1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Assembly/Writer.h" 19 #include "llvm/CodeGen/MachineConstantPool.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/Constants.h" 26 #include "llvm/DebugInfo.h" 27 #include "llvm/Function.h" 28 #include "llvm/InlineAsm.h" 29 #include "llvm/LLVMContext.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Metadata.h" 33 #include "llvm/Module.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/LeakDetector.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 #include "llvm/Type.h" 43 #include "llvm/Value.h" 44 using namespace llvm; 45 46 //===----------------------------------------------------------------------===// 47 // MachineOperand Implementation 48 //===----------------------------------------------------------------------===// 49 50 void MachineOperand::setReg(unsigned Reg) { 51 if (getReg() == Reg) return; // No change. 52 53 // Otherwise, we have to change the register. If this operand is embedded 54 // into a machine function, we need to update the old and new register's 55 // use/def lists. 56 if (MachineInstr *MI = getParent()) 57 if (MachineBasicBlock *MBB = MI->getParent()) 58 if (MachineFunction *MF = MBB->getParent()) { 59 MachineRegisterInfo &MRI = MF->getRegInfo(); 60 MRI.removeRegOperandFromUseList(this); 61 SmallContents.RegNo = Reg; 62 MRI.addRegOperandToUseList(this); 63 return; 64 } 65 66 // Otherwise, just change the register, no problem. :) 67 SmallContents.RegNo = Reg; 68 } 69 70 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 71 const TargetRegisterInfo &TRI) { 72 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 73 if (SubIdx && getSubReg()) 74 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 75 setReg(Reg); 76 if (SubIdx) 77 setSubReg(SubIdx); 78 } 79 80 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 82 if (getSubReg()) { 83 Reg = TRI.getSubReg(Reg, getSubReg()); 84 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 85 // That won't happen in legal code. 86 setSubReg(0); 87 } 88 setReg(Reg); 89 } 90 91 /// Change a def to a use, or a use to a def. 92 void MachineOperand::setIsDef(bool Val) { 93 assert(isReg() && "Wrong MachineOperand accessor"); 94 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 95 if (IsDef == Val) 96 return; 97 // MRI may keep uses and defs in different list positions. 98 if (MachineInstr *MI = getParent()) 99 if (MachineBasicBlock *MBB = MI->getParent()) 100 if (MachineFunction *MF = MBB->getParent()) { 101 MachineRegisterInfo &MRI = MF->getRegInfo(); 102 MRI.removeRegOperandFromUseList(this); 103 IsDef = Val; 104 MRI.addRegOperandToUseList(this); 105 return; 106 } 107 IsDef = Val; 108 } 109 110 /// ChangeToImmediate - Replace this operand with a new immediate operand of 111 /// the specified value. If an operand is known to be an immediate already, 112 /// the setImm method should be used. 113 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 114 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 115 // If this operand is currently a register operand, and if this is in a 116 // function, deregister the operand from the register's use/def list. 117 if (isReg() && isOnRegUseList()) 118 if (MachineInstr *MI = getParent()) 119 if (MachineBasicBlock *MBB = MI->getParent()) 120 if (MachineFunction *MF = MBB->getParent()) 121 MF->getRegInfo().removeRegOperandFromUseList(this); 122 123 OpKind = MO_Immediate; 124 Contents.ImmVal = ImmVal; 125 } 126 127 /// ChangeToRegister - Replace this operand with a new register operand of 128 /// the specified value. If an operand is known to be an register already, 129 /// the setReg method should be used. 130 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 131 bool isKill, bool isDead, bool isUndef, 132 bool isDebug) { 133 MachineRegisterInfo *RegInfo = 0; 134 if (MachineInstr *MI = getParent()) 135 if (MachineBasicBlock *MBB = MI->getParent()) 136 if (MachineFunction *MF = MBB->getParent()) 137 RegInfo = &MF->getRegInfo(); 138 // If this operand is already a register operand, remove it from the 139 // register's use/def lists. 140 bool WasReg = isReg(); 141 if (RegInfo && WasReg) 142 RegInfo->removeRegOperandFromUseList(this); 143 144 // Change this to a register and set the reg#. 145 OpKind = MO_Register; 146 SmallContents.RegNo = Reg; 147 SubReg = 0; 148 IsDef = isDef; 149 IsImp = isImp; 150 IsKill = isKill; 151 IsDead = isDead; 152 IsUndef = isUndef; 153 IsInternalRead = false; 154 IsEarlyClobber = false; 155 IsDebug = isDebug; 156 // Ensure isOnRegUseList() returns false. 157 Contents.Reg.Prev = 0; 158 // Preserve the tie when the operand was already a register. 159 if (!WasReg) 160 TiedTo = 0; 161 162 // If this operand is embedded in a function, add the operand to the 163 // register's use/def list. 164 if (RegInfo) 165 RegInfo->addRegOperandToUseList(this); 166 } 167 168 /// isIdenticalTo - Return true if this operand is identical to the specified 169 /// operand. Note that this should stay in sync with the hash_value overload 170 /// below. 171 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 172 if (getType() != Other.getType() || 173 getTargetFlags() != Other.getTargetFlags()) 174 return false; 175 176 switch (getType()) { 177 case MachineOperand::MO_Register: 178 return getReg() == Other.getReg() && isDef() == Other.isDef() && 179 getSubReg() == Other.getSubReg(); 180 case MachineOperand::MO_Immediate: 181 return getImm() == Other.getImm(); 182 case MachineOperand::MO_CImmediate: 183 return getCImm() == Other.getCImm(); 184 case MachineOperand::MO_FPImmediate: 185 return getFPImm() == Other.getFPImm(); 186 case MachineOperand::MO_MachineBasicBlock: 187 return getMBB() == Other.getMBB(); 188 case MachineOperand::MO_FrameIndex: 189 return getIndex() == Other.getIndex(); 190 case MachineOperand::MO_ConstantPoolIndex: 191 case MachineOperand::MO_TargetIndex: 192 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 193 case MachineOperand::MO_JumpTableIndex: 194 return getIndex() == Other.getIndex(); 195 case MachineOperand::MO_GlobalAddress: 196 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 197 case MachineOperand::MO_ExternalSymbol: 198 return !strcmp(getSymbolName(), Other.getSymbolName()) && 199 getOffset() == Other.getOffset(); 200 case MachineOperand::MO_BlockAddress: 201 return getBlockAddress() == Other.getBlockAddress() && 202 getOffset() == Other.getOffset(); 203 case MO_RegisterMask: 204 return getRegMask() == Other.getRegMask(); 205 case MachineOperand::MO_MCSymbol: 206 return getMCSymbol() == Other.getMCSymbol(); 207 case MachineOperand::MO_Metadata: 208 return getMetadata() == Other.getMetadata(); 209 } 210 llvm_unreachable("Invalid machine operand type"); 211 } 212 213 // Note: this must stay exactly in sync with isIdenticalTo above. 214 hash_code llvm::hash_value(const MachineOperand &MO) { 215 switch (MO.getType()) { 216 case MachineOperand::MO_Register: 217 // Register operands don't have target flags. 218 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 219 case MachineOperand::MO_Immediate: 220 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 221 case MachineOperand::MO_CImmediate: 222 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 223 case MachineOperand::MO_FPImmediate: 224 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 225 case MachineOperand::MO_MachineBasicBlock: 226 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 227 case MachineOperand::MO_FrameIndex: 228 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 229 case MachineOperand::MO_ConstantPoolIndex: 230 case MachineOperand::MO_TargetIndex: 231 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 232 MO.getOffset()); 233 case MachineOperand::MO_JumpTableIndex: 234 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 235 case MachineOperand::MO_ExternalSymbol: 236 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 237 MO.getSymbolName()); 238 case MachineOperand::MO_GlobalAddress: 239 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 240 MO.getOffset()); 241 case MachineOperand::MO_BlockAddress: 242 return hash_combine(MO.getType(), MO.getTargetFlags(), 243 MO.getBlockAddress(), MO.getOffset()); 244 case MachineOperand::MO_RegisterMask: 245 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 246 case MachineOperand::MO_Metadata: 247 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 248 case MachineOperand::MO_MCSymbol: 249 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 250 } 251 llvm_unreachable("Invalid machine operand type"); 252 } 253 254 /// print - Print the specified machine operand. 255 /// 256 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 257 // If the instruction is embedded into a basic block, we can find the 258 // target info for the instruction. 259 if (!TM) 260 if (const MachineInstr *MI = getParent()) 261 if (const MachineBasicBlock *MBB = MI->getParent()) 262 if (const MachineFunction *MF = MBB->getParent()) 263 TM = &MF->getTarget(); 264 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 265 266 switch (getType()) { 267 case MachineOperand::MO_Register: 268 OS << PrintReg(getReg(), TRI, getSubReg()); 269 270 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 271 isInternalRead() || isEarlyClobber() || isTied()) { 272 OS << '<'; 273 bool NeedComma = false; 274 if (isDef()) { 275 if (NeedComma) OS << ','; 276 if (isEarlyClobber()) 277 OS << "earlyclobber,"; 278 if (isImplicit()) 279 OS << "imp-"; 280 OS << "def"; 281 NeedComma = true; 282 // <def,read-undef> only makes sense when getSubReg() is set. 283 // Don't clutter the output otherwise. 284 if (isUndef() && getSubReg()) 285 OS << ",read-undef"; 286 } else if (isImplicit()) { 287 OS << "imp-use"; 288 NeedComma = true; 289 } 290 291 if (isKill()) { 292 if (NeedComma) OS << ','; 293 OS << "kill"; 294 NeedComma = true; 295 } 296 if (isDead()) { 297 if (NeedComma) OS << ','; 298 OS << "dead"; 299 NeedComma = true; 300 } 301 if (isUndef() && isUse()) { 302 if (NeedComma) OS << ','; 303 OS << "undef"; 304 NeedComma = true; 305 } 306 if (isInternalRead()) { 307 if (NeedComma) OS << ','; 308 OS << "internal"; 309 NeedComma = true; 310 } 311 if (isTied()) { 312 if (NeedComma) OS << ','; 313 OS << "tied"; 314 if (TiedTo != 15) 315 OS << unsigned(TiedTo - 1); 316 NeedComma = true; 317 } 318 OS << '>'; 319 } 320 break; 321 case MachineOperand::MO_Immediate: 322 OS << getImm(); 323 break; 324 case MachineOperand::MO_CImmediate: 325 getCImm()->getValue().print(OS, false); 326 break; 327 case MachineOperand::MO_FPImmediate: 328 if (getFPImm()->getType()->isFloatTy()) 329 OS << getFPImm()->getValueAPF().convertToFloat(); 330 else 331 OS << getFPImm()->getValueAPF().convertToDouble(); 332 break; 333 case MachineOperand::MO_MachineBasicBlock: 334 OS << "<BB#" << getMBB()->getNumber() << ">"; 335 break; 336 case MachineOperand::MO_FrameIndex: 337 OS << "<fi#" << getIndex() << '>'; 338 break; 339 case MachineOperand::MO_ConstantPoolIndex: 340 OS << "<cp#" << getIndex(); 341 if (getOffset()) OS << "+" << getOffset(); 342 OS << '>'; 343 break; 344 case MachineOperand::MO_TargetIndex: 345 OS << "<ti#" << getIndex(); 346 if (getOffset()) OS << "+" << getOffset(); 347 OS << '>'; 348 break; 349 case MachineOperand::MO_JumpTableIndex: 350 OS << "<jt#" << getIndex() << '>'; 351 break; 352 case MachineOperand::MO_GlobalAddress: 353 OS << "<ga:"; 354 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 355 if (getOffset()) OS << "+" << getOffset(); 356 OS << '>'; 357 break; 358 case MachineOperand::MO_ExternalSymbol: 359 OS << "<es:" << getSymbolName(); 360 if (getOffset()) OS << "+" << getOffset(); 361 OS << '>'; 362 break; 363 case MachineOperand::MO_BlockAddress: 364 OS << '<'; 365 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 366 if (getOffset()) OS << "+" << getOffset(); 367 OS << '>'; 368 break; 369 case MachineOperand::MO_RegisterMask: 370 OS << "<regmask>"; 371 break; 372 case MachineOperand::MO_Metadata: 373 OS << '<'; 374 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 375 OS << '>'; 376 break; 377 case MachineOperand::MO_MCSymbol: 378 OS << "<MCSym=" << *getMCSymbol() << '>'; 379 break; 380 } 381 382 if (unsigned TF = getTargetFlags()) 383 OS << "[TF=" << TF << ']'; 384 } 385 386 //===----------------------------------------------------------------------===// 387 // MachineMemOperand Implementation 388 //===----------------------------------------------------------------------===// 389 390 /// getAddrSpace - Return the LLVM IR address space number that this pointer 391 /// points into. 392 unsigned MachinePointerInfo::getAddrSpace() const { 393 if (V == 0) return 0; 394 return cast<PointerType>(V->getType())->getAddressSpace(); 395 } 396 397 /// getConstantPool - Return a MachinePointerInfo record that refers to the 398 /// constant pool. 399 MachinePointerInfo MachinePointerInfo::getConstantPool() { 400 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 401 } 402 403 /// getFixedStack - Return a MachinePointerInfo record that refers to the 404 /// the specified FrameIndex. 405 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 406 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 407 } 408 409 MachinePointerInfo MachinePointerInfo::getJumpTable() { 410 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 411 } 412 413 MachinePointerInfo MachinePointerInfo::getGOT() { 414 return MachinePointerInfo(PseudoSourceValue::getGOT()); 415 } 416 417 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 418 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 419 } 420 421 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 422 uint64_t s, unsigned int a, 423 const MDNode *TBAAInfo, 424 const MDNode *Ranges) 425 : PtrInfo(ptrinfo), Size(s), 426 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 427 TBAAInfo(TBAAInfo), Ranges(Ranges) { 428 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 429 "invalid pointer value"); 430 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 431 assert((isLoad() || isStore()) && "Not a load/store!"); 432 } 433 434 /// Profile - Gather unique data for the object. 435 /// 436 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 437 ID.AddInteger(getOffset()); 438 ID.AddInteger(Size); 439 ID.AddPointer(getValue()); 440 ID.AddInteger(Flags); 441 } 442 443 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 444 // The Value and Offset may differ due to CSE. But the flags and size 445 // should be the same. 446 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 447 assert(MMO->getSize() == getSize() && "Size mismatch!"); 448 449 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 450 // Update the alignment value. 451 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 452 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 453 // Also update the base and offset, because the new alignment may 454 // not be applicable with the old ones. 455 PtrInfo = MMO->PtrInfo; 456 } 457 } 458 459 /// getAlignment - Return the minimum known alignment in bytes of the 460 /// actual memory reference. 461 uint64_t MachineMemOperand::getAlignment() const { 462 return MinAlign(getBaseAlignment(), getOffset()); 463 } 464 465 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 466 assert((MMO.isLoad() || MMO.isStore()) && 467 "SV has to be a load, store or both."); 468 469 if (MMO.isVolatile()) 470 OS << "Volatile "; 471 472 if (MMO.isLoad()) 473 OS << "LD"; 474 if (MMO.isStore()) 475 OS << "ST"; 476 OS << MMO.getSize(); 477 478 // Print the address information. 479 OS << "["; 480 if (!MMO.getValue()) 481 OS << "<unknown>"; 482 else 483 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 484 485 // If the alignment of the memory reference itself differs from the alignment 486 // of the base pointer, print the base alignment explicitly, next to the base 487 // pointer. 488 if (MMO.getBaseAlignment() != MMO.getAlignment()) 489 OS << "(align=" << MMO.getBaseAlignment() << ")"; 490 491 if (MMO.getOffset() != 0) 492 OS << "+" << MMO.getOffset(); 493 OS << "]"; 494 495 // Print the alignment of the reference. 496 if (MMO.getBaseAlignment() != MMO.getAlignment() || 497 MMO.getBaseAlignment() != MMO.getSize()) 498 OS << "(align=" << MMO.getAlignment() << ")"; 499 500 // Print TBAA info. 501 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 502 OS << "(tbaa="; 503 if (TBAAInfo->getNumOperands() > 0) 504 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 505 else 506 OS << "<unknown>"; 507 OS << ")"; 508 } 509 510 // Print nontemporal info. 511 if (MMO.isNonTemporal()) 512 OS << "(nontemporal)"; 513 514 return OS; 515 } 516 517 //===----------------------------------------------------------------------===// 518 // MachineInstr Implementation 519 //===----------------------------------------------------------------------===// 520 521 void MachineInstr::addImplicitDefUseOperands() { 522 if (MCID->ImplicitDefs) 523 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 524 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 525 if (MCID->ImplicitUses) 526 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 527 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 528 } 529 530 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 531 /// implicit operands. It reserves space for the number of operands specified by 532 /// the MCInstrDesc. 533 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl, 534 bool NoImp) 535 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 536 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { 537 unsigned NumImplicitOps = 0; 538 if (!NoImp) 539 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 540 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 541 if (!NoImp) 542 addImplicitDefUseOperands(); 543 // Make sure that we get added to a machine basicblock 544 LeakDetector::addGarbageObject(this); 545 } 546 547 /// MachineInstr ctor - Copies MachineInstr arg exactly 548 /// 549 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 550 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0), 551 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 552 Parent(0), debugLoc(MI.getDebugLoc()) { 553 Operands.reserve(MI.getNumOperands()); 554 555 // Add operands 556 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 557 addOperand(MI.getOperand(i)); 558 559 // Copy all the sensible flags. 560 setFlags(MI.Flags); 561 562 // Set parent to null. 563 Parent = 0; 564 565 LeakDetector::addGarbageObject(this); 566 } 567 568 MachineInstr::~MachineInstr() { 569 LeakDetector::removeGarbageObject(this); 570 #ifndef NDEBUG 571 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 572 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 573 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 574 "Reg operand def/use list corrupted"); 575 } 576 #endif 577 } 578 579 /// getRegInfo - If this instruction is embedded into a MachineFunction, 580 /// return the MachineRegisterInfo object for the current function, otherwise 581 /// return null. 582 MachineRegisterInfo *MachineInstr::getRegInfo() { 583 if (MachineBasicBlock *MBB = getParent()) 584 return &MBB->getParent()->getRegInfo(); 585 return 0; 586 } 587 588 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 589 /// this instruction from their respective use lists. This requires that the 590 /// operands already be on their use lists. 591 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 592 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 593 if (Operands[i].isReg()) 594 MRI.removeRegOperandFromUseList(&Operands[i]); 595 } 596 597 /// AddRegOperandsToUseLists - Add all of the register operands in 598 /// this instruction from their respective use lists. This requires that the 599 /// operands not be on their use lists yet. 600 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 601 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 602 if (Operands[i].isReg()) 603 MRI.addRegOperandToUseList(&Operands[i]); 604 } 605 606 /// addOperand - Add the specified operand to the instruction. If it is an 607 /// implicit operand, it is added to the end of the operand list. If it is 608 /// an explicit operand it is added at the end of the explicit operand list 609 /// (before the first implicit operand). 610 void MachineInstr::addOperand(const MachineOperand &Op) { 611 assert(MCID && "Cannot add operands before providing an instr descriptor"); 612 bool isImpReg = Op.isReg() && Op.isImplicit(); 613 MachineRegisterInfo *RegInfo = getRegInfo(); 614 615 // If the Operands backing store is reallocated, all register operands must 616 // be removed and re-added to RegInfo. It is storing pointers to operands. 617 bool Reallocate = RegInfo && 618 !Operands.empty() && Operands.size() == Operands.capacity(); 619 620 // Find the insert location for the new operand. Implicit registers go at 621 // the end, everything goes before the implicit regs. 622 unsigned OpNo = Operands.size(); 623 624 // Remove all the implicit operands from RegInfo if they need to be shifted. 625 // FIXME: Allow mixed explicit and implicit operands on inline asm. 626 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 627 // implicit-defs, but they must not be moved around. See the FIXME in 628 // InstrEmitter.cpp. 629 if (!isImpReg && !isInlineAsm()) { 630 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 631 --OpNo; 632 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 633 if (RegInfo) 634 RegInfo->removeRegOperandFromUseList(&Operands[OpNo]); 635 } 636 } 637 638 // OpNo now points as the desired insertion point. Unless this is a variadic 639 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 640 // RegMask operands go between the explicit and implicit operands. 641 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 642 OpNo < MCID->getNumOperands()) && 643 "Trying to add an operand to a machine instr that is already done!"); 644 645 // All operands from OpNo have been removed from RegInfo. If the Operands 646 // backing store needs to be reallocated, we also need to remove any other 647 // register operands. 648 if (Reallocate) 649 for (unsigned i = 0; i != OpNo; ++i) 650 if (Operands[i].isReg()) 651 RegInfo->removeRegOperandFromUseList(&Operands[i]); 652 653 // Insert the new operand at OpNo. 654 Operands.insert(Operands.begin() + OpNo, Op); 655 Operands[OpNo].ParentMI = this; 656 657 // The Operands backing store has now been reallocated, so we can re-add the 658 // operands before OpNo. 659 if (Reallocate) 660 for (unsigned i = 0; i != OpNo; ++i) 661 if (Operands[i].isReg()) 662 RegInfo->addRegOperandToUseList(&Operands[i]); 663 664 // When adding a register operand, tell RegInfo about it. 665 if (Operands[OpNo].isReg()) { 666 // Ensure isOnRegUseList() returns false, regardless of Op's status. 667 Operands[OpNo].Contents.Reg.Prev = 0; 668 // Ignore existing ties. This is not a property that can be copied. 669 Operands[OpNo].TiedTo = 0; 670 // Add the new operand to RegInfo. 671 if (RegInfo) 672 RegInfo->addRegOperandToUseList(&Operands[OpNo]); 673 // The MCID operand information isn't accurate until we start adding 674 // explicit operands. The implicit operands are added first, then the 675 // explicits are inserted before them. 676 if (!isImpReg) { 677 // Tie uses to defs as indicated in MCInstrDesc. 678 if (Operands[OpNo].isUse()) { 679 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 680 if (DefIdx != -1) 681 tieOperands(DefIdx, OpNo); 682 } 683 // If the register operand is flagged as early, mark the operand as such. 684 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 685 Operands[OpNo].setIsEarlyClobber(true); 686 } 687 } 688 689 // Re-add all the implicit ops. 690 if (RegInfo) { 691 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) { 692 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 693 RegInfo->addRegOperandToUseList(&Operands[i]); 694 } 695 } 696 } 697 698 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 699 /// fewer operand than it started with. 700 /// 701 void MachineInstr::RemoveOperand(unsigned OpNo) { 702 assert(OpNo < Operands.size() && "Invalid operand number"); 703 untieRegOperand(OpNo); 704 MachineRegisterInfo *RegInfo = getRegInfo(); 705 706 // Special case removing the last one. 707 if (OpNo == Operands.size()-1) { 708 // If needed, remove from the reg def/use list. 709 if (RegInfo && Operands.back().isReg() && Operands.back().isOnRegUseList()) 710 RegInfo->removeRegOperandFromUseList(&Operands.back()); 711 712 Operands.pop_back(); 713 return; 714 } 715 716 // Otherwise, we are removing an interior operand. If we have reginfo to 717 // update, remove all operands that will be shifted down from their reg lists, 718 // move everything down, then re-add them. 719 if (RegInfo) { 720 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 721 if (Operands[i].isReg()) 722 RegInfo->removeRegOperandFromUseList(&Operands[i]); 723 } 724 } 725 726 #ifndef NDEBUG 727 // Moving tied operands would break the ties. 728 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) 729 if (Operands[i].isReg()) 730 assert(!Operands[i].isTied() && "Cannot move tied operands"); 731 #endif 732 733 Operands.erase(Operands.begin()+OpNo); 734 735 if (RegInfo) { 736 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 737 if (Operands[i].isReg()) 738 RegInfo->addRegOperandToUseList(&Operands[i]); 739 } 740 } 741 } 742 743 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 744 /// This function should be used only occasionally. The setMemRefs function 745 /// is the primary method for setting up a MachineInstr's MemRefs list. 746 void MachineInstr::addMemOperand(MachineFunction &MF, 747 MachineMemOperand *MO) { 748 mmo_iterator OldMemRefs = MemRefs; 749 uint16_t OldNumMemRefs = NumMemRefs; 750 751 uint16_t NewNum = NumMemRefs + 1; 752 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 753 754 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 755 NewMemRefs[NewNum - 1] = MO; 756 757 MemRefs = NewMemRefs; 758 NumMemRefs = NewNum; 759 } 760 761 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 762 const MachineBasicBlock *MBB = getParent(); 763 MachineBasicBlock::const_instr_iterator MII = *this; ++MII; 764 while (MII != MBB->end() && MII->isInsideBundle()) { 765 if (MII->getDesc().getFlags() & Mask) { 766 if (Type == AnyInBundle) 767 return true; 768 } else { 769 if (Type == AllInBundle) 770 return false; 771 } 772 ++MII; 773 } 774 775 return Type == AllInBundle; 776 } 777 778 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 779 MICheckType Check) const { 780 // If opcodes or number of operands are not the same then the two 781 // instructions are obviously not identical. 782 if (Other->getOpcode() != getOpcode() || 783 Other->getNumOperands() != getNumOperands()) 784 return false; 785 786 if (isBundle()) { 787 // Both instructions are bundles, compare MIs inside the bundle. 788 MachineBasicBlock::const_instr_iterator I1 = *this; 789 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 790 MachineBasicBlock::const_instr_iterator I2 = *Other; 791 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 792 while (++I1 != E1 && I1->isInsideBundle()) { 793 ++I2; 794 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 795 return false; 796 } 797 } 798 799 // Check operands to make sure they match. 800 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 801 const MachineOperand &MO = getOperand(i); 802 const MachineOperand &OMO = Other->getOperand(i); 803 if (!MO.isReg()) { 804 if (!MO.isIdenticalTo(OMO)) 805 return false; 806 continue; 807 } 808 809 // Clients may or may not want to ignore defs when testing for equality. 810 // For example, machine CSE pass only cares about finding common 811 // subexpressions, so it's safe to ignore virtual register defs. 812 if (MO.isDef()) { 813 if (Check == IgnoreDefs) 814 continue; 815 else if (Check == IgnoreVRegDefs) { 816 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 817 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 818 if (MO.getReg() != OMO.getReg()) 819 return false; 820 } else { 821 if (!MO.isIdenticalTo(OMO)) 822 return false; 823 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 824 return false; 825 } 826 } else { 827 if (!MO.isIdenticalTo(OMO)) 828 return false; 829 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 830 return false; 831 } 832 } 833 // If DebugLoc does not match then two dbg.values are not identical. 834 if (isDebugValue()) 835 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 836 && getDebugLoc() != Other->getDebugLoc()) 837 return false; 838 return true; 839 } 840 841 MachineInstr *MachineInstr::removeFromParent() { 842 assert(getParent() && "Not embedded in a basic block!"); 843 return getParent()->remove(this); 844 } 845 846 MachineInstr *MachineInstr::removeFromBundle() { 847 assert(getParent() && "Not embedded in a basic block!"); 848 return getParent()->remove_instr(this); 849 } 850 851 void MachineInstr::eraseFromParent() { 852 assert(getParent() && "Not embedded in a basic block!"); 853 getParent()->erase(this); 854 } 855 856 void MachineInstr::eraseFromBundle() { 857 assert(getParent() && "Not embedded in a basic block!"); 858 getParent()->erase_instr(this); 859 } 860 861 /// getNumExplicitOperands - Returns the number of non-implicit operands. 862 /// 863 unsigned MachineInstr::getNumExplicitOperands() const { 864 unsigned NumOperands = MCID->getNumOperands(); 865 if (!MCID->isVariadic()) 866 return NumOperands; 867 868 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 869 const MachineOperand &MO = getOperand(i); 870 if (!MO.isReg() || !MO.isImplicit()) 871 NumOperands++; 872 } 873 return NumOperands; 874 } 875 876 void MachineInstr::bundleWithPred() { 877 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 878 setFlag(BundledPred); 879 MachineBasicBlock::instr_iterator Pred = this; 880 --Pred; 881 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 882 Pred->setFlag(BundledSucc); 883 } 884 885 void MachineInstr::bundleWithSucc() { 886 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 887 setFlag(BundledSucc); 888 MachineBasicBlock::instr_iterator Succ = this; 889 ++Succ; 890 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 891 Succ->setFlag(BundledPred); 892 } 893 894 void MachineInstr::unbundleFromPred() { 895 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 896 clearFlag(BundledPred); 897 MachineBasicBlock::instr_iterator Pred = this; 898 --Pred; 899 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 900 Pred->clearFlag(BundledSucc); 901 } 902 903 void MachineInstr::unbundleFromSucc() { 904 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 905 clearFlag(BundledSucc); 906 MachineBasicBlock::instr_iterator Succ = this; 907 --Succ; 908 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 909 Succ->clearFlag(BundledPred); 910 } 911 912 bool MachineInstr::isStackAligningInlineAsm() const { 913 if (isInlineAsm()) { 914 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 915 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 916 return true; 917 } 918 return false; 919 } 920 921 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 922 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 923 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 924 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 925 } 926 927 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 928 unsigned *GroupNo) const { 929 assert(isInlineAsm() && "Expected an inline asm instruction"); 930 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 931 932 // Ignore queries about the initial operands. 933 if (OpIdx < InlineAsm::MIOp_FirstOperand) 934 return -1; 935 936 unsigned Group = 0; 937 unsigned NumOps; 938 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 939 i += NumOps) { 940 const MachineOperand &FlagMO = getOperand(i); 941 // If we reach the implicit register operands, stop looking. 942 if (!FlagMO.isImm()) 943 return -1; 944 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 945 if (i + NumOps > OpIdx) { 946 if (GroupNo) 947 *GroupNo = Group; 948 return i; 949 } 950 ++Group; 951 } 952 return -1; 953 } 954 955 const TargetRegisterClass* 956 MachineInstr::getRegClassConstraint(unsigned OpIdx, 957 const TargetInstrInfo *TII, 958 const TargetRegisterInfo *TRI) const { 959 assert(getParent() && "Can't have an MBB reference here!"); 960 assert(getParent()->getParent() && "Can't have an MF reference here!"); 961 const MachineFunction &MF = *getParent()->getParent(); 962 963 // Most opcodes have fixed constraints in their MCInstrDesc. 964 if (!isInlineAsm()) 965 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 966 967 if (!getOperand(OpIdx).isReg()) 968 return NULL; 969 970 // For tied uses on inline asm, get the constraint from the def. 971 unsigned DefIdx; 972 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 973 OpIdx = DefIdx; 974 975 // Inline asm stores register class constraints in the flag word. 976 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 977 if (FlagIdx < 0) 978 return NULL; 979 980 unsigned Flag = getOperand(FlagIdx).getImm(); 981 unsigned RCID; 982 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 983 return TRI->getRegClass(RCID); 984 985 // Assume that all registers in a memory operand are pointers. 986 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 987 return TRI->getPointerRegClass(MF); 988 989 return NULL; 990 } 991 992 /// getBundleSize - Return the number of instructions inside the MI bundle. 993 unsigned MachineInstr::getBundleSize() const { 994 assert(isBundle() && "Expecting a bundle"); 995 996 const MachineBasicBlock *MBB = getParent(); 997 MachineBasicBlock::const_instr_iterator I = *this, E = MBB->instr_end(); 998 unsigned Size = 0; 999 while ((++I != E) && I->isInsideBundle()) { 1000 ++Size; 1001 } 1002 assert(Size > 1 && "Malformed bundle"); 1003 1004 return Size; 1005 } 1006 1007 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1008 /// the specific register or -1 if it is not found. It further tightens 1009 /// the search criteria to a use that kills the register if isKill is true. 1010 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1011 const TargetRegisterInfo *TRI) const { 1012 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1013 const MachineOperand &MO = getOperand(i); 1014 if (!MO.isReg() || !MO.isUse()) 1015 continue; 1016 unsigned MOReg = MO.getReg(); 1017 if (!MOReg) 1018 continue; 1019 if (MOReg == Reg || 1020 (TRI && 1021 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1022 TargetRegisterInfo::isPhysicalRegister(Reg) && 1023 TRI->isSubRegister(MOReg, Reg))) 1024 if (!isKill || MO.isKill()) 1025 return i; 1026 } 1027 return -1; 1028 } 1029 1030 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1031 /// indicating if this instruction reads or writes Reg. This also considers 1032 /// partial defines. 1033 std::pair<bool,bool> 1034 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1035 SmallVectorImpl<unsigned> *Ops) const { 1036 bool PartDef = false; // Partial redefine. 1037 bool FullDef = false; // Full define. 1038 bool Use = false; 1039 1040 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1041 const MachineOperand &MO = getOperand(i); 1042 if (!MO.isReg() || MO.getReg() != Reg) 1043 continue; 1044 if (Ops) 1045 Ops->push_back(i); 1046 if (MO.isUse()) 1047 Use |= !MO.isUndef(); 1048 else if (MO.getSubReg() && !MO.isUndef()) 1049 // A partial <def,undef> doesn't count as reading the register. 1050 PartDef = true; 1051 else 1052 FullDef = true; 1053 } 1054 // A partial redefine uses Reg unless there is also a full define. 1055 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1056 } 1057 1058 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1059 /// the specified register or -1 if it is not found. If isDead is true, defs 1060 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1061 /// also checks if there is a def of a super-register. 1062 int 1063 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1064 const TargetRegisterInfo *TRI) const { 1065 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1066 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1067 const MachineOperand &MO = getOperand(i); 1068 // Accept regmask operands when Overlap is set. 1069 // Ignore them when looking for a specific def operand (Overlap == false). 1070 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1071 return i; 1072 if (!MO.isReg() || !MO.isDef()) 1073 continue; 1074 unsigned MOReg = MO.getReg(); 1075 bool Found = (MOReg == Reg); 1076 if (!Found && TRI && isPhys && 1077 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1078 if (Overlap) 1079 Found = TRI->regsOverlap(MOReg, Reg); 1080 else 1081 Found = TRI->isSubRegister(MOReg, Reg); 1082 } 1083 if (Found && (!isDead || MO.isDead())) 1084 return i; 1085 } 1086 return -1; 1087 } 1088 1089 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1090 /// operand list that is used to represent the predicate. It returns -1 if 1091 /// none is found. 1092 int MachineInstr::findFirstPredOperandIdx() const { 1093 // Don't call MCID.findFirstPredOperandIdx() because this variant 1094 // is sometimes called on an instruction that's not yet complete, and 1095 // so the number of operands is less than the MCID indicates. In 1096 // particular, the PTX target does this. 1097 const MCInstrDesc &MCID = getDesc(); 1098 if (MCID.isPredicable()) { 1099 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1100 if (MCID.OpInfo[i].isPredicate()) 1101 return i; 1102 } 1103 1104 return -1; 1105 } 1106 1107 // MachineOperand::TiedTo is 4 bits wide. 1108 const unsigned TiedMax = 15; 1109 1110 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1111 /// 1112 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1113 /// field. TiedTo can have these values: 1114 /// 1115 /// 0: Operand is not tied to anything. 1116 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1117 /// TiedMax: Tied to an operand >= TiedMax-1. 1118 /// 1119 /// The tied def must be one of the first TiedMax operands on a normal 1120 /// instruction. INLINEASM instructions allow more tied defs. 1121 /// 1122 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1123 MachineOperand &DefMO = getOperand(DefIdx); 1124 MachineOperand &UseMO = getOperand(UseIdx); 1125 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1126 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1127 assert(!DefMO.isTied() && "Def is already tied to another use"); 1128 assert(!UseMO.isTied() && "Use is already tied to another def"); 1129 1130 if (DefIdx < TiedMax) 1131 UseMO.TiedTo = DefIdx + 1; 1132 else { 1133 // Inline asm can use the group descriptors to find tied operands, but on 1134 // normal instruction, the tied def must be within the first TiedMax 1135 // operands. 1136 assert(isInlineAsm() && "DefIdx out of range"); 1137 UseMO.TiedTo = TiedMax; 1138 } 1139 1140 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1141 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1142 } 1143 1144 /// Given the index of a tied register operand, find the operand it is tied to. 1145 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1146 /// which must exist. 1147 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1148 const MachineOperand &MO = getOperand(OpIdx); 1149 assert(MO.isTied() && "Operand isn't tied"); 1150 1151 // Normally TiedTo is in range. 1152 if (MO.TiedTo < TiedMax) 1153 return MO.TiedTo - 1; 1154 1155 // Uses on normal instructions can be out of range. 1156 if (!isInlineAsm()) { 1157 // Normal tied defs must be in the 0..TiedMax-1 range. 1158 if (MO.isUse()) 1159 return TiedMax - 1; 1160 // MO is a def. Search for the tied use. 1161 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1162 const MachineOperand &UseMO = getOperand(i); 1163 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1164 return i; 1165 } 1166 llvm_unreachable("Can't find tied use"); 1167 } 1168 1169 // Now deal with inline asm by parsing the operand group descriptor flags. 1170 // Find the beginning of each operand group. 1171 SmallVector<unsigned, 8> GroupIdx; 1172 unsigned OpIdxGroup = ~0u; 1173 unsigned NumOps; 1174 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1175 i += NumOps) { 1176 const MachineOperand &FlagMO = getOperand(i); 1177 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1178 unsigned CurGroup = GroupIdx.size(); 1179 GroupIdx.push_back(i); 1180 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1181 // OpIdx belongs to this operand group. 1182 if (OpIdx > i && OpIdx < i + NumOps) 1183 OpIdxGroup = CurGroup; 1184 unsigned TiedGroup; 1185 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1186 continue; 1187 // Operands in this group are tied to operands in TiedGroup which must be 1188 // earlier. Find the number of operands between the two groups. 1189 unsigned Delta = i - GroupIdx[TiedGroup]; 1190 1191 // OpIdx is a use tied to TiedGroup. 1192 if (OpIdxGroup == CurGroup) 1193 return OpIdx - Delta; 1194 1195 // OpIdx is a def tied to this use group. 1196 if (OpIdxGroup == TiedGroup) 1197 return OpIdx + Delta; 1198 } 1199 llvm_unreachable("Invalid tied operand on inline asm"); 1200 } 1201 1202 /// clearKillInfo - Clears kill flags on all operands. 1203 /// 1204 void MachineInstr::clearKillInfo() { 1205 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1206 MachineOperand &MO = getOperand(i); 1207 if (MO.isReg() && MO.isUse()) 1208 MO.setIsKill(false); 1209 } 1210 } 1211 1212 void MachineInstr::substituteRegister(unsigned FromReg, 1213 unsigned ToReg, 1214 unsigned SubIdx, 1215 const TargetRegisterInfo &RegInfo) { 1216 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1217 if (SubIdx) 1218 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1219 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1220 MachineOperand &MO = getOperand(i); 1221 if (!MO.isReg() || MO.getReg() != FromReg) 1222 continue; 1223 MO.substPhysReg(ToReg, RegInfo); 1224 } 1225 } else { 1226 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1227 MachineOperand &MO = getOperand(i); 1228 if (!MO.isReg() || MO.getReg() != FromReg) 1229 continue; 1230 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1231 } 1232 } 1233 } 1234 1235 /// isSafeToMove - Return true if it is safe to move this instruction. If 1236 /// SawStore is set to true, it means that there is a store (or call) between 1237 /// the instruction's location and its intended destination. 1238 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1239 AliasAnalysis *AA, 1240 bool &SawStore) const { 1241 // Ignore stuff that we obviously can't move. 1242 // 1243 // Treat volatile loads as stores. This is not strictly necessary for 1244 // volatiles, but it is required for atomic loads. It is not allowed to move 1245 // a load across an atomic load with Ordering > Monotonic. 1246 if (mayStore() || isCall() || 1247 (mayLoad() && hasOrderedMemoryRef())) { 1248 SawStore = true; 1249 return false; 1250 } 1251 1252 if (isLabel() || isDebugValue() || 1253 isTerminator() || hasUnmodeledSideEffects()) 1254 return false; 1255 1256 // See if this instruction does a load. If so, we have to guarantee that the 1257 // loaded value doesn't change between the load and the its intended 1258 // destination. The check for isInvariantLoad gives the targe the chance to 1259 // classify the load as always returning a constant, e.g. a constant pool 1260 // load. 1261 if (mayLoad() && !isInvariantLoad(AA)) 1262 // Otherwise, this is a real load. If there is a store between the load and 1263 // end of block, we can't move it. 1264 return !SawStore; 1265 1266 return true; 1267 } 1268 1269 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1270 /// instruction which defined the specified register instead of copying it. 1271 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1272 AliasAnalysis *AA, 1273 unsigned DstReg) const { 1274 bool SawStore = false; 1275 if (!TII->isTriviallyReMaterializable(this, AA) || 1276 !isSafeToMove(TII, AA, SawStore)) 1277 return false; 1278 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1279 const MachineOperand &MO = getOperand(i); 1280 if (!MO.isReg()) 1281 continue; 1282 // FIXME: For now, do not remat any instruction with register operands. 1283 // Later on, we can loosen the restriction is the register operands have 1284 // not been modified between the def and use. Note, this is different from 1285 // MachineSink because the code is no longer in two-address form (at least 1286 // partially). 1287 if (MO.isUse()) 1288 return false; 1289 else if (!MO.isDead() && MO.getReg() != DstReg) 1290 return false; 1291 } 1292 return true; 1293 } 1294 1295 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1296 /// or volatile memory reference, or if the information describing the memory 1297 /// reference is not available. Return false if it is known to have no ordered 1298 /// memory references. 1299 bool MachineInstr::hasOrderedMemoryRef() const { 1300 // An instruction known never to access memory won't have a volatile access. 1301 if (!mayStore() && 1302 !mayLoad() && 1303 !isCall() && 1304 !hasUnmodeledSideEffects()) 1305 return false; 1306 1307 // Otherwise, if the instruction has no memory reference information, 1308 // conservatively assume it wasn't preserved. 1309 if (memoperands_empty()) 1310 return true; 1311 1312 // Check the memory reference information for ordered references. 1313 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1314 if (!(*I)->isUnordered()) 1315 return true; 1316 1317 return false; 1318 } 1319 1320 /// isInvariantLoad - Return true if this instruction is loading from a 1321 /// location whose value is invariant across the function. For example, 1322 /// loading a value from the constant pool or from the argument area 1323 /// of a function if it does not change. This should only return true of 1324 /// *all* loads the instruction does are invariant (if it does multiple loads). 1325 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1326 // If the instruction doesn't load at all, it isn't an invariant load. 1327 if (!mayLoad()) 1328 return false; 1329 1330 // If the instruction has lost its memoperands, conservatively assume that 1331 // it may not be an invariant load. 1332 if (memoperands_empty()) 1333 return false; 1334 1335 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1336 1337 for (mmo_iterator I = memoperands_begin(), 1338 E = memoperands_end(); I != E; ++I) { 1339 if ((*I)->isVolatile()) return false; 1340 if ((*I)->isStore()) return false; 1341 if ((*I)->isInvariant()) return true; 1342 1343 if (const Value *V = (*I)->getValue()) { 1344 // A load from a constant PseudoSourceValue is invariant. 1345 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1346 if (PSV->isConstant(MFI)) 1347 continue; 1348 // If we have an AliasAnalysis, ask it whether the memory is constant. 1349 if (AA && AA->pointsToConstantMemory( 1350 AliasAnalysis::Location(V, (*I)->getSize(), 1351 (*I)->getTBAAInfo()))) 1352 continue; 1353 } 1354 1355 // Otherwise assume conservatively. 1356 return false; 1357 } 1358 1359 // Everything checks out. 1360 return true; 1361 } 1362 1363 /// isConstantValuePHI - If the specified instruction is a PHI that always 1364 /// merges together the same virtual register, return the register, otherwise 1365 /// return 0. 1366 unsigned MachineInstr::isConstantValuePHI() const { 1367 if (!isPHI()) 1368 return 0; 1369 assert(getNumOperands() >= 3 && 1370 "It's illegal to have a PHI without source operands"); 1371 1372 unsigned Reg = getOperand(1).getReg(); 1373 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1374 if (getOperand(i).getReg() != Reg) 1375 return 0; 1376 return Reg; 1377 } 1378 1379 bool MachineInstr::hasUnmodeledSideEffects() const { 1380 if (hasProperty(MCID::UnmodeledSideEffects)) 1381 return true; 1382 if (isInlineAsm()) { 1383 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1384 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1385 return true; 1386 } 1387 1388 return false; 1389 } 1390 1391 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1392 /// 1393 bool MachineInstr::allDefsAreDead() const { 1394 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1395 const MachineOperand &MO = getOperand(i); 1396 if (!MO.isReg() || MO.isUse()) 1397 continue; 1398 if (!MO.isDead()) 1399 return false; 1400 } 1401 return true; 1402 } 1403 1404 /// copyImplicitOps - Copy implicit register operands from specified 1405 /// instruction to this instruction. 1406 void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1407 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1408 i != e; ++i) { 1409 const MachineOperand &MO = MI->getOperand(i); 1410 if (MO.isReg() && MO.isImplicit()) 1411 addOperand(MO); 1412 } 1413 } 1414 1415 void MachineInstr::dump() const { 1416 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1417 dbgs() << " " << *this; 1418 #endif 1419 } 1420 1421 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1422 raw_ostream &CommentOS) { 1423 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1424 if (!DL.isUnknown()) { // Print source line info. 1425 DIScope Scope(DL.getScope(Ctx)); 1426 // Omit the directory, because it's likely to be long and uninteresting. 1427 if (Scope.Verify()) 1428 CommentOS << Scope.getFilename(); 1429 else 1430 CommentOS << "<unknown>"; 1431 CommentOS << ':' << DL.getLine(); 1432 if (DL.getCol() != 0) 1433 CommentOS << ':' << DL.getCol(); 1434 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1435 if (!InlinedAtDL.isUnknown()) { 1436 CommentOS << " @[ "; 1437 printDebugLoc(InlinedAtDL, MF, CommentOS); 1438 CommentOS << " ]"; 1439 } 1440 } 1441 } 1442 1443 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1444 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1445 const MachineFunction *MF = 0; 1446 const MachineRegisterInfo *MRI = 0; 1447 if (const MachineBasicBlock *MBB = getParent()) { 1448 MF = MBB->getParent(); 1449 if (!TM && MF) 1450 TM = &MF->getTarget(); 1451 if (MF) 1452 MRI = &MF->getRegInfo(); 1453 } 1454 1455 // Save a list of virtual registers. 1456 SmallVector<unsigned, 8> VirtRegs; 1457 1458 // Print explicitly defined operands on the left of an assignment syntax. 1459 unsigned StartOp = 0, e = getNumOperands(); 1460 for (; StartOp < e && getOperand(StartOp).isReg() && 1461 getOperand(StartOp).isDef() && 1462 !getOperand(StartOp).isImplicit(); 1463 ++StartOp) { 1464 if (StartOp != 0) OS << ", "; 1465 getOperand(StartOp).print(OS, TM); 1466 unsigned Reg = getOperand(StartOp).getReg(); 1467 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1468 VirtRegs.push_back(Reg); 1469 } 1470 1471 if (StartOp != 0) 1472 OS << " = "; 1473 1474 // Print the opcode name. 1475 if (TM && TM->getInstrInfo()) 1476 OS << TM->getInstrInfo()->getName(getOpcode()); 1477 else 1478 OS << "UNKNOWN"; 1479 1480 // Print the rest of the operands. 1481 bool OmittedAnyCallClobbers = false; 1482 bool FirstOp = true; 1483 unsigned AsmDescOp = ~0u; 1484 unsigned AsmOpCount = 0; 1485 1486 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1487 // Print asm string. 1488 OS << " "; 1489 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1490 1491 // Print HasSideEffects, IsAlignStack 1492 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1493 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1494 OS << " [sideeffect]"; 1495 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1496 OS << " [alignstack]"; 1497 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1498 OS << " [attdialect]"; 1499 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1500 OS << " [inteldialect]"; 1501 1502 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1503 FirstOp = false; 1504 } 1505 1506 1507 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1508 const MachineOperand &MO = getOperand(i); 1509 1510 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1511 VirtRegs.push_back(MO.getReg()); 1512 1513 // Omit call-clobbered registers which aren't used anywhere. This makes 1514 // call instructions much less noisy on targets where calls clobber lots 1515 // of registers. Don't rely on MO.isDead() because we may be called before 1516 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1517 if (MF && isCall() && 1518 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1519 unsigned Reg = MO.getReg(); 1520 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1521 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1522 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1523 bool HasAliasLive = false; 1524 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); 1525 AI.isValid(); ++AI) { 1526 unsigned AliasReg = *AI; 1527 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1528 HasAliasLive = true; 1529 break; 1530 } 1531 } 1532 if (!HasAliasLive) { 1533 OmittedAnyCallClobbers = true; 1534 continue; 1535 } 1536 } 1537 } 1538 } 1539 1540 if (FirstOp) FirstOp = false; else OS << ","; 1541 OS << " "; 1542 if (i < getDesc().NumOperands) { 1543 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1544 if (MCOI.isPredicate()) 1545 OS << "pred:"; 1546 if (MCOI.isOptionalDef()) 1547 OS << "opt:"; 1548 } 1549 if (isDebugValue() && MO.isMetadata()) { 1550 // Pretty print DBG_VALUE instructions. 1551 const MDNode *MD = MO.getMetadata(); 1552 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1553 OS << "!\"" << MDS->getString() << '\"'; 1554 else 1555 MO.print(OS, TM); 1556 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1557 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1558 } else if (i == AsmDescOp && MO.isImm()) { 1559 // Pretty print the inline asm operand descriptor. 1560 OS << '$' << AsmOpCount++; 1561 unsigned Flag = MO.getImm(); 1562 switch (InlineAsm::getKind(Flag)) { 1563 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1564 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1565 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1566 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1567 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1568 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1569 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1570 } 1571 1572 unsigned RCID = 0; 1573 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1574 if (TM) 1575 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1576 else 1577 OS << ":RC" << RCID; 1578 } 1579 1580 unsigned TiedTo = 0; 1581 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1582 OS << " tiedto:$" << TiedTo; 1583 1584 OS << ']'; 1585 1586 // Compute the index of the next operand descriptor. 1587 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1588 } else 1589 MO.print(OS, TM); 1590 } 1591 1592 // Briefly indicate whether any call clobbers were omitted. 1593 if (OmittedAnyCallClobbers) { 1594 if (!FirstOp) OS << ","; 1595 OS << " ..."; 1596 } 1597 1598 bool HaveSemi = false; 1599 if (Flags) { 1600 if (!HaveSemi) OS << ";"; HaveSemi = true; 1601 OS << " flags: "; 1602 1603 if (Flags & FrameSetup) 1604 OS << "FrameSetup"; 1605 } 1606 1607 if (!memoperands_empty()) { 1608 if (!HaveSemi) OS << ";"; HaveSemi = true; 1609 1610 OS << " mem:"; 1611 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1612 i != e; ++i) { 1613 OS << **i; 1614 if (llvm::next(i) != e) 1615 OS << " "; 1616 } 1617 } 1618 1619 // Print the regclass of any virtual registers encountered. 1620 if (MRI && !VirtRegs.empty()) { 1621 if (!HaveSemi) OS << ";"; HaveSemi = true; 1622 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1623 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1624 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1625 for (unsigned j = i+1; j != VirtRegs.size();) { 1626 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1627 ++j; 1628 continue; 1629 } 1630 if (VirtRegs[i] != VirtRegs[j]) 1631 OS << "," << PrintReg(VirtRegs[j]); 1632 VirtRegs.erase(VirtRegs.begin()+j); 1633 } 1634 } 1635 } 1636 1637 // Print debug location information. 1638 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1639 if (!HaveSemi) OS << ";"; HaveSemi = true; 1640 DIVariable DV(getOperand(e - 1).getMetadata()); 1641 OS << " line no:" << DV.getLineNumber(); 1642 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1643 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1644 if (!InlinedAtDL.isUnknown()) { 1645 OS << " inlined @[ "; 1646 printDebugLoc(InlinedAtDL, MF, OS); 1647 OS << " ]"; 1648 } 1649 } 1650 } else if (!debugLoc.isUnknown() && MF) { 1651 if (!HaveSemi) OS << ";"; HaveSemi = true; 1652 OS << " dbg:"; 1653 printDebugLoc(debugLoc, MF, OS); 1654 } 1655 1656 OS << '\n'; 1657 } 1658 1659 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1660 const TargetRegisterInfo *RegInfo, 1661 bool AddIfNotFound) { 1662 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1663 bool hasAliases = isPhysReg && 1664 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1665 bool Found = false; 1666 SmallVector<unsigned,4> DeadOps; 1667 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1668 MachineOperand &MO = getOperand(i); 1669 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1670 continue; 1671 unsigned Reg = MO.getReg(); 1672 if (!Reg) 1673 continue; 1674 1675 if (Reg == IncomingReg) { 1676 if (!Found) { 1677 if (MO.isKill()) 1678 // The register is already marked kill. 1679 return true; 1680 if (isPhysReg && isRegTiedToDefOperand(i)) 1681 // Two-address uses of physregs must not be marked kill. 1682 return true; 1683 MO.setIsKill(); 1684 Found = true; 1685 } 1686 } else if (hasAliases && MO.isKill() && 1687 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1688 // A super-register kill already exists. 1689 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1690 return true; 1691 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1692 DeadOps.push_back(i); 1693 } 1694 } 1695 1696 // Trim unneeded kill operands. 1697 while (!DeadOps.empty()) { 1698 unsigned OpIdx = DeadOps.back(); 1699 if (getOperand(OpIdx).isImplicit()) 1700 RemoveOperand(OpIdx); 1701 else 1702 getOperand(OpIdx).setIsKill(false); 1703 DeadOps.pop_back(); 1704 } 1705 1706 // If not found, this means an alias of one of the operands is killed. Add a 1707 // new implicit operand if required. 1708 if (!Found && AddIfNotFound) { 1709 addOperand(MachineOperand::CreateReg(IncomingReg, 1710 false /*IsDef*/, 1711 true /*IsImp*/, 1712 true /*IsKill*/)); 1713 return true; 1714 } 1715 return Found; 1716 } 1717 1718 void MachineInstr::clearRegisterKills(unsigned Reg, 1719 const TargetRegisterInfo *RegInfo) { 1720 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1721 RegInfo = 0; 1722 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1723 MachineOperand &MO = getOperand(i); 1724 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1725 continue; 1726 unsigned OpReg = MO.getReg(); 1727 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1728 MO.setIsKill(false); 1729 } 1730 } 1731 1732 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1733 const TargetRegisterInfo *RegInfo, 1734 bool AddIfNotFound) { 1735 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1736 bool hasAliases = isPhysReg && 1737 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1738 bool Found = false; 1739 SmallVector<unsigned,4> DeadOps; 1740 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1741 MachineOperand &MO = getOperand(i); 1742 if (!MO.isReg() || !MO.isDef()) 1743 continue; 1744 unsigned Reg = MO.getReg(); 1745 if (!Reg) 1746 continue; 1747 1748 if (Reg == IncomingReg) { 1749 MO.setIsDead(); 1750 Found = true; 1751 } else if (hasAliases && MO.isDead() && 1752 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1753 // There exists a super-register that's marked dead. 1754 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1755 return true; 1756 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1757 DeadOps.push_back(i); 1758 } 1759 } 1760 1761 // Trim unneeded dead operands. 1762 while (!DeadOps.empty()) { 1763 unsigned OpIdx = DeadOps.back(); 1764 if (getOperand(OpIdx).isImplicit()) 1765 RemoveOperand(OpIdx); 1766 else 1767 getOperand(OpIdx).setIsDead(false); 1768 DeadOps.pop_back(); 1769 } 1770 1771 // If not found, this means an alias of one of the operands is dead. Add a 1772 // new implicit operand if required. 1773 if (Found || !AddIfNotFound) 1774 return Found; 1775 1776 addOperand(MachineOperand::CreateReg(IncomingReg, 1777 true /*IsDef*/, 1778 true /*IsImp*/, 1779 false /*IsKill*/, 1780 true /*IsDead*/)); 1781 return true; 1782 } 1783 1784 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1785 const TargetRegisterInfo *RegInfo) { 1786 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1787 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1788 if (MO) 1789 return; 1790 } else { 1791 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1792 const MachineOperand &MO = getOperand(i); 1793 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1794 MO.getSubReg() == 0) 1795 return; 1796 } 1797 } 1798 addOperand(MachineOperand::CreateReg(IncomingReg, 1799 true /*IsDef*/, 1800 true /*IsImp*/)); 1801 } 1802 1803 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1804 const TargetRegisterInfo &TRI) { 1805 bool HasRegMask = false; 1806 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1807 MachineOperand &MO = getOperand(i); 1808 if (MO.isRegMask()) { 1809 HasRegMask = true; 1810 continue; 1811 } 1812 if (!MO.isReg() || !MO.isDef()) continue; 1813 unsigned Reg = MO.getReg(); 1814 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1815 bool Dead = true; 1816 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1817 I != E; ++I) 1818 if (TRI.regsOverlap(*I, Reg)) { 1819 Dead = false; 1820 break; 1821 } 1822 // If there are no uses, including partial uses, the def is dead. 1823 if (Dead) MO.setIsDead(); 1824 } 1825 1826 // This is a call with a register mask operand. 1827 // Mask clobbers are always dead, so add defs for the non-dead defines. 1828 if (HasRegMask) 1829 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1830 I != E; ++I) 1831 addRegisterDefined(*I, &TRI); 1832 } 1833 1834 unsigned 1835 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1836 // Build up a buffer of hash code components. 1837 SmallVector<size_t, 8> HashComponents; 1838 HashComponents.reserve(MI->getNumOperands() + 1); 1839 HashComponents.push_back(MI->getOpcode()); 1840 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1841 const MachineOperand &MO = MI->getOperand(i); 1842 if (MO.isReg() && MO.isDef() && 1843 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1844 continue; // Skip virtual register defs. 1845 1846 HashComponents.push_back(hash_value(MO)); 1847 } 1848 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1849 } 1850 1851 void MachineInstr::emitError(StringRef Msg) const { 1852 // Find the source location cookie. 1853 unsigned LocCookie = 0; 1854 const MDNode *LocMD = 0; 1855 for (unsigned i = getNumOperands(); i != 0; --i) { 1856 if (getOperand(i-1).isMetadata() && 1857 (LocMD = getOperand(i-1).getMetadata()) && 1858 LocMD->getNumOperands() != 0) { 1859 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1860 LocCookie = CI->getZExtValue(); 1861 break; 1862 } 1863 } 1864 } 1865 1866 if (const MachineBasicBlock *MBB = getParent()) 1867 if (const MachineFunction *MF = MBB->getParent()) 1868 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1869 report_fatal_error(Msg); 1870 } 1871