVolatile()) 580 OS << "Volatile "; 581 582 if (isLoad()) 583 OS << "LD"; 584 if (isStore()) 585 OS << "ST"; 586 OS << getSize(); 587 588 // Print the address information. 589 OS << "["; 590 if (const Value *V = getValue()) 591 V->printAsOperand(OS, /*PrintType=*/false, MST); 592 else if (const PseudoSourceValue *PSV = getPseudoValue()) 593 PSV->printCustom(OS); 594 else 595 OS << "<unknown>"; 596 597 unsigned AS = getAddrSpace(); 598 if (AS != 0) 599 OS << "(addrspace=" << AS << ')'; 600 601 // If the alignment of the memory reference itself differs from the alignment 602 // of the base pointer, print the base alignment explicitly, next to the base 603 // pointer. 604 if (getBaseAlignment() != getAlignment()) 605 OS << "(align=" << getBaseAlignment() << ")"; 606 607 if (getOffset() != 0) 608 OS << "+" << getOffset(); 609 OS << "]"; 610 611 // Print the alignment of the reference. 612 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 613 OS << "(align=" << getAlignment() << ")"; 614 615 // Print TBAA info. 616 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 617 OS << "(tbaa="; 618 if (TBAAInfo->getNumOperands() > 0) 619 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 620 else 621 OS << "<unknown>"; 622 OS << ")"; 623 } 624 625 // Print AA scope info. 626 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 627 OS << "(alias.scope="; 628 if (ScopeInfo->getNumOperands() > 0) 629 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 630 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 631 if (i != ie-1) 632 OS << ","; 633 } 634 else 635 OS << "<unknown>"; 636 OS << ")"; 637 } 638 639 // Print AA noalias scope info. 640 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 641 OS << "(noalias="; 642 if (NoAliasInfo->getNumOperands() > 0) 643 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 644 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 645 if (i != ie-1) 646 OS << ","; 647 } 648 else 649 OS << "<unknown>"; 650 OS << ")"; 651 } 652 653 // Print nontemporal info. 654 if (isNonTemporal()) 655 OS << "(nontemporal)"; 656 657 if (isInvariant()) 658 OS << "(invariant)"; 659 } 660 661 //===----------------------------------------------------------------------===// 662 // MachineInstr Implementation 663 //===----------------------------------------------------------------------===// 664 665 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 666 if (MCID->ImplicitDefs) 667 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 668 ++ImpDefs) 669 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 670 if (MCID->ImplicitUses) 671 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 672 ++ImpUses) 673 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 674 } 675 676 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 677 /// implicit operands. It reserves space for the number of operands specified by 678 /// the MCInstrDesc. 679 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 680 DebugLoc dl, bool NoImp) 681 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), 682 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), 683 debugLoc(std::move(dl)) 684 #ifdef LLVM_BUILD_GLOBAL_ISEL 685 , 686 Tys(0) 687 #endif 688 { 689 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 690 691 // Reserve space for the expected number of operands. 692 if (unsigned NumOps = MCID->getNumOperands() + 693 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 694 CapOperands = OperandCapacity::get(NumOps); 695 Operands = MF.allocateOperandArray(CapOperands); 696 } 697 698 if (!NoImp) 699 addImplicitDefUseOperands(MF); 700 } 701 702 /// MachineInstr ctor - Copies MachineInstr arg exactly 703 /// 704 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 705 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 706 Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs), 707 MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) 708 #ifdef LLVM_BUILD_GLOBAL_ISEL 709 , 710 Tys(0) 711 #endif 712 { 713 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 714 715 CapOperands = OperandCapacity::get(MI.getNumOperands()); 716 Operands = MF.allocateOperandArray(CapOperands); 717 718 // Copy operands. 719 for (const MachineOperand &MO : MI.operands()) 720 addOperand(MF, MO); 721 722 // Copy all the sensible flags. 723 setFlags(MI.Flags); 724 } 725 726 /// getRegInfo - If this instruction is embedded into a MachineFunction, 727 /// return the MachineRegisterInfo object for the current function, otherwise 728 /// return null. 729 MachineRegisterInfo *MachineInstr::getRegInfo() { 730 if (MachineBasicBlock *MBB = getParent()) 731 return &MBB->getParent()->getRegInfo(); 732 return nullptr; 733 } 734 735 // Implement dummy setter and getter for type when 736 // global-isel is not built. 737 // The proper implementation is WIP and is tracked here: 738 // PR26576. 739 #ifndef LLVM_BUILD_GLOBAL_ISEL 740 unsigned MachineInstr::getNumTypes() const { return 0; } 741 742 void MachineInstr::setType(LLT Ty, unsigned Idx) {} 743 744 LLT MachineInstr::getType(unsigned Idx) const { return LLT{}; } 745 746 void MachineInstr::removeTypes() {} 747 748 #else 749 unsigned MachineInstr::getNumTypes() const { return Tys.size(); } 750 751 void MachineInstr::setType(LLT Ty, unsigned Idx) { 752 assert((!Ty.isValid() || isPreISelGenericOpcode(getOpcode())) && 753 "Non generic instructions are not supposed to be typed"); 754 if (Tys.size() < Idx + 1) 755 Tys.resize(Idx+1); 756 Tys[Idx] = Ty; 757 } 758 759 LLT MachineInstr::getType(unsigned Idx) const { return Tys[Idx]; } 760 761 void MachineInstr::removeTypes() { 762 Tys.clear(); 763 } 764 #endif // LLVM_BUILD_GLOBAL_ISEL 765 766 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 767 /// this instruction from their respective use lists. This requires that the 768 /// operands already be on their use lists. 769 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 770 for (MachineOperand &MO : operands()) 771 if (MO.isReg()) 772 MRI.removeRegOperandFromUseList(&MO); 773 } 774 775 /// AddRegOperandsToUseLists - Add all of the register operands in 776 /// this instruction from their respective use lists. This requires that the 777 /// operands not be on their use lists yet. 778 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 779 for (MachineOperand &MO : operands()) 780 if (MO.isReg()) 781 MRI.addRegOperandToUseList(&MO); 782 } 783 784 void MachineInstr::addOperand(const MachineOperand &Op) { 785 MachineBasicBlock *MBB = getParent(); 786 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 787 MachineFunction *MF = MBB->getParent(); 788 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 789 addOperand(*MF, Op); 790 } 791 792 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 793 /// ranges. If MRI is non-null also update use-def chains. 794 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 795 unsigned NumOps, MachineRegisterInfo *MRI) { 796 if (MRI) 797 return MRI->moveOperands(Dst, Src, NumOps); 798 799 // MachineOperand is a trivially copyable type so we can just use memmove. 800 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 801 } 802 803 /// addOperand - Add the specified operand to the instruction. If it is an 804 /// implicit operand, it is added to the end of the operand list. If it is 805 /// an explicit operand it is added at the end of the explicit operand list 806 /// (before the first implicit operand). 807 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 808 assert(MCID && "Cannot add operands before providing an instr descriptor"); 809 810 // Check if we're adding one of our existing operands. 811 if (&Op >= Operands && &Op < Operands + NumOperands) { 812 // This is unusual: MI->addOperand(MI->getOperand(i)). 813 // If adding Op requires reallocating or moving existing operands around, 814 // the Op reference could go stale. Support it by copying Op. 815 MachineOperand CopyOp(Op); 816 return addOperand(MF, CopyOp); 817 } 818 819 // Find the insert location for the new operand. Implicit registers go at 820 // the end, everything else goes before the implicit regs. 821 // 822 // FIXME: Allow mixed explicit and implicit operands on inline asm. 823 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 824 // implicit-defs, but they must not be moved around. See the FIXME in 825 // InstrEmitter.cpp. 826 unsigned OpNo = getNumOperands(); 827 bool isImpReg = Op.isReg() && Op.isImplicit(); 828 if (!isImpReg && !isInlineAsm()) { 829 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 830 --OpNo; 831 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 832 } 833 } 834 835 #ifndef NDEBUG 836 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 837 // OpNo now points as the desired insertion point. Unless this is a variadic 838 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 839 // RegMask operands go between the explicit and implicit operands. 840 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 841 OpNo < MCID->getNumOperands() || isMetaDataOp) && 842 "Trying to add an operand to a machine instr that is already done!"); 843 #endif 844 845 MachineRegisterInfo *MRI = getRegInfo(); 846 847 // Determine if the Operands array needs to be reallocated. 848 // Save the old capacity and operand array. 849 OperandCapacity OldCap = CapOperands; 850 MachineOperand *OldOperands = Operands; 851 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 852 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 853 Operands = MF.allocateOperandArray(CapOperands); 854 // Move the operands before the insertion point. 855 if (OpNo) 856 moveOperands(Operands, OldOperands, OpNo, MRI); 857 } 858 859 // Move the operands following the insertion point. 860 if (OpNo != NumOperands) 861 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 862 MRI); 863 ++NumOperands; 864 865 // Deallocate the old operand array. 866 if (OldOperands != Operands && OldOperands) 867 MF.deallocateOperandArray(OldCap, OldOperands); 868 869 // Copy Op into place. It still needs to be inserted into the MRI use lists. 870 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 871 NewMO->ParentMI = this; 872 873 // When adding a register operand, tell MRI about it. 874 if (NewMO->isReg()) { 875 // Ensure isOnRegUseList() returns false, regardless of Op's status. 876 NewMO->Contents.Reg.Prev = nullptr; 877 // Ignore existing ties. This is not a property that can be copied. 878 NewMO->TiedTo = 0; 879 // Add the new operand to MRI, but only for instructions in an MBB. 880 if (MRI) 881 MRI->addRegOperandToUseList(NewMO); 882 // The MCID operand information isn't accurate until we start adding 883 // explicit operands. The implicit operands are added first, then the 884 // explicits are inserted before them. 885 if (!isImpReg) { 886 // Tie uses to defs as indicated in MCInstrDesc. 887 if (NewMO->isUse()) { 888 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 889 if (DefIdx != -1) 890 tieOperands(DefIdx, OpNo); 891 } 892 // If the register operand is flagged as early, mark the operand as such. 893 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 894 NewMO->setIsEarlyClobber(true); 895 } 896 } 897 } 898 899 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 900 /// fewer operand than it started with. 901 /// 902 void MachineInstr::RemoveOperand(unsigned OpNo) { 903 assert(OpNo < getNumOperands() && "Invalid operand number"); 904 untieRegOperand(OpNo); 905 906 #ifndef NDEBUG 907 // Moving tied operands would break the ties. 908 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 909 if (Operands[i].isReg()) 910 assert(!Operands[i].isTied() && "Cannot move tied operands"); 911 #endif 912 913 MachineRegisterInfo *MRI = getRegInfo(); 914 if (MRI && Operands[OpNo].isReg()) 915 MRI->removeRegOperandFromUseList(Operands + OpNo); 916 917 // Don't call the MachineOperand destructor. A lot of this code depends on 918 // MachineOperand having a trivial destructor anyway, and adding a call here 919 // wouldn't make it 'destructor-correct'. 920 921 if (unsigned N = NumOperands - 1 - OpNo) 922 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 923 --NumOperands; 924 } 925 926 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 927 /// This function should be used only occasionally. The setMemRefs function 928 /// is the primary method for setting up a MachineInstr's MemRefs list. 929 void MachineInstr::addMemOperand(MachineFunction &MF, 930 MachineMemOperand *MO) { 931 mmo_iterator OldMemRefs = MemRefs; 932 unsigned OldNumMemRefs = NumMemRefs; 933 934 unsigned NewNum = NumMemRefs + 1; 935 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 936 937 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 938 NewMemRefs[NewNum - 1] = MO; 939 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 940 } 941 942 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 943 /// identical. 944 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 945 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 946 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 947 if ((E1 - I1) != (E2 - I2)) 948 return false; 949 for (; I1 != E1; ++I1, ++I2) { 950 if (**I1 != **I2) 951 return false; 952 } 953 return true; 954 } 955 956 std::pair<MachineInstr::mmo_iterator, unsigned> 957 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 958 959 // If either of the incoming memrefs are empty, we must be conservative and 960 // treat this as if we've exhausted our space for memrefs and dropped them. 961 if (memoperands_empty() || Other.memoperands_empty()) 962 return std::make_pair(nullptr, 0); 963 964 // If both instructions have identical memrefs, we don't need to merge them. 965 // Since many instructions have a single memref, and we tend to merge things 966 // like pairs of loads from the same location, this catches a large number of 967 // cases in practice. 968 if (hasIdenticalMMOs(*this, Other)) 969 return std::make_pair(MemRefs, NumMemRefs); 970 971 // TODO: consider uniquing elements within the operand lists to reduce 972 // space usage and fall back to conservative information less often. 973 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 974 975 // If we don't have enough room to store this many memrefs, be conservative 976 // and drop them. Otherwise, we'd fail asserts when trying to add them to 977 // the new instruction. 978 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 979 return std::make_pair(nullptr, 0); 980 981 MachineFunction *MF = getParent()->getParent(); 982 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 983 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 984 MemBegin); 985 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 986 MemEnd); 987 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 988 "missing memrefs"); 989 990 return std::make_pair(MemBegin, CombinedNumMemRefs); 991 } 992 993 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 994 assert(!isBundledWithPred() && "Must be called on bundle header"); 995 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 996 if (MII->getDesc().getFlags() & Mask) { 997 if (Type == AnyInBundle) 998 return true; 999 } else { 1000 if (Type == AllInBundle && !MII->isBundle()) 1001 return false; 1002 } 1003 // This was the last instruction in the bundle. 1004 if (!MII->isBundledWithSucc()) 1005 return Type == AllInBundle; 1006 } 1007 } 1008 1009 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 1010 MICheckType Check) const { 1011 // If opcodes or number of operands are not the same then the two 1012 // instructions are obviously not identical. 1013 if (Other.getOpcode() != getOpcode() || 1014 Other.getNumOperands() != getNumOperands()) 1015 return false; 1016 1017 if (isBundle()) { 1018 // Both instructions are bundles, compare MIs inside the bundle. 1019 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 1020 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 1021 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 1022 MachineBasicBlock::const_instr_iterator E2 = Other.getParent()->instr_end(); 1023 while (++I1 != E1 && I1->isInsideBundle()) { 1024 ++I2; 1025 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(*I2, Check)) 1026 return false; 1027 } 1028 } 1029 1030 // Check operands to make sure they match. 1031 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1032 const MachineOperand &MO = getOperand(i); 1033 const MachineOperand &OMO = Other.getOperand(i); 1034 if (!MO.isReg()) { 1035 if (!MO.isIdenticalTo(OMO)) 1036 return false; 1037 continue; 1038 } 1039 1040 // Clients may or may not want to ignore defs when testing for equality. 1041 // For example, machine CSE pass only cares about finding common 1042 // subexpressions, so it's safe to ignore virtual register defs. 1043 if (MO.isDef()) { 1044 if (Check == IgnoreDefs) 1045 continue; 1046 else if (Check == IgnoreVRegDefs) { 1047 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1048 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 1049 if (MO.getReg() != OMO.getReg()) 1050 return false; 1051 } else { 1052 if (!MO.isIdenticalTo(OMO)) 1053 return false; 1054 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 1055 return false; 1056 } 1057 } else { 1058 if (!MO.isIdenticalTo(OMO)) 1059 return false; 1060 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1061 return false; 1062 } 1063 } 1064 // If DebugLoc does not match then two dbg.values are not identical. 1065 if (isDebugValue()) 1066 if (getDebugLoc() && Other.getDebugLoc() && 1067 getDebugLoc() != Other.getDebugLoc()) 1068 return false; 1069 return true; 1070 } 1071 1072 MachineInstr *MachineInstr::removeFromParent() { 1073 assert(getParent() && "Not embedded in a basic block!"); 1074 return getParent()->remove(this); 1075 } 1076 1077 MachineInstr *MachineInstr::removeFromBundle() { 1078 assert(getParent() && "Not embedded in a basic block!"); 1079 return getParent()->remove_instr(this); 1080 } 1081 1082 void MachineInstr::eraseFromParent() { 1083 assert(getParent() && "Not embedded in a basic block!"); 1084 getParent()->erase(this); 1085 } 1086 1087 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1088 assert(getParent() && "Not embedded in a basic block!"); 1089 MachineBasicBlock *MBB = getParent(); 1090 MachineFunction *MF = MBB->getParent(); 1091 assert(MF && "Not embedded in a function!"); 1092 1093 MachineInstr *MI = (MachineInstr *)this; 1094 MachineRegisterInfo &MRI = MF->getRegInfo(); 1095 1096 for (const MachineOperand &MO : MI->operands()) { 1097 if (!MO.isReg() || !MO.isDef()) 1098 continue; 1099 unsigned Reg = MO.getReg(); 1100 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1101 continue; 1102 MRI.markUsesInDebugValueAsUndef(Reg); 1103 } 1104 MI->eraseFromParent(); 1105 } 1106 1107 void MachineInstr::eraseFromBundle() { 1108 assert(getParent() && "Not embedded in a basic block!"); 1109 getParent()->erase_instr(this); 1110 } 1111 1112 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1113 /// 1114 unsigned MachineInstr::getNumExplicitOperands() const { 1115 unsigned NumOperands = MCID->getNumOperands(); 1116 if (!MCID->isVariadic()) 1117 return NumOperands; 1118 1119 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1120 const MachineOperand &MO = getOperand(i); 1121 if (!MO.isReg() || !MO.isImplicit()) 1122 NumOperands++; 1123 } 1124 return NumOperands; 1125 } 1126 1127 void MachineInstr::bundleWithPred() { 1128 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1129 setFlag(BundledPred); 1130 MachineBasicBlock::instr_iterator Pred = getIterator(); 1131 --Pred; 1132 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1133 Pred->setFlag(BundledSucc); 1134 } 1135 1136 void MachineInstr::bundleWithSucc() { 1137 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1138 setFlag(BundledSucc); 1139 MachineBasicBlock::instr_iterator Succ = getIterator(); 1140 ++Succ; 1141 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1142 Succ->setFlag(BundledPred); 1143 } 1144 1145 void MachineInstr::unbundleFromPred() { 1146 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1147 clearFlag(BundledPred); 1148 MachineBasicBlock::instr_iterator Pred = getIterator(); 1149 --Pred; 1150 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1151 Pred->clearFlag(BundledSucc); 1152 } 1153 1154 void MachineInstr::unbundleFromSucc() { 1155 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1156 clearFlag(BundledSucc); 1157 MachineBasicBlock::instr_iterator Succ = getIterator(); 1158 ++Succ; 1159 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1160 Succ->clearFlag(BundledPred); 1161 } 1162 1163 bool MachineInstr::isStackAligningInlineAsm() const { 1164 if (isInlineAsm()) { 1165 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1166 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1167 return true; 1168 } 1169 return false; 1170 } 1171 1172 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1173 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1174 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1175 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1176 } 1177 1178 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1179 unsigned *GroupNo) const { 1180 assert(isInlineAsm() && "Expected an inline asm instruction"); 1181 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1182 1183 // Ignore queries about the initial operands. 1184 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1185 return -1; 1186 1187 unsigned Group = 0; 1188 unsigned NumOps; 1189 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1190 i += NumOps) { 1191 const MachineOperand &FlagMO = getOperand(i); 1192 // If we reach the implicit register operands, stop looking. 1193 if (!FlagMO.isImm()) 1194 return -1; 1195 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1196 if (i + NumOps > OpIdx) { 1197 if (GroupNo) 1198 *GroupNo = Group; 1199 return i; 1200 } 1201 ++Group; 1202 } 1203 return -1; 1204 } 1205 1206 const DILocalVariable *MachineInstr::getDebugVariable() const { 1207 assert(isDebugValue() && "not a DBG_VALUE"); 1208 return cast<DILocalVariable>(getOperand(2).getMetadata()); 1209 } 1210 1211 const DIExpression *MachineInstr::getDebugExpression() const { 1212 assert(isDebugValue() && "not a DBG_VALUE"); 1213 return cast<DIExpression>(getOperand(3).getMetadata()); 1214 } 1215 1216 const TargetRegisterClass* 1217 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1218 const TargetInstrInfo *TII, 1219 const TargetRegisterInfo *TRI) const { 1220 assert(getParent() && "Can't have an MBB reference here!"); 1221 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1222 const MachineFunction &MF = *getParent()->getParent(); 1223 1224 // Most opcodes have fixed constraints in their MCInstrDesc. 1225 if (!isInlineAsm()) 1226 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1227 1228 if (!getOperand(OpIdx).isReg()) 1229 return nullptr; 1230 1231 // For tied uses on inline asm, get the constraint from the def. 1232 unsigned DefIdx; 1233 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1234 OpIdx = DefIdx; 1235 1236 // Inline asm stores register class constraints in the flag word. 1237 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1238 if (FlagIdx < 0) 1239 return nullptr; 1240 1241 unsigned Flag = getOperand(FlagIdx).getImm(); 1242 unsigned RCID; 1243 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 1244 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 1245 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 1246 InlineAsm::hasRegClassConstraint(Flag, RCID)) 1247 return TRI->getRegClass(RCID); 1248 1249 // Assume that all registers in a memory operand are pointers. 1250 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1251 return TRI->getPointerRegClass(MF); 1252 1253 return nullptr; 1254 } 1255 1256 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1257 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1258 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1259 // Check every operands inside the bundle if we have 1260 // been asked to. 1261 if (ExploreBundle) 1262 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 1263 ++OpndIt) 1264 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1265 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1266 else 1267 // Otherwise, just check the current operands. 1268 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1269 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1270 return CurRC; 1271 } 1272 1273 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1274 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1275 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1276 assert(CurRC && "Invalid initial register class"); 1277 // Check if Reg is constrained by some of its use/def from MI. 1278 const MachineOperand &MO = getOperand(OpIdx); 1279 if (!MO.isReg() || MO.getReg() != Reg) 1280 return CurRC; 1281 // If yes, accumulate the constraints through the operand. 1282 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1283 } 1284 1285 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1286 unsigned OpIdx, const TargetRegisterClass *CurRC, 1287 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1288 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1289 const MachineOperand &MO = getOperand(OpIdx); 1290 assert(MO.isReg() && 1291 "Cannot get register constraints for non-register operand"); 1292 assert(CurRC && "Invalid initial register class"); 1293 if (unsigned SubIdx = MO.getSubReg()) { 1294 if (OpRC) 1295 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1296 else 1297 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1298 } else if (OpRC) 1299 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1300 return CurRC; 1301 } 1302 1303 /// Return the number of instructions inside the MI bundle, not counting the 1304 /// header instruction. 1305 unsigned MachineInstr::getBundleSize() const { 1306 MachineBasicBlock::const_instr_iterator I = getIterator(); 1307 unsigned Size = 0; 1308 while (I->isBundledWithSucc()) { 1309 ++Size; 1310 ++I; 1311 } 1312 return Size; 1313 } 1314 1315 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1316 /// the given register (not considering sub/super-registers). 1317 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 1318 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1319 const MachineOperand &MO = getOperand(i); 1320 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1321 return true; 1322 } 1323 return false; 1324 } 1325 1326 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1327 /// the specific register or -1 if it is not found. It further tightens 1328 /// the search criteria to a use that kills the register if isKill is true. 1329 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1330 const TargetRegisterInfo *TRI) const { 1331 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1332 const MachineOperand &MO = getOperand(i); 1333 if (!MO.isReg() || !MO.isUse()) 1334 continue; 1335 unsigned MOReg = MO.getReg(); 1336 if (!MOReg) 1337 continue; 1338 if (MOReg == Reg || 1339 (TRI && 1340 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1341 TargetRegisterInfo::isPhysicalRegister(Reg) && 1342 TRI->isSubRegister(MOReg, Reg))) 1343 if (!isKill || MO.isKill()) 1344 return i; 1345 } 1346 return -1; 1347 } 1348 1349 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1350 /// indicating if this instruction reads or writes Reg. This also considers 1351 /// partial defines. 1352 std::pair<bool,bool> 1353 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1354 SmallVectorImpl<unsigned> *Ops) const { 1355 bool PartDef = false; // Partial redefine. 1356 bool FullDef = false; // Full define. 1357 bool Use = false; 1358 1359 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1360 const MachineOperand &MO = getOperand(i); 1361 if (!MO.isReg() || MO.getReg() != Reg) 1362 continue; 1363 if (Ops) 1364 Ops->push_back(i); 1365 if (MO.isUse()) 1366 Use |= !MO.isUndef(); 1367 else if (MO.getSubReg() && !MO.isUndef()) 1368 // A partial <def,undef> doesn't count as reading the register. 1369 PartDef = true; 1370 else 1371 FullDef = true; 1372 } 1373 // A partial redefine uses Reg unless there is also a full define. 1374 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1375 } 1376 1377 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1378 /// the specified register or -1 if it is not found. If isDead is true, defs 1379 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1380 /// also checks if there is a def of a super-register. 1381 int 1382 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1383 const TargetRegisterInfo *TRI) const { 1384 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1385 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1386 const MachineOperand &MO = getOperand(i); 1387 // Accept regmask operands when Overlap is set. 1388 // Ignore them when looking for a specific def operand (Overlap == false). 1389 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1390 return i; 1391 if (!MO.isReg() || !MO.isDef()) 1392 continue; 1393 unsigned MOReg = MO.getReg(); 1394 bool Found = (MOReg == Reg); 1395 if (!Found && TRI && isPhys && 1396 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1397 if (Overlap) 1398 Found = TRI->regsOverlap(MOReg, Reg); 1399 else 1400 Found = TRI->isSubRegister(MOReg, Reg); 1401 } 1402 if (Found && (!isDead || MO.isDead())) 1403 return i; 1404 } 1405 return -1; 1406 } 1407 1408 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1409 /// operand list that is used to represent the predicate. It returns -1 if 1410 /// none is found. 1411 int MachineInstr::findFirstPredOperandIdx() const { 1412 // Don't call MCID.findFirstPredOperandIdx() because this variant 1413 // is sometimes called on an instruction that's not yet complete, and 1414 // so the number of operands is less than the MCID indicates. In 1415 // particular, the PTX target does this. 1416 const MCInstrDesc &MCID = getDesc(); 1417 if (MCID.isPredicable()) { 1418 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1419 if (MCID.OpInfo[i].isPredicate()) 1420 return i; 1421 } 1422 1423 return -1; 1424 } 1425 1426 // MachineOperand::TiedTo is 4 bits wide. 1427 const unsigned TiedMax = 15; 1428 1429 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1430 /// 1431 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1432 /// field. TiedTo can have these values: 1433 /// 1434 /// 0: Operand is not tied to anything. 1435 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1436 /// TiedMax: Tied to an operand >= TiedMax-1. 1437 /// 1438 /// The tied def must be one of the first TiedMax operands on a normal 1439 /// instruction. INLINEASM instructions allow more tied defs. 1440 /// 1441 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1442 MachineOperand &DefMO = getOperand(DefIdx); 1443 MachineOperand &UseMO = getOperand(UseIdx); 1444 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1445 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1446 assert(!DefMO.isTied() && "Def is already tied to another use"); 1447 assert(!UseMO.isTied() && "Use is already tied to another def"); 1448 1449 if (DefIdx < TiedMax) 1450 UseMO.TiedTo = DefIdx + 1; 1451 else { 1452 // Inline asm can use the group descriptors to find tied operands, but on 1453 // normal instruction, the tied def must be within the first TiedMax 1454 // operands. 1455 assert(isInlineAsm() && "DefIdx out of range"); 1456 UseMO.TiedTo = TiedMax; 1457 } 1458 1459 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1460 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1461 } 1462 1463 /// Given the index of a tied register operand, find the operand it is tied to. 1464 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1465 /// which must exist. 1466 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1467 const MachineOperand &MO = getOperand(OpIdx); 1468 assert(MO.isTied() && "Operand isn't tied"); 1469 1470 // Normally TiedTo is in range. 1471 if (MO.TiedTo < TiedMax) 1472 return MO.TiedTo - 1; 1473 1474 // Uses on normal instructions can be out of range. 1475 if (!isInlineAsm()) { 1476 // Normal tied defs must be in the 0..TiedMax-1 range. 1477 if (MO.isUse()) 1478 return TiedMax - 1; 1479 // MO is a def. Search for the tied use. 1480 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1481 const MachineOperand &UseMO = getOperand(i); 1482 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1483 return i; 1484 } 1485 llvm_unreachable("Can't find tied use"); 1486 } 1487 1488 // Now deal with inline asm by parsing the operand group descriptor flags. 1489 // Find the beginning of each operand group. 1490 SmallVector<unsigned, 8> GroupIdx; 1491 unsigned OpIdxGroup = ~0u; 1492 unsigned NumOps; 1493 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1494 i += NumOps) { 1495 const MachineOperand &FlagMO = getOperand(i); 1496 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1497 unsigned CurGroup = GroupIdx.size(); 1498 GroupIdx.push_back(i); 1499 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1500 // OpIdx belongs to this operand group. 1501 if (OpIdx > i && OpIdx < i + NumOps) 1502 OpIdxGroup = CurGroup; 1503 unsigned TiedGroup; 1504 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1505 continue; 1506 // Operands in this group are tied to operands in TiedGroup which must be 1507 // earlier. Find the number of operands between the two groups. 1508 unsigned Delta = i - GroupIdx[TiedGroup]; 1509 1510 // OpIdx is a use tied to TiedGroup. 1511 if (OpIdxGroup == CurGroup) 1512 return OpIdx - Delta; 1513 1514 // OpIdx is a def tied to this use group. 1515 if (OpIdxGroup == TiedGroup) 1516 return OpIdx + Delta; 1517 } 1518 llvm_unreachable("Invalid tied operand on inline asm"); 1519 } 1520 1521 /// clearKillInfo - Clears kill flags on all operands. 1522 /// 1523 void MachineInstr::clearKillInfo() { 1524 for (MachineOperand &MO : operands()) { 1525 if (MO.isReg() && MO.isUse()) 1526 MO.setIsKill(false); 1527 } 1528 } 1529 1530 void MachineInstr::substituteRegister(unsigned FromReg, 1531 unsigned ToReg, 1532 unsigned SubIdx, 1533 const TargetRegisterInfo &RegInfo) { 1534 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1535 if (SubIdx) 1536 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1537 for (MachineOperand &MO : operands()) { 1538 if (!MO.isReg() || MO.getReg() != FromReg) 1539 continue; 1540 MO.substPhysReg(ToReg, RegInfo); 1541 } 1542 } else { 1543 for (MachineOperand &MO : operands()) { 1544 if (!MO.isReg() || MO.getReg() != FromReg) 1545 continue; 1546 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1547 } 1548 } 1549 } 1550 1551 /// isSafeToMove - Return true if it is safe to move this instruction. If 1552 /// SawStore is set to true, it means that there is a store (or call) between 1553 /// the instruction's location and its intended destination. 1554 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1555 // Ignore stuff that we obviously can't move. 1556 // 1557 // Treat volatile loads as stores. This is not strictly necessary for 1558 // volatiles, but it is required for atomic loads. It is not allowed to move 1559 // a load across an atomic load with Ordering > Monotonic. 1560 if (mayStore() || isCall() || 1561 (mayLoad() && hasOrderedMemoryRef())) { 1562 SawStore = true; 1563 return false; 1564 } 1565 1566 if (isPosition() || isDebugValue() || isTerminator() || 1567 hasUnmodeledSideEffects()) 1568 return false; 1569 1570 // See if this instruction does a load. If so, we have to guarantee that the 1571 // loaded value doesn't change between the load and the its intended 1572 // destination. The check for isInvariantLoad gives the targe the chance to 1573 // classify the load as always returning a constant, e.g. a constant pool 1574 // load. 1575 if (mayLoad() && !isInvariantLoad(AA)) 1576 // Otherwise, this is a real load. If there is a store between the load and 1577 // end of block, we can't move it. 1578 return !SawStore; 1579 1580 return true; 1581 } 1582 1583 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1584 /// or volatile memory reference, or if the information describing the memory 1585 /// reference is not available. Return false if it is known to have no ordered 1586 /// memory references. 1587 bool MachineInstr::hasOrderedMemoryRef() const { 1588 // An instruction known never to access memory won't have a volatile access. 1589 if (!mayStore() && 1590 !mayLoad() && 1591 !isCall() && 1592 !hasUnmodeledSideEffects()) 1593 return false; 1594 1595 // Otherwise, if the instruction has no memory reference information, 1596 // conservatively assume it wasn't preserved. 1597 if (memoperands_empty()) 1598 return true; 1599 1600 // Check if any of our memory operands are ordered. 1601 return any_of(memoperands(), [](const MachineMemOperand *MMO) { 1602 return !MMO->isUnordered(); 1603 }); 1604 } 1605 1606 /// isInvariantLoad - Return true if this instruction is loading from a 1607 /// location whose value is invariant across the function. For example, 1608 /// loading a value from the constant pool or from the argument area 1609 /// of a function if it does not change. This should only return true of 1610 /// *all* loads the instruction does are invariant (if it does multiple loads). 1611 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1612 // If the instruction doesn't load at all, it isn't an invariant load. 1613 if (!mayLoad()) 1614 return false; 1615 1616 // If the instruction has lost its memoperands, conservatively assume that 1617 // it may not be an invariant load. 1618 if (memoperands_empty()) 1619 return false; 1620 1621 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1622 1623 for (MachineMemOperand *MMO : memoperands()) { 1624 if (MMO->isVolatile()) return false; 1625 if (MMO->isStore()) return false; 1626 if (MMO->isInvariant()) continue; 1627 1628 // A load from a constant PseudoSourceValue is invariant. 1629 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1630 if (PSV->isConstant(&MFI)) 1631 continue; 1632 1633 if (const Value *V = MMO->getValue()) { 1634 // If we have an AliasAnalysis, ask it whether the memory is constant. 1635 if (AA && 1636 AA->pointsToConstantMemory( 1637 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1638 continue; 1639 } 1640 1641 // Otherwise assume conservatively. 1642 return false; 1643 } 1644 1645 // Everything checks out. 1646 return true; 1647 } 1648 1649 /// isConstantValuePHI - If the specified instruction is a PHI that always 1650 /// merges together the same virtual register, return the register, otherwise 1651 /// return 0. 1652 unsigned MachineInstr::isConstantValuePHI() const { 1653 if (!isPHI()) 1654 return 0; 1655 assert(getNumOperands() >= 3 && 1656 "It's illegal to have a PHI without source operands"); 1657 1658 unsigned Reg = getOperand(1).getReg(); 1659 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1660 if (getOperand(i).getReg() != Reg) 1661 return 0; 1662 return Reg; 1663 } 1664 1665 bool MachineInstr::hasUnmodeledSideEffects() const { 1666 if (hasProperty(MCID::UnmodeledSideEffects)) 1667 return true; 1668 if (isInlineAsm()) { 1669 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1670 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1671 return true; 1672 } 1673 1674 return false; 1675 } 1676 1677 bool MachineInstr::isLoadFoldBarrier() const { 1678 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1679 } 1680 1681 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1682 /// 1683 bool MachineInstr::allDefsAreDead() const { 1684 for (const MachineOperand &MO : operands()) { 1685 if (!MO.isReg() || MO.isUse()) 1686 continue; 1687 if (!MO.isDead()) 1688 return false; 1689 } 1690 return true; 1691 } 1692 1693 /// copyImplicitOps - Copy implicit register operands from specified 1694 /// instruction to this instruction. 1695 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1696 const MachineInstr &MI) { 1697 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1698 i != e; ++i) { 1699 const MachineOperand &MO = MI.getOperand(i); 1700 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1701 addOperand(MF, MO); 1702 } 1703 } 1704 1705 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1706 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1707 dbgs() << " " << *this; 1708 #endif 1709 } 1710 1711 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const { 1712 const Module *M = nullptr; 1713 if (const MachineBasicBlock *MBB = getParent()) 1714 if (const MachineFunction *MF = MBB->getParent()) 1715 M = MF->getFunction()->getParent(); 1716 1717 ModuleSlotTracker MST(M); 1718 print(OS, MST, SkipOpers); 1719 } 1720 1721 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1722 bool SkipOpers) const { 1723 // We can be a bit tidier if we know the MachineFunction. 1724 const MachineFunction *MF = nullptr; 1725 const TargetRegisterInfo *TRI = nullptr; 1726 const MachineRegisterInfo *MRI = nullptr; 1727 const TargetInstrInfo *TII = nullptr; 1728 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1729 1730 if (const MachineBasicBlock *MBB = getParent()) { 1731 MF = MBB->getParent(); 1732 if (MF) { 1733 MRI = &MF->getRegInfo(); 1734 TRI = MF->getSubtarget().getRegisterInfo(); 1735 TII = MF->getSubtarget().getInstrInfo(); 1736 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 1737 } 1738 } 1739 1740 // Save a list of virtual registers. 1741 SmallVector<unsigned, 8> VirtRegs; 1742 1743 // Print explicitly defined operands on the left of an assignment syntax. 1744 unsigned StartOp = 0, e = getNumOperands(); 1745 for (; StartOp < e && getOperand(StartOp).isReg() && 1746 getOperand(StartOp).isDef() && 1747 !getOperand(StartOp).isImplicit(); 1748 ++StartOp) { 1749 if (StartOp != 0) OS << ", "; 1750 getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo); 1751 unsigned Reg = getOperand(StartOp).getReg(); 1752 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1753 VirtRegs.push_back(Reg); 1754 unsigned Size; 1755 if (MRI && (Size = MRI->getSize(Reg))) 1756 OS << '(' << Size << ')'; 1757 } 1758 } 1759 1760 if (StartOp != 0) 1761 OS << " = "; 1762 1763 // Print the opcode name. 1764 if (TII) 1765 OS << TII->getName(getOpcode()); 1766 else 1767 OS << "UNKNOWN"; 1768 1769 if (getNumTypes() > 0) { 1770 OS << " { "; 1771 for (unsigned i = 0; i < getNumTypes(); ++i) { 1772 getType(i).print(OS); 1773 if (i + 1 != getNumTypes()) 1774 OS << ", "; 1775 } 1776 OS << " } "; 1777 } 1778 1779 if (SkipOpers) 1780 return; 1781 1782 // Print the rest of the operands. 1783 bool OmittedAnyCallClobbers = false; 1784 bool FirstOp = true; 1785 unsigned AsmDescOp = ~0u; 1786 unsigned AsmOpCount = 0; 1787 1788 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1789 // Print asm string. 1790 OS << " "; 1791 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1792 1793 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1794 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1795 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1796 OS << " [sideeffect]"; 1797 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1798 OS << " [mayload]"; 1799 if (ExtraInfo & InlineAsm::Extra_MayStore) 1800 OS << " [maystore]"; 1801 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1802 OS << " [isconvergent]"; 1803 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1804 OS << " [alignstack]"; 1805 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1806 OS << " [attdialect]"; 1807 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1808 OS << " [inteldialect]"; 1809 1810 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1811 FirstOp = false; 1812 } 1813 1814 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1815 const MachineOperand &MO = getOperand(i); 1816 1817 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1818 VirtRegs.push_back(MO.getReg()); 1819 1820 // Omit call-clobbered registers which aren't used anywhere. This makes 1821 // call instructions much less noisy on targets where calls clobber lots 1822 // of registers. Don't rely on MO.isDead() because we may be called before 1823 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1824 if (MRI && isCall() && 1825 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1826 unsigned Reg = MO.getReg(); 1827 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1828 if (MRI->use_empty(Reg)) { 1829 bool HasAliasLive = false; 1830 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 1831 unsigned AliasReg = *AI; 1832 if (!MRI->use_empty(AliasReg)) { 1833 HasAliasLive = true; 1834 break; 1835 } 1836 } 1837 if (!HasAliasLive) { 1838 OmittedAnyCallClobbers = true; 1839 continue; 1840 } 1841 } 1842 } 1843 } 1844 1845 if (FirstOp) FirstOp = false; else OS << ","; 1846 OS << " "; 1847 if (i < getDesc().NumOperands) { 1848 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1849 if (MCOI.isPredicate()) 1850 OS << "pred:"; 1851 if (MCOI.isOptionalDef()) 1852 OS << "opt:"; 1853 } 1854 if (isDebugValue() && MO.isMetadata()) { 1855 // Pretty print DBG_VALUE instructions. 1856 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1857 if (DIV && !DIV->getName().empty()) 1858 OS << "!\"" << DIV->getName() << '\"'; 1859 else 1860 MO.print(OS, MST, TRI); 1861 } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1862 OS << TRI->getSubRegIndexName(MO.getImm()); 1863 } else if (i == AsmDescOp && MO.isImm()) { 1864 // Pretty print the inline asm operand descriptor. 1865 OS << '$' << AsmOpCount++; 1866 unsigned Flag = MO.getImm(); 1867 switch (InlineAsm::getKind(Flag)) { 1868 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1869 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1870 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1871 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1872 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1873 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1874 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1875 } 1876 1877 unsigned RCID = 0; 1878 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1879 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1880 if (TRI) { 1881 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1882 } else 1883 OS << ":RC" << RCID; 1884 } 1885 1886 if (InlineAsm::isMemKind(Flag)) { 1887 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1888 switch (MCID) { 1889 case InlineAsm::Constraint_es: OS << ":es"; break; 1890 case InlineAsm::Constraint_i: OS << ":i"; break; 1891 case InlineAsm::Constraint_m: OS << ":m"; break; 1892 case InlineAsm::Constraint_o: OS << ":o"; break; 1893 case InlineAsm::Constraint_v: OS << ":v"; break; 1894 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1895 case InlineAsm::Constraint_R: OS << ":R"; break; 1896 case InlineAsm::Constraint_S: OS << ":S"; break; 1897 case InlineAsm::Constraint_T: OS << ":T"; break; 1898 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1899 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1900 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1901 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1902 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1903 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1904 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1905 case InlineAsm::Constraint_X: OS << ":X"; break; 1906 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1907 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1908 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1909 default: OS << ":?"; break; 1910 } 1911 } 1912 1913 unsigned TiedTo = 0; 1914 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1915 OS << " tiedto:$" << TiedTo; 1916 1917 OS << ']'; 1918 1919 // Compute the index of the next operand descriptor. 1920 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1921 } else 1922 MO.print(OS, MST, TRI); 1923 } 1924 1925 // Briefly indicate whether any call clobbers were omitted. 1926 if (OmittedAnyCallClobbers) { 1927 if (!FirstOp) OS << ","; 1928 OS << " ..."; 1929 } 1930 1931 bool HaveSemi = false; 1932 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 1933 if (Flags & PrintableFlags) { 1934 if (!HaveSemi) { 1935 OS << ";"; 1936 HaveSemi = true; 1937 } 1938 OS << " flags: "; 1939 1940 if (Flags & FrameSetup) 1941 OS << "FrameSetup"; 1942 1943 if (Flags & FrameDestroy) 1944 OS << "FrameDestroy"; 1945 } 1946 1947 if (!memoperands_empty()) { 1948 if (!HaveSemi) { 1949 OS << ";"; 1950 HaveSemi = true; 1951 } 1952 1953 OS << " mem:"; 1954 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1955 i != e; ++i) { 1956 (*i)->print(OS, MST); 1957 if (std::next(i) != e) 1958 OS << " "; 1959 } 1960 } 1961 1962 // Print the regclass of any virtual registers encountered. 1963 if (MRI && !VirtRegs.empty()) { 1964 if (!HaveSemi) { 1965 OS << ";"; 1966 HaveSemi = true; 1967 } 1968 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1969 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); 1970 if (!RC) 1971 continue; 1972 // Generic virtual registers do not have register classes. 1973 if (RC.is<const RegisterBank *>()) 1974 OS << " " << RC.get<const RegisterBank *>()->getName(); 1975 else 1976 OS << " " 1977 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); 1978 OS << ':' << PrintReg(VirtRegs[i]); 1979 for (unsigned j = i+1; j != VirtRegs.size();) { 1980 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { 1981 ++j; 1982 continue; 1983 } 1984 if (VirtRegs[i] != VirtRegs[j]) 1985 OS << "," << PrintReg(VirtRegs[j]); 1986 VirtRegs.erase(VirtRegs.begin()+j); 1987 } 1988 } 1989 } 1990 1991 // Print debug location information. 1992 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1993 if (!HaveSemi) 1994 OS << ";"; 1995 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1996 OS << " line no:" << DV->getLine(); 1997 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1998 DebugLoc InlinedAtDL(InlinedAt); 1999 if (InlinedAtDL && MF) { 2000 OS << " inlined @[ "; 2001 InlinedAtDL.print(OS); 2002 OS << " ]"; 2003 } 2004 } 2005 if (isIndirectDebugValue()) 2006 OS << " indirect"; 2007 } else if (debugLoc && MF) { 2008 if (!HaveSemi) 2009 OS << ";"; 2010 OS << " dbg:"; 2011 debugLoc.print(OS); 2012 } 2013 2014 OS << '\n'; 2015 } 2016 2017 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 2018 const TargetRegisterInfo *RegInfo, 2019 bool AddIfNotFound) { 2020 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 2021 bool hasAliases = isPhysReg && 2022 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 2023 bool Found = false; 2024 SmallVector<unsigned,4> DeadOps; 2025 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2026 MachineOperand &MO = getOperand(i); 2027 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2028 continue; 2029 2030 // DEBUG_VALUE nodes do not contribute to code generation and should 2031 // always be ignored. Failure to do so may result in trying to modify 2032 // KILL flags on DEBUG_VALUE nodes. 2033 if (MO.isDebug()) 2034 continue; 2035 2036 unsigned Reg = MO.getReg(); 2037 if (!Reg) 2038 continue; 2039 2040 if (Reg == IncomingReg) { 2041 if (!Found) { 2042 if (MO.isKill()) 2043 // The register is already marked kill. 2044 return true; 2045 if (isPhysReg && isRegTiedToDefOperand(i)) 2046 // Two-address uses of physregs must not be marked kill. 2047 return true; 2048 MO.setIsKill(); 2049 Found = true; 2050 } 2051 } else if (hasAliases && MO.isKill() && 2052 TargetRegisterInfo::isPhysicalRegister(Reg)) { 2053 // A super-register kill already exists. 2054 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2055 return true; 2056 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2057 DeadOps.push_back(i); 2058 } 2059 } 2060 2061 // Trim unneeded kill operands. 2062 while (!DeadOps.empty()) { 2063 unsigned OpIdx = DeadOps.back(); 2064 if (getOperand(OpIdx).isImplicit()) 2065 RemoveOperand(OpIdx); 2066 else 2067 getOperand(OpIdx).setIsKill(false); 2068 DeadOps.pop_back(); 2069 } 2070 2071 // If not found, this means an alias of one of the operands is killed. Add a 2072 // new implicit operand if required. 2073 if (!Found && AddIfNotFound) { 2074 addOperand(MachineOperand::CreateReg(IncomingReg, 2075 false /*IsDef*/, 2076 true /*IsImp*/, 2077 true /*IsKill*/)); 2078 return true; 2079 } 2080 return Found; 2081 } 2082 2083 void MachineInstr::clearRegisterKills(unsigned Reg, 2084 const TargetRegisterInfo *RegInfo) { 2085 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 2086 RegInfo = nullptr; 2087 for (MachineOperand &MO : operands()) { 2088 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2089 continue; 2090 unsigned OpReg = MO.getReg(); 2091 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2092 MO.setIsKill(false); 2093 } 2094 } 2095 2096 bool MachineInstr::addRegisterDead(unsigned Reg, 2097 const TargetRegisterInfo *RegInfo, 2098 bool AddIfNotFound) { 2099 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 2100 bool hasAliases = isPhysReg && 2101 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2102 bool Found = false; 2103 SmallVector<unsigned,4> DeadOps; 2104 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2105 MachineOperand &MO = getOperand(i); 2106 if (!MO.isReg() || !MO.isDef()) 2107 continue; 2108 unsigned MOReg = MO.getReg(); 2109 if (!MOReg) 2110 continue; 2111 2112 if (MOReg == Reg) { 2113 MO.setIsDead(); 2114 Found = true; 2115 } else if (hasAliases && MO.isDead() && 2116 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 2117 // There exists a super-register that's marked dead. 2118 if (RegInfo->isSuperRegister(Reg, MOReg)) 2119 return true; 2120 if (RegInfo->isSubRegister(Reg, MOReg)) 2121 DeadOps.push_back(i); 2122 } 2123 } 2124 2125 // Trim unneeded dead operands. 2126 while (!DeadOps.empty()) { 2127 unsigned OpIdx = DeadOps.back(); 2128 if (getOperand(OpIdx).isImplicit()) 2129 RemoveOperand(OpIdx); 2130 else 2131 getOperand(OpIdx).setIsDead(false); 2132 DeadOps.pop_back(); 2133 } 2134 2135 // If not found, this means an alias of one of the operands is dead. Add a 2136 // new implicit operand if required. 2137 if (Found || !AddIfNotFound) 2138 return Found; 2139 2140 addOperand(MachineOperand::CreateReg(Reg, 2141 true /*IsDef*/, 2142 true /*IsImp*/, 2143 false /*IsKill*/, 2144 true /*IsDead*/)); 2145 return true; 2146 } 2147 2148 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2149 for (MachineOperand &MO : operands()) { 2150 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2151 continue; 2152 MO.setIsDead(false); 2153 } 2154 } 2155 2156 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2157 for (MachineOperand &MO : operands()) { 2158 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2159 continue; 2160 MO.setIsUndef(IsUndef); 2161 } 2162 } 2163 2164 void MachineInstr::addRegisterDefined(unsigned Reg, 2165 const TargetRegisterInfo *RegInfo) { 2166 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2167 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2168 if (MO) 2169 return; 2170 } else { 2171 for (const MachineOperand &MO : operands()) { 2172 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2173 MO.getSubReg() == 0) 2174 return; 2175 } 2176 } 2177 addOperand(MachineOperand::CreateReg(Reg, 2178 true /*IsDef*/, 2179 true /*IsImp*/)); 2180 } 2181 2182 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2183 const TargetRegisterInfo &TRI) { 2184 bool HasRegMask = false; 2185 for (MachineOperand &MO : operands()) { 2186 if (MO.isRegMask()) { 2187 HasRegMask = true; 2188 continue; 2189 } 2190 if (!MO.isReg() || !MO.isDef()) continue; 2191 unsigned Reg = MO.getReg(); 2192 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2193 // If there are no uses, including partial uses, the def is dead. 2194 if (none_of(UsedRegs, 2195 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2196 MO.setIsDead(); 2197 } 2198 2199 // This is a call with a register mask operand. 2200 // Mask clobbers are always dead, so add defs for the non-dead defines. 2201 if (HasRegMask) 2202 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2203 I != E; ++I) 2204 addRegisterDefined(*I, &TRI); 2205 } 2206 2207 unsigned 2208 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2209 // Build up a buffer of hash code components. 2210 SmallVector<size_t, 8> HashComponents; 2211 HashComponents.reserve(MI->getNumOperands() + 1); 2212 HashComponents.push_back(MI->getOpcode()); 2213 for (const MachineOperand &MO : MI->operands()) { 2214 if (MO.isReg() && MO.isDef() && 2215 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2216 continue; // Skip virtual register defs. 2217 2218 HashComponents.push_back(hash_value(MO)); 2219 } 2220 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2221 } 2222 2223 void MachineInstr::emitError(StringRef Msg) const { 2224 // Find the source location cookie. 2225 unsigned LocCookie = 0; 2226 const MDNode *LocMD = nullptr; 2227 for (unsigned i = getNumOperands(); i != 0; --i) { 2228 if (getOperand(i-1).isMetadata() && 2229 (LocMD = getOperand(i-1).getMetadata()) && 2230 LocMD->getNumOperands() != 0) { 2231 if (const ConstantInt *CI = 2232 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2233 LocCookie = CI->getZExtValue(); 2234 break; 2235 } 2236 } 2237 } 2238 2239 if (const MachineBasicBlock *MBB = getParent()) 2240 if (const MachineFunction *MF = MBB->getParent()) 2241 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2242 report_fatal_error(Msg); 2243 } 2244 2245 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2246 const MCInstrDesc &MCID, bool IsIndirect, 2247 unsigned Reg, unsigned Offset, 2248 const MDNode *Variable, const MDNode *Expr) { 2249 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2250 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2251 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2252 "Expected inlined-at fields to agree"); 2253 if (IsIndirect) 2254 return BuildMI(MF, DL, MCID) 2255 .addReg(Reg, RegState::Debug) 2256 .addImm(Offset) 2257 .addMetadata(Variable) 2258 .addMetadata(Expr); 2259 else { 2260 assert(Offset == 0 && "A direct address cannot have an offset."); 2261 return BuildMI(MF, DL, MCID) 2262 .addReg(Reg, RegState::Debug) 2263 .addReg(0U, RegState::Debug) 2264 .addMetadata(Variable) 2265 .addMetadata(Expr); 2266 } 2267 } 2268 2269 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2270 MachineBasicBlock::iterator I, 2271 const DebugLoc &DL, const MCInstrDesc &MCID, 2272 bool IsIndirect, unsigned Reg, 2273 unsigned Offset, const MDNode *Variable, 2274 const MDNode *Expr) { 2275 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2276 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2277 MachineFunction &MF = *BB.getParent(); 2278 MachineInstr *MI = 2279 BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr); 2280 BB.insert(I, MI); 2281 return MachineInstrBuilder(MF, MI); 2282 } 2283