1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfo.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/GraphWriter.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 using namespace llvm; 41 42 #define DEBUG_TYPE "codegen" 43 44 //===----------------------------------------------------------------------===// 45 // MachineFunction implementation 46 //===----------------------------------------------------------------------===// 47 48 // Out of line virtual method. 49 MachineFunctionInfo::~MachineFunctionInfo() {} 50 51 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 52 MBB->getParent()->DeleteMachineBasicBlock(MBB); 53 } 54 55 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 56 unsigned FunctionNum, MachineModuleInfo &mmi, 57 GCModuleInfo *gmi) 58 : Fn(F), Target(TM), STI(TM.getSubtargetImpl()), Ctx(mmi.getContext()), 59 MMI(mmi), GMI(gmi) { 60 if (TM.getSubtargetImpl()->getRegisterInfo()) 61 RegInfo = new (Allocator) MachineRegisterInfo(TM); 62 else 63 RegInfo = nullptr; 64 65 MFInfo = nullptr; 66 FrameInfo = 67 new (Allocator) MachineFrameInfo(TM,!F->hasFnAttribute("no-realign-stack")); 68 69 if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 70 Attribute::StackAlignment)) 71 FrameInfo->ensureMaxAlignment(Fn->getAttributes(). 72 getStackAlignment(AttributeSet::FunctionIndex)); 73 74 ConstantPool = new (Allocator) MachineConstantPool(TM); 75 Alignment = 76 TM.getSubtargetImpl()->getTargetLowering()->getMinFunctionAlignment(); 77 78 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 79 if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 80 Attribute::OptimizeForSize)) 81 Alignment = std::max( 82 Alignment, 83 TM.getSubtargetImpl()->getTargetLowering()->getPrefFunctionAlignment()); 84 85 FunctionNumber = FunctionNum; 86 JumpTableInfo = nullptr; 87 } 88 89 MachineFunction::~MachineFunction() { 90 // Don't call destructors on MachineInstr and MachineOperand. All of their 91 // memory comes from the BumpPtrAllocator which is about to be purged. 92 // 93 // Do call MachineBasicBlock destructors, it contains std::vectors. 94 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 95 I->Insts.clearAndLeakNodesUnsafely(); 96 97 InstructionRecycler.clear(Allocator); 98 OperandRecycler.clear(Allocator); 99 BasicBlockRecycler.clear(Allocator); 100 if (RegInfo) { 101 RegInfo->~MachineRegisterInfo(); 102 Allocator.Deallocate(RegInfo); 103 } 104 if (MFInfo) { 105 MFInfo->~MachineFunctionInfo(); 106 Allocator.Deallocate(MFInfo); 107 } 108 109 FrameInfo->~MachineFrameInfo(); 110 Allocator.Deallocate(FrameInfo); 111 112 ConstantPool->~MachineConstantPool(); 113 Allocator.Deallocate(ConstantPool); 114 115 if (JumpTableInfo) { 116 JumpTableInfo->~MachineJumpTableInfo(); 117 Allocator.Deallocate(JumpTableInfo); 118 } 119 } 120 121 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 122 /// does already exist, allocate one. 123 MachineJumpTableInfo *MachineFunction:: 124 getOrCreateJumpTableInfo(unsigned EntryKind) { 125 if (JumpTableInfo) return JumpTableInfo; 126 127 JumpTableInfo = new (Allocator) 128 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 129 return JumpTableInfo; 130 } 131 132 /// Should we be emitting segmented stack stuff for the function 133 bool MachineFunction::shouldSplitStack() { 134 return getFunction()->hasFnAttribute("split-stack"); 135 } 136 137 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 138 /// recomputes them. This guarantees that the MBB numbers are sequential, 139 /// dense, and match the ordering of the blocks within the function. If a 140 /// specific MachineBasicBlock is specified, only that block and those after 141 /// it are renumbered. 142 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 143 if (empty()) { MBBNumbering.clear(); return; } 144 MachineFunction::iterator MBBI, E = end(); 145 if (MBB == nullptr) 146 MBBI = begin(); 147 else 148 MBBI = MBB; 149 150 // Figure out the block number this should have. 151 unsigned BlockNo = 0; 152 if (MBBI != begin()) 153 BlockNo = std::prev(MBBI)->getNumber() + 1; 154 155 for (; MBBI != E; ++MBBI, ++BlockNo) { 156 if (MBBI->getNumber() != (int)BlockNo) { 157 // Remove use of the old number. 158 if (MBBI->getNumber() != -1) { 159 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 160 "MBB number mismatch!"); 161 MBBNumbering[MBBI->getNumber()] = nullptr; 162 } 163 164 // If BlockNo is already taken, set that block's number to -1. 165 if (MBBNumbering[BlockNo]) 166 MBBNumbering[BlockNo]->setNumber(-1); 167 168 MBBNumbering[BlockNo] = MBBI; 169 MBBI->setNumber(BlockNo); 170 } 171 } 172 173 // Okay, all the blocks are renumbered. If we have compactified the block 174 // numbering, shrink MBBNumbering now. 175 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 176 MBBNumbering.resize(BlockNo); 177 } 178 179 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 180 /// of `new MachineInstr'. 181 /// 182 MachineInstr * 183 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 184 DebugLoc DL, bool NoImp) { 185 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 186 MachineInstr(*this, MCID, DL, NoImp); 187 } 188 189 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 190 /// 'Orig' instruction, identical in all ways except the instruction 191 /// has no parent, prev, or next. 192 /// 193 MachineInstr * 194 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 195 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 196 MachineInstr(*this, *Orig); 197 } 198 199 /// DeleteMachineInstr - Delete the given MachineInstr. 200 /// 201 /// This function also serves as the MachineInstr destructor - the real 202 /// ~MachineInstr() destructor must be empty. 203 void 204 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 205 // Strip it for parts. The operand array and the MI object itself are 206 // independently recyclable. 207 if (MI->Operands) 208 deallocateOperandArray(MI->CapOperands, MI->Operands); 209 // Don't call ~MachineInstr() which must be trivial anyway because 210 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 211 // destructors. 212 InstructionRecycler.Deallocate(Allocator, MI); 213 } 214 215 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 216 /// instead of `new MachineBasicBlock'. 217 /// 218 MachineBasicBlock * 219 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 220 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 221 MachineBasicBlock(*this, bb); 222 } 223 224 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 225 /// 226 void 227 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 228 assert(MBB->getParent() == this && "MBB parent mismatch!"); 229 MBB->~MachineBasicBlock(); 230 BasicBlockRecycler.Deallocate(Allocator, MBB); 231 } 232 233 MachineMemOperand * 234 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 235 uint64_t s, unsigned base_alignment, 236 const AAMDNodes &AAInfo, 237 const MDNode *Ranges) { 238 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 239 AAInfo, Ranges); 240 } 241 242 MachineMemOperand * 243 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 244 int64_t Offset, uint64_t Size) { 245 if (MMO->getValue()) 246 return new (Allocator) 247 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 248 MMO->getOffset()+Offset), 249 MMO->getFlags(), Size, 250 MMO->getBaseAlignment(), nullptr); 251 return new (Allocator) 252 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 253 MMO->getOffset()+Offset), 254 MMO->getFlags(), Size, 255 MMO->getBaseAlignment(), nullptr); 256 } 257 258 MachineInstr::mmo_iterator 259 MachineFunction::allocateMemRefsArray(unsigned long Num) { 260 return Allocator.Allocate<MachineMemOperand *>(Num); 261 } 262 263 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 264 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 265 MachineInstr::mmo_iterator End) { 266 // Count the number of load mem refs. 267 unsigned Num = 0; 268 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 269 if ((*I)->isLoad()) 270 ++Num; 271 272 // Allocate a new array and populate it with the load information. 273 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 274 unsigned Index = 0; 275 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 276 if ((*I)->isLoad()) { 277 if (!(*I)->isStore()) 278 // Reuse the MMO. 279 Result[Index] = *I; 280 else { 281 // Clone the MMO and unset the store flag. 282 MachineMemOperand *JustLoad = 283 getMachineMemOperand((*I)->getPointerInfo(), 284 (*I)->getFlags() & ~MachineMemOperand::MOStore, 285 (*I)->getSize(), (*I)->getBaseAlignment(), 286 (*I)->getAAInfo()); 287 Result[Index] = JustLoad; 288 } 289 ++Index; 290 } 291 } 292 return std::make_pair(Result, Result + Num); 293 } 294 295 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 296 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 297 MachineInstr::mmo_iterator End) { 298 // Count the number of load mem refs. 299 unsigned Num = 0; 300 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 301 if ((*I)->isStore()) 302 ++Num; 303 304 // Allocate a new array and populate it with the store information. 305 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 306 unsigned Index = 0; 307 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 308 if ((*I)->isStore()) { 309 if (!(*I)->isLoad()) 310 // Reuse the MMO. 311 Result[Index] = *I; 312 else { 313 // Clone the MMO and unset the load flag. 314 MachineMemOperand *JustStore = 315 getMachineMemOperand((*I)->getPointerInfo(), 316 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 317 (*I)->getSize(), (*I)->getBaseAlignment(), 318 (*I)->getAAInfo()); 319 Result[Index] = JustStore; 320 } 321 ++Index; 322 } 323 } 324 return std::make_pair(Result, Result + Num); 325 } 326 327 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 328 void MachineFunction::dump() const { 329 print(dbgs()); 330 } 331 #endif 332 333 StringRef MachineFunction::getName() const { 334 assert(getFunction() && "No function!"); 335 return getFunction()->getName(); 336 } 337 338 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 339 OS << "# Machine code for function " << getName() << ": "; 340 if (RegInfo) { 341 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 342 if (!RegInfo->tracksLiveness()) 343 OS << ", not tracking liveness"; 344 } 345 OS << '\n'; 346 347 // Print Frame Information 348 FrameInfo->print(*this, OS); 349 350 // Print JumpTable Information 351 if (JumpTableInfo) 352 JumpTableInfo->print(OS); 353 354 // Print Constant Pool 355 ConstantPool->print(OS); 356 357 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 358 359 if (RegInfo && !RegInfo->livein_empty()) { 360 OS << "Function Live Ins: "; 361 for (MachineRegisterInfo::livein_iterator 362 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 363 OS << PrintReg(I->first, TRI); 364 if (I->second) 365 OS << " in " << PrintReg(I->second, TRI); 366 if (std::next(I) != E) 367 OS << ", "; 368 } 369 OS << '\n'; 370 } 371 372 for (const auto &BB : *this) { 373 OS << '\n'; 374 BB.print(OS, Indexes); 375 } 376 377 OS << "\n# End machine code for function " << getName() << ".\n\n"; 378 } 379 380 namespace llvm { 381 template<> 382 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 383 384 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 385 386 static std::string getGraphName(const MachineFunction *F) { 387 return "CFG for '" + F->getName().str() + "' function"; 388 } 389 390 std::string getNodeLabel(const MachineBasicBlock *Node, 391 const MachineFunction *Graph) { 392 std::string OutStr; 393 { 394 raw_string_ostream OSS(OutStr); 395 396 if (isSimple()) { 397 OSS << "BB#" << Node->getNumber(); 398 if (const BasicBlock *BB = Node->getBasicBlock()) 399 OSS << ": " << BB->getName(); 400 } else 401 Node->print(OSS); 402 } 403 404 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 405 406 // Process string output to make it nicer... 407 for (unsigned i = 0; i != OutStr.length(); ++i) 408 if (OutStr[i] == '\n') { // Left justify 409 OutStr[i] = '\\'; 410 OutStr.insert(OutStr.begin()+i+1, 'l'); 411 } 412 return OutStr; 413 } 414 }; 415 } 416 417 void MachineFunction::viewCFG() const 418 { 419 #ifndef NDEBUG 420 ViewGraph(this, "mf" + getName()); 421 #else 422 errs() << "MachineFunction::viewCFG is only available in debug builds on " 423 << "systems with Graphviz or gv!\n"; 424 #endif // NDEBUG 425 } 426 427 void MachineFunction::viewCFGOnly() const 428 { 429 #ifndef NDEBUG 430 ViewGraph(this, "mf" + getName(), true); 431 #else 432 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 433 << "systems with Graphviz or gv!\n"; 434 #endif // NDEBUG 435 } 436 437 /// addLiveIn - Add the specified physical register as a live-in value and 438 /// create a corresponding virtual register for it. 439 unsigned MachineFunction::addLiveIn(unsigned PReg, 440 const TargetRegisterClass *RC) { 441 MachineRegisterInfo &MRI = getRegInfo(); 442 unsigned VReg = MRI.getLiveInVirtReg(PReg); 443 if (VReg) { 444 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 445 (void)VRegRC; 446 // A physical register can be added several times. 447 // Between two calls, the register class of the related virtual register 448 // may have been constrained to match some operation constraints. 449 // In that case, check that the current register class includes the 450 // physical register and is a sub class of the specified RC. 451 assert((VRegRC == RC || (VRegRC->contains(PReg) && 452 RC->hasSubClassEq(VRegRC))) && 453 "Register class mismatch!"); 454 return VReg; 455 } 456 VReg = MRI.createVirtualRegister(RC); 457 MRI.addLiveIn(PReg, VReg); 458 return VReg; 459 } 460 461 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 462 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 463 /// normal 'L' label is returned. 464 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 465 bool isLinkerPrivate) const { 466 const DataLayout *DL = getSubtarget().getDataLayout(); 467 assert(JumpTableInfo && "No jump tables"); 468 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 469 470 const char *Prefix = isLinkerPrivate ? DL->getLinkerPrivateGlobalPrefix() : 471 DL->getPrivateGlobalPrefix(); 472 SmallString<60> Name; 473 raw_svector_ostream(Name) 474 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 475 return Ctx.GetOrCreateSymbol(Name.str()); 476 } 477 478 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 479 /// base. 480 MCSymbol *MachineFunction::getPICBaseSymbol() const { 481 const DataLayout *DL = getSubtarget().getDataLayout(); 482 return Ctx.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 483 Twine(getFunctionNumber())+"$pb"); 484 } 485 486 //===----------------------------------------------------------------------===// 487 // MachineFrameInfo implementation 488 //===----------------------------------------------------------------------===// 489 490 const TargetFrameLowering *MachineFrameInfo::getFrameLowering() const { 491 return TM.getSubtargetImpl()->getFrameLowering(); 492 } 493 494 /// ensureMaxAlignment - Make sure the function is at least Align bytes 495 /// aligned. 496 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 497 if (!getFrameLowering()->isStackRealignable() || !RealignOption) 498 assert(Align <= getFrameLowering()->getStackAlignment() && 499 "For targets without stack realignment, Align is out of limit!"); 500 if (MaxAlignment < Align) MaxAlignment = Align; 501 } 502 503 /// clampStackAlignment - Clamp the alignment if requested and emit a warning. 504 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 505 unsigned StackAlign) { 506 if (!ShouldClamp || Align <= StackAlign) 507 return Align; 508 DEBUG(dbgs() << "Warning: requested alignment " << Align 509 << " exceeds the stack alignment " << StackAlign 510 << " when stack realignment is off" << '\n'); 511 return StackAlign; 512 } 513 514 /// CreateStackObject - Create a new statically sized stack object, returning 515 /// a nonnegative identifier to represent it. 516 /// 517 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 518 bool isSS, const AllocaInst *Alloca) { 519 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 520 Alignment = 521 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 522 !RealignOption, 523 Alignment, getFrameLowering()->getStackAlignment()); 524 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca)); 525 int Index = (int)Objects.size() - NumFixedObjects - 1; 526 assert(Index >= 0 && "Bad frame index!"); 527 ensureMaxAlignment(Alignment); 528 return Index; 529 } 530 531 /// CreateSpillStackObject - Create a new statically sized stack object that 532 /// represents a spill slot, returning a nonnegative identifier to represent 533 /// it. 534 /// 535 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 536 unsigned Alignment) { 537 Alignment = clampStackAlignment( 538 !getFrameLowering()->isStackRealignable() || !RealignOption, Alignment, 539 getFrameLowering()->getStackAlignment()); 540 CreateStackObject(Size, Alignment, true); 541 int Index = (int)Objects.size() - NumFixedObjects - 1; 542 ensureMaxAlignment(Alignment); 543 return Index; 544 } 545 546 /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a 547 /// variable sized object has been created. This must be created whenever a 548 /// variable sized object is created, whether or not the index returned is 549 /// actually used. 550 /// 551 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 552 const AllocaInst *Alloca) { 553 HasVarSizedObjects = true; 554 Alignment = clampStackAlignment( 555 !getFrameLowering()->isStackRealignable() || !RealignOption, Alignment, 556 getFrameLowering()->getStackAlignment()); 557 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca)); 558 ensureMaxAlignment(Alignment); 559 return (int)Objects.size()-NumFixedObjects-1; 560 } 561 562 /// CreateFixedObject - Create a new object at a fixed location on the stack. 563 /// All fixed objects should be created before other objects are created for 564 /// efficiency. By default, fixed objects are immutable. This returns an 565 /// index with a negative value. 566 /// 567 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 568 bool Immutable) { 569 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 570 // The alignment of the frame index can be determined from its offset from 571 // the incoming frame position. If the frame object is at offset 32 and 572 // the stack is guaranteed to be 16-byte aligned, then we know that the 573 // object is 16-byte aligned. 574 unsigned StackAlign = getFrameLowering()->getStackAlignment(); 575 unsigned Align = MinAlign(SPOffset, StackAlign); 576 Align = clampStackAlignment(!getFrameLowering()->isStackRealignable() || 577 !RealignOption, 578 Align, getFrameLowering()->getStackAlignment()); 579 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 580 /*isSS*/ false, 581 /*Alloca*/ nullptr)); 582 return -++NumFixedObjects; 583 } 584 585 /// CreateFixedSpillStackObject - Create a spill slot at a fixed location 586 /// on the stack. Returns an index with a negative value. 587 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size, 588 int64_t SPOffset) { 589 unsigned StackAlign = getFrameLowering()->getStackAlignment(); 590 unsigned Align = MinAlign(SPOffset, StackAlign); 591 Align = clampStackAlignment(!getFrameLowering()->isStackRealignable() || 592 !RealignOption, 593 Align, getFrameLowering()->getStackAlignment()); 594 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, 595 /*Immutable*/ true, 596 /*isSS*/ true, 597 /*Alloca*/ nullptr)); 598 return -++NumFixedObjects; 599 } 600 601 BitVector 602 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 603 assert(MBB && "MBB must be valid"); 604 const MachineFunction *MF = MBB->getParent(); 605 assert(MF && "MBB must be part of a MachineFunction"); 606 const TargetMachine &TM = MF->getTarget(); 607 const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo(); 608 BitVector BV(TRI->getNumRegs()); 609 610 // Before CSI is calculated, no registers are considered pristine. They can be 611 // freely used and PEI will make sure they are saved. 612 if (!isCalleeSavedInfoValid()) 613 return BV; 614 615 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 616 BV.set(*CSR); 617 618 // The entry MBB always has all CSRs pristine. 619 if (MBB == &MF->front()) 620 return BV; 621 622 // On other MBBs the saved CSRs are not pristine. 623 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 624 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 625 E = CSI.end(); I != E; ++I) 626 BV.reset(I->getReg()); 627 628 return BV; 629 } 630 631 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 632 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 633 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 634 unsigned MaxAlign = getMaxAlignment(); 635 int Offset = 0; 636 637 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 638 // It really should be refactored to share code. Until then, changes 639 // should keep in mind that there's tight coupling between the two. 640 641 for (int i = getObjectIndexBegin(); i != 0; ++i) { 642 int FixedOff = -getObjectOffset(i); 643 if (FixedOff > Offset) Offset = FixedOff; 644 } 645 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 646 if (isDeadObjectIndex(i)) 647 continue; 648 Offset += getObjectSize(i); 649 unsigned Align = getObjectAlignment(i); 650 // Adjust to alignment boundary 651 Offset = (Offset+Align-1)/Align*Align; 652 653 MaxAlign = std::max(Align, MaxAlign); 654 } 655 656 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 657 Offset += getMaxCallFrameSize(); 658 659 // Round up the size to a multiple of the alignment. If the function has 660 // any calls or alloca's, align to the target's StackAlignment value to 661 // ensure that the callee's frame or the alloca data is suitably aligned; 662 // otherwise, for leaf functions, align to the TransientStackAlignment 663 // value. 664 unsigned StackAlign; 665 if (adjustsStack() || hasVarSizedObjects() || 666 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 667 StackAlign = TFI->getStackAlignment(); 668 else 669 StackAlign = TFI->getTransientStackAlignment(); 670 671 // If the frame pointer is eliminated, all frame offsets will be relative to 672 // SP not FP. Align to MaxAlign so this works. 673 StackAlign = std::max(StackAlign, MaxAlign); 674 unsigned AlignMask = StackAlign - 1; 675 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 676 677 return (unsigned)Offset; 678 } 679 680 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 681 if (Objects.empty()) return; 682 683 const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering(); 684 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 685 686 OS << "Frame Objects:\n"; 687 688 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 689 const StackObject &SO = Objects[i]; 690 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 691 if (SO.Size == ~0ULL) { 692 OS << "dead\n"; 693 continue; 694 } 695 if (SO.Size == 0) 696 OS << "variable sized"; 697 else 698 OS << "size=" << SO.Size; 699 OS << ", align=" << SO.Alignment; 700 701 if (i < NumFixedObjects) 702 OS << ", fixed"; 703 if (i < NumFixedObjects || SO.SPOffset != -1) { 704 int64_t Off = SO.SPOffset - ValOffset; 705 OS << ", at location [SP"; 706 if (Off > 0) 707 OS << "+" << Off; 708 else if (Off < 0) 709 OS << Off; 710 OS << "]"; 711 } 712 OS << "\n"; 713 } 714 } 715 716 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 717 void MachineFrameInfo::dump(const MachineFunction &MF) const { 718 print(MF, dbgs()); 719 } 720 #endif 721 722 //===----------------------------------------------------------------------===// 723 // MachineJumpTableInfo implementation 724 //===----------------------------------------------------------------------===// 725 726 /// getEntrySize - Return the size of each entry in the jump table. 727 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 728 // The size of a jump table entry is 4 bytes unless the entry is just the 729 // address of a block, in which case it is the pointer size. 730 switch (getEntryKind()) { 731 case MachineJumpTableInfo::EK_BlockAddress: 732 return TD.getPointerSize(); 733 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 734 return 8; 735 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 736 case MachineJumpTableInfo::EK_LabelDifference32: 737 case MachineJumpTableInfo::EK_Custom32: 738 return 4; 739 case MachineJumpTableInfo::EK_Inline: 740 return 0; 741 } 742 llvm_unreachable("Unknown jump table encoding!"); 743 } 744 745 /// getEntryAlignment - Return the alignment of each entry in the jump table. 746 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 747 // The alignment of a jump table entry is the alignment of int32 unless the 748 // entry is just the address of a block, in which case it is the pointer 749 // alignment. 750 switch (getEntryKind()) { 751 case MachineJumpTableInfo::EK_BlockAddress: 752 return TD.getPointerABIAlignment(); 753 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 754 return TD.getABIIntegerTypeAlignment(64); 755 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 756 case MachineJumpTableInfo::EK_LabelDifference32: 757 case MachineJumpTableInfo::EK_Custom32: 758 return TD.getABIIntegerTypeAlignment(32); 759 case MachineJumpTableInfo::EK_Inline: 760 return 1; 761 } 762 llvm_unreachable("Unknown jump table encoding!"); 763 } 764 765 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 766 /// 767 unsigned MachineJumpTableInfo::createJumpTableIndex( 768 const std::vector<MachineBasicBlock*> &DestBBs) { 769 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 770 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 771 return JumpTables.size()-1; 772 } 773 774 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 775 /// the jump tables to branch to New instead. 776 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 777 MachineBasicBlock *New) { 778 assert(Old != New && "Not making a change?"); 779 bool MadeChange = false; 780 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 781 ReplaceMBBInJumpTable(i, Old, New); 782 return MadeChange; 783 } 784 785 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 786 /// the jump table to branch to New instead. 787 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 788 MachineBasicBlock *Old, 789 MachineBasicBlock *New) { 790 assert(Old != New && "Not making a change?"); 791 bool MadeChange = false; 792 MachineJumpTableEntry &JTE = JumpTables[Idx]; 793 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 794 if (JTE.MBBs[j] == Old) { 795 JTE.MBBs[j] = New; 796 MadeChange = true; 797 } 798 return MadeChange; 799 } 800 801 void MachineJumpTableInfo::print(raw_ostream &OS) const { 802 if (JumpTables.empty()) return; 803 804 OS << "Jump Tables:\n"; 805 806 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 807 OS << " jt#" << i << ": "; 808 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 809 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 810 } 811 812 OS << '\n'; 813 } 814 815 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 816 void MachineJumpTableInfo::dump() const { print(dbgs()); } 817 #endif 818 819 820 //===----------------------------------------------------------------------===// 821 // MachineConstantPool implementation 822 //===----------------------------------------------------------------------===// 823 824 void MachineConstantPoolValue::anchor() { } 825 826 const DataLayout *MachineConstantPool::getDataLayout() const { 827 return TM.getSubtargetImpl()->getDataLayout(); 828 } 829 830 Type *MachineConstantPoolEntry::getType() const { 831 if (isMachineConstantPoolEntry()) 832 return Val.MachineCPVal->getType(); 833 return Val.ConstVal->getType(); 834 } 835 836 837 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 838 if (isMachineConstantPoolEntry()) 839 return Val.MachineCPVal->getRelocationInfo(); 840 return Val.ConstVal->getRelocationInfo(); 841 } 842 843 SectionKind 844 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 845 SectionKind Kind; 846 switch (getRelocationInfo()) { 847 default: 848 llvm_unreachable("Unknown section kind"); 849 case 2: 850 Kind = SectionKind::getReadOnlyWithRel(); 851 break; 852 case 1: 853 Kind = SectionKind::getReadOnlyWithRelLocal(); 854 break; 855 case 0: 856 switch (DL->getTypeAllocSize(getType())) { 857 case 4: 858 Kind = SectionKind::getMergeableConst4(); 859 break; 860 case 8: 861 Kind = SectionKind::getMergeableConst8(); 862 break; 863 case 16: 864 Kind = SectionKind::getMergeableConst16(); 865 break; 866 default: 867 Kind = SectionKind::getMergeableConst(); 868 break; 869 } 870 } 871 return Kind; 872 } 873 874 MachineConstantPool::~MachineConstantPool() { 875 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 876 if (Constants[i].isMachineConstantPoolEntry()) 877 delete Constants[i].Val.MachineCPVal; 878 for (DenseSet<MachineConstantPoolValue*>::iterator I = 879 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 880 I != E; ++I) 881 delete *I; 882 } 883 884 /// CanShareConstantPoolEntry - Test whether the given two constants 885 /// can be allocated the same constant pool entry. 886 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 887 const DataLayout *TD) { 888 // Handle the trivial case quickly. 889 if (A == B) return true; 890 891 // If they have the same type but weren't the same constant, quickly 892 // reject them. 893 if (A->getType() == B->getType()) return false; 894 895 // We can't handle structs or arrays. 896 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 897 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 898 return false; 899 900 // For now, only support constants with the same size. 901 uint64_t StoreSize = TD->getTypeStoreSize(A->getType()); 902 if (StoreSize != TD->getTypeStoreSize(B->getType()) || StoreSize > 128) 903 return false; 904 905 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 906 907 // Try constant folding a bitcast of both instructions to an integer. If we 908 // get two identical ConstantInt's, then we are good to share them. We use 909 // the constant folding APIs to do this so that we get the benefit of 910 // DataLayout. 911 if (isa<PointerType>(A->getType())) 912 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 913 const_cast<Constant*>(A), TD); 914 else if (A->getType() != IntTy) 915 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 916 const_cast<Constant*>(A), TD); 917 if (isa<PointerType>(B->getType())) 918 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 919 const_cast<Constant*>(B), TD); 920 else if (B->getType() != IntTy) 921 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 922 const_cast<Constant*>(B), TD); 923 924 return A == B; 925 } 926 927 /// getConstantPoolIndex - Create a new entry in the constant pool or return 928 /// an existing one. User must specify the log2 of the minimum required 929 /// alignment for the object. 930 /// 931 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 932 unsigned Alignment) { 933 assert(Alignment && "Alignment must be specified!"); 934 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 935 936 // Check to see if we already have this constant. 937 // 938 // FIXME, this could be made much more efficient for large constant pools. 939 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 940 if (!Constants[i].isMachineConstantPoolEntry() && 941 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, 942 getDataLayout())) { 943 if ((unsigned)Constants[i].getAlignment() < Alignment) 944 Constants[i].Alignment = Alignment; 945 return i; 946 } 947 948 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 949 return Constants.size()-1; 950 } 951 952 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 953 unsigned Alignment) { 954 assert(Alignment && "Alignment must be specified!"); 955 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 956 957 // Check to see if we already have this constant. 958 // 959 // FIXME, this could be made much more efficient for large constant pools. 960 int Idx = V->getExistingMachineCPValue(this, Alignment); 961 if (Idx != -1) { 962 MachineCPVsSharingEntries.insert(V); 963 return (unsigned)Idx; 964 } 965 966 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 967 return Constants.size()-1; 968 } 969 970 void MachineConstantPool::print(raw_ostream &OS) const { 971 if (Constants.empty()) return; 972 973 OS << "Constant Pool:\n"; 974 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 975 OS << " cp#" << i << ": "; 976 if (Constants[i].isMachineConstantPoolEntry()) 977 Constants[i].Val.MachineCPVal->print(OS); 978 else 979 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 980 OS << ", align=" << Constants[i].getAlignment(); 981 OS << "\n"; 982 } 983 } 984 985 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 986 void MachineConstantPool::dump() const { print(dbgs()); } 987 #endif 988